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Influence of Terminal Functionality on
the Crystal Packing Behaviour and
Cytotoxicity of Aromatic Oligoamides
Pierre Delfosse1, Colin C. Seaton1, Louise Male2, Rianne M. Lord1,3* and Sarah J. Pike1,2*

1School of Chemistry and Biosciences, University of Bradford, Bradford, United Kingdom, 2School of Chemistry, University of
Birmingham, Birmingham, United Kingdom, 3School of Chemistry, University of East Anglia, Norwich Research Park, Norwich,
United Kingdom

The synthesis and characterization of three aromatic oligoamides, constructed from the
same pyridyl carboxamide core but incorporating distinct end groups of acetyl (Ac) 1, tert-
butyloxycarbonyl (Boc) 2 and amine 3 is reported. Single crystal X-ray diffraction analysis of
1–3 and a dimethylsulfoxide (DMSO) solvate of 2 (2-DMSO), has identified the presence of
a range of intra- and intermolecular interactions including N-H/N, N-H/O�C and
N-H/O�S(CH3)2 hydrogen-bonding interactions, C-H/π interactions and off-set,
face-to-face stacking π-π interactions that support the variety of slipped stack,
herringbone and cofacial crystal packing arrangements observed in 1–3. Additionally,
the cytotoxicity of this series of aromatic oligoamides was assessed against two human
ovarian (A2780 and A2780cisR), two human breast (MCF-7 andMDA-MB-231) cancerous
cell lines and one non-malignant human epithelial cell line (PNT-2), to investigate the
influence of the terminal functionality of these aromatic oligoamides on their biological
activity. The chemosensitivity results highlight that modification of the terminal group from
Ac to Boc in 1 and 2 leads to a 3-fold increase in antiproliferative activity against the
cisplatin-sensitive ovarian carcinoma cell line, A2780. The presence of the amine termini in
3 gave the only member of the series to display activity against the cisplatin-resistance
ovarian carcinoma cell line, A2780cisR. Compound 2 is the lead candidate of this series,
displaying high selectivity towards A2780 cancer cells when compared to non-malignant
PNT-2 cells, with a selectivity index value >4.2. Importantly, this compound is more
selective towards A2780 (cf. PNT-2) than the clinical platinum drugs oxaliplatin by > 2.6-
fold and carboplatin by > 1.6-fold.

Keywords: aromatic oligoamides, cytotoxicity, crystallography, terminal group, breast and ovarian cancer

INTRODUCTION

The rise of cancer cell resistance towards clinical anticancer drugs, combined with the poor selectivity
they can demonstrate for cancers over non-malignant tissue and the occurrence of adverse side-
effects, has driven the search for new compounds with increased antiproliferative activity and
selectivity. (Mader et al., 1998;Winocur et al., 2006; Figaro et al., 2011; Tageja et al., 2011;Ward et al.,
2021). Whilst there is a diverse array of anticancer agents currently used in the clinic, small organic
molecules, for example, lenalidoamide and flutamide, represent an important group of
chemotherapeutic agents. Aromatic oligoamides (Hamuro et al., 1994; Hamuro et al., 1996;
Yuan et al., 2004; Yuan et al., 2005; Kortelainen et al., 2015) are a class of small organic
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compounds that have been shown to possess potential anticancer
activity (Tew et al., 2002; Ernst et al., 2003; Yin and Hamilton,
2005; Davis et al., 2007; Plante et al., 2009; Azzarito et al., 2012;
Burslem et al., 2014; Jayatunga et al., 2014; Burslem et al., 2016)
and have also been employed in a wide range of applications
including catalysis, (Hegedus et al., 2019), sensing, (Yi et al., 2005;
Bao et al., 2008; Yamato et al., 2009), materials chemistry (König
et al., 2000; Garía et al., 2010) and crystal engineering. (Suhonen
et al., 2016; Annala et al., 2017).

