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A B S T R A C T

The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working
memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We
applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16
SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex
(DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model
Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model
Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed
that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the
connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences
between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological
alterations underlying working memory performance, including different connection strengths with nonlinear
modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of
connectivity in working memory in schizophrenia.

1. Introduction

Schizophrenia is a severely disabling illness that is characterized by
positive and negative symptoms as well as cognitive deficits. It is
thought that such cognitive deficits are often associated with working
memory deficits (Bozikas and Andreou, 2011; Genevsky et al., 2010;
Gold, 2004). Evidence comes from functional Magnetic Resonance
Imaging (fMRI)1 studies including functional connectivity (FC) and

effective connectivity (EC) studies in verbal working memory in pa-
tients with schizophrenia (SZ) and healthy controls (HC). Such studies
repeatedly reported cortical dysconnectivity in SZ when compared to
HC (Birnbaum and Weinberger, 2013; Dauvermann et al., 2014;
Deserno et al., 2012; Glahn et al., 2005; Schlosser et al., 2003a, 2003b,
2006; Schmidt et al., 2013, 2014).

Evidence from animal studies proposes that activity-dependent sy-
naptic plasticity processes (Abbott et al., 1997; Rothman et al., 2009)
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are modulated via nonlinear effects. These nonlinear and glutamatergic
modulation processes encompass the meso-cortical and cortico-mesal
connections (Pan and Zucker, 2009; Salinas and Sejnowski, 2001;
Wang, 2010) and are implicated in working memory (Berends et al.,
2005; Durstewitz and Seamans, 2002, 2008; Gao et al., 2003; Laruelle
et al., 2005; Murphy and Miller, 2003; Neher and Sakaba, 2008; Pan
and Zucker, 2009; Salinas and Sejnowski, 2000; Sun and Beierlein,
2011; Tseng and O'Donnell, 2004; Tzschentke, 2001; Volman et al.,
2010), which also involve dopaminergic modulation processes (Coyle,
2006; Javitt, 2007; Tanaka, 2006). For human neuroimaging studies, it
has been shown that the connection from the ventral tegmental area/
substantia nigra (VTA/SN) area to the dorsolateral prefrontal cortex
(DLPFC) (i.e. the meso-cortical connection) is implicated in working
memory function (D'Ardenne et al., 2012; Murty et al., 2011). Fur-
thermore, for SZ it has been proposed that blood oxygen level-depen-
dent (BOLD) responses during working memory in SZ could be ex-
plained by underlying gating mechanisms of the meso-cortical
connection when compared to HC (Braver et al., 1999; Braver and
Cohen, 1999). In other words, observed changes in BOLD responses and
cortical connectivity may be driven by altered connection strengths
with nonlinear modulation of the meso-cortical and/or cortico-mesal
connections.

The Dysconnection Hypothesis posits that the N-Methyl-D-aspartate
receptor (NMDA-R) hypofunction model for schizophrenia could be
underlying the pathophysiological pathways of altered synaptic plasti-
city processes and thus result in cortical dysconnectivity in schizo-
phrenia (Friston et al., 2016; Friston and Frith, 1995; Stephan et al.,
2006, 2009; Weinberger, 1993). In clinical studies, the non-invasive
and indirect investigation of the NMDA-R hypofunction model can be
modeled by Dynamic Causal Modeling (DCM) for fMRI. DCM is a bio-
physical modeling approach of neuronal dynamic processes (Friston
and Dolan, 2010; Friston et al., 2003) that integrates functional large-
scale models with Bayesian inversion methods (Daunizeau et al., 2011a;
Friston and Dolan, 2010). DCM evaluates inter-regional EC through
assessment of experimental modulation of a given experimental task
(Friston et al., 2003) within a priori defined functional large-scale net-
works. Nonlinear DCM, an extension of bilinear DCM, allows for the
inference about nonlinearities in fMRI data (Stephan et al., 2008).

We hypothesized that the connection strengths with nonlinear
modulation from the VTA/SN area to the DLPFC would be altered in
contrast to the connection strength with nonlinear modulation from the
DLPFC to the VTA/SN as a potential measure of working memory dis-
ruption between SZ and HC. To test this hypothesis, we applied bilinear
and nonlinear DCM for fMRI in separate analysis steps to investigate
functional large-scale networks in the verbal “N-Back” task in SZ and
HC.

2. Methods

2.1. Subjects

Sixteen SZ and 21 HC participated in the verbal working memory
fMRI task. SZ and HC were recruited from the Royal Edinburgh
Hospital, associated hospitals and the Scottish Mental Health Research
Register (http://www.smhrn.org.uk/). Diagnosis of schizophrenia was
based on interview using the Structured Clinical Interview for DSM-IV
(First et al., 2002). SZ were also assessed with the Positive and Negative
Syndrome Scale (Kay et al., 1987), Scale for the Assessment of Negative
Symptoms (Andreasen, 1989) and the Global Assessment of Function
(Pedersen and Karterud, 2012). Inclusion criteria included (i) diagnosis
of established schizophrenia as assessed, and (ii) no acute psychotic
symptoms at the time of the scan. Exclusion criteria included (i) history
of any major psychiatric illness other than schizophrenia, (ii) history of
severe brain injury, (iii) history of a neurological disorder, and (iv)
dependency or harmful use of alcohol or drugs during the last 12
months. Also, HC were excluded if they had a family history of

schizophrenia. All participants provided written informed consent. The
study was approved by the local Research Ethics Committee.

