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Vision-Guided MPC for Robotic Path
Following Using Learned
Memory-Augmented Model
Alireza Rastegarpanah1,2*, Jamie Hathaway1 and Rustam Stolkin1,2

1Department of Metallurgy and Materials Science, University of Birmingham, Birmingham, United Kingdom, 2The Faraday
Institution, Harwell Science and Innovation Campus, Didcot, United Kngdom

The control of the interaction between the robot and environment, following a predefined
geometric surface path with high accuracy, is a fundamental problem for contact-rich
tasks such as machining, polishing, or grinding. Flexible path-following control presents
numerous applications in emerging industry fields such as disassembly and recycling,
where the control system must adapt to a range of dissimilar object classes, where the
properties of the environment are uncertain. We present an end-to-end framework for
trajectory-independent robotic path following for contact-rich tasks in the presence of
parametric uncertainties. We formulate a combination of model predictive control with
image-based path planning and real-time visual feedback, based on a learned state-space
dynamic model. For modeling the dynamics of the robot-environment system during
contact, we introduce the application of the differentiable neural computer, a type of
memory augmented neural network (MANN). Although MANNs have been as yet
unexplored in a control context, we demonstrate a reduction in RMS error of ∼ 21.0%
compared with an equivalent Long Short-Term Memory (LSTM) architecture. Our
framework was validated in simulation, demonstrating the ability to generalize to
materials previously unseen in the training dataset.

Keywords: machine learning, dynamic modeling, electric vehicles, cutting, predictive control, vision

1 INTRODUCTION

Modern robots equipped with force and torque sensing capabilities offer a flexible platform to
expedite a range of manual and repetitive tasks through contact and interaction with their
environment. For such applications as milling, grinding or polishing, one such capability is to
define and track a desired trajectory or path along the surface of an object while applying a given
force. This is done such that task progression and progression along the tool path is enabled, while
modulating the contact force to avoid damage to the tool and maintain the workpiece quality.
However, emerging applications for robotics impose ever more challenging requirements on the
flexibility of task specification and the control system. This can be separated into two principal
problems: the first, allowing tool paths to be defined expeditiously while allowing for the provision of
prior knowledge; and the second, enabling a robot to follow a desired path on an object where there
are parametric uncertainties regarding the material properties and path planning with respect to the
object surface. Traditionally, progress in these areas has been pursued separately. Existing works
either emphasize flexibility in path planning through advanced vision-based methods and novel
sensor capabilities, or flexibility in the control framework through application of adaptive compliant
controllers, model predictive control, or more recently, learning-based model predictive control.
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Emphasizing the successes of the latter, a combination of path
planning, visual servoing and tactile feedback with model
predictive control is proposed to address both problem areas
simultaneously.

For path-following control, an exemplar application of
industrial relevance is the emerging area of robotic
disassembly of lithium-ion batteries (LIBs) (Figure 1).
Accessing high-value components such as cells by milling and
mechanical separation of the battery module casing presents a
challenging problem due to lack of standardization of battery
designs, leading to parts with differing geometries and materials.
This results in the task specification and contact dynamics
changing between tasks. For this reason, current LIB
disassembly practices are manual and functionally
rudimentary. Traditional control schemes for contact-rich
tasks, such as impedance control, are limited due to the need
to manually tune controller parameters (Siciliano and Khatib,
2008), which is impractical in this case. While adaptive schemes
have been demonstrated to be robust to uncertainties in
environment properties (Duan et al., 2018), they are typically
limited by fixed assumptions being made about the contact
dynamics, and define a greedy policy that has been noted to
be slow to adapt to sudden changes in environment properties
(Mitsioni et al., 2019).

In the presence of environment uncertainties, a further
consideration for path following tasks is the ability to follow a
predefined path in a trajectory-independent manner. That is,
without prior prescription as to the precise trajectory, which
requires accurate task planning, or process parameters, for
example, the feed velocity in milling processes. This setup,
known as the path following problem, has been explored in
Faulwasser et al. (2017) based on model predictive control
(MPC) for a collaborative robot, demonstrating the capability
to follow a prescribed path in contact with the environment with
automatic adjustments to the path velocity. In Matschek et al.
(2017); Meng et al. (2020), this treatment was extended to allow
explicit control of the contact forces to a setpoint. In Stemmler
et al. (2019), predictive control was applied for dynamic feed-rate
adjustment for control of force during CNC milling processes.

However, all of these approaches depend on an explicit model-
based formulation of MPC, which is still dependent on prior
knowledge of the environment. For tasks such as milling, an
analytical model-based framework quickly becomes intractable
due to the complexity of the cutting dynamics, warranting
detailed computational modeling approaches such as finite-
element modeling (Meng et al., 2019) that are currently
unsuitable for real-time deployment. Even simpler analytical
models are highly dependent on the geometry of the cutting
task, the process variables and the nature of the workpiece
material (Potocn̆ik and Grabec, 2002; Stemmler et al., 2019).

With these limitations in mind, the introduction of learning-
based methods has presented considerable advantages in
flexibility. In Mathew et al. (2019) a feed-forward Gaussian
mixture dynamics model was used to guide a variable
impedance controller, showing the capability to adapt to a
range of materials with variable stiffness, viscosity and surface
friction. For learning-based MPC, similar works have focused on
learning a dynamic model of the cutting process for a range of
food articles (Lenz et al., 2015; Mitsioni et al., 2019). In these
works, traditional tracking control approaches fail as the
advancing reference window causes the tool to become
embedded in the material, leading to continuously increasing
contact forces that immobilize the cutting tool. However, for
these approaches, emphasis must be given to the capability of the
model to learn and accurately model the dynamics. The model
must have sufficient representation power to learn a complex,
potentially non-linear dynamics function while also generalizing
to new data if the model is to be informative for a wide range of
material classes. Recurrent architectures such as the LSTM are
popular and well-known for their application to complex time-
series problems, as well as in the context of robotics. However, it
has been suggested (Chen et al., 2017; Mufti et al., 2019; Ming
et al., 2020) that the LSTM is further outperformed when
considering recurrent NN architectures coupled with external
memory, or memory-augmented neural networks (MANNs).
This is of particular interest for problems where long-term
dependencies are present in the data. Furthermore, beyond the
modeling aspect, it may be necessary to modify the reference path

FIGURE 1 | Schematic example of an industrial application of flexible path following control: extraction of battery cells by mechanical separation (cutting) of the
module cover.
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online to make the process robust to variations in the surface
geometry from task to task. These factors include the contours of
the part surface between differing designs, bending or
deformation during machining, or even damage to the part
sustained during or after its service life.

