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Abstract 17 
 18 
Epilepsy is one of the most common neurological conditions, affecting over 65 million people 19 
worldwide. Over one third of people with epilepsy are considered refractory: they do not respond to 20 
drug treatment. For this significant cohort of people, surgery is a potentially transformative treatment.  21 
However, only a small minority of people with refractory epilepsy are considered suitable for surgery 22 
and long-term seizure freedom is only achieved in one half of cases. Recently, several computational 23 
approaches have been proposed to support presurgical planning. Typically, these approaches use a 24 
dynamic network model to explore the potential impact of a surgical resection in silico. The network 25 
component of the model is informed by clinical imaging data and is considered static thereafter. This 26 
assumption critically overlooks the plasticity of the brain and therefore how continued evolution of 27 
the brain network post-surgery may impact upon the success of a resection in the longer term. In this 28 
work, we use a simplified dynamic network model, that describes transitions to seizures, to 29 
systematically explore how network structure influences seizure propensity, both before and after 30 
virtual resections. We illustrate key results in small networks, before extending our findings to larger 31 
networks. We demonstrate how evolution of brain networks post resection can result in a return to 32 
increased seizure propensity. Our results effectively determine the robustness of a given resection to 33 
network reconfiguration and so provide a potential strategy for optimising long-term seizure freedom. 34 
 35 
 36 
Brain surgery is a potentially life-changing treatment for people with epilepsy that do not 37 
respond to drug therapy. Unfortunately, identifying brain regions responsible for seizure 38 
generation and spread is complex and so the number of people considered suitable for surgery 39 
is relatively low and outcomes are non-optimal. Many people for whom surgery appears initially 40 
successful see seizures return within a year or so. Several computational methods that combine 41 
network analysis and mathematical modelling have been proposed lately to support surgical 42 
planning by evaluating virtually the potential impacts of a surgical resection. In such models, 43 
representations of brain networks are extracted from clinical data. However, these methods 44 
typically consider brain networks to be static after surgery, ignoring the potential effects of 45 
network reorganization in long-term seizure freedom. In this work we use a dynamic network 46 
model of seizure transition to systematically evaluate the influence of network structure in 47 
seizure propensity before and after virtual resections. We use small networks to illustrate how a 48 
successful resection can be adversely influenced by post-surgical network reconfiguration, where 49 
the creation or destruction of network edges lead to an increase in seizure propensity. We then 50 
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extend our results to networks with sizes more in line with what is typically obtained from 51 
clinical data. The results presented in this work shed light upon the issue of brain networks 52 
sensitivity to reconfiguration, and provide a framework to evaluate the robustness of therapeutic 53 
interventions. This framework can potentially be used more generally to explore robustness in 54 
the behaviour of dynamic coupled systems. 55 
 56 
 57 
I. Introduction 58 
 59 
Epilepsy is a very common serious primary neurological condition1. Epilepsy is characterised by the 60 
tendency to have spontaneous seizures2. In some cases, the cause of seizures is readily apparent (e.g. 61 
a brain tumour or cortical lesion), however for the majority the definitive cause is unknown. With 62 
appropriate treatment, approaching two-thirds of people with epilepsy have well-controlled seizures3. 63 
For the remaining third, more invasive therapies including electrical stimulation4 and surgery5 are 64 
potential options. For those people with epilepsy for whom surgery is considered appropriate, long-65 
term seizure freedom is achieved in around 50% of cases. However, success rates may be as high as 66 
80% where an affected brain region is clearly identifiable, but as low as 15% in cases 67 
where no such brain region is apparent6. A further consideration is the lasting impact of the surgery. 68 
Many people with epilepsy display a reduction in seizure rates immediately after surgery, however 69 
their seizures often return over time and may be different in nature to those with which they were 70 
initially diagnosed6,7. Despite these challenges, epilepsy surgery has been shown to be a highly cost-71 
effective solution8 and many believe it should gain more widespread acceptance as an alternative 72 
treatment for people with refractory epilepsy9,10. 73 
  74 
One explanation for this wide variation in surgery success rates is the role of large-scale brain 75 
networks in seizure generation, which has become increasingly recognised in recent years11–16. This 76 
recognition has resulted in the International League Against Epilepsy updating its operational 77 
classification of seizure types to reflect the role networks play in the generation of 78 
seizures17. Clinically, brain networks can be characterised through structural or functional 79 
relationships. Structural connections essentially represent the anatomical links between brain regions 80 
as typically measured using magnetic resonance imaging (MRI). These structural links are 81 
hypothesised to form the basis of functional connections between brain areas. Typically, functional 82 