2.2. Functional experimental details

All participants performed the verbal “2-Back” task known to show
a consistent functional large-scale network of BOLD responses (Owen
et al., 2005). They were presented with a sequence of single capital
letters (Broome et al., 2009). The experimental block design consisted
of (i) the baseline or “0-Back” condition; (ii) the “1-Back” condition;
and (iii) the “2-Back” condition. Behavioral task performance was
analyzed with the sensitivity index d’ (Eq. (1)) (Macmillan and
Creelman, 1991).

′ = −

=

d z Hits z Falsealarm s
z Z

( ) ( )
statistical value (1)

Hits and false alarm rates were adjusted as previously reported
(Macmillan and Kaplan, 1985). For the fMRI and DCM analyses, SZ and
HC were selected based on comparable good behavioral performance
level in the “N-Back” task to control for behavioral performance im-
pairments on BOLD response (Eryilmaz et al., 2016) and EC measures.
Briefly, the cut-off for good behavioral performance was set at d’>1.93
which equals a hit rate> 85% and false alarm rate< 20% across all
participants. D’ values were entered in a general linear model with
group as fixed factor and age and gender as covariates.

2.3. Functional scanning procedure

Brain imaging was carried out at the Clinical Research Imaging
Centre at the Queen's Medical Research Institute (Edinburgh, UK) on a
Siemens 3 T whole-body MRI Verio scanner (Siemens Medical Systems,
Erlangen, Germany) using the matrix head coil with 12 elements.
Structural scans, verbal “N-Back” EPI scans were acquired during the
same scanning session in all participants.

An initial localizer scan was performed to measure the inter-hemi-
spheric angle and the AC-PC line. The structural images were acquired
using T1-weighted, magnetization prepared rapid acquisition gradient
echo images prescribed parallel to the AC-PC line, providing 160 sa-
gittal slices of 1 mm thickness, 256 × 256 mm2 FOV, matrix size 256 ×
256 mm2. Further scan parameters were TR = 2300 ms, TE = 2.98 ms,
TI = 900 ms and flip angle = 9°. EPI scans for the “N-Back” task were
acquired continuously during the experimental task (TR/TE = 1560/
26 ms, matrix size of 256 × 256 mm2; FOV 256 × 256 mm2). Twenty
six interleaved slices with 4 mm slice thickness were acquired. Each EPI
sequence encompassed 293 volumes of which the first six volumes were
discarded.

2.4. FMRI data analysis

FMRI data processing and statistical analyses were performed in
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) running in Matlab (version
7.1; The MathWorks, Natick, MA, USA). All functional volumes were
spatially realigned, normalized to MNI space and spatially smoothed
with an isotropic 8 mm full-width at half-maximum Gaussian kernel.

For the statistical analyses, the onset times for each condition were
convolved using a canonical hemodynamic response function. For the
design matrix, the temporal reference has been set to the middle slice in
the EPI acquisition where the TR was set to 1560 ms. The main contrast
of interest was defined as “0-Back”< “2-Back” with age and gender as
covariates. From this second-level analysis, we generated statistical
parametric maps of the T statistic and F statistic at each voxel SPM
(Constantinidis and Klingberg, 2016), which denoted differences in
activation for the main contrast of interest. The statistical parametric
maps were thresholded at p<0.001 uncorrected. Regions are reported
that survived cluster-level correction for multiple comparisons across
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the whole brain at p<0.05. For the ACC and the VTA/SN area, we
applied a threshold of p<0.05 FDR in accordance with a previous
report (Genovese et al., 2002).

2.4.1. Dynamic Causal Modeling
DCM analyses were run using DCM8 (revision number 3684) as

implemented in SPM8 to assess EC in the verbal “N-Back” task. Bilinear
and nonlinear DCM was run following the heuristic search protocol
(Dauvermann et al., 2013). The connections strengths modeled for the
bilinear models and nonlinear models followed the original equations
(Friston et al., 2003; Stephan et al., 2008; Penny et al., 2010): Matrix A
denotes the endogenous connection strength in the absence of experi-
mental manipulations; matrix B resembles the modulation of those
endogenous connections by the experimental manipulation induced by
the main contrast of interest; matrix C reflects driving inputs, which
represent extrinsic parameters that change the neuronal state of brain
regions within the model; and matrix D denotes the gating of a con-
nection between two regions by the activity of a third region.

2.4.1.1. Region of interest selection and time series extraction. The
selection of the regions of interest (ROIs) was based on (i) the
second-level SPM results of the “0-Back”< “2-Back” contrast, and (ii)
reported findings in the literature. Clinical fMRI and PET studies
repeatedly reported the involvement of the DLPFC, intra-parietal
sulcus (IPS), anterior cingulate cortex (ACC) in terms of FA, FC and
task-dependent EC measures during the verbal/numeric “N-Back” task
in patients with established schizophrenia (EST) and HC FA, (Callicott
et al., 2000, 2003; Carter et al., 1998; Perlstein et al., 2001; Thermenos
et al., 2005); FC, (Meyer-Lindenberg et al., 2001, 2005b; Quide et al.,
2013; Rasetti et al., 2011; Tan et al., 2006); EC, (Deserno et al., 2012;
Schmidt et al., 2013, 2014; Zhang et al., 2013). The VTA/SN area was
included in the networks in addition to the established regions of the
DLPFC, IPS and ACC to model the functional role of the VTA/SN area in
working memory as reported in recent fMRI and PET studies in HC
(D'Ardenne et al., 2012; Murty et al., 2011; Xu et al., 2013; Yu et al.,
2013) and EST (D'Aiuto et al., 2015). The coordinates of the VTA/SN
area are in keeping with these studies on the VTA/SN area in working
memory.