We provide an introduction of previous learning-based MPC
approaches, before introducing the principle of memory-
augmented neural networks. Finally, we summarize related
literature incorporating the use of vision in the context of
contact-rich tasks, such as milling or grinding. Thereafter, the
main contributions of this work are summarised.

1.1 Learning-Based Model Predictive
Control
Examples of explicit, model-based MPC-based control schemes
are prevalent in the literature. An alternative is to use learning-
based approaches, such as neural networks, to construct a
dynamic model of the controlled system. An advantage of
modeling the contact dynamics with neural networks is the
ability to learn an arbitrary, potentially non-linear function
describing the process state evolution, with the principal
limitation then shifting to the requirement for training data.
As part of an MPC framework, this represents a key distinction
from similar approaches such as model-free reinforcement
learning, where the policy must be learned directly by
interaction with the system. This is crucial for the cutting
application due to the destructive nature of the tasks being
executed. Although this approach is not new (Potocn̆ik and
Grabec, 2002), it has been the subject of continued and recent
exploration due to its applicability to a wide range of tasks
(Williams et al., 2017; Nagabandi et al., 2018; Ay et al., 2019;
Chen et al., 2019; Mitsioni et al., 2019).

More closely related to our case study of the battery cutting
application, Ay et al. (2019) explored optimization of the milling
process feed velocity based on a support-vector machine dynamic
model. In this case, improvements in both productivity and
modeling accuracy were achieved over an existing empirical
model-based method. A form of path following predictive
control was developed in Lenz et al. (2015) based on a neural
network model of the dynamics of cutting of food articles using a
knife tool, showing the capability to generalize to a wide range of
foods with different physical properties. In Mitsioni et al. (2019)
this approach was reformulated for position-controlled robots
with an improved network architecture. Although the strategy
explored in these works is similar to the path following
applications presented in Faulwasser et al. (2017); Meng et al.
(2020), there is no mechanism for the provision of the desired
cutting path. This is appropriate if both the precise cutting path
and trajectory are irrelevant to the task, but is insufficient for
cases where geometric or safety concerns mandate explicit control
over the path, such as cutting of battery components. Examples of
recent learning-based predictive path following studies are Yang
et al. (2021) and Wu et al. (2021). Yang et al. (2021) consider a
general path following control framework using a Gaussian
process (GP) estimator to adapt to external disturbances.
However, the paper is applied to the quadrotor which is a

system with well-defined dynamics. Therefore, although non-
parametric uncertain disturbance is considered, the method is not
robust to system parametric uncertainty.Wu et al. (2021) propose
a predictive tracking control method based on a neural network,
robust to parametric uncertainties. However, the paper employs a
simple RNN dynamic model; this could be improved upon by
considering improved architectures such as the LSTM as
addressed in Mitsioni et al. (2019). Further architectures could
be considered; this will be discussed in Section 1.2.

Alternative approaches consider a combination of learning-
based MPC with a learned policy, or approximate MPC, where
the former is applied offline to train the latter for online
deployment. Safavi et al. (2015) employed a combination of a
multi-layer perceptron dynamic robot model and MPC to
optimize the force feedback guiding the point-to-point
movement of a manipulator assisted by a human operator.
Bonzanini et al. (2021) proposed an approximate multi-stage
MPC framework accounting for time-varying uncertainties and
model-plant mismatch. However, this approach in principle still
depends on a nominal (known) model of the dynamics. Model-
based reinforcement learning (RL) was applied in Nagabandi
et al. (2018) in simulation to learn gaits for point-to-point
movement and path following. In this case, an MPC
framework with a learned dynamics model was trained off-
task using random inputs, using this to train a model-free RL
policy. While these approaches are advantageous as the training
sample requirements of RL are reduced and real-time action
optimization does not have to be considered, the learned policy is
no longer independent of the task objectives. Therefore, it is
unclear whether the desired paths may be adjusted to compensate
for path planning uncertainties in real-time. Beyond learning-
based predictive control, in Tutsoy et al. (2018) a model-free
reference tracking control architecture was presented. Although
the method is robust to both parametric and non-parametric
system uncertainties and does not require training, the method is
only applicable to systems with linear dynamics.

1.2 Memory Augmented Neural Networks
Previously, many learning-based methods incorporated into an
MPC framework have used feed-forward neural networks or
recurrent architectures such as the LSTM. In recent years,
however, it has been demonstrated for a range of applications
such as time series forecasting, graph traversal and reinforcement
learning, that a class of neural networks augmented with external
memory, or memory-augmented neural network (MANN) have
been demonstrated to outperform traditional recurrent neural
networks and their extensions, due to their ability to account
better for the long-term behavior of the modeled system, which
presents compelling advantages for the control application.

