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On the P̃ !-Theorem

Chris Parker and Gernot Stroth

Abstract. The purpose of this paper is to show that the exceptional pos-
sibilities in the main theorem of [3] do not occur. This then strengthens
that theorem.

Mathematics Subject Classification (2010). Primary 20D05.

Keywords. p-local subgroups, finite simple groups.

In [3] the authors proved the P̃ !-Theorem (the P -tilde uniqueness The-
orem). The aim of the present contribution is to strengthen this theorem by
removing what appeared to be an exception to the central statement, that is,
that P̃ is unique. We first establish some terminology so that we can explain
the result.

Let G be a finite group and p be a fixed prime. The normalizer of a non-
trivial p-subgroup of G is called a p-local subgroup of G. The finite group X
is of characteristic p if

CX(Op(X)) ≤ Op(X)

and G is of local characteristic p if every p-local subgroup of G is of charac-
teristic p. The group G is of parabolic characteristic p if every p-local sub-
group of p′-index in G is of characteristic p. We denote the set of subgroups
L ≤ G containing a given subgroup X and satisfying CG(Op(L)) ≤ Op(L) by
LG(X) and the set of maximal p-local subgroups containing X by MG(X).
For S ∈ Sylp(G), the set of subgroups P ∈ LG(S) such that Op(P ) 6= S
and S is contained in a unique maximal subgroup of P is written as PG(S).

Observe that the members of PG(S) have the property that P = Op′(P ).
For any L ∈ LG(1), YL is the largest elementary abelian normal p-

subgroup of L satisfying

Op(L/CL(YL)) = 1.

Such a subgroup always exists. In the arguments in this paper we have
YL = Ω1(Z(Op(L))) in all cases, but in general it can be the case that
YL < Ω1(Z(Op(L))).

Fix S ∈ Sylp(G), C̃ ∈MG(NG(Ω1(Z(S)))) and put

Q = Op(C̃).



Then C̃ = NG(Q). For X ∈ LG(Q), we set

X◦ = 〈Qg | g ∈ G with Qg ≤ X〉.

The group G satisfies Q-uniqueness if and only if CG(x) ≤ C̃ for every
1 6= x ∈ CG(Q). A consequence of Q-uniqueness when CG(Q) ≤ Q is that G
is of parabolic characteristic p. Since the appearance of [3], subgroupsQ which
enjoy the Q-uniqueness property and have CG(Q) ≤ Q have more commonly
been called large subgroups of G. The work in [4] starts the study of groups

with a large subgroup and together with [5] the P̃ !-Theorem controls some
of the p-local structure of groups with a large subgroup which have local
characteristic p.

We say that G is a Kp-group if the simple sections of all the p-local
subgroups of G are known simple groups.

In [3], the hypothesis of the P̃ !-Theorem is:

• G is a Kp-group of local characteristic p;
• G satisfies Q-uniqueness;
• there exists P ∈ PG(S) such that P 6≤ C̃; and
• YM ≤ Q for every M ∈MG(P ).

The P̃ !-Theorem asserts that there exists at most one P̃ ∈ PG(S) such that

P̃ 6≤ NG(P ◦) and 〈P, P̃ 〉 ∈ LG(P ), or some very special and precisely de-
scribed situation holds. The purpose of this paper is to further investigate
this special configuration and to prove

Main Theorem. Under the assumptions of the P̃ !-Theorem, there exists at
most one P̃ ∈ PG(S) such that P̃ 6≤ NG(P ◦) and 〈P, P̃ 〉 ∈ LG(P ).

Notice that the hypothesis of the P̃ !-Theorem doesn’t say anything
about potential members X ∈ PG(S) with the property that X 6≤ NG(P ◦)
and Op(〈P,X〉) = 1. Such configurations are designated as the rank 2 case.

The Main Theorem will follow from a proposition, which we state in a
moment. In fact, we will prove our proposition under a broader hypothesis
than that of the P̃ !-Theorem as we anticipate that as the theory develops
an analogue of the P̃ !-Theorem will be proved for groups with a large p-
subgroup (Q-uniqueness and CG(Q) ≤ Q) and that the local characteristic p
requirement can be dropped.