Systematic solid-state studies of aromatic oligoamides have
identified that small structural variations in these molecules can
have a profound influence on their conformational behavior and
such studies can to help deepen our understanding of their
structure-activity relationships (SARs). A crystallographic
study of aromatic oligoamides by Nissinen and co-workers
(Suhonen et al., 2012) showed that modification of the
aromatic ring from benzene to pyridine results in marked
changes in the folding behavior of these compounds resulting
in the adoption of curved molecular structures. Gunnlaugsson
and co-workers described a crystallographic analysis of a series of
cytotoxic pyridine-based aromatic oligoamides, showing that
they adopted curved molecular structures with a
supramolecular arrangement that could potentially promote
interaction with DNA. (Frimannsson et al., 2010). The
pyridine-based aromatic oligoamides were identified as DNA-
targeting supramolecular binders and displayed cytotoxicity
against the drug-resistant chronic myeloid leukaemia, K562
cell line. Fletcher and co-workers determined SARs on a series
of short chain aromatic oligoamides, highlighting that relaxation
of the rigidity of the backbone of the scaffold lead to increased
cytotoxicity. (Yap et al., 2012). The lead candidate of the series

displays low IC50 values (1.1–4.3 μM) against the human colon
carcinoma (DLD-1), mesothelioma (I45), lung carcinoma
(A549), and human non-small cell lung carcinoma (H1299).

Gaining an understanding of the influence of the structure of
an aromatic oligoamide on its biological activity is central to the
development of new molecules within this class that have the
potential to demonstrate improved cytotoxicity towards
cancerous cells. To probe the influence of the terminal group
on the solid-state structure and antiproliferative activity of these
aromatic oligoamides, we undertook the synthesis,
crystallographic analysis and cytotoxicity studies of three
aromatic oligoamides based on the same pyridyl carboxamide
core but including different end groups; acetyl (Ac) 1, tert-
butyloxycarbonyl (Boc) 2 and amine 3 (Figure 1). We report
on the solid-state properties of 1–3 and solvatomorph 2-DMSO,
and employ single-crystal X-ray diffraction analysis to identify
the presence of a range of non-covalent interactions which
support the diverse crystal packing behavior of these aromatic
oligoamides. We describe the influence of varying the terminal
functionality in compounds 1-3 on their cytotoxicity against breast
and ovarian cancer cell lines, and report the chemosensitivity
studies against a non-malignant cell type. The results show that
the most promising compound, a Boc-terminated aromatic
oligoamide, is non-toxic towards non-malignant cells, unlike all
cisplatin (CDDP), carboplatin (CARB) and oxaplatin (OXA),
which all demonstrate high cytotoxicity.

RESULTS AND DISCUSSION

Aromatic oligoamides, 1–3, which all have the same pyridyl
carboxamide core, but incorporate different terminal groups of
Ac 1, Boc 2 and NH2 3 (Figure 1) have been prepared according to
known or modified literature procedures, (Annala et al., 2017;
Suhonen et al., 2016; Suhonen et al., 2012) (Suhonen et al., 2012;
Suhonen et al., 2016; Annala et al., 2017), andwere all characterized
by 1H and 13C{1H} NMR spectroscopy, melting point analysis,
FTIR spectroscopy, high-resolution mass spectrometry and single
crystal X-ray diffraction. The 1H and 13C NMR spectra of 1–3
indicate that these compounds are symmetrical, with the 1H NMR
spectra showing only one resonance for the NHs in the amide
bonds of the terminal Ac and Boc group of 1 and 2 at δ 10.93 and δ
10.73 ppm respectively. Whilst the 13C NMR spectrum of 3
displays only one resonance for the 2 C atoms in the carbonyl
groups adjacent to the pyridine ring at δ 161.2 ppm (see Supporting
Information). Electronspray ionization mass spectrometry
identified the molecular ion peaks at m/z 432.1670 [M + H]+ 1,
548.2503 [M + H]+ 2 and 348.1453 [M + H]+ 3.

Crystallographic Studies
Single crystals suitable for X-ray diffraction were obtained for 1–3
and for a DMSO solvatomorph of 2 (2-DMSO). Table 1
summarizes selected crystallographic data for 1–3 and 2-
DMSO (for full crystallographic tables, see Supporting
Information). X-ray diffraction analysis identified the nature of
the non-covalent interactions present in the solid state for each of
the studied aromatic oligoamides.