Regional time series of the four regions were extracted from the
individual's activation map of the contrast thresholded at P<0.05
uncorrected at the closest maxima within a standard distance of 8 mm
of the group peak level for the IPS and DLPFC and adjusted distance of
6 mm of the group peak level for the ACC and the VTA/SN area ac-
cording to previous studies. This procedure ensured that the selected
ROIs for the DCM networks were consistent across subjects (Stephan
et al., 2007). Participants were selected on the basis of the requirement
of activation in all four ROIs in either the left or right hemisphere. This
process led to the exclusion of one SZ and three HC. The coordinates of
the ROIs are presented in Table 1.

2.4.1.2. Heuristic study protocol. The heuristic search protocol for the

application of nonlinear DCM for fMRI (Dauvermann et al., 2013) has
been adapted for the verbal “N-Back” task to examine connection
strengths with nonlinear modulation of the bidirectional connection
between the DLPFC and the VTA/SN area within a network comprising
the DLPFC, IPS, ACC and VTA/SN area:

(i) Phase 1: bilinear DCM
(ii) Phase 2: nonlinear DCM
(iii) Phase 3: Bayesian Model Averaging (BMA).

In phase 1, bilinear DCM was used in order to select the structure for
the working memory network. This analysis contained modulations for
the activity-dependent neuronal interactions between the four regions.
The optimal model of this analysis was entered into phase 2.

In phase 2, nonlinear DCM was applied to model the connection
strengths with activity-dependent modulation of the bidirectional
connection between the VTA/SN area and the DLPFC. In order to ensure
the modeling of the nonlinear modulation, two preconditions were met:
(i) The specification of the nonlinear models was based on the optimal
bilinear model from phase 1. Therefore, the bilinear model and the
nonlinear models differed only in the single parameter of nonlinearity
from each other. (ii) The implementation of Model Space Partitioning
and Family Inference was applied to compare between the bilinear and
nonlinear models.

In phase 3, the connection strengths with nonlinear modulation in
the winning model family were assessed using the posterior densities
over connection strengths as assessed with BMA. This step allowed in-
ference of the connection strengths with nonlinear modulation of the
bidirectional meso-cortical and cortico-mesal connections.

The three phases of the DCM analyses were run separately for the
two groups and both hemispheres.

2.4.1.2.1. Phase 1: Bilinear Dynamic Causal Modeling. The model
space of bilinear models consisted of nine functional large-scale
networks or DCMs. The DCMs differed in their unidirectional and
bidirectional endogenous connections between the four ipsilateral
regions of the DLPFC, IPS, ACC and VTA/SN area, whereas the
modulations were identical across the nine DCMs (Fig. 1A). Both
preclinical and clinical studies of working memory function and
gating mechanisms have been used to specify each connection
between the regions, each modulation and each input for working
memory function to increase the biological interpretability of the
biophysical models (Yahata et al., 2017; Dauvermann et al., 2017).

The endogenous connections between the DLPFC, IPS and ACC have
been widely modeled based on animal studies that investigated working
memory function (Berends et al., 2005; Durstewitz and Seamans, 2002,
2008; Gao et al., 2003; Laruelle et al., 2005; Murphy and Miller, 2003;
Neher and Sakaba, 2008; Pan and Zucker, 2009; Salinas and Sejnowski,
2000; Sun and Beierlein, 2011; Tseng and O'Donnell, 2004; Tzschentke,
2001; Volman et al., 2010).

For example, the endogenous connections between the ACC and the
VTA/SN area were defined on the basis of known dopaminergic pro-
jections (Onn and Wang, 2005). Furthermore, clinical studies were used
for the other connections: FC and EC findings for the “N-Back” task
were used to specify functional connections between the IPS and the
DLPFC (FC, (Quide et al., 2013; Rasetti et al., 2011; Tan et al., 2006);
EC, (Deserno et al., 2012; Schmidt et al., 2013, 2014; Zhang et al.,
2013), the IPS and ACC (FC, (Meyer-Lindenberg et al., 2001); EC during
the Continuous Performance Task (CPT) (Brazdil et al., 2007); the
DLPFC and the ACC (Brazdil et al., 2007)). Lastly, the endogenous
connections between the DLPFC and VTA/SN area were specified by
known dopaminergic projections from the VTA/SN area to the DLPFC
(Au-Young et al., 1999; D'Ardenne et al., 2012; Gao and Wolf, 2007;
Girault and Greengard, 2004; Takahata and Moghaddam, 1998) and
glutamatergic projection from the DLPFC to the VTA/SN area (Tseng
and O'Donnell, 2004; Tzschentke, 2001).

Connections with modulatory input were defined by the “0-

Table 1
Talairach coordinates for the ROIs for the Dynamic Causal Modeling analyses.