connections are inferred statistically from time-series data such as functional MRI, 83 
electroencephalography (EEG), or magnetoencephalography (MEG) (see Stam18 for a comprehensive 84 
review).  85 
 86 
However, as van Mierlo and colleagues observed16: “With the growing enthusiasm for connectivity it 87 
is often overlooked that in reality, all we have are statistical interdependencies of signals, which 88 
should be interpreted cautiously.” Because of the largely qualitative nature of these clinically defined 89 
networks, there has been considerable interest in the development and application of mathematical 90 
methods, notably from network science and dynamical systems, to better understand seizure 91 
generation and therefore the condition of epilepsy19. For example, in early work20 a dynamic network 92 
model was constructed to demonstrate that emergent activity characteristic of different seizures 93 
types could arise due to changes in either the edge structure of the network, or the dynamic activity 94 
within nodes. The dynamics within each node of this model are determined by a bistable switch that 95 
characterises transitions between phenomenological representations of healthy (background) and 96 
pathological (seizure) states. Based upon the normal form of a sub-critical Hopf bifurcation, this class 97 
of model was first introduced in the context of epilepsy by Kalitzin et al.21 and Benjamin et al.22. 98 
Although a gross simplification of the brain, the model provided insight as to why loss of connections 99 
between brain regions made the brain – on average – more seizure prone. Many subsequent approaches 100 
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have since built on this concept of seizures as an emergent property of the interplay between nodes 101 
within a network and its connectivity (see Milton23 for a classical introduction and Moraes et al.24 for 102 
a recent review). 103 
 104 
A number of approaches have recently been developed that combine clinical data with mathematical 105 
models to understand surgical strategies or to inform pre-surgical planning. For example, a 106 
computational study25 identified differences between structural brain networks of people with 107 
temporal lobe epilepsies and healthy controls. They further showed that measures of seizure rates (as 108 
calculated from the model) could be lowered by removing certain nodes within 109 
the network. In 2016, Goodfellow et al.26, undertook the first study that utilised intracranial EEG 110 
(iEEG) recordings, alongside pre- and post-operative imaging, to predict in silico the effects of 111 
removing macroscopic regions of the cortex in the emergence of epileptiform activity. Key findings 112 
of this study were replicated using a bistable dynamic network model in work by Sinha et al.27. 113 
Khambhati et al.28 simulated cortical resections in virtual brain networks obtained from 114 
electrocorticography, and suggested a push-pull control effect resulting from a competition between 115 
synchronizing and desynchronizing network regions which influence seizure spread. Jirsa et al.29 have 116 
developed a computational approach to support brain surgery based on non-invasive structural data 117 
(the Virtual Epileptic Patient). Lopes et al.30 used iEEG recordings to show that scale-free and rich-118 
club functional brain networks have specific nodes that are central for seizure generation and, 119 
therefore, should be targeted in resective surgery. 120 
 121 
Whilst these approaches have shown promise, it is very important to consider the implications of the 122 
assumptions underlying both epilepsy surgery and the models with which predictions of outcome are 123 
made. One critical assumption is that the perturbation to the brain as a consequence of the surgery is 124 
ever lasting. However, there is no reason to assume that connections between remaining regions of the 125 
brain stay static post-surgery. On the contrary, the brain is highly plastic31 and evidence of ongoing 126 
changes are supported by the clinical observations of declining seizure freedom over time in people 127 
who have undergone apparently successful surgery6,7. A further challenge is that we do not know a 128 
priori how best to mathematically characterise brain dynamics that underpin the emergence of seizures 129 
within a dynamic network. Recent work32 has demonstrated that predictions of the outcome of surgical 130 
strategies may depend on the choice of mathematical model that defines the behaviour of each node 131 
within the network. 132 
 133 
Collectively these issues relate to dynamic robustness. By this we mean how do ongoing dynamic 134 
factors impact upon the choice of perturbation that we might make. This is an important consideration 135 
in the context of epilepsy surgery. For example, there may be multiple routes to achieving apparent 136 
seizure freedom, however some may be more dynamically robust than others. In this work we evaluate 137 
how network topology influences seizure propensity, and quantify the effects of virtual surgical 138 
resection, represented by the removal of network nodes. Finally, the results are extended to larger 139 
networks, more in line with measures obtained from clinical data. 140 
 141 
II. Methods 142 
 143 
A. Dynamic Network Model 144 
 145 
We consider a bistable dynamic network model that can generate both healthy background-like and 146 
seizure-like activity at a phenomenological level21,22. Activity within each brain region is described by 147 
a modified version of the normal form of the subcritical Hopf bifurcation, with an additional equation 148 
to describe slow variations of the “excitability” variable 𝜆22,33: 149 
 150 
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𝑑𝑧𝑗