FIGURE 1 | Short chain aromatic oligoamides 1–3 employed in
this study.
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Crystallographic Analysis of 1
Single crystals of 1 were grown by vapor diffusion of diethyl
ether into a dimethylformamide solution at ambient
temperature. 1 crystallizes in a monoclinic crystal system
and solution refinement was performed in the P21/c space
group (Table 1). The molecular structure of 1 is shown in
Figure 2A, with displacement ellipsoids placed at 50%
probability level. 1 displays three sets of bifurcated
intramolecular hydrogen-bonding interactions, firstly,
involving the pyridyl N atom and the two NH’s of the
adjacent amide group (i.e., N (2/4)-H (2/4)/N (1)
(2.6583(17)-3.2310(16) Å, Table 2) and, additionally, two

bifurcated interactions exist between each of the NH’s of a
central amide group and the adjacent pyridyl N atom and the
O atom of the terminal amide group (N (2/4)-H (2/4A)/N (1)
and N (2/4)-H (2/4A)/O (4) (1.97(2)-2.39(2) Å, Figure 2A).
(Rozas et al., 1998) 1 displays a slipped stack crystal packing
arrangement, (Yao et al., 2018), aligned along the b axis
(Figure 2B), which is supported by two sets of
intermolecular hydrogen-bonding interactions and one set
of edge-to-face π-π stacking interactions. One of the
intermolecular hydrogen-bonding interactions is present
between one of the NH’s of an terminal Ac group and an
O atom on the carbonyl of the central amide group (N (3)-H

TABLE 1 | Selected crystallographic data for 1, 2, 2-DMSO and 3.

1 2 2-DMSO 3

Empirical formula C23H21N5O4 C29H33N5O6 C31H39N5O7S C38H34N10O4

Formula weight 431.45 547.60 625.73 694.75
Crystal system Monoclinic Orthorhombic Monoclinic Monoclinic
Space group P21/c P212121 P21/c P21/c
a/Å 4.8617 (2) 9.9736 (7) 9.3413 (3) 16.114 (15)
b/Å 18.2381 (7) 14.9397 (11) 17.6116 (7) 13.297 (12)
c/Å 22.8681 (6) 19.4229 (15) 19.7290 (7) 17.625 (16)
α/° 90 90 90 90
β/° 93.870 (3) 90 96.048 (2) 116.80 (2)
c/° 90 90 90 90
Volume/Å3 2023.05 (13) 2894.1 (4) 3227.7 (2) 3371 (5)
Z 4 4 4 4
Temperature/K 100.01 169.99 170.0 170.39
ρcalc g/cm3 1.417 1.257 1.288 1.369
μ/mm−1 0.823 0.089 0.153 0.093
F (000) 904.0 1160.0 1328.0 1456.0
Radiation Cu Kα (λ � 1.54184) MoKα (λ � 0.71073) MoKα (λ � 0.71073) MoKα (λ � 0.71073)
2Θ range for data
collection/°

7.75–145.704 4.91–56.9 4.754–66.276 2.832–55.33

Index ranges −5 ≤ h ≤ 5, −22 ≤ k ≤ 15, −28 ≤ l
≤ 27

−13 ≤ h ≤ 13, −19 ≤ k ≤ 19, −26 ≤ l
≤ 25

−12 ≤ h ≤ 14, −27 ≤ k ≤ 26, −30 ≤ l
≤ 30

−19 ≤ h ≤ 20, −15 ≤ k ≤ 17, −22 ≤ l
≤ 22

Reflections collected 7,870 65,497 75,624 27,712
Independent reflections 3887 [Rint � 0.0202, Rsigma �

0.0267]
7,098 [Rint � 0.1280, Rsigma �

0.1249]
12,237 [Rint � 0.0829, Rsigma �

0.0712]
7,712 [Rint � 0.1203, Rsigma �

0.1340]
Data/restraints/
parameters

3887/0/307 7,098/0/447 12,237/0/553 7,712/0/578

Goodness-of-fit on F 1.044 1.031 0.999 0.969
Final R indexes [I>�2σ (I)] R1 � 0.0368, wR2 � 0.0887 R1 � 0.0596, wR2 � 0.1058 R1 � 0.0523, wR2 � 0.1016 R1 � 0.0947, wR2 � 0.2264
Final R indexes [all data] R1 � 0.0446, wR2 � 0.0932 R1 � 0.1453, wR2 � 0.1295 R1 � 0.1143, wR2 � 0.1221 R1 � 0.2001, wR2 � 0.3055
Largest diff. Peak/hole/
e Å−3

0.22/−0.20 0.23/−0.27 0.36/−0.48 0.34/−0.39

TABLE 2 | Cytotoxicity values (IC50/μM±SD) for cisplatin (CDDP), oxaliplatin (OXA), carboplatin (CARB) and compounds 1–3 after a 96 h incubation period with human
ovarian carcinomas (A2780, A2780cisR), human breast adenocarcinomas (MCF-7, MDA-MB-231) and non-malignant prostate cells (PNT-2).a Selective Index (SI) values
when compared to PNT-2 are shown in parenthesis.