Hypothesis 1. We have p = 3 or 5 and G is a Kp-group which satisfies

(i) Q-uniqueness and CG(Q) ≤ Q;

(ii) there is P ∈ PG(S) such that P 6≤ C̃; and
(iii) there exist P1, P2 ∈ PG(S) such that, for i = 1, 2, Pi 6≤ NG(P ◦), Mi =

〈P, Pi〉 ∈ LG(P ) and Op(〈M1,M2〉) = 1. Moreover, for i = 1, 2
(a) Mi/Op(Mi) ∼= SL3(p) and Op(Mi)/Z(Op(Mi)) and Z(Op(Mi)) are

natural SL3(p)-modules for Mi/Op(Mi) which are dual to each
other;

(b) Z(Op(Mi)) ≤ Q.
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A consequence of Hypothesis 1 (i) is that G is of parabolic characteristic
p and not necessarily of local characteristic p. Further in Hypothesis 1 (iii)(b)

we only assume that YMi ≤ Q for i = 1, 2, while in the P̃ !-Theorem it is
assumed that YM ≤ Q for every M ∈MG(P ).

We will prove

Proposition. Assume Hypothesis 1. Then Q is extraspecial of order p7 and
one of the following holds

(i) p = 3 and F ∗(G) ∼= M(22) or 2E6(2).
(ii) p = 5 and NG(Q)/Q ∼= 4.J2.2.

The situation of Proposition(ii) has been treated in [7]. In this case G
is shown to be isomorphic to F1. However there are two problems with the
citation which leads us not to use it. The first one is not really serious, the
paper is written under the assumption that G is a local K-group whereas
here we have the weaker requirement that K5-group. The second one is more
problematic. The paper [7] depends in an essential way on an as yet unpub-
lished paper (in preparation) due to C. Wiedorn and Chr. Parker. Hence for
this work we decided not to include the statement G ∼= F1 in our proposition.

Our notation is standard and follows that in familiar texts.

Proof of the Proposition

For the remainder of this article we work under Hypothesis 1.

Lemma 1. The subgroup Q is weakly closed in S with respect to G and G is
of parabolic characteristic p.

Proof. This follows from the Q-uniqueness property. See [5, (1.6)] and [4,
(1.55)(c)]. �

We write, for i = 1, 2, YMi
= Z(Op(Mi)). The next lemma investigates

Op(Mi) and gathers some almost immediate consequences of Hypothesis 1
(iii).

Lemma 2. For i = 1, 2, the following hold

(i) YMi ≤ Q;
(ii) if a subgroup of Mi normalizes a subgroup of order p (p2) in YMi

, then
it normalizes a subgroup of order p2 (p) in Op(Mi)/YMi

;
(iii) |Z(S)| = p and Z(S) is normalized by P1 and P2;
(iv) Pi/Op(Pi) ∼= P/Op(P ) ∼= SL2(p);
(v) Op(Pi)/Op(Mi) is a natural Pi/Op(Pi)-module and Op(P )/Op(Mi) is a

natural P/Op(P )-module;
(vi) the action of Pi on YMi

is uniserial with irreducible factors of dimension
1 and 2 (with socle of dimension 1).

Proof. Part(i) reiterates Hypothesis 1 (iii)(b).
By Hypothesis 1 (iii)(a), the Mi/Op(Mi)-modules Op(Mi)/YMi

and YMi

are dual to each other. This immediately yields (ii).
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As Mi has characteristic p, Z(S) ≤ YMi
for i = 1, 2 and so Hypoth-

esis 1 (iii)(a) implies |Z(S)| = p and, as P does not normalise Z(S) by
Q-uniqueness, P1 and P2 do. This is (iii).

By Hypothesis 1 (iii), Pi ∈ PMi
(S) and Mi/Op(Mi) ∼= SL3(p). Since the

maximal over-groups of S/Op(Mi) in the group Mi/Op(Mi) are parabolic

subgroups of Mi/Op(Mi) and Pi = Op′(Pi), it follows that Pi/Op(Mi) ∼=
SL2(p). Similarly, P/O2(P ) ∼= SL2(p). This proves (iv).

Part (v) follows from the structure of the parabolic subgroups of the
groups Mi/Op(Mi) ∼= SL3(p).

Part (vi) is a consequences of the fact that YMi is a natural Mi/Op(Mi)-
module combined with parts (iii) and (iv). �

We collect together some further properties of P1 and P2.

Lemma 3. For i = 1, 2, the following hold

(i) Q ≤ Op(Pi) and Pi ≤ NG(Q);
(ii) Op(Pi) = QOp(Mi); and

(iii) Op(Mi) 6≤ QOp(M3−i) and Op(P1) 6= Op(P2).