𝑑𝑡
= 𝑧𝑗(𝜆𝑗 − 1 + 𝑖𝜔 + 2|𝑧𝑗|2 − |𝑧𝑗|4) +

𝛽

𝑁
∑ 𝐴𝑘𝑗(𝑧𝑘 − 𝑧𝑗)

𝑁

𝑘=1

+ 𝛼𝑑𝑊𝑗  (1) 151 

𝜏
𝑑𝜆𝑗

𝑑𝑡
= 𝜆𝑗0 − 𝜆𝑗 − |𝑧𝑗|2  (2) 152 

 153 
where 𝑗 = 1, . . . , 𝑁 represent the network nodes. These coupled stochastic differential equations 154 
describe the evolution of complex variables 𝑧, where the coupling is linear and proportional to the 155 
difference between node states. The real part of the state variables can be thought of as a proxy of the 156 
electrographic activity of a brain region, for example as measured using EEG. In this framework, 157 
network nodes are associated to regions of the brain generating the electrical signal measured by the 158 
EEG electrodes. When 𝜆𝑗 ∈ [0,1], there are two distinct dynamical behaviour: low-amplitude noisy 159 

activity near the origin (stable fixed point 𝑧 = 0) and large amplitude, oscillations (stable limit cycle 160 

at |𝑧|2 = 1 + √𝜆). These two stable attractors are separated by an unstable limit cycle (located at 161 

|𝑧|2 = 1 − √𝜆). At a phenomenological level, the stable fixed point can be thought of as “background-162 
like” activity as observed in electrographic recordings, whereas the stable limit cycle corresponds to 163 
“seizure-like” activity. For large enough noise, the system will eventually transition into the seizure-164 
like state, after which the slow variable decreases (past the limit point located at 0) and the system will 165 
return back (with time-scale 𝜏) to the background-like state.  166 
 167 
Consequently, this phenomenological model provides a framework in which one can systematically 168 
examine how different model components (e.g. noise, network structure, baseline excitability, 169 
coupling strength) impact the propensity of seizure-like activity. Full details of model variables and 170 
parameters are provided in Tables 1 and 2.   171 
 172 

Variable Interpretation Dimension 

𝑧𝑗 Complex activity variable of node j 2 x N 

𝜆𝑗  Excitability of node j N 

𝑊𝑗 Complex Wiener process 2 x N 

Table 1: Model variables. 173 
 174 

Parameter Interpretation Typical range Value 

𝑁 Number of nodes in the network 3-10 4 

𝜔 Frequency of the stable limit 

cycle 

3-50 20 

𝛽 Coupling strength between nodes 0.05-6 - 

𝛼 Noise strength 0.005-0.10 0.08 

𝜏 Time-scale of the slow variable 𝜆 5-50 5 

𝜆𝑗0 Baseline level of excitability ∈ [0,1] 0.75 

𝐴 Adjacency matrix 1 (connection),  

0 (no connection) 

- 

Table 2: Model parameter values33. 175 
 176 
An example of the dynamics observed in a network with 4 nodes is shown in Fig. 1. The phase diagram 177 
(Fig. 1B) shows that the system spends most of the time near the fixed point 𝑧 = 0. In this regime the 178 
simulated EEG activity (𝑅𝑒(𝑧𝑗)) remains in the background state (low amplitude noisy oscillations on 179 

the panels on the right). Eventually, the trajectory crosses the boundary of the basin of attraction of the 180 
fixed point (dashed line) and transitions into the seizure-like state. A drop in the excitability variable 181 
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𝜆 follows (see equation 2) and the system is brought back to the proximity of the fixed point (the 182 
background state). 183 
 184 