Brain regions, BA Coordinates in Talairach space x, y, z

ACC, BA32 0, 24, 28
Left DLPFC, (BA8; BA9) −37, 34, 32
Right DLPFC, BA9 37, 42, 27
Left IPS, BA40 −44, −46, 52
Right IPS, BA40 44, −44, 52
Left VTA/SN area −9, −17, −6
Right VTA/SN area 7, −17, −3

Abbreviations: ACC, anterior cingulate cortex; BA, Brodman areas; DCM, Dynamic Causal
Modeling; DLPFC, dorsolateral prefrontal cortex; IPS, intra - parietal sulcus; ROIs, regions
of interest; VTA/SN area, ventral tegmental area/substantia nigra area.
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Back”< “2-Back” experimental manipulation of the working memory
load. Evidence for (parametric) working memory load and interaction
effects with working memory load during the “N-Back” task in SZ and
HC has been presented for (i) BOLD response results of the bilateral
subregions of the prefrontal cortex (PFC) (including the DLPFC),

bilateral inferior-parietal lobule (IPL), ACC (Callicott et al., 2000, 2003;
Guerrero-Pedraza et al., 2012; Perlstein et al., 2001; Quide et al., 2013;
Rasetti et al., 2011; Tan et al., 2006; Thermenos et al., 2005); (ii) FC
measures of bilateral subregions of the PFC (including the DLPFC) and
bilateral IPL (Quide et al., 2013; Rasetti et al., 2011; Tan et al., 2006)

(caption on next page)
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and (iii) task-dependent EC findings of bilateral subregions of the PFC
(including the DLPFC) and bilateral IPL (Deserno et al., 2012; Schmidt
et al., 2013, 2014; Zhang et al., 2013).

Driving inputs were defined by previous DCM studies, which re-
ported evidence of effects of visual presentation of stimuli to the IPS
(during the CPT), (Brazdil et al., 2007; Wang et al., 2010). The bilinear
effects were driven by box car stimulus functions encoding difficulty
level of the N-Back task, whereas the driving inputs were driven by box
car stimulus functions encoding the main effect of the task.

Bayesian Model Selection (BMS) at the group level has been applied
to models of both hemispheres in SZ and HC separately. BMS tests
competing hypotheses (the models) about the neural mechanisms
generating the data by assessing the model evidence as previously de-
scribed (Penny et al., 2010, 2004).

2.4.1.2.2. Phase 2: Nonlinear Dynamic Causal Modeling. The
objective of modeling the gating mechanism for the bidirectional
connection between the DLPFC and the midbrain region comprised of
the ventral tegmental area (VTA) and substantia nigra (SN) area during
working memory in subjects with schizophrenia and healthy controls,
three widely established findings have been incorporated into the
models:

• The dopaminergic meso-cortical projection from the VTA/SN area to
the DLPFC (bilinear models);

• The glutamatergic projection from the DLPFC to the VTA/SN area
(bilinear models); and

• The gain modulation of both of these two connections (nonlinear
models).

The model space of nonlinear models comprised four nonlinear
networks and was specified on the basis of the optimal bilinear network
as outlined in phase 1 of the heuristic search protocol.

The nonlinear modulation of the meso-cortical and cortico-mesal
connections is based on evidence from clinical neuroimaging (Braver
et al., 1999; Braver and Cohen, 1999) as well as animal and compu-
tational studies (Arnsten et al., 2010, 2012; Berends et al., 2005; Tseng
and O'Donnell, 2004; Tzschentke, 2001; Wang, 2010).

There were two different optimal models for the “N-Back” task in SZ
and HC as a result of the BMS at the group level. Model 1 (bilinear
model; Fig. 1A) was the optimal bilinear model for SZ for both hemi-
spheres, whereas as model 7 (bilinear model; Fig. 1A) was the optimal
model for HC for both hemispheres.2 Thus, the nonlinear models were

defined separately for SZ and HC.
For SZ, two nonlinear models were constructed on the structure of

the winning Model 1 with nonlinear modulation from the DLPFC to
both connections between the DLPFC and the VTA/SN area (i.e. non-
linear models – DLPFC, Fig. 1B). Two further models were defined on
the basis of model 1 by the nonlinear modulation from the VTA/SN area
to the connections between the DLPFC and the VTA/SN (i.e. nonlinear
models – VTA/SN area, Fig. 1B). The nonlinear model space for HC was
defined accordingly to model 7.

The previously described BMS inference approach at the model fa-
mily level, phase 2 of the protocol, has been applied. The BMS analysis
was separately run for both groups and both hemisphere. The model
space for SZ was partitioned in to three model families:

(i) Model family 1 - optimal bilinear model 1 (Fig. 1A);
(ii) Model family 2 - two nonlinear models with nonlinear modulation

from the DLPFC (nonlinear models – DLPFC; Fig. 1B);
(iii) Model family 3 - two nonlinear models with nonlinear modulation

from the VTA/SN area (nonlinear models – VTA/SN area; Fig. 1B).

The model space partitioning for HC was defined accordingly to
Model 7 and based on the same structure as the model space parti-
tioning for SZ. The Xp for the two winning model families 2 and 3 were
summarized as described previously (Dauvermann et al., 2013).

2.4.1.2.3. Phase 3: Connection strength with nonlinear modulation -
Bayesian Model Averaging. Bayesian Model Averaging (BMA) has been
applied to the winning models from BMS at the model family level as
previously applied (Dauvermann et al., 2013), where the posterior
densities of the connection strength with nonlinear modulation for the
meso-cortical and cortico-mesal connections in the winning models are
assessed.