Proof. Assume that i ∈ {1, 2}. Part (i) is a combination of Lemma 2 (iii) and
Q-uniqueness.

Because of Lemma 1 and Hypothesis 1 (iii),Q is not contained inOp(Mi)
and so by Lemma 2 (v) QOp(Mi)/Op(Mi) is the natural Pi/Op(Pi)-module
and Op(Pi) = QOp(Mi). This is (ii).

By symmetry it is enough to prove (iv) for i = 1. Suppose thatOp(M1) ≤
QOp(M2). Then by (ii) Op(M1) ≤ Op(P2). Thus, again by (ii), Op(P1) =
QOp(M1) ≤ Op(P2) and so Op(P1) = Op(P2) as |Op(P1)| = |Op(P2)|. Hence
to prove (iii) it suffices to show that Op(P1) 6= Op(P2).

Assume Op(P1) = Op(P2). We have that Op(M1)Op(M2) is normalized
by P . By Hypothesis 1 (iii) Op(M1) 6= Op(M2) and so by Lemma 2 (v)
Op(P ) = Op(M1)Op(M2). As Op(P1) = Op(P2) we see by (iii) that Op(P ) ≤
Op(P1). Since |Op(P )| = |Op(P1)|, this yields Op(P ) = Op(P1) = Op(P2),
contrary to Hypothesis 1. This proves (iv). �

Lemma 4. For i = 1, 2, we have

(i) for v ∈ Op(Mi) \ YMi
, |[〈v〉, Op(Mi)]| = p2; and

(ii) if W is a maximal subgroup of Op(Mi), then YMi
= [W,Op(Mi)].

Proof. (i) For v ∈ Op(Mi) \ YMi
, [〈v〉, Op(Mi)] = |[〈v〉YMi

, Op(Mi)]| = p2 as
the SL3(p)-modules Op(Mi)/YMi

and YMi
are dual to each other by Hypoth-

esis 1 (iii)(a).

(ii) Let W be a maximal subgroup of Op(Mi). As [WYMi , Op(Mi)] =
[W,Op(Mi)], we may as well assume that YMi ≤ W for otherwise the result
is true. Then Hypothesis 1 (iii)(a) implies [W,Op(Mi)] is normalized by a
parabolic subgroup of Mi which normalizes a subgroup of YMi

of order p.
Since |[W,Op(Mi)]| ≥ p2 by (i), we must have [W,Op(Mi)] = YMi

. �
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Set C = CG(Z(S)), C = C/Q and

H = 〈P1, P2〉 ≤ C̃.

By Lemma 2 (iv), P1 = Op′(P1) and P2 = Op′(P2) and, by Lemma 2 (iii), Pi

centralize Z(S). Thus H = Op′(H) and H ≤ C.

Lemma 5. The following properties hold:

(i) Q is extraspecial of order p7 and Z(Q) = Z(S); and
(ii) H acts irreducibly on Q/Z(Q).

Proof. By Lemma 2 (i), for i = 1, 2, we know that YMi ≤ Q.

We first show that for i = 1, 2,

|QOp(Mi)/Op(Mi)| = p2, |Op(Mi) ∩Q| = p5 and |Q| = p7. (5.1)

That |QOp(Mi)/Op(Mi)| = p2 follows directly from Lemma 3 (ii). Using
Op(Mi)/YMi

and YMi
are dual to each other as SL3(p)-modules and Pi nor-

malizes Z(S), we now have |[Q,Op(Mi)]YMi
/YMi

| = p2 and, since YMi
≤ Q,

we conclude that |Q∩Op(Mi)| = p5 because Lemma 3 (iii). This proves (5.1).

We now show that H acts irreducibly on Q/Z(Q) and Q is extraspecial.

Assume that V < Q is normalized by H. If V 6≤ Op(M1), then we obtain
V Op(M1) = QOp(M1) and [V,Op(M1)]YM1

/YM1
has order p2. Lemma 4 (ii)

implies that

YM1
= [[V,Op(M1)]YM1

, Op(M1)] = [V,Op(M1), Op(M1)] ≤ V.

We conclude that V = Q from (5.1), a contradiction. Thus V ≤ Op(M1) and
similarly V ≤ Op(M2). Hence, using Hypothesis 1 (iii)(a)

V ≤ Op(M1) ∩Op(M2) = YM1YM2

which has order p4. If V 6≤ YMi for some i = 1, 2, then YM1YM2 = V YMi is
normalized by Pi and P , a contradiction. Thus V ≤ YM1

∩YM2
. As YM1

∩YM2

is normalized by P , we deduce that V ≤ Z(S) and (ii) is proved. Therefore,
Z(S) = [YP , Q] ≤ Q′ and Q is non-abelian. It follows that Q′ = Φ(Q) = Z(Q)
and H acts irreducibly on Q/Z(Q). Hence (i) holds. �

We collect a few facts which follow from Lemma 5 which will assist with
the identification of H/Q.