We consider the differentiable neural computer (DNC),
introduced in 2016 by DeepMind (Graves et al., 2016), as an
extension of the earlier neural Turing machine (NTM)
architecture—a type of MANN. We summarize the principle of
operation of the DNC in brief, however, an exhaustive description
is detailed in Graves et al. (2016). The DNC architecture comprises
a controller network, typically a recurrent neural network such as
an LSTM (as chosen in the original study), and a memory unit,
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consisting of a memory matrix of size N ×W, where N is the
number of memory locations and W is the word size. When the
network is inferred at time step t, the input to the controller
network is formed by an augmented input matrix comprising the
external network input concatenated with R read vectors
rt−1 ∈ RW from R read heads, while the output consists of an
output vector vt and an interface vector ξt . The vector ξt is used to
update the internal state of the memory matrix. Interaction of the
controller with specific regions of the memory matrix is mediated
through multiple attention mechanisms which are end-to-end
differentiable. For the read heads, content-based addressing
defines a weighting distribution over the memory locations
based on the cosine similarity to a W element read key vector
contained in ξt , while an N × N temporal link matrix stores
associations between consecutively accessed memory locations.
After each update, the final output to the DNC yt ∈ RY is the
sum of vt and the weighted next set of read vectors rt,r , with
weighting matrix Wr ∈ RRW×Y

yt � vt +Wr[ rt,1 rt,2 / rt,R ] (1)

The original study by Graves et al. (2016) demonstrated
competencies in a wide range of problems, including natural
language processing, question answering and navigation tasks.
These findings are supported by a consensus in related
literature, suggesting the DNC architecture is capable of
outperforming simple recurrent neural networks (RNNs)/
LSTMs, especially when considering data that has long-term
dependencies. For example, most recently, stacked DNCs have
been applied for analysis of electroencephalogram data in Ming
et al. (2020). In this work, the DNC demonstrated best-in-class
accuracy for mind load classification and reaction time
inference when compared to LSTM recurrent models, 1D
time series convolution, and a combination of LSTM with
CNN-based latent feature extraction. More closely related to
this work, Chen et al. (2017) employed a DNC with an LSTM
controller in a reinforcement learning (RL) framework to learn a
policy for navigation tasks. It was demonstrated that, while
more prone to over-fitting due to the increased number of
learnable parameters associated with the memory attention
mechanisms, when proper regularization was applied to the
network to counter this effect, the DNC demonstrated
significantly improved generalizing capability over the LSTM.
In Mufti et al. (2019), a combination of an ANN RL agent and a
DNC environment model were combined to solve path and
grid-based navigation tasks. The method achieved superior
accuracy compared with the equivalent LSTM for learning a
first principles environment model, however, the proposed
framework has only been validated for simple case studies.
Hence the relevance of this method to industrial applications
remains to be explored.

The incorporation of a separately addressable memory
allows the DNC to encapsulate long term dependencies on
an order far exceeding that of traditional RNN/LSTM based
models. This is especially useful in a control application where
the feedback sampling rate of a closed-loop robotic control
system can be on the order of hundreds to thousands of times

per second. However, in spite of these advantages, literature
pertaining to MANNs and their applications remains
sparse, and to our best current knowledge, unstudied in a
robot control context. Concerning DNCs in particular, a
principal issue is that the architecture suffers from high
computational complexity due to the network’s attention
mechanisms (Rae et al., 2016), which presents a challenge
for the control application to ensure the system is
computationally tractable.

1.3 Vision-Based Feedback and Path
Planning
Among other drawbacks, such as cost, autonomous
identification of key components such as cells remains a
challenging problem, with the most straightforward recourse
to prior knowledge through the use of detailed CAD models,
which may not be available for all designs, extensive vision
datasets beyond conventional depth camera or image
datasets—themselves underdeveloped for EV batteries, or
operator experience. It is precisely these requirements that
motivate a vision-based approach to path planning, as well as
incorporation of real-time visual feedback to assist
path following tasks along the surface of an unknown
workpiece. Vision-based path planning approaches have
been proven to be robust and effective at accomplishing and
assisting a wide range of contact-rich tasks, but are mainly
motivated by industry-specific applications. In Wang et al.
(2020), the problem of autonomous planning of a grinding
tool path over weld seams was addressed based on local
surface reconstruction using point cloud data. A framework
leveraging flawed point cloud data with holes, noise and
discontinuities was proposed in Barnfather and Abram
(2018) for compensation of dimensional errors in machining
processes. Similar approaches are presented in Li et al. (2018)
and Zhen et al. (2019) for the grinding of an unknown
workpiece. Although these previous works have incorporated
advanced and autonomous methods for path planning
based on visual feedback, many of these schemes are
inappropriate for more generic applications such as robotic
disassembly, due to the requirement for some degree of prior
knowledge regarding the task specification, workpiece geometry
and internals.

Addressing the application-specific nature of the path
planning has been considered in Amersdorfer et al. (2020).
In this case, vision-guided control using depth sensors and
image-based path planning was considered over free-form
surfaces for machining tasks, integrating this with a
combination of traditional impedance and direct force
control schemes. However, all of the approaches considered
are constrained by and validated with the aforementioned
limitations of conventional control strategies for collaborative
robots, or consider CNC tooling applications where there is
emphasis on the selection of process parameters, such as feed
rate, rather than optimization of the control system. Recently,
the combination of a vision-guided serial manipulator with
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model predictive control was proposed in Fehr et al. (2020),
using this to overcome limitations for accurate determination
of the end-effector pose. Although the study considers explicitly
the integration of path planning into the control framework,
the MPC approach is still reliant on an explicit formulation
of the task dynamics in contrast to the learning-based
approaches detailed. Most recently, the use of MPC with a
learned dynamic model based on environment location
feedback was proposed in Sonker and Dutta (2021) for path
tracking of a wheeled robot on uneven terrain, where the
use of terrain elevation data was directly incorporated into
the dynamic model to improve prediction accuracy.

1.4 Summary
To address the limitations of existing methods, a new method for
robotic path following for contact-rich tasks is presented, based
on the fusion of image-based path planning and vision with
model predictive control. Considering the challenges of an
explicit model-based formulation of MPC to construct a
generalized task dynamics model, we formulate our MPC
framework based on a learned state-space dynamic model.
This work introduces the application of a memory-augmented
neural network (MANN) in a control context, based on the
differentiable neural computer (DNC), introduced by
DeepMind in 2016. To the best knowledge of the authors, this
is the first study investigating the application of a MANN in a
control application.