Compounds IC50 values (μM) ± SD

A2780 A2780cisR MCF-7 MDA-MB-231 PNT-2

CDDP 1.3 ± 0.1 (6.4) 14 ± 1 (0.6) 1.5 ± 0.2 (5.6) 3.07 ± 0.02 (2.8) 8.5 ± 0.4
CARB 17 ± 1 (1.6) >100 (0.3*) >100 (0.3*) 33 ± 2 (0.8) 27 ± 2
OXA 0.505 ± 0.002 (2.6) 2.09 ± 0.03 (0.6) 2.6 ± 0.2 (0.5) 2.5 ± 0.6 (0.5) 1.3 ± 0.2
1 77 ± 5 (1.3*) >100 (nd) >100 (nd) 63 ± 4 (1.6*) >100
2 24.0 ± 0.9 (4.2*) >100 (nd) 84 ± 3 (1.2*) 69 ± 3 (1.4*) >100
3 >100 (nd) 61 ± 2 (1.6*) >100 (nd) >100 (nd) >100
aAll values are averages from duplicate technical repeats and triplicate experimental repeats. * indicates the minimum SI value as at least one IC50 value is >100 μM. n. d. (not determined)
indicates the values where both IC50 values are >100 μM.
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(3A)/O (1) (1.99 (2) Å) and results in the formation of a
hydrogen-bond chain orientated along the c axis
(Supplementary Figure S7). The second intermolecular
hydrogen-bonding interaction is present between one of the
NH’s of an terminal amide group and the O atom of the
carbonyl group of the Ac capping group in an adjacent
molecule (N (5)-H (5A)/O (2) (2.00 (2) Å,
Supplementary Figure S8). 1 also displays an edge-to-face
π-π stacking interaction between the terminal 2-
acylaminophenyl rings on neighboring molecules, further
supporting the slipped stack crystal packing arrangement
(Supplementary Figure S9). (Nishio, 2011).

Crystallographic Analysis of 2 and 2-DMSO
Single crystals of compound 2 and the dimethylsulfoxide
(DMSO) solvate, 2-DMSO, were grown from two different
crystallization conditions at ambient temperature, firstly,
through the slow evaporation of chloroform to give 2 and
secondly, through the slow evaporation of a 9:1 chloroform:
DMSO solvent mixture to generate 2-DMSO. In the former
conditions, 2 crystallizes in an orthorhombic crystal system
and solution refinement was performed in the P212121 space
group (Table 1) and in the latter conditions, 2 crystallizes, as the
DMSO solvate, in a monoclinic crystal system and solution
refinement was performed in the P21/c space group (Table 1).

The molecular structures of 2 and the 2-DMSO solvate are
shown in Figure 3, with displacement ellipsoids placed at 50%
probability level. Both 2 and 2-DMSO display two sets of

bifurcated intramolecular hydrogen bonding interactions,
firstly, between the pyridyl N atom and the two NH’s of the
adjacent amide groups (N (2/4)-H (2/4A)/N (1) 2.34(4)-2.36(4)
Å, Figures 3A,B) and, secondly, between one of the NH’s in a
central amide group and the adjacent pyridyl N atom and the O
atom of the terminal amide group (N (2)-H (2A)/N (1) and N
(2)-H (2)/O (2) (1.88(4)-2.36(4) Å, Figures 3A,B).
(Arifuzzaman et al., 2013).

2 adopts a herringbone crystal packing arrangement (Dhar
et al., 2014) aligned along the b axis, shown in Figure 3C, and is
supported by a range of different intermolecular non-covalent
interactions including hydrogen-bonding interactions, edge-to-
face π-π stacking interactions and C-H (aryl)/π interactions.