Lemma 6. (i) C embeds into Sp6(p).
(ii) A Sylow p-subgroup S of C is elementary abelian of order p2.

(iii) For i = 1, 2, Op(Mi)Q/Q has order p and does not act quadratically on
Q/Z(Q).

(iv) C contains H, P i
∼= Zp × SL2(p), i = 1, 2, where the subgroups isomor-

phic to SL2(p) induce on each of the three Pi-chief factors in Q/Z(Q)
a natural SL2(p)-module. In particular, the involution in P i inverts
Q/Z(Q) and so is in Z(Out(Q)).
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Proof. (i) follows directly from Lemma 5 (i) and [8]. As |S| = p9, (ii) is also
obvious.

As |[Q,Op(Mi)]YMi
/YMi

| = p2, Lemma 4 (ii) implies

YM1 = [Q,Op(M1), Op(M1)].

Hence |Op(M1)Q/Q| = p and acts cubically on Q/Z(Q).

We know Pi
∼= Zp × SL2(p). Further Pi induces a natural module on

Q/(Q∩Op(Mi)), on (Q∩Op(Mi))/YMi and on YMi/Z(Q) as well. This yields
(iv). �

Recall that

|Sp6(3)| = 210 · 39 · 5 · 7 · 13 and |Sp6(5)| = 210 · 34 · 59 · 7 · 13 · 31.

As Sp2(p) o Sym(3) is a subgroup of Sp6(p) and contains a Sylow 2-
subgroup of Sp6(p), we see that a Sylow 2-subgroup of Sp6(p) is isomorphic
to Q8 × (Q8 o Z2) (recall p ∈ {3, 5}).

In what follows we consider C as a subgroup of Sp6(p) ∼= O2(Out(Q)).

Lemma 7. If E(C) 6= 1, then p = 5, E(C) ∼= 2.J2 and E(C) acts irreducibly
on Q/Z(Q).

Proof. Suppose that L is a component of C. We first demonstrate

H normalizes L. (7.1)

Otherwise, as Op′(H) = H, LH contains at least three components of
C. In particular, by Burnside’s Theorem there are at least two odd primes,
which divide the order of C by a third power. By Lemma 6 (ii) neither of
them is equal to p. This contradicts the order of Sp6(p). This proves (7.1).

L acts irreducibly on Q/Z(Q). (7.2)

Suppose false. Since L is normal in LH and, by Lemma 5 (ii), H acts irre-
ducibly on Q/Z(Q), CQ/Z(Q)(L) = 1. Hence, by Clifford’s Theorem, as an
L-module, Q/Z(Q) is either a direct sum of two 3-dimensional irreducible
submodules or of three 2-dimensional irreducible submodules. Suppose the
first possibility holds. If p = 3, then L is isomorphic to a subgroup of SL3(3)
and, as SL3(3) is a minimal simple group, we obtain L ∼= SL3(3). This contra-
dicts Lemma 6 (ii). Hence p = 5 and we have L 6∼= SL3(5) again by Lemma 6
(ii). From the subgroup structure of SL3(5) and the irreducibility of L as a
subgroup of SL3(5), we have that L ∼= Ω3(5) ∼= PSL2(5). Since, by Lemma 6
(iv), P i

∼= Z5 × SL2(5) for i = 1, 2, we deduce from Lemma 6 (ii) and as

O5(Pi) 6≤ L that Pi ∩L = S ∩L = O5(Pi). Hence O5(P1) = O5(P2) contrary
to Lemma 3 (iii).

Hence, as an L-module, Q/Z(Q) is isomorphic to a direct sum of three
natural SL2(5)-modules and, in particular, S∩L acts quadratically onQ/Z(Q).
Since P1 6= P2 and Pi = O5(Pi)S for i = 1, 2, O5(P1) 6= O5(P2). Therefore
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we may assume that L 6= O5(P1) and that O5(P1) induces inner automor-
phisms on L by conjugation. Furthermore, as |S| = 52 by Lemma 6 (ii),

S ≤ LO5(P1). As 〈(S ∩ L)P 1〉 is normalized by P 1 and O5(P1) 6≤ L, we see

S ∩ L = O5(P1). Hence O5(P1) = O5(M1) acts quadratically on Q/Z(Q),
contrary to Lemma 6. We conclude that L acts irreducibly on Q/Z(Q) and
(7.2) holds.