The main contributions of this paper are:

• A proof-of-concept MPC implementation using a NN-
based dynamic contact model, enabling trajectory-
independent robotic path following in the presence of
parametric uncertainties. We consider the additional
constraint of low data collection requirements.

• An introduction of the use of MANNs in a control context,
their technical challenges, and comparison with LSTM/
simple RNN architectures.

• Integration of image-based path planning with MPC to
enable paths incorporating prior knowledge to be rapidly
defined for a range of object classes.

• Incorporation of visual feedback for contact-rich path
following tasks, augmenting the adaptive behavior of
the control framework; e.g. to compensate for
deformation of the object surface or imperfections in
path planning.

2 METHODOLOGY

We first introduce the vision-based path planning and
feedback framework in Section 2.1, before bringing this
into the broader context of our control framework in
Section 2.2. Subsequently, we establish the structure of the
environment for simulation of cutting trials and data
collection for the learned dynamics model in Section 2.3.
Finally, the aspects of data collection and model selection are

considered in Section 2.4. A graphical overview of our
proposed methodology is presented in Figure 2.

2.1 Vision-Based Path Planning and
Feedback
Unlike the application presented in Mitsioni et al. (2019), it is
important to maintain explicit control over the cutting path
along the module surface due to the sensitivity of the
components involved. In the cutting application presented,
for example, the goal is to remove the cover of a typical battery
module without damaging the sensitive cells within. However,
this approach presents a problem when considering the large
range of module designs in circulation. A path planning
framework is hence proposed to deal with this limitation in
two stages: in the first, the module pose is identified through
the use of a model-based tracking algorithm (Trinh et al.,
2018), given an approximate module pose is provided as input.
In the second stage, point cloud data from an RGBD camera is
used to directly define a tool path. To expedite the process of
defining an appropriate tool path, we developed an image-
based path planning framework. To define the path, the
operator can define an arbitrary polygonal path of “nodes”
in the image frame (u, v). These are converted to distorted
image normalized coordinates (x′, y′) through the camera
intrinsic calibration:

x′ � u − u0
px

y′ � v − v0
py

(2)

based on the principal image point (u0, v0), and focal lengths
px , py . Then, assuming radial distortion with a distortion
coefficient kdu, the undistorted image point (x, y) may then
be computed

x � x′(1 + kdur
2) y � y′(1 + kdur

2) (3)

r2 � x′2 + y′2 (4)

Given the undistorted image point in meters (x, y), the measured
depth, Cpn,z , of the point in the camera frame C may be used to
obtain the components of each path vertex Cpn using the
projection

Cpn,x � Cpn,zx
Cpn,y � Cpn,zy (5)

Finally, the obtained cutting path nodes are transformed into the
robot base W and object frame O of reference as

Wpn � WTC
Cpn (6)

Opn � OTW
Wpn (7)

where OTW is the base frame matrix representation of the object
pose estimated by the tracker. WTC is the camera frame matrix
representation of the base frame pose, dependent on the camera
extrinsic calibration and manipulator kinematics. By the inverse
transformation to (Eq. 7), the base frame path may be recovered
for any given object pose without having to redefine the original
path. The path planning process is demonstrated in Figure 3,
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showing the raw point cloud data and visual representation of a
schematic camera frame path.

However, the use of depth camera data typically comes
with a number of caveats due to measurement imperfections.
Most commonly, the collected data is noisy and suffers
from holes in regions with reflections or shadowing. To
improve the robustness of the vision system to noise, the
raw depth image is first preprocessed using a Gaussian low-
pass filter. Filling of holes is considered beyond the
scope of this paper, however it is noted that a number of
schemes exist for filling of holes and removal of
discontinuities for point cloud imaging, and we assume the
lighting conditions of the environment can be controlled to

reduce the effect of the workpiece reflectivity. During the
task execution, it is desirable to refine the reference path
online by estimation of the position of the object surface in
real-time along the path. This is achieved by considering
the planned path in the camera frame C by the inverse
transformation to (Eq. 6). At each time, the current
position of the tool center point is projected onto the
cutting path to obtain a sample point Cps. The estimate of
the module surface position is then computed by considering
the Gaussian weighted average of the K points in a given
radius r obtained using a brute-force search over the point
cloud (Rusu and Cousins, 2011). This effectively constitutes
a second low-pass filter in 3D across the local neighborhood

FIGURE 2 | Graphical overview of the proposed method MPC-based path following framework for contact-rich tasks. The overall process is defined by the vision
system, incorporating path planning, surface position estimation and storage and recovery of paths for different object classes, and learning of the tool-environment
interaction model, which together guide the MPC approach.

FIGURE 3 | Example of image-based path planning, with greyscale image of the workpiece (A) with planned path defined, and point cloud generated from RGBD
image (B) from which the camera frame path is inferred.
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of Cps. Accordingly, the workpiece surface position estimate is
then defined as

Cpe �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑K

k�0
1

( ���
2πr

√ )3 exp( − (Cpk − Cps)2
2r

)Cpk if K > 0

Cps otherwise

(8)

This has the advantage of flexibility, such that the surface position
estimate is based on the K nearest neighbor sample points if feedback
is available around the sample point, while deferring to the sample
point, which lies on the original planned path, otherwise.