FIGURE 2 | (A)Molecular structure of compound 1. H atoms (expect
those on the N atoms of the amide bonds) have been omitted for clarity
and displacement ellipsoids are at 50% probability level. The hydrogen
bonding interactions are shown as dashed black lines. H atoms are
shown in white, C atoms in grey, N in light blue, O in red. (B) Crystal
packing of 1 highlighting the slipped stacked layered arrangement
aligned along the b axis. Hydrogen atoms have been omitted for clarity.

FIGURE 3 | (A) Molecular structure of compound 2; (B) Molecular
structure of compound 2-DMSO. H atoms (expect those on the N atoms of
the amide bonds) have been omitted for clarity and displacement ellipsoids are
at 50% probability level. H atoms are shown in white, C in grey, N in light
blue and C in red. Hydrogen-bonding interactions are shown as dashed black
lines; (C) Crystal packing of 2 highlighting the herringbone stacking
arrangement aligned along the b axis. Hydrogen atoms have been omitted for
clarity.
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Two distinct intermolecular N-H/O�C hydrogen-bonding
interactions are observed in 2, both of which are orientated
along the a axis and involve the NH protons of the terminal
Boc groups and the carbonyl O atoms on the pyridyl moiety of an
adjacent molecule (i.e. N (3)-H (3)/O (4) �C and N (5)-H (5)/
O (1) � C hydrogen bonding interactions, (2.03(4)-2.231(4) Å,
Supplementary Figure S12). Additionally, there is an edge-to-
face π-π stacking interaction present between the terminal 2-tert-
butylcarboxyaminophenyl rings on neighboring molecules
(Supplementary Figure S13) and a C-H (aryl)/π interaction
involving an H atom of the Boc group and a terminal 2-tert-
butylcarboxyaminophenyl ring of an adjacent molecule
(Supplementary Figure S14). (Tárkányi et al., 2008).

In the crystal packing of 2-DMSO, there are two different
types of intermolecular hydrogen-bonding interactions present;
firstly, there is a N-H/O�C interaction between one of the NHs
of a terminal Boc group and the O atom on the carbonyl group of
a pyridyl amide group (N (3)-H (3)/O (4) � C, (2.012 (18) Å,
Supplementary Figure S17) and, secondly, there is an
intermolecular N-H/O�S(CH3)2 hydrogen-bonding
interaction present which involves one of the NH’s of a
terminal group moiety and the O atom of a DMSO solvent
molecule (N (5)-H (5)/O (7) � S(CH3)2, (2.007 (19) Å,
Figure 3B). (Arifuzzaman et al., 2013).

Crystallographic Analysis of 3
Single crystals of compound 3 were grown through the slow
evaporation of chloroform at ambient temperature. 3 crystallizes
in a monoclinic space group and solution refinement was
performed in the P21/c space group (Table 1). In the unit cell
of 3, there are two distinct molecules present and the molecular
structure is shown in Figure 4 with displacement ellipsoids
placed at 50% probability level. Both molecules show the
presence of a bifurcated intramolecular hydrogen-bonding
interactions involving the pyridyl N atom and the adjacent
amide NHs (N (2/4)-H (2/4)/N (1) and N (7/9)-H (7/9)/N
(6), 2.08(5)-2.36 (4 Å, Figure 4). (Arifuzzaman et al., 2013).

3 adopts a combination of cofacial and slipped stack layered
crystal packing arrangement (Chang et al., 2008; Kobayashi et al.,
2006) orientated along the c axis (Figure 5A) and this is
supported by a series of intermolecular hydrogen-bonding
interactions and parallel displaced π-π stacking interactions. In
3, there are three distinct sets of N-H/O�C intermolecular
interactions including those observed between the NH of a
terminal amine moiety in one molecule and the O atom of the
carbonyl group in the amide group of an adjacent molecule (N
(3)-H (3B)/O (2) 2.15 (7) Å (Supplementary Figure S21), N
(8)-H (8A)/O (4) 2.06 (5) Å, (Supplementary Figure S22) and
N (10)-H (10A)/O (3) 2.28 (4) Å (Supplementary Figure S23).
The second of which adopts reciprocal intermolecular hydrogen-
bonding interactions between two adjacent molecules, giving rise
to the formation of a hydrogen-bonded dimer (Figure 5B).
Additionally, there are two sets of intermolecular parallel
displaced π-π stacking interactions present which support the
cofacial and slipped stacking crystal packing arrangement of 3
(Supplementary Figure S24, 25). (Egli et al., 2003).