3. Results

3.1. Demographic, clinical and behavioral details

Sixteen SZ and 21 HC underwent the ‘2-Back’ fMRI task of which 15
SZ and 18 HC were included in the DCM analyses (left hemisphere, 13
SZ and 18 HC; right hemisphere, 15 SZ and 16 HC). Full demographic
and clinical details including medication details are presented in
Table 2. All SZ were treated with antipsychotic medication. Neither task
accuracy during the ‘2-Back’ condition nor the response times were

Fig. 1. Model space of bilinear and nonlinear models. (A) Model space of bilinear models for both groups. All nine models are characterized by bidirectional endogenous connections
(black arrow) between the IPS and DLPFC, IPS and ACC and DLPFC and ACC. Furthermore, all models are defined by a modulatory input (blue arrow) on the connection from the IPS to
the DLPFC. All models receive two driving inputs (red arrow): One driving input (presented visual stimuli, i.e. single letters) enters the IPS; and one driving input (false alarms) enters the
VTA/SN. The nine models differ in the specification of unidirectional or bidirectional endogenous connections: (i) Between the DLPFC and the VTA/SN and (ii) between the ACC and
VTA/SN. Model 1 is specified by a bidirectional endogenous connection (i) between DLPFC and VTA/SN and (ii) ACC and VTA/SN. Model 2 is specified by a unidirectional endogenous
connection from DLPFC to VTA/SN and a bidirectional endogenous connection between ACC and VTA/SN. Model 3 is specified by a unidirectional endogenous connection from VTA/SN
to DLPFC and a bidirectional endogenous connection between ACC and VTA/SN. Model 4 is specified by a bidirectional endogenous connection between DLPFC and VTA/SN and a
unidirectional endogenous connection from VTA/SN to ACC. Model 5 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous
connection from VTA/SN to ACC. Model 6 is specified by a unidirectional endogenous connection from VTA/SN to DLPFC and a unidirectional endogenous connection from VTA/SN to
ACC. Model 7 is specified by a bidirectional endogenous connection between DLPFC and VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN. Model 8 is specified
by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN. Model 9 is specified by a unidirectional
endogenous connection from VTA/SN area to DLPFC and a unidirectional endogenous connection from ACC to VTA/SN. (B) Four nonlinear models for patients with schizophrenia. The
nonlinear models are specified on the basis of the winning model 1 in SZ. The endogenous connections (black arrow), modulatory input (blue arrow) and driving inputs (red arrow) are
defined as in model 1 (Fig. 1A). Model 1_DLPFC_VTA/SN_DLPFC and Model 1_DLPFC_DLPFC_VTA/SN are characterized by the nonlinear modulation (green arrow) from the DLPFC on the
bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 2. Model 1_DLPFC_VTA/SN_DLPFC is specified
by the nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1_DLPFC _DLPFC_VTA/SN is specified by the nonlinear modulation (green
arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1_VTA/SN_VTA/SN_DLPFC and model 1_VTA/SN_DLPFC_VTA/SN are characterized by the nonlinear modulation
(green arrow) from the VTA/SN on the bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 3. Model
1_VTA/SN_VTA/SN_DLPFC is specified by the nonlinear modulation from VTA/SN to the connection from DLPFC to VTA/SN. Model 1_VTA/SN_DLPFC_VTA/SN is specified by the
nonlinear modulation from VTA/SN to the connection from VTA/SN to DLPFC. ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; IPS, intra-parietal sulcus; VTA/SN,
ventral tegmental area/substantia nigra.

2 In HC, for the right hemisphere model 7 was chosen to enter this phase of the DCM
analyses instead of model 8 to enable the modeling of the bidirectional connection

(footnote continued)
between the DLPFC and the VTA/SN area. Exceedance probability (Xp) of model 8 (Xp =
0.23) was greater than Xp of model 7 (Xp = 0.16) or model 2 (Xp = 0.18).
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significantly different between HC and SZ.

3.2. Functional MRI results

The main results showed greater activation in the bilateral DLPFC
(BA9/46) in HC when compared to SZ (BA9, x = −46, y = 25, z = 31;
P = 0.036; BA46, x = 41; y = 29, z = 17; P = 0.044; Fig. 2A; voxel-
wise P<0.001 uncorrected and FWE corrected cluster level). Other
regions of greater activation in HC than in SZ included the IPS (BA40)
(x = 49, y = −47, z =30; P= 0.022; voxel-wise p<0.01 uncorrected
and FWE corrected cluster level), the ACC (BA32) (x = 3, y = 36, z =
26; P = 0.0243) and the bilateral midbrain region of the VTA/SN (x =
−9, y = −17, z = −6; P = 0.047; Fig. 2B; right hemisphere, x = 7, y
= −17, z = −3; p = 0.049; both at P<0.05 FDR corrected cluster
level; Table 3). Briefly, the statistical findings are in keeping with
clinical verbal/numeric “N-Back” studies (Callicott et al., 2000; Glahn
et al., 2005; Tan et al., 2006; Wang et al., 2010) and the BOLD response
of the VTA/SN area had been reported previously in working memory
in HC (D'Ardenne et al., 2012; Murty et al., 2011).

3.3. Dynamic Causal Modeling

3.3.1. Phase 1: Bilinear Dynamic Causal Modeling
The exceedance probabilities (Xp) of models 1, 2, 7 and 8 ranged

between Xp = 0.14 – 0.24 for HC and Xp = 0.13 – 0.23 for SZ, re-
spectively. In SZ, model 1 was the optimal model, whereas models 7
and 8 displayed the greater probability in HC.

In SZ, model 1 was the optimal model for both hemispheres (left
hemisphere, Xp = 0.23; Fig. 3A; right hemisphere, Xp = 0.20; Fig. 3B).
In contrast, model 7 was the optimal model for the left hemisphere in
HC (Xp = 0.24; Fig. 3A) whereas model 8 was the optimal model for
the right hemisphere (Xp = 0.23; Fig. 3B).