By (7.2) and Schur’s Lemma, EndL(Q/Z(Q)) is a division ring and
so, as |EndL(Q/Z(Q))| is finite, EndL(Q/Z(Q)) is a field by Wedderburn’s
little theorem. In particular, CC(L) is contained in the subfield F which is
generated by CC(L) over the prime field GF(p) and CC(L) is a cyclic p′-group

and therefore E(C) = L. Furthermore, we have

mp(AutC(L)) = 2. (7.3)

In particular by Lemma 6 (iv)

If mp(L) = 2, then H ≤ L,Z(L) 6= 1 and contains Z(Sp6(p)). (7.4)

Suppose that L/Z(L) is a sporadic group. Then, by [2, Lemma 5.1],
L ∼= 2.J2 and by considering the order of Sp6(3), we obtain p = 5. Thus
E(C) ∼= 2.J2 in this case and this is the recorded outcome.

Assume next that L/Z(L) ∼= Alt(n) with n ≥ 7. Then, by [2, Lemma
4.1], n = 7 and so p = 3. As the action is defined over GF(3), [2, Lemma 4.2]
implies that L ∼= Alt(7), a contradiction to (7.3) and (7.4).

Assume that L/Z(L) is of Lie type in characteristic not p. Then we may
apply [2, Lemma 3.1]. This yields L/Z(L) ∼= PSL2(7), PSL2(13), PSL2(5)
(p = 3), PSL2(9) (p = 5) or PSL3(4). As mp(AutC(L)) = 2 by (7.3), we have
L/Z(L) ∼= PSL3(4) and p = 3. By (7.4), L ∼= 2.PSL3(4). Now P1 ≤ L and, as
centralizers of 3-elements in L/Z(L) are 3-groups, this contradicts Lemma 6
(iv) because P1 ≤ L.

Suppose P 1 ≤ L. Then Lemma 6 (iv) implies L/Z(L) cannot be of Lie
type in characteristic p as in such groups p-local subgroups are of character-
istic p. Thus, if L/Z(L) is of Lie type in characteristic p, then P 1 6≤ L and so
mp(L) = 1. This shows p = 5 and L/Z(L) ∼= PSL2(5). This contradicts (7.3)
and proves the lemma. �

Lemma 8. If E(C) = 1, then p = 3.

Proof. Suppose p = 5. Then just by considering the order of Sp6(5) and
noting that |O3(C)| ≤ 33, we see that H must centralize Or(C) for each
prime r 6= 2. Hence P 1 induces by conjugation Z5 × PSL2(5) on O2(C). As
Z(Sp6(5)) ≤ O2(C), this implies that |O2(C)| ≥ 29 and so |O2(C)P 1|2 ≥ 211,
which contradicts |Sp6(5)|2 = 210. This proves the lemma. �

Lemma 9. If E(C) = 1, then F ∗(G) ∼= M(22) or 2E6(2).

Proof. Suppose E(C) = 1. By Lemma 8, we have p = 3. As for odd primes

r ≥ 5, the Sylow r-subgroups of C are cyclic, we see that P1
′

centralizes
Or(C). Thus O2(C) 6= Z(Sp6(3)). Set 〈z〉 = Z(Sp6(3)).

7



Suppose there is a non-trivial x ∈ S such that O2(C) is centralized by x.

Then 〈xP1〉 centralizes O2(C) and so either x ∈ O3(P1) or O2(P1) centralizes
O2(C).

Assume that O2(P 1) centralizes O2(C). Since O2(P1) centralizes Or(C)
for r ≥ 5, we have O2(P1) ≤ CC(F ∗(C)) ≤ F ∗(C), a contradiction as O2(P1)

is non-abelian. Hence x ∈ O3(P1). Since O3(P1) 6= O3(P2) by Lemma 3 (iii),
we derive a contradiction using P2.