 185 
Fig. 1: Example of network dynamics for a 4-node network. (A) Specific network structure. (B) Trajectory in phase 186 
space for node 1 (other nodes display similar patterns). The direction of the flow is anti-clockwise (see arrows). (C) 187 
simulated electrographic (e.g. EEG) activity (𝑅𝑒(𝑧𝑗)) for the four nodes, amplitude of the complex activity variables 188 
(|𝑧𝑗|2), and slow excitability variables (𝜆𝑗). Note that all nodes transitioned simultaneously into the seizure-like state 189 
(synchronization). All simulations were carried with an Euler-Maruyama scheme with 𝑑𝑡 = 0.0001. See Table 2 for 190 
default values for the model parameters. 191 
 192 
For certain classes of coupled bistable systems with noise-induced transitions, it is be possible to 193 
analytically examine the behaviours of these systems, for example, derive analytical expressions for 194 
the escape time using the Eyring-Kramer equation34,35. These escape times have been shown to 195 
correlate with seizure propensity22,36. In general, however, these high-dimensional dynamic network 196 
models do not allow for such analytical treatment and numerical simulations can provide insight into 197 
how different mechanisms contribute to seizure propensity.  198 
 199 
B. Brain Network Ictogenicity 200 
 201 
Recently, several works have used the concept of Brain Network Ictogenicity (BNI) to estimate the 202 
propensity of a network to generate what we term seizure-like activity36,37. For example identifying 203 
optimal resection regions in epilepsy brain surgery26,27,30, to classify focal and generalized epilepsies39, 204 
and to assess lateralization in focal epilepsy40.  205 
 206 
Broadly speaking, BNI can be thought of as the proportion of time that nodes within a network spend 207 
in a seizure-like state. The propensity of seizure-like activity critically depends on the interplay 208 
between a number of model parameters. In particular the coupling strength (𝛽), noise strength (𝛼), the 209 
time-constant of the slow variable (𝜏), the network topology (for example, whether it is strongly or 210 
weakly connected, the presence of cycles) and the baseline excitability (𝜆𝑗0). For example, if the 211 

baseline excitability 𝜆𝑗0 is close to 0, low values of noise strength 𝛼 are unlikely to lead to seizures 212 

whereas if 𝜆𝑗0 is close to 1, the same strength of noise would lead to several seizures. In practice the 213 

calculation of BNI can be implemented in several different ways and depends on many factors, 214 
including the specific dynamical model, the precise definition of what characterizes a seizure in this 215 
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system, the details of the state transition, model parameters, and coupling type, amongst others. 216 
Despite these many factors, the value of BNI calculated using different models is often similar30,32. 217 
 218 
An important consideration when calculating BNI is to define what constitutes a seizure within the 219 
context of the model. For the model we consider, there are two stable attractors, which correspond to 220 
a background state and a seizure-like state, and therefore we can use the separatrix as a threshold for 221 
whether a node is in the seizure-like state. The details on how such a threshold is defined are often 222 
omitted, in spite of the fact that this threshold often has an influence on the absolute values of the BNI.  223 
 224 
In this study we are primarily interested in the effect of the network structure on seizure propensity, 225 
we focus on when seizure-like activity across multiple nodes is driven by the connectivity between 226 
them. Consequently, the BNI for a given dynamic network structure is quantified by evaluating how 227 
long two or more nodes are simultaneously in the seizure-like state (this means that if a single 228 
individual node is in the seizure-like state whilst the other 𝑁 − 1 nodes are in the background state, 229 
we do not consider this to be a seizure).  230 
 231 
To quantify the 𝐵𝑁𝐼 for a given simulation of the dynamic network model, we start by finding all 232 
segments in the simulation where at least two nodes are simultaneously in the high-amplitude seizure-233 

like state ( |𝑧𝑗|
2

> 0.5). The BNI is defined as the total sum of the lengths of these segments, scaled 234 

by 𝑚 (𝑇𝑠𝑁)⁄ , where m is the number of nodes in the seizure-like state in each segment (𝑚 ≥ 2), 𝑇𝑠 is 235 
the total simulation time and N is the total number of nodes. 236 
 237 
Consequently, it holds that 𝐵𝑁𝐼 ∈ [0,1], where a value of 0 means there was no synchronised seizure-238 
like activity in the simulation, whereas a value of 1 means that all nodes were in the seizure-like state 239 
for the entire simulation. See Fig. 2 for a simple example of how the 𝐵𝑁𝐼 is calculated for a given 240 
dynamic network model.  241 
 242 