Insert Fig. 3

3.3.2. Phase 2: Nonlinear Dynamic Causal Modeling
We report three main results for the BMS analysis at the model fa-

mily level as described in the model space partitioning:

(i) The nonlinear model families outperformed the bilinear model
family in both SZ and HC (left hemisphere, Fig. 4A; right hemi-
sphere, Fig. 4B).

(ii) In SZ, model family 2 was the optimal model family (left hemi-
sphere, Xp = 0.44; right hemisphere, Xp = 0.56).

(iii) In HC, model family 2 was the winning model family (left hemi-
sphere, Xp = 0.46; right hemisphere, Xp = 0.45).

It is noted that the results cannot be directly compared between HC
and SZ because two different model structures underlie the BMS find-
ings.

3.3.3. Phase 3 - connection strengths with nonlinear modulation
The posterior densities of connection strengths with nonlinear

modulation for the meso-cortical and cortico-mesal connections are
summarized in Fig. 5. In SZ, the posterior means ranged from
−0.02 Hz/0.01 Hz (right/left hemisphere) for the meso-cortical con-
nection to 0.04 Hz (left/right hemisphere) for the cortico-mesal con-
nection. In HC, the posterior means ranged from −0.01 Hz/0.02 Hz
(right/left hemisphere) for the meso-cortical connection to 0.001 Hz/
0.02 Hz (right/left hemisphere) for the cortico-mesal connection. It is
noted that the results cannot be directly compared between HC and SZ
because two different model structures underlie the BMS findings.

4. Discussion

This study presents two novel sets of findings on EC measures in
functional large-scale networks in working memory in SZ and HC:
Firstly, we found that SZ and HC used different functional large-scale
networks for verbal working memory as measured with bilinear DCM.
Secondly, we reported connection strengths with nonlinear modulation
in working memory in SZ and HC as inferred by nonlinear DCM.

The main finding of the bilinear DCM analyses revealed that SZ used
a different bilinear network than HC contrary to the hypothesis of al-
tered connection strengths with nonlinear modulation of the meso-
cortical connection of the same network. We interpreted the utilization
of different networks as a potential illness effect since the behavioral
performance in the working memory task was comparable between SZ

Table 2
Demographic and clinical details.

Healthy controls Patients with schizophrenia Test p – Value

Number 18 15 _ _
Age 35.00 (14.96) 37.07 (9.95) t = −0.457 (df=31) p = 0.651
Gender (M:F) 13:5 13:2 x2 = −0.995 (df=31) p = .327
IQ (SD) 120.00 (7.81) 107.53 (15.53) t = 2.988 (df=31) p = 0.005*
Handedness (R: L:Mixed) 14:1:2a 7:3:2a x2 = 3.054 (df=2) p = 0.217
Level of education (0:1:2)b (3:0:13)a (1:3:11) x2 = 4.139 (df=2) p = 0.120
Age at illness onset – 21.47 (6.14) _ _
Illness duration (in months) _ 93.87 (11.50) _ _
Total PANSS Scorec 1.89 (5.16) 21.53 (14.56) t = −0.382 (df=31) p< .001*
Total PANSS Positive Scorec 0.39 (0.98) 6.00 (4.09) t = −0.384 (df=31) p< .001*
Total PANSS Negative Scorec 0.11 (0.32) 6.47 (4.94) t = −0.418 (df=31) p< .001*
Total PANSS General Scorec 1.39 (4.95) 9.20 (8.08) t = −0.307 (df=31) p = 0.006
Total SANS Score 0.78 (2.37) 17.33 (15.09) t = −0.4.47 (df=31) p< .001*
GAF Score Missing 49.93 (21.52) _ _
Chlorpromazine equivalent dosed, Mean (SD) _ 475.00 (400.55) _ _
Antipsychotic medicatione _ (a) 1; (b) 5; (c) 1; (d) 5; (e) 3 _ _
Antipsychotic medication, additionalf _ (a) 2; (b) 1 _ _
Other medicationg _ (a) 7; (b) 1; (c) 2 _ _

Abbreviations: GAF, Global Assessment of Functioning; PANSS, Positive and Negative Symptom Scale; SANS, Scale for the Assessmentof Negative Symptoms, SD, standard deviation.
a Significant at p<0.05 (two-tailed).
b 0, Compulsory; 1, More than compulsory; 2, Post-Secondary.
c Rescaled total PANSS scores.
d To 100 mg CPZ.
e Primary medication: (a) Aripiprazole, (b) Clozapine, (c) Depixol (depot), (d) Olanzapine, (e) Risperidone/Risperidone Consta depot.
f (a) Amilsulpride, (b) Chlorpromazine.
g (a) Antidepressant, (b) Mood Stabilizer, (c) Anticholinergics.
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and HC. It is also conceivable that the different functional large-scale
network used by SZ may reflect a compensatory ‘network’ mechanism
which explains the equally high behavioral performance level com-
pared to HC. This interpretation of findings at the network level extends
the widely shared notion that reduced DLPFC BOLD response during
working memory in SZ may resemble cortical dysfunction (Schlosser
et al., 2008) or a compensation mechanism to impaired cognitive
function (Tan et al., 2006). Additionally, it is likely that antipsychotic