2.2 Control System Architecture
To enable tracking of a predefined trajectory, the baseline control
system employs a variant of Cartesian inverse damping control
(Siciliano and Khatib, 2008) as introduced in Mitsioni et al. (2019).

u � Ka( f e − f r) (9)

where u is the velocity control input,Ka is the compliance matrix,
fe is the measured external torque, and fr is the reference force. All
quantities are referred to in the robot base frameW. By choosing

f r � K−1
a (Kpe − _pd) (10)

and noting the velocity control input computed from (Eq. 9), we
arrive at the control law

u � _pd + Ka(f e − K−1
a Kpe) (11)

where _pd is the desired velocity,Kp is the stiffness matrix. This can
be thought of as a form of admittance control with effective
stiffness and damping K � K−1

a Kp, B � K−1
a . Considering the case

of a position/velocity controlled robot under the assumption the
robot dynamics are largely decoupled by the low-level controllers,
_p � u (Siciliano and Khatib, 2008), this results in the closed-loop
behavior

K−1
a _e − K−1

a Kpe � f e (12)

This represents the desired dynamic behavior in the special case of free
space motionfe � 0. In the limit of infinite time, the position error
converges to zero; the stiffness in this case only affects the transient
behavior. In contact with the environment, the tool is offset from the
desired trajectory proportional to the measured external wrench.
Hence, the robot behaves as a mechanical admittance in response
to an external force imposed by the environment. Unfortunately, for
best performance, it is necessary to correctly tune the controller stiffness
and compliance gains, and the selection of gains for onematerial or task
may prove to be inappropriate for other materials. This presents a
problem when considering the wide range of battery designs used in
commercial EV batteries, where each design may have different
material properties, with differing surface geometries, resulting in
the dynamics changing from task to task.

Under the MPC approach, the path-following task can be
reformulated as a discrete-time optimal control problem (OCP)
for the current time t:

f *r,t � arg min
f r,t

∑H
i�0

J(xt+i, f r,t+i) (13)

FIGURE 4 | Block diagram for the proposed control system architecture based on vision-augmented MPC.
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with the objective of minimizing a cost function J over a given
horizon H. The cost function is a chosen metric evaluating the
performance of the controller at accomplishing a desired task, as a
function of a state vector xt and action at each time-step. In this
case, we consider the reference force, fr,t , as the action taken at
each time-step. Solving the optimization problem in (Eq. 13), an
optimal set of actions

f *r,t � {f *r,t , f *r,t+1, . . . , f *r,t+H} (14)

resulting in the minimum cost may be generated. By considering
not only the immediate influence of the action on the state and
its convergence to a desired reference, but the long-term effects
up to the horizon, this defines a proactive, rather than greedy
policy. However, as the optimization problem must be solved
under the constraints of a dynamic model of the system
behavior, this implies the need for an accurate system model.
Obtaining such a model directly is generally not possible in the
presence of parametric uncertainties during contact with the
environment. Therefore, using learning-based model predictive
control, we aim to learn a discrete-time state-space
representation of the task dynamics as

xt+1 � F(xt , f r,t) (15)

Here F(xt , fr,t) is a potentially non-linear target function
describing the system dynamics. Based on the intuition of the
state-space representation of the dynamics for linear systems and
findings in Mathew et al. (2019), we incorporate the action (fr,t)
taken at each time step into the learned model.

As the condition of zero angular velocity parallel to the cutting
path and normal to the surface forms the natural constraints of the
cutting problem, and the orientation of the cutter perpendicular to
these directions is fixed and relatively unimportant (due to the
angular symmetry of the cutting tool) the orientation component
of the cutting dynamics is neglected in the MPC framework for
simplicity and to reduce the dimensionality of the underlying OCP.
As shown in Figure 2, a contact-rich task such as cutting may be
separated into three principal stages, the “approach” phase, the
“cutting” phase and the “withdrawal” phase. In the approach phase,
the cutter is positioned at a fixed location above the first cutting
node and driven into the object surface. In the cutting phase, the
cutter is moved along the cutting path through the material,
separating it along the cutting path. Finally, in the withdrawal
stage, the cutter is pulled from the object surface into free space and
repositioned to the next node, parallel to the new cutting path. We
hence construct our MPC approach with the objective of
minimizing the cost function:

∑
i�0

H

J(pt+i, f r,t+i; pe,t+i, pn,1, pn,2) � ∑
i�0

H

wslice

∣∣∣∣∣∣∣∣∣∣(Wpn,2 − pt+i) · c∣∣∣∣∣∣∣∣∣∣
+∑

i�0

H

wdev(pt+i − Wp
e,t+i)2

+∑
i�0

H

wf (f r,t+i)2
(16)

c � pn,2 − pn,1∣∣∣∣∣∣∣∣pn,2 − pn,1
∣∣∣∣∣∣∣∣ (17)

with the current position of the end-effector pt and the path
segment startWpn,1 and endpoint

Wpn,2. Note || · || refers to the L2
norm. The cost function comprises three weighted components.
Here, the first contribution consists of a slicing term weighted by
wslice, which drives the cutter forward toward the path endpoint
Wpn,2. The second, deviation term, with weighting wdev , drives the
cutter position toward the module surface position, and penalizes
deviations from the desired path. A third term weighted by wf is
included to encourage minimum effort (fr,t+i) solutions and as a
soft constraint to modulate the contact forces. For the deviation
term, we introduce the surface position estimateWpe,t+i. However,
the surface position is only estimated for the current real time t,
i.e. Wpe,t . As the position displacements at each time step are
expected to be small, and to minimize computational overhead,
the surface is assumed to be locally planar, and hence for each
prediction the initial surface position estimate is displaced parallel
to the cutting path as

pe,t+i � pe,t + [(pt+i − pe,t) · c] · c (18)

Typically, the desired action set is executed in a closed-loop
fashion, by executing the first action f *r,t and re-evaluating the
new optimal action set. In general, it is difficult to solve (Eq.
13) for the optimal policy due to the inherent non-linearity of
deep neural network models, while the high computational

FIGURE 5 | Simulation environment setup with KUKA LBR iiwa R820
collaborative robot equipped with slitting saw cutter tool, FT-AXIA force-
torque sensor and Ensenso N35 RGBD camera, featuring an example Nissan
Leaf 2011 battery module.
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complexity of the model presents a trade-off in the solution
being computationally tractable. On the other hand, the
forward prediction of the state is a so-called
“embarrassingly parallel” task, which lends itself well to the
random forward shooting method. We generate N � 256
random action sequences, from which the dynamic model is
recursively inferred at each time step to generate a roll-out
trajectory up to the MPC horizon. For each roll-out, the cost
function is calculated, and the first action in the action
sequence resulting in the lowest cost function is executed.
The action sequences, in this case, are randomly sampled from
a normal distribution N (μaction,Σaction) at each time step,
reflecting the measured action distribution of the training
data. For this work, a horizon of H � 10 time steps (0.2 s) is
employed. The procedure for computing the action at each
time step based on MPC with vision feedback is summarized in
Algorithm 1. The overall control system architecture is
represented graphically in the block diagram in Figure 4.