 243 
Fig. 2: The BNI calculated for a four-nodes network. (A) directed, unweighted network consisting of four nodes. (B) 244 
simulated electrographic recording. This simulation contained one segment for which at least 2 nodes have |𝑧𝑗(𝑖)|

2
> 0.5 245 

(dotted box at approximately 550 seconds). Model simulation with: 𝛽 = 0.20,  𝑇𝑠 = 1000; Euler-Maruyama scheme 246 
with 𝑑𝑡 = 0.0001; initial conditions: 𝑧𝑗(0) ≈ 0 and 𝜆𝑗(0) ≈ 𝜆𝑗0, for all other default values see Table 2. 247 
 248 
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Systematic explorations of the key parameters allow one to extend the 𝐵𝑁𝐼 as a high-dimensional 249 
integral for a given network structure. Fig. 3 shows the dependence of seizure propensity to the choice 250 
of parameters of the dynamic network model. Even though small changes in parameter values seem to 251 
lead to smooth, monotonic changes in the 𝐵𝑁𝐼, this suggests it is in general important to consider the 252 
certainty of parameter inference in networks of dynamic models as this could significantly impact the 253 
higher-level model outputs of interest. 254 
 255 

 256 
Fig. 3: Seizure propensity (as quantified by BNI) depends on the coupling strength 𝛽, baseline excitability 𝜆𝑗0 and the 257 
slow time-scale 𝜏. The BNI landscape computed for a given network structure (A) for different values of 𝛽 and 𝜆𝑗0. (B) 258 
𝜏 = 5; (C) 𝜏 = 50. All simulations with total simulation time: Ts = 1000, using an Euler-Maruyama scheme with 𝑑𝑡 =259 
0.0001; 𝛼 = 0.08. Initial conditions: 𝑧𝑗(0) ≈ 0 and 𝜆𝑗(0) ≈ 𝜆𝑗0. 260 
 261 
C. Perturbations to network structure 262 
 263 
To explore the effect of changes to network topology, such as the removal of a node or the addition or 264 
removal of an edge, we start with network structures with four nodes. Initially, we only consider 265 
network structures that are at least weakly connected, which guarantees there are no disconnected 266 
nodes or subgraphs. If a network perturbation renders the network disconnected, the BNI of the 267 
perturbed network is determined by the connected component with the largest BNI. 268 
 269 
In order to consider all potential types of behaviour for a given network structure, we do not restrict 270 
our analysis to a single value of the coupling parameter. The BNI is averaged over a wide range of 271 
values for 𝛽 (see Table 2), covering all from weak to strong coupling relative to noise and excitability. 272 
Additionally, in this work we are not concerned with absolute values of the seizure propensity, which 273 
can be influenced by the baseline excitability (𝜆𝑗0), the timescale of the slow variable (𝜏), or the noise 274 