medication may have affected the task-dependent and nonlinear EC
findings. Recent studies showed group differences of task-dependent EC
measures of the same functional network in the verbal “N-Back” task: (i)
Reduced connection strengths with modulatory input of cortico-cortical
and cortico-cerebellar connections and increased connection strengths
with modulatory input of thalamo-cortical connection in SZ treated
with second-generation antipsychotic (SGA) when contrasted to SZ
treated with first-generation antipsychotics (FGA) and HC (Schlosser
et al., 2003a), and (ii) reduced connection strengths with modulatory
input of the prefrontal-parietal connection in patients with first-episode
psychosis (FEP) in contrast to HC and subjects at-risk mental state
(ARMS) but comparable EC measures with modulatory input between
HC and FEP treated with antipsychotic medication (Schmidt et al.,
2013). It is not possible to interpret the EC findings of modulatory input
and nonlinear modulation in terms of potential pharmacological effects
since this study was not designed for such an investigation.3

Support for the interpretation of the observed differences in net-
work utilization during the verbal “N-Back” task between SZ and HC
comes from three recent DCM studies in SZ (Deserno et al., 2012) and
ARMS/FEP that applied bilinear DCM (Schmidt et al., 2013, 2014). In
the first study, Deserno et al. (2012) reported reduced task-dependent
EC from the DLPFC to the parietal cortex in SZ when compared to HC as
assessed with BMA after the observation of different optimal networks
for SZ and HC (Deserno et al., 2012). Similarly, Schmidt et al. (2013)
found progressively reduced task-dependent modulation of EC between
the middle frontal gyrus (MFG) and superior parietal lobe (SPL) (from
HC to ARMS) when measured with BMA after different optimal net-
works for ARMS, FEP and HC were reported (Schmidt et al., 2013).
Lastly, Schmidt et al. (2014) showed decreased task-dependent EC from

Fig. 2. Between-group results of activation in patients with schizophrenia in contrast to
healthy controls. (A) Between-group results - Left MFG, BA9. Reduced activation in pa-
tients with schizophrenia in contrast to healthy controls (BA9, x = −46, y = 25, z = 31;
P = 0.036). Reported p values are thresholded at voxel-wise p<0.001 uncorrected and
FWE corrected cluster level, extent threshold = 200 voxels. Coordinates represent the
three maxima within the same cluster. MFG, middle frontal gyrus. (B) Between-group
results - Left Midbrain, VTA/SN. Reduced activation in patients with schizophrenia in
contrast to healthy controls (VTA/SN, x = −9, y = −17, z = −6; P = 0.047). Reported
p values are thresholded at p<0.05 FDR corrected cluster level, extent threshold = 200
voxels. Coordinates represent the three maxima within the same cluster. VTA/SN, ventral
tegmental area/substantia nigra.

Table 3
Between-group random effects analysis.

P value Extent Peak height
coordinates

Region Z score

HC< SZ
n/s
HC> SZ
0.006a 1097 −52, −22, −12 L temporal: middle temporal

gyrus, BA21
4.27

−60, −17, −12
0.036a 580 −46, 25, 31 L frontal: middle frontal gyrus,

BA9
3.83

0.044a 345 41, 29, 17 R frontal: middle frontal gyrus,
BA46

3.66

0.022b 1344 49, −47, 30 R parietal: inferior parietal
lobule, BA40

3.56

0.004c 1836 −13, −2, 8 L sub-lobar: thalamus 3.50
−13, −7, 4

0.0243d 685 3, 36, 26 R limbic: anterior cingulate,
BA32

3.53

0.047d 267 −9, −17, −6 L midbrain: substantia nigra/
ventral tegmental area

3.32

0.049d 204 7, −17, −3 R midbrain: substantia nigra/
ventral tegmental area

3.03

Coordinates represent the three maxima within the same cluster.
Abbreviations: HC, healthy controls; L, left; n/s, not significant; R, right; SZ, individuals
with schizophrenia.

a Reported P values are thresholded at voxel-wise p<0.001 uncorrected and FWE
corrected cluster level, extent threshold = 200 voxels. Coordinates represent the three
maxima within the same cluster.

b Reported P values are thresholded at voxel-wise p<0.01 uncorrected and FWE
corrected cluster level, extent threshold = 200 voxels. Coordinates represent the three
maxima within the same cluster.

c Reported P values are thresholded at p<0.05 FWE corrected cluster level, extent
threshold = 200 voxels. Coordinates represent the three maxima within the same cluster.

d Reported P values are thresholded at p<0.05 FDR corrected cluster level, extent
threshold = 200 voxels. Coordinates represent the three maxima within the same cluster.

3 In this study, SZ were treated with a variety of FGA and SGA.
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the right MFG to the right SPL in ARMS in contrast to HC as evaluated
by BMA after different optimal large-scale networks were found
(Schmidt et al., 2014). In these studies BMA was used to average the
weights of the entire model space under the assumption that the same
winning model is used by all groups to enable statistical group analyses.
Those group differences in task-dependent EC are findings in their own
right under the widely shared notion of the same functional network
utilization among groups.