Chemosensitivity Studies
Cisplatin (CDDP), carboplatin (CARB) and oxaliplatin (OXA)
and compounds 1–3 were screened for their cytotoxicity against
human cell lines: cisplatin-sensitive ovarian carcinoma (A2780),
cisplatin-resistant ovarian carcinoma (A2780cisR) and breast
adenocarcinomas (MCF-7 and MDA-MB-231). The IC50

values were obtained via the MTT assay after a 96 h
incubation period of each compound with the cells at 37°C
and 5% CO2 (Table 2; Figure 6). The Ac-terminated
compound 1 was found be moderate to non-cytotoxic against
all cell lines, with IC50 values ranging from 63 ± 4 μM to
>100 μM. Similarly, the Boc-terminated analogue 2 was
found to be moderate to non-cytotoxic against A2780cisR,
MCF-7 and MDA-MB-231. However, a significant increase in
cytotoxicity is observed when comparing compounds 1 with 2
against A2780, with the potency of 2 increasing by up to 3-fold
(77 ± 5 μM for 1 cf. 24 ± 0.9 μM for 2). The amine-terminated
compound 3 in non-toxic towards the breast adenocarcinomas
cell lines (MCF-7 and MDA-MB-231), with IC50 values greater
than the tested threshold (>100 μM). Notably, 3 is non-toxic
against the cisplatin-sensitive ovarian carcinoma A2780 but is
the only one in the library which displays any level of
antiproliferative activity against the cisplatin-resistant ovarian
carcinoma cell line, A2780cisR, with a moderate IC50 value of
61 ± 1 μM.

FIGURE 4 | (A and B) Molecular structure of two distinct molecules of
compound 3 found in the unit cell. Displacement ellipsoids are at 50%
probability level. H atoms are shown in white, C in grey, N in light blue and C in
red. All H atoms (except for those on the N atoms of the amide and amine
functionalities) have been removed for clarity. Hydrogen-bonding interactions
are shown as dashed black lines.
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On analysis of these results no definite structure-activity
relationship can be established but a general observation that
the nature of the terminal group on these short aromatic
oligoamides has a marked effect on determining their
cytotoxicity against ovarian carcinomas (A2780 and
A2780cisR) and breast adenocarcinomas (MCF-7 and MDA-
MB-231). Results highlight the Boc-terminated compound 2
displays the highest activity, with moderate sensitivity against
A2780 and the amine-terminated compound 3, is the only
compound to display any level of cytotoxicity against A2780cisR.

Selectivity Index
CDDP, OXA, and CARB and compounds 1–3 were also
screened against the non-malignant prostate cell line
(immortalized with SV40), PNT-2, to determine any cancer
cell selectivity. The results for CDDP, OXA, and CARB show
that these clinical platinum drugs have high to moderately
cytotoxicity towards PNT-2, with IC50 values of 1.3 ± 0.2 μM
(OXA), 8.5 ± 0.4 μM (CDDP) and 27 ± 2 μM (CARB). Unlike the
clinical platinum drugs, compounds 1–3 are non-toxic towards
PNT-2 (IC50 values >100 μM) The selectivity index (SI) values
were calculated for all the compounds, using the IC50 values
obtained against PNT-2 and dividing by the IC50 value against the
cancer cell line in parenthesis in Table 2). A SI value >1 indicates
increased selectivity for the cancerous cell line over the non-
malignant one, whilst a SI value <1 indicates the inverse
(i.e., increased selectivity for the non-malignant cell line over
the cancerous one). Compound 1 shows only slight increases in
selectivity, with an SI > 1.3* (p < 0.05, where * indicates the
minimum SI value due to the PNT-2 IC50 value >100 μM, Table 2
footnote) for A2780.1 However, an SI > 1.6* (p < 0.05) for this
compound against the triple negative breast cancer (TNBC) cell
line, MDA-MB-231, is higher than those observed for the clinical
platinum anticancer drugs OXA and CARB (of 0.5 and 0.8

FIGURE 5 | (A) Crystal packing of 3 as viewed along the c axis,
highlighting the cofacial and slipped layered arrangement. Hydrogen atoms
have been omitted for clarity. (B)Hydrogen-bonded dimer of 3 observed in the
solid state through reciprocal intermolecular N-H/O�C hydrogen
bonding interactions from the terminal amine NH and the amide O of an
adjacent molecule. H atoms are shown in white, C in grey, N in light blue and O
in red. Hydrogen-bonding interactions are shown as dashed black lines.