(𝛼); but with the difference between the BNI before and after a network is perturbed, either by a node 275 
removal or by network reconfiguration. Therefore, a consistent choice for these parameters is sufficient 276 
to reveal the influence of network perturbations in seizure propensity. For the choices of fixed 277 
parameters please see Table 2. 278 
 279 
 280 
III. Results 281 
 282 
To understand the impact on network ictogenicity of virtual resections, and how this is further 283 
impacted by continued reorganization of the remaining network, we begin by performing a systematic 284 
analysis of networks with four nodes. We first establish the relationship between network structure 285 
and BNI for the given choice of fixed parameters in Table 2. We use this understanding to measure the 286 
change in BNI upon removal of individual nodes within different network structures, focussing on 287 
cases where the original network has high BNI. This focus is motivated by the potential clinical 288 
application, where such networks might be potentially suitable for surgical intervention. The impact 289 
of ongoing network reorganisation post virtual resection is evaluated by considering all possible 290 
individual edge changes in an exemplar network. We find examples where removal of a node results 291 
in a network with low BNI – the desired outcome – however, creating or removing individual edges 292 
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results in a dramatic increase in BNI. Finally, we show how this effect can also manifest in larger 293 
networks, more in line with brain networks obtained from clinical data.  294 
 295 
A. Network ictogenicity for 4-nodes networks 296 
 297 
There are 199 non-isomorphic networks with four nodes that are weakly or strongly connected. In Fig. 298 
4(A) we present calculations of the BNI where networks are sorted by increasing number of edges and, 299 
within each edge group, by decreasing value of BNI. By comparing the BNI values for networks with 300 
3 or 4 edges, and those with 10, 11 and 12 edges, we observe a tendency for networks to present, on 301 
average, decreasing BNI as the number of edges in the network increases. For networks with 4 to 9 302 
edges, the proportion of networks with relatively low values of BNI similarly grows with increasing 303 
number of edges. This behaviour is due to the nature of the coupling between nodes within the network 304 
(linear and proportional to the difference between node states), whereby a connection from node A to 305 
node B results in node A influencing node B to behave in the same way. Combined with node dynamics 306 
being brought back to the background state with time-scale 𝜏 following transition to the seizure-like 307 
state, this makes network nodes hold themselves more strongly in the background state when there are 308 
more connections within a network.  309 
 310 
However, it is important to recognise that BNI does not decrease monotonically with increasing 311 
number of edges. Rather, the effect of the network topology, and the hierarchy of the network in 312 
particular, plays an important role. Interestingly, all edge groups in Fig. 4(A) present a similar pattern 313 
on how the BNI decreases. Within each group, networks with relatively high BNI are those with a 314 
single "driving" node (e.g. a node with no in-connections). An example of such a network is presented 315 
in panel N1 of Fig. 4 (6-edges network with highest BNI). In this example, node 2 is not being 316 
influenced to remain in the background state by any other nodes, and when it transits to the seizure-317 
like state, it forces nodes 1, 3 and 4 to the same state, leading to a relatively high seizure propensity. 318 
The network in panel N2 considers a case with two driver nodes (2 and 3) which are connected to nodes 319 
1 and 4. Nodes 2 and 3 have a similar influence here as node 2 in network N1. When both nodes transit 320 
to the seizure-like state together, they force nodes 1 and 4 to the same state. However, in the case 321 
where one node is in the seizure-like state and the other remains in the background state, they exert 322 
opposite influences upon nodes 1 and 4. This competition leads to intermediate values of BNI for 323 
networks with this general structure. Finally, network in panel N3 is strongly connected and all nodes 324 
tend to hold each other in the background state, resulting in low values of BNI. 325 
 326 
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 327 
 328 
Fig. 4: (A) BNI for all networks with 4 nodes, sorted first by increasing number of edges (between 3 and 12), then by 329 
decreasing BNI. Exemplar 6-edges networks are presented for high (N1), intermediate (N2) and low (N3) values of BNI. 330 
Error bars represent variations due to noise. 331 
 332 
B. Effects of node removal 333 
 334 
Epilepsy surgery aims to reduce seizure propensity through the removal of cortical tissue considered 335 
key to generating seizures41. Within the context of our dynamic network model, we explore this 336 
through systematic removal of individual nodes and studying the impact on the level of BNI as a result. 337 
Nodes identified as being essential to the emergence and/or spreading of seizure-like activity would 338 
represent the best candidates for surgical resection. It is important to note on the other hand that some 339 