The findings of nonlinear connection strengths of the meso-cortical
and cortico-mesal connection in working memory in SZ and HC have
not been reported previously to our knowledge. We were not able to
confirm our hypothesis of different connection strengths with nonlinear
modulation of the bidirectional connection between the DLPFC and
VTA/SN area between SZ and HC. This was due to the result of different
functional bilinear networks following the heuristic search protocol
(Dauvermann et al., 2013). According to the conditions of the heuristic
search protocol, connection strengths with nonlinear modulation can
only be statistically compared between groups if both groups display
the same optimal bilinear networks. ‘We consider that the similar
likelihoods of the two most likely model families in HC may indicate
that the successful performance of working memory function is de-
pendent on the balance of nonlinear modulations of both the meso-
cortical and the cortico-mesal connection rather than only one of the
connections.’ Nonetheless, these findings offer novel insight into neu-
robiological pathways that may underlie neuronal responses in schi-
zophrenia. In future studies, it needs to be investigated whether the
differently lateralized findings indicate a dysfunctional network system
(given the altered BOLD responses) or an alternative functional network
in SZ (given the comparable behavioral performance).

Support for the functional role of the VTA/midbrain and the im-
plication of dopaminergic alterations in verbal/numeric working
memory involving the DLPFC in SZ in contrast to HC comes from PET
studies (Abi-Dargham et al., 2002; Carter et al., 1998; Fusar-Poli et al.,
2010; Meyer-Lindenberg et al., 2001, 2005b). Furthermore, findings of
an interaction between midbrain dopamine synthesis capacity and
prefrontal function of working memory have been presented. Reduced
dopamine synthesis in the midbrain was related to decreased regional
cerebral blood flow of the DLPFC during working memory in HC
(Meyer-Lindenberg et al., 2005a). In addition, performance of the
continuous performance test in HC was associated with relatively
higher magnitude of net blood brain clearance of [18F] fluorodopamine
in the midbrain (Vernaleken et al., 2007). Lastly, [18F] fluorodopamine
turnover in the midbrain has been shown to be increased in un-
medicated SZ compared to HC (Kumakura et al., 2007).

Currently, it is not understood what the neurocognitive and neu-
ropsychological processes of gating or their effects in working memory
in humans are. However, we suggest that intact gating may lead to
successful performance of working memory given the comparable
performance levels in this study and based on electroencephalogram
studies which have previously reported on the relevance of intact sen-
sory gating during working memory tasks (Huang et al., 2013; Lijffijt
et al., 2009; Shimi and Astle, 2013).

The limitations of the DCM8 approach have been discussed pre-
viously (Daunizeau et al., 2011a, 2011b). The networks in this study
were limited to intra-hemispheric networks, whereas it can be assumed
that working memory is also processed inter-hemispherically (Wheeler
et al., 2014). The systematic testing of EC measures on task-dependent

Fig. 3. Exceedance probabilities for bilinear models in both hemispheres (A) Exceedance
probabilities for bilinear models – Left hemisphere. (B) Exceedance probabilities for bi-
linear models – Right hemisphere. Results for HC are based on model 7 and results for EST
are based on model 1 (Fig. 1A). EST, patients with established schizophrenia; HC, healthy
controls; M1, model 1; M7, model; Xp, Exceedance probability.

Fig. 4. Bayesian Model Selection results at the model family level in both hemispheres.
(A) Bayesian Model Selection results at the model family level – Left hemisphere. (B)
Bayesian Model Selection results at the model family level – Right hemisphere. Results for
HC are based on Model 7 and results for EST are based on Model 1 (Fig. 1A). EST, patients
with established schizophrenia; HC, healthy controls; Xp, Exceedance probability. MF1,
model family 1, bilinear model. MF2, model family 2, nonlinear models – DLPFC. MF3,
model family 3, nonlinear models – VTA/SN.
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modulation can only be considered for the specific experimental task
and the given model space for the bilinear and nonlinear models.
Therefore, it has to be acknowledged that EC measures between brain
regions for any examined model space may be different among in-
dividuals, including the task modulation from the IPS to the DLPFC. We
acknowledge a caveat that antipsychotic medication may have affected
our EC findings in addition to the lack of dopamine concentration
measurement in the midbrain in this study. However it has been es-
tablished that glutamatergic and dopaminergic alterations in the PFC
(Coyle, 2006; Kantrowitz and Javitt, 2010; Laruelle, 2014), midbrain
(Abi-Dargham et al., 2002; Durstewitz and Seamans, 2002) and their
interactions within the PFC – midbrain circuit (Gao and Wolf, 2007,
2008) underlie working memory in schizophrenia (Arnsten et al., 2012;
Goldman-Rakic and Selemon, 1997; Lewis and Moghaddam, 2006;
Moghaddam et al., 1997; Tanaka, 2006; Timofeeva and Levin, 2011).
Furthermore, glutamatergic concentrations from prefrontal brain re-
gions in SZ when compared to HC as measured with Proton Magnetic
Resonance Spectroscopy (MRS) are missing in this article. However,
recent MRS, proton echo planar spectroscopic imaging and multi-modal
MRS and fMRI studies presented evidence for a role of prefrontal glu-
tamatergic concentrations in the pathophysiology of schizophrenia
(Poels et al., 2014; Xu et al., 2016) and higher cognitive performance in
SZ and/or HC (Bustillo et al., 2011; Ohrmann et al., 2008, 2007;
Shirayama et al., 2010), including working memory (Chen et al., 2014;
Michels et al., 2012). We cannot exclude the possibility of other illness
or medication effects. Lastly, it is acknowledged that the sample size for
the two groups was small but comparable to other published DCM
studies in schizophrenia (Dima et al., 2009; Allen et al., 2010; Bastos-
Leite et al., 2015).4

Taken together, the findings suggest that the analysis of functional
large-scale networks may lead to a better understanding of cortical
connectivity and glutamatergic alterations in working memory in pa-
tients with schizophrenia.
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