2.3 Cutting Simulation
This work focuses on the implementation of the described
algorithms using the KUKA iiwa LBR R820 collaborative
robot in simulation based on the Robot Operating System
(ROS) framework. This manipulator is equipped with a
purpose-built circular saw cutting tool mounted onto an FT-
AXIA force-torque sensor, and an Ensenso N35 RGBD camera.
Development of the cutting simulation was carried out in Gazebo,
with the environment shown in Figure 5. Fully accurate cutting
simulation in real-time is technically difficult to implement. Few
prior works have focused on developing infrastructure for
modeling and simulation of the dynamics of cutting, with only
basic simulations featuring deformation and separation of
materials being developed for areas such as neurosurgery.

Studies focusing on simulation of separation and cutting of
material with a slitting saw implement are, for the most part,
currently limited to detailed CAD/FEM computational models
only (Meng et al., 2019). Hence, we adopt a simplified approach
that aims to model roughly the cutting process but neglects many
aspects of the dynamics of cutting. We treat the cutting problem
as a surface-tracking problem with an elastically compliant
material with constant (but potentially unknown) stiffness and
isotropic surface friction. In this sense, the motivation is twofold:

• To validate the capabilities of the vision system for path
planning and surface position estimation when integrated
with the MPC framework.

• To validate the ability of the approach as a proof-of-concept
to learn a generalized model of the task dynamics, which can
then be applicable to a real-world cutting problem through
transfer of the low-level knowledge obtained in simulation.

For navigation tasks required of the manipulator, such as
positioning the end-effector at the starting position at each path
node for each task, we employ the MoveIt ( et al., 2020) motion
planning framework. The MoveIt framework encapsulates a
number of robust motion planning algorithms, and is able to
directly incorporate joint constraints, as well as knowledge of the
environment and robot geometry to avoid collisions.

2.4 Data Preparation and Dynamics Model
Based on the path planning methodology described in Section 2.2,
collection of training data was performed over ten manually
generated polygonal surface paths (trials) over the surface of a
Nissan Leaf 2011 battery module. The Leaf module is chosen for its
predominantly planar geometry, while still having variation in the
surface geometry as an application case study. We assume the case
of an elastically compliant surface with isotropic, constant surface
friction under parametric uncertainties. For most related works
with an emphasis on development of adaptive compliant
controllers, the most relevant parametric uncertainty of the
robot-environment system under the set of assumptions
considered is the surface stiffness. In this case, however, we also
consider the influence of surface friction between the tool and
workpiece. For each trial, surface properties were randomly chosen
within a sample space summarized in Table 1 to introduce
variation from task to task, so the model learns a generalized
view of the contact dynamics. Although it has been suggested in
principle that any interaction with the system is eventually
sufficient for learning the dynamics (Williams et al., 2017), to
generate a dataset most informative for the surface tracking tasks,
we use the low-level damping controller to track a predefined fixed-

TABLE 1 |Sample space for surface properties selected for generation of dynamic
model training data.

Property — Min Max

Stiffness (Nm−1) kp 104 107

Tool-surface dyn. coeff. friction μ 0.5 1
Sliding rate (m min−1) v 0.3 1.8
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rate trajectory on the workpiece surface. These desired position
(pd) trajectories were generated based on the defined surface path
and the sliding rate chosen from Table 1 as

€pd(t) � 0, _pd(t) � vc, pd(t) � pn,1 + vtc (19)

where c is the path unit vector, based on the node (i.e. path vertex)
positions pn,1, pn,2 for each path segment as defined in (Eq. 17).
Finally, for each task, the controller gains were then manually
tuned to best accommodate the task.

Each data collection trial consists of a desired polygonal path
composed of segments. For each path segment, bounded by pn,1,
pn,2, virtual nodes are established at a displacement of d � 0.05m
from the nodes parallel to the workpiece surface normal. Three
sub-trajectories are generated from each pair of consecutive
nodes as in (Eq. 19), corresponding to the approach, cutting
and withdrawal stages respectively. While tracking the target
trajectories, the data collected were the positions pt and measured
external forces f e,t , comprising the state vector xt � (pt , fe,t).
These are paired with the action consisting of the reference
force f r,t , calculated from the inverse damping control law in
(Eq. 10). For the collection of validation data, a further two
cutting trials were performed with an unseen set of parameters
chosen from Table 1 as a bootstrap validation dataset. To
generate the test dataset, a final trial is performed using the
MPC framework with the trained model itself, over a manually
specified polygonal path.

2.4.1 Preprocessing and Input
A number of problems exist with the raw dataset collected
for training. In the first instance, the time steps of the
data collected are non-uniform, due to being synchronized
between multiple sources of measurements. Moreover, due
to the high computational complexity of the neural network-
based MPC approach, it is unrealistic to infer the trained
model after every state measurement. Thus, the data were
subsampled to 50 Hz in order to generate a dataset with a
consistent sampling rate. This consists of applying an FIR
filter to the data to remove aliasing artifacts and decimation
to the desired sampling rate. To accomplish decimation in real-
time, a secondary buffer of the most recent state is kept, with full
state updates being forwarded to the dynamics model after a
“dead time” of 20 ms.