nodes may influence emergent dynamics in such a way as to prevent the spread of seizures, and the 340 
removal of such nodes might lead to even more seizures. 341 
 342 
To consider these issues Fig. 5(A) illustrates the distribution of BNI before and after the removal of 343 
each node individually for a given four-node network. The diagonal line separates the cases where the 344 
BNI after node removal is smaller than before (blue region) from the cases where a removal leads to a 345 
remaining network with higher BNI (red region). The networks clustered on the left side of the figure 346 
have a low BNI and any intervention either leads to a similar or higher BNI. On the opposite side, 347 
networks with high BNI are those potential candidates for node removal in order to try to reduce the 348 
overall seizure propensity. However, not all networks can lead to lower BNI by node removal. From 349 
the 58 networks clustered in the region of high BNI before node removal (𝐵𝑁𝐼 > 0.055), 37 (63.8%) 350 
have at least one node removal that leads to a network with significantly lower ictogenicity (𝐵𝑁𝐼 <351 
0.020). From the 232 possible node removals (58 networks  4 nodes), only 45 (19.4%) lead to a 352 
significant reduction in BNI. 353 
 354 
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Two exemplar networks with high BNI are shown in Fig. 5 (N1 and N2). The removal of nodes 1, 3 or 355 
4 in the network in N1 lead to networks with BNI very similar to the complete network. However, the 356 
removal of node 2 (a driver node) leads to a significant reduction in BNI. From a model perspective, 357 
this would represent a suitable candidate for therapeutic resection for controlling seizure activity. 358 
Conversely, network N2 also have a relatively high BNI, however in this case no node removal lead to 359 
a substantial reduction in BNI. Here, node removal is not an efficient alternative to reduce network 360 
ictogenicity. 361 
 362 
C. Robustness to connectivity changes 363 
 364 
A critical question to consider is the impact of ongoing network reorganisation following the removal 365 
of a node or nodes within the network. Effectively, this is an issue of robustness of a network with 366 
respect to increases in BNI when edges are either added or removed. To consider this, we evaluate the 367 
effect of all possible configurations involving adding or removing a single edge in the remaining 368 
network. In Fig. 6 we present an example where network reconfiguration post-removal of a node has 369 
a dramatic influence on the level of BNI. 370 
 371 
The starting network presented in Fig. 6(A) has a relatively high BNI. As shown in Fig. 6(B), removing 372 
nodes 2, 3 or 4 do not result in a significant change in BNI. On the other hand, the removal of node 1, 373 
which results in the network presented in panel C of the same figure, significantly reduces BNI, 374 
suggesting this is a suitable candidate for therapeutic intervention. However, if we add or remove a 375 
single edge in the remaining network, which would lead to one of the networks presented in panels D, 376 
E and F (all other possible combinations are isomorphic to one of these networks), the BNI increases 377 
to levels similar to those observed prior to node removal (network in panel A). 378 
 379 
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 380 
Fig. 5: (A) BNI before and after all possible node removal (four one-node removal). Minimum BNI after node removal is 381 
shown in black, others are shown in light grey. Region in blue (red) indicate a decrease (increase) in BNI after node 382 
removal. (N1 and N2) Exemplar networks of high BNI, with the respective values of the BNI after node removal for all 383 
nodes individually. Dashed lines represent BNI before node removal. The dots associated to networks N1 and N2 in panel 384 
A are shown in green and yellow, respectively. 385 
 386 
This effect is due to the fact that after node 1 was removed, the remaining network has two "competing 387 
drivers", similar to the situation described in Fig. 5(N2). This competing influence results in a lower 388 
value of the BNI, however this configuration is quite unstable. The addition or removal of any edge 389 
breaks up the symmetry between the competing elements and a single driver takes over, bringing the 390 
BNI up again. 391 
 392 
 393 
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 394 
 395 
Fig. 6: (A) Exemplar network with 4 nodes. (B) BNI for the resulting networks after the removal of each of the 4 nodes 396 
individually (dashed line represents BNI before node removal). (C) Resulting network after the removal of node 1 (node 397 
removal that leads to the lowest BNI). (D, E and F) Resulting networks after removing or adding one edge in the network 398 
in (C), evidencing a clear increase in the BNI. 399 
 400 
D. Evaluation of lager networks 401 
 402 
This effect is not an artefact resulting from small network sizes. In Fig. 7 we find similar effects in a 403 
network of 10 nodes: a size more in line with the typical network sizes obtained from scalp, stereo or 404 
intracranial EEG42. The network presented in Fig. 7(A) has a relatively high BNI. The effects of 405 
removing all nodes individually are presented in Fig. 7(B), and it suggests that only the removal of 406 
node 1 leads to a significant reduction in the BNI. The network resulting from removing node 1 is 407 