Hence S acts faithfully on O2(C) and, in particular, O2(C)/Φ(O2(C))
has order at least 24. Put V = Ω1(Z(O2(C))) and recall that z ∈ V by
Lemma 6 (iv). Since O2(C) is a 2-group, it cannot act irreducibly on Q/Z(Q).
Therefore, O2(C) leaves invariant a 2-space W . If O2(C) acts faithfully on W ,
thenO2(C) embeds into GL2(3) and this contradicts |O2(C)/Φ(O2(C))| ≥ 24.
Thus CO2(C)(W ) 6= 1 and, in particular, |V | ≥ 22. Assume that F ≤ V has

order 4 and contains z. Then, by coprime action and using the determinant of
every element in C is 1, there exists t ∈ F with [Q/Z(Q), t] of order 32. If V =
F , then C centralizes V and also leaves [Q/Z(Q), t] invariant. However, C acts
irreducibly on Q/Z(Q) by Lemma 5 (ii) and so |V | ≥ 23. Coprime action now
implies |V | = 23 and that Q/Z(Q) is a direct sum of 3 pairwise perpendicular
2-spacesW1,W2 andW3 forO2(C) and these spaces are permuted transitively
by C by Lemma 5 (ii). As |V | = 8, we now know CS(V ) is non-trivial and

CS(V ) acts quadratically on W1, W2 and W3. Since S contains elements

which do not act quadratically on Q/Z(Q) by Lemma 6 (iii), [V, S] 6= 1. Hence
CS(V ) has order 3. As |O2(C)/Φ(O2(C))| ≥ 24, the fact that |V | = 23 implies

O2(C) is non-abelian and acts on W1, W2 and W3. Since each Wi is non-
degenerate, we have that O2(C) is isomorphic to a subgroup of Q8×Q8×Q8

and, as S permutes {W1,W2,W3} transitively, CS(V ) acts non-trivially on

each Q8 factor. Hence |O2(C)| = 25, 27 or 29. If |O2(C)/V | = 22, then
O2(C)S ∼= Alt(4) × SL2(3). But in this group there is a unique subgroup
isomorphic to Q8, which is centralized by some element of order three. As
O2(C)S = O2(C)P 1 = O2(C)P 2, this again implies the contradiction P1 =
P2. Hence |O2(C)/Z(O2(L))| = 24 or 26. Now application of [6, Theorem 1.3
and Theorem 1.4] shows that F ∗(G) ∼= 2E6(2) or M(22). �

Proof of the Proposition: By Lemma 5, Q is extraspecial of order p7. If
E(C) = 1, then part (i) of the proposition follows from Lemma 8 and
Lemma 9. If E(C) 6= 1, then Lemma 7 implies p = 5 and L = E(C) ∼= 2.J2.
As M1 induces SL3(5) on YM1

, we see that |NM1
(Z(Q)) : CM1

(Z(Q))| = 4.

Hence |C̃ : C| = 4. By [2, Lemma 5.4], we have that NC(L) = L. Further-
more, also by [2, Lemma 5.4], if we consider U = L/Z(L) as a subgroup of
PGL6(5), then we have that NPGL6(5)(U) = U : 2 and there is an outer auto-
morphism of order two of U . Hence back in NG(Q)/Q, we have a cyclic group
of order 4 which centralizes L and an outer automorphism of order two on L.
This shows that NG(Q)/Q ∼= 4.J2.2, which is part (ii) of the proposition. �
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Proof of the Main Theorem

We now add to Hypothesis 1 the assumption that G is of local characteristic p.

Assume first that Proposition (i) holds. If F ∗(G) ∼= M(22), then by [1,
Table 5.3t] there is an element ρ ∈ F ∗(G) of order three with CF∗(G)(ρ) ∼=
〈ρ〉 × PSU4(3). Thus G is not of local characteristic 3, a contradiction.

If F ∗(G) ∼= 2E6(2), then by [6, Lemma 7.1] there is an element ρ ∈
F ∗(G) of order three with CF∗(G)(ρ) ∼= 〈ρ〉 × PSU6(2). Again this contra-
dicts the hypothesis that G has local characteristic 3. This proves the Main
Theorem when Proposition (i) holds.

Assume that Proposition (ii) holds. Then, by [7, Lemma 3.2], the con-

jugation action of C̃ on Q induces two orbits on the subgroups of order 5 in
Q \Z(Q), one of them is conjugate to Z(Q) in G. Choose R a representative
of the other class. Then in the last line of the proof of [7, Proposition 6.2]
the authors show that the centralizer of R in G is not characteristic 5, which
means that G is not of local characteristic 5. Here and in [7, Lemma 3.2] the
K-group assumption is not used. It is just used to give the precise structure
of this centralizer, which we do not require. This completes the proof of the
Main Theorem. �
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