To generate the labeled datasets, the data were split into time
windows of size T � 40. In each window, T − H samples are
used to initialize the state of the model, with the next H samples
used as labels representing the ground truth future state.
However, as the position of the desired cutting path is
expected to vary from trial to trial, the controller predictions
are expected to be translation-invariant, such that the model
does not over-fit to specific positions. A robust and common
method for handling this is to predict and train on the pose
displacement Δpt at each time step. Based on the state-space
model formulation in (Eq. 15), we hence aim to learn a model of
the form

Δxt+1 � F(Δxt , f r,t) � f (X) (20)

with Δxt is the modified state (Δpt , fe,t), X is the composite input
vector (Δxt , fr,t). Similarly, another key facet to ensure the
robustness of the model is to prevent over-fitting to specific
directions. Owing to the data collection schedule, the data
collected were strongly distributed along specific directions,
which could prevent the model from learning a more
generalized view of the dynamics. To combat this, an
augmented dataset was generated from copies of the original
dataset. For each copy, a random rotation matrix Raug was
generated, which is applied element-wise to each vector in the
copied dataset as

Xaug � RaugX (21)

After generating the augmented input vectors Xaug , the
original dataset is augmented with the copy. 20 copies were
generated in total, resulting in an augmented dataset of
21 times the original size of the dataset. Finally, each
training variable X was normalized to zero mean and a
standard deviation of 1 as

Xnorm � X − Xtrain

σX,train
(22)

where Xnorm is the normalized value of the training variable, with
mean and standard deviation of the variable in the training
dataset Xtrain, σX,train respectively.

2.4.2 Model Selection and Training
For learning the dynamics function in (Eq. 20), we consider
two recurrent neural network architectures: the long-short
term memory (LSTM) and the differentiable neural
computer (DNC) as a type of MANN. For the DNC, it is
necessary to choose the hyperparameters of the memory size N
and word sizeW, forming the external N ×W memory matrix.
The contents of the memory are read by R read heads, each
producing a W element vector concatenated with the external
input X to the controller network. For this work, an LSTM is
used as the controller network, in line with the original DNC
study (Graves et al., 2016). Thus, at a glance, the DNC may be
thought of as an LSTM with access to an external memory,
which may be referred to as the model is repeatedly inferred.
The remaining DNC hyperparameters were determined using
a manual search. We take N � 144, W � 12 and R � 4 for
this work.

Both the LSTM and DNC controller networks are
considered with the same underlying structure of a single
recurrent layer with 32 hidden units, with two fully connected
layers for input and output. The models were built and
trained in Python using the TensorFlow library (Abadi
et al., 2015). Training was carried out using the Adam
(Kingma and Ba, 2014) optimiser on an NVIDIA GTX
1060 6 GB GPU, with a batch size of 256. The model was
trained explicitly in an autoregressive fashion, such that the
model is fed T − H state measurements, before predicting the
future state H time steps forward. The final H predictions
then are based solely on the previous predicted state and
action taken at each time step. The model performance over N
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training samples was evaluated by mean squared error and
mean absolute error as

MSE � 1
N

∑N
t�0

∑H
i�0

(Δ̂xt,t+i − Δxt+i)2 (23)

MAE � 1
N

∑N
t�0

∑H
i�0

����Δ̂xt,t+i − Δ̂xt+i
���� (24)

where Δ̂xt denotes the model predicted value. Note that Δ̂xt is
further indexed by t, as in principle the model predictions at each
time-step are history-dependent.

3 RESULTS AND DISCUSSION

3.1 Model Evaluation
The predictions for both the LSTM and DNC dynamic models for
the three components of position displacement over three sample
windows for the validation dataset are shown. In this case, it is
clear that both models are capable of predicting the future state of
the system with reasonable accuracy, with the accumulation of
error over autoregressive prediction having little effect on the
predictions toward the end of the horizon. Comparing the two
models, through the distribution of predictions and the RMS
prediction error for each case, it is clear the DNC model
predictions are more consistent. Indeed, for the example case
presented in Figure 6, the majority of predictions from the DNC
dynamic model are closer to the ground truth than the LSTM,
suggesting the accuracy of the dynamics model benefits from the
incorporation of the time history explicitly as part of the external
memory.

To highlight this comparison, the RMS and mean absolute
prediction errors are presented in Table 2. As a benchmark,
the performance of a simple RNN model is considered for

comparison, to place emphasis on the influence of the model’s
ability to encapsulate long-term dependencies in the time series
data. All three models are trained under the same conditions as
outlined in Section 2.4. Comparison of these network
architectures shows the RNN has the lowest accuracy of the
three models. Since the simple RNN model does not have any
mechanism to preserve state between non-consecutive time steps,
this reduces the representational power of the model compared
with the LSTM and DNC, as the predictions are only influenced
by the immediately preceding time step. Ultimately, there is a
reduction in the RMS prediction error of ∼ 19.5% and of MA
error of ∼ 16.1% between the LSTM and RNNmodels. Similarly,
for the DNC, a reduction in RMS error of ∼ 21.0% and MA error
of ∼ 9.7% is observed.

Comparing the training and validation errors of the
architectures in Table 2, a similar pattern is recorded. In
practice, the validation error will be higher than the training
error, as the model predictions are conditioned on the training
dataset. Although the validation and test error is considerably
larger than the training error, the test dataset is constituted of data
collected from application of the MPC framework to a path
following task, rather than the inverse damping controller. Hence,
a wider range of states and actions are expected to be sampled
which are unseen during the data collection process, and thus the
validation and test set errors are more representative of the model
performance in a real application. However, there is still good
agreement between the predicted and ground truth for the
majority of data points as shown in Figure 6. This
demonstrates the applicability of the model to materials with
unseen properties.

3.2 Model Predictive Control Validation
For validation of the MPC approach with visual feedback, we
construct an example scenario with a model of a Nissan Leaf 2011
battery module as a sample workpiece. The module is fixed in
position on a flat surface oriented parallel to the z-axis of the
robot base frame, reflecting a real-world scenario where the
module is extracted and secured into a fixed and
approximately known position for separation of the module
cover. To allow comparison with the inverse damping
controller, which we refer to as the baseline, four test cases
were established for surface tracking tasks over surfaces with
different material properties that were not encountered in the
training dataset. In each test case, a path along the surface is
manually specified, but chosen differently to sample different
areas of the part surface geometry. A single trial of the task is then

FIGURE 6 | Example model residuals for pose displacement predictions
over the horizon H � 10 using the LSTM (orange, light) and DNC (blue, dark)
dynamicsmodels, with the distribution of model residuals for each component
shown as a boxen plot.