presented in Fig. 7(C). This network is formed by two cycles, one involving nodes 2, 3, 4, 5 and 10, 408 
and the other by nodes 6, 7, 8, and 9. The cycles are connected by an edge between nodes 9 and 10. 409 
This network presents a relatively low BNI. However, if we probe the BNI stability by adding or 410 
removing individual edges, Fig. 7(D) shows that for over 10% of the resulting networks the BNI 411 
increases significantly, sometimes to values even higher than before the removal of node 1.  412 
 413 
These findings are a potentially important consideration for pre-surgical planning. A strategy that a 414 
priori leads to a substantial reduction in BNI can result in a remaining network that is prone to a return 415 
to high seizure propensity with only a few connections added or removed. 416 
 417 
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 418 
 419 
Fig. 7: (A) Exemplar network with 10 nodes. (B) BNI for the resulting networks after the removal of each of the 10 420 
nodes individually (dashed line represents BNI before node removal). (C) Resulting network after the removal of node 1 421 
(node removal that leads to the lowest BNI). (D) BNI for all 72 possible networks obtained by removing or adding one 422 
edge in the network in (C), sorted by decreasing BNI (dashed line represents BNI before edge change). Note that 8 423 
networks (>10%) present a significant increase in the BNI. 424 
 425 
 426 
IV. Discussion 427 
 428 
In this paper we used a canonical dynamic network model to explore seizure propensity in brain 429 
networks. We showed that due to the interplay of coupling between brain regions and the excitability 430 
within brain regions, a decrease in BNI is correlated with an increased number of edges within the 431 
network. We further showed that the hierarchy of the network plays a crucial role in the level of BNI: 432 
the presence of a single driving node leads to high values of BNI, competing driver nodes typically 433 
result in intermediate levels of ictogenicity, whilst strongly connected networks tend to present very 434 
low ictogenicity. 435 
 436 
Building on these observations, we systematically evaluated how removal of network nodes influences 437 
the ictogenicity of the remaining network. These so-called virtual resections are effectively an in silico 438 
proxy for brain surgery, enabling the relative merits of alternative surgical strategies to be evaluated. 439 
Of particular importance is the robustness of an intervention to future evolution of the remaining 440 
network. To investigate this, we systematically studied the impact on BNI of adding or removing edges 441 
within a network for which a node had been previously removed. We found networks for which 442 
initially high BNI was significantly reduced upon removal of a specific node. However, any alterations 443 
to the remaining network led to a return to high levels of BNI, similar to those prior to node removal.  444 
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 445 
A potential limitation of our study is that BNI is agnostic to seizure-frequency: a simulation in which 446 
all nodes enter the seizure-like state for 20 seconds has the same BNI as a simulation in which all 447 
nodes enter the seizure-like state ten times for 2 seconds each. In addition, identical values of BNI 448 
can be achieved through different mechanisms and patterns of activity. However, in contexts where 449 
the differentiation between specific seizure patterns are important, the BNI framework described in 450 
this work can be extended. For example, Lopes et al.39 have used the average slope of the BNI as a 451 
function of the coupling strength (what the authors called the Ictogenic Spread) to classify genetic 452 
generalized epilepsy versus mesial temporal lobe epilepsy. Woldman et al.43 introduced two 453 
measures: the onset index and the participation index that incorporate the level of synchronised 454 
activity within brain regions and the ability of those brain regions to either drive seizure onset, or to 455 
become involved in such activity. Furthermore, these potential limitations are likely to be context 456 
dependent. For example, people with epilepsy may place high value on measuring the number of 457 
seizures they experience, whilst the total duration of those events is less important. On the other 458 
hand, a neurosurgeon planning surgery, will primarily be concerned with how a specific resection 459 
will affect a given, baseline, seizure propensity. We finally note that the results of our work are not 460 
impacted by these limitations, since we are interested in seizure susceptibility more generally, 461 
independent of any specific activity patterns.  462 
 463 
Taking into account the robustness of a perturbed network to subsequent alterations to its connectivity 464 
is an important consideration in pre-surgical planning. For example, there may be competing strategies 465 
which result in an initial reduction in seizure propensity. However, one is more sensitive to subsequent 466 
network alterations than the other. Therefore, an important next step for this research is the application 467 
of these theoretical concepts to networks inferred directly from clinical data. This would provide the 468 
opportunity to better characterise long-term seizure freedom, given an apparently successful surgical 469 
intervention.  470 
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