FIGURE 6 | Cytotoxicity values (IC50/μM ± SD) for cisplatin (CDDP), carboplatin (CARB), oxaliplatin (OXA) and compounds 1–3 against human cell lines: ovarian
carcinomas (A2780, A2780cisR), breast adenocarcinomas (MCF-7, MDA-MB-231) and non-malignant prostate (PNT-2). * indicates that the IC50 value is greater than
the tested threshold concentration of 100 µM.
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respectively).1 Compound 2 displays a notable SI > 4.2* (p < 0.05)
against A2780 and a very moderate increase in selectivity towards
MCF-7 (SI > 1.2*, p < 0.05) and MDA-MB-231 (SI > 1.4*).1 The
amine-terminated compound 3, is the only compound to display
increased selectivity for A2780cisR when compared to PNT-2,
with a SI > 1.6* (p < 0.05), which, albeit is very modest, is higher
than the SI values observed for CDDP (0.6), OXA (0.6) and
CARB (0.3*). Overall, these results highlight that small structural
changes to the terminal groups of these aromatic oligoamides can
have a marked effect on their biological activity against the tested
ovarian and breast cancer cell lines. Herein, it is shown that
modification of the terminal groups from Ac to Boc leads to a
notable increase in the SI against A2780 but similar SI values are
observed against MDA-MD-231, whilst variation of the terminal
group to NH2 leads to a change in the SI of the aromatic
oligoamide against A2780cisR with a slight increase in SI
(>1.6*, p < 0.05) being observed by this amine-terminated
compound.

CONCLUSION

In conclusion, we have synthesized and characterized a series of
aromatic oligoamides based on a common pyridyl carboxamide
core but incorporating distinct end groups: acetyl (Ac) 1, tert-
butyloxycarbonyl (Boc) 2 and amine 3. Single crystal X-ray
diffraction analysis of 1–3 and 2-DMSO has identified the
presence of an array of non-covalent interactions including
N-H/N and N-H/O�C hydrogen-bonding interactions, a
series of C-H/π and π-π stacking interactions that support
the diverse crystal packing arrangements present in these
aromatic oligoamides including slipped stack (1), herringbone
(2) and cofacial/slipped stacked (3). The crystal packing of 3 also
reveals the presence of hydrogen-bonded dimer formed by the
presence of reciprocal intermolecular N-H/O�C hydrogen
bonding interactions formed between the NH of the terminal
amine groups and the O atom on the carbonyl group in the amide
group of an adjacent molecule.

To understand SARs, the cytotoxicity of the compound 1–3
(and CDDP, OXA and CARB) were obtained via a 96 h MTT
assay, and screening against human ovarian carcinomas
(A2780 and A2780cisR), human breast adenocarcinomas
(MCF-7 and MDA-MB-231) and non-malignant prostrate
cell line (PNT-2). Generally, compounds 1–3 display either
moderate cytotoxicity or are non-toxic against A2780cisR,
MCF-7 and MDA-MB-231 cancer cell lines. The Boc-
terminated compound, 2, is the lead candidate of the tested
aromatic oligoamides displaying an IC50 value of 24 ± 0.9 μM
against A2780. Unlike the tested clinical platinum anticancer
drugs, compound 2 is non-toxic towards PNT-2 (IC50 >
100 µM), meaning it displays an SI value >4.2*-fold towards
A2780 (cf. PNT-2), making it more selective towards ovarian

cancer than the platinum drugs CDDP and OXA (SI values
against A2780: 1.6 (CDDP), 6.5 (CARB); 2.6 (OXA)). The
insights gained from this study, regarding the importance of
small structural modifications on influencing the biological
activity of aromatic oligoamides, will facilitate the future
design of related compounds with improved cytotoxicity
against ovarian and breast cancer cell lines.
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