TABLE 2 | Comparison of simple RNN, LSTM and DNC dynamics model RMS
and mean absolute (MA) error on the validation and testing dataset, for
prediction of the modified state Δxt to the horizon H � 10, with required training
time per epoch and inference time for a single time step.

Model Train
RMS Err

RMS
Err

MA Err Train time/
epoch (s)

Infer.
time (ms)

RNN 0.0899 0.5970 0.5131 97.36 2.83
LSTM 0.0507 0.4806 0.4304 118.2 3.79
DNC 0.0676 0.3796 0.3884 3644 42.8
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FIGURE 7 | Comparison of overall cost and deviation cost components from manually tuned damping control and MPC approach. (A) Case 1, material stiffness
kp � 1 × 107 Nm−1, dynamic friction coeff. µ � 0.98, for diagonal path (−0.1 0.24 0)T. (B) Case 2, material stiffness kp � 2 × 109 Nm−1, dynamic friction coeff. µ � 0.5,
for uniaxial path (0 0.24 0)T. (C) Case 3, material stiffness kp � 6 × 107 Nm−1, dynamic friction coeff. µ � 0.63, for diagonal path (−0.1 − 0.24 0)T. (D) Case 4, material
stiffness kp � 4 × 106 Nm−1, dynamic friction coeff. µ � 0.98, for diagonal path (−0.1 0.24 0)T.
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carried out using the MPC approach, followed by two trials with the
baseline controller under differing conditions. Under the former set
of conditions, the baseline controller is manually tuned to best
accomplish the task, while in the latter, the controller gains are
manually tuned for tracking along a uniaxial path over a surface with
a fifth set of environment properties. This is then applied directly to
the other four test cases to establish a scenario where the controller
gains are sub-optimal for each task. This encodes the essential
comparison of how well the MPC controller is able to generalize
to cases where the contact dynamics are changing between different
tasks and materials relative to the well-tuned baseline. For each task,
the angular component of the controller stiffness Kp was held
constant.

The success criterion for each trial was achieved when the end-
effector position reached within a predefined pose threshold of
10 mm from the path endpoint position pn,2. For each trial, the
cost function over the trial duration is recorded. The cost function
provides several metrics that evaluate the controller performance
at accomplishing the task, based on quantities such as the
deviation from the desired path and path progression over
time. Due to the stochastic nature of the random shooting
method, the cost function has a high degree of variability over
time. Hence, the 20-point moving average of the cost function
was taken over each time step for the comparison. We present the
results of the validation cases in Figure 7.

For all of the tasks presented, both the MPC and manually tuned
baseline controllers were able tomeet the success criterion and finish
the planned path. The exceptional case 2 (Figure 7B) was for the trial
on the material with the highest stiffness. In this case, although the
MPC approach was able to effectively track the module surface and

converge toward the path endpoint, large increases in the deviation
cost were observed over specific intervals. These deviations arise due
to inaccuracies in the learned contact model. For the latter case, the
material stiffness was beyond the range encountered in the training
dataset, which results in an extrapolation of the learned dynamic
model. This could suggest the original training dataset was
inadequate for this case, and that iterative improvement of the
model is required for more challenging tasks, as suggested in
Williams et al. (2017). For the collected training dataset, a
probable cause is that only a small subset of the potential action
space is sampled based on the deterministic damping control law, in
contrast to the stochastic forward shooting method used.

Considering the other three test cases (Figures 7A,C,D), when
considering the deviation from the desired path, encoded in the
deviation component of the cost function, our control framework
was able to track the desired path with similar accuracy to the
well-tuned baseline without changes to accommodate the specific
task. However, notable with the MPC approach is that the
variance of the cost, or path deviation is considerably higher
than for the baseline approach. This is surmised to be due to a
combination of factors: the foremost being the limited number of
random trajectories that can be simulated at each update step of
the controller. Furthermore, as the optimization problem in (Eq.
13) is solved in three dimensions (corresponding to the three
position degrees of freedom), the size of the solution space is
greatly increased. Therefore at each time step, (Eq. 13) is not
solved to optimality, but rather for the point in the action space
sampled closest to the optimum. Further contributing factors are
the slower update rate of 50 Hz relative to the baseline, and the
error between predicted and ground truth displacements of the
learned dynamic model. When the MPC control law is evaluated,
roll-outs are computed based on this model. If the model is
slightly inaccurate, the roll-outs will also be slightly inaccurate,
hence the action that results in the lowest estimated cost function
will not, in principle be the same as the lowest true cost function.

Figure 8 shows a 3D representation of the planned path and
vision modified reference path, comparing the baseline with
specific tuning for material, baseline with no specific tuning
and MPC with LSTM dynamic model. A demonstrative video
of the comparison of these trials is available in Video 1 of the
Supplementary Material. Here, the baseline with no specific
tuning is shown to deviate from the desired path near the
beginning of the trajectory, and the controller is unable to
correct for this constant path deviation. Without online
modification of the reference path, inaccuracies in the planned
path with respect to the surface geometry lead to excessive normal
forces when contact is initiated with the environment. This results
in deviations from the path as the tool slides laterally along the
workpiece surface. With manual tuning for the task, the
controller is able to maintain the desired path as the controller
is sufficiently compliant such that the contact forces are limited.
In both of the baseline examples, the tool is driven toward the
surface with a fixed rate reference trajectory following the desired
path. With the learning-based MPC approach, the tool trajectory
is not specified, but manifests from the action solution at each
time step. Instead of advancing toward the surface at a fixed rate,
the controller exhibits a slow and conservative approach strategy,

FIGURE 8 | 3D perspective view of the tool path in case 4 (Figure 7)
under inverse damping control with manual tuning for task (green), baseline
with no specific tuning for material (purple), and MPC controller with LSTM
dynamic model (orange). Shown for comparison is the original planned
path (orange dashed line), and the online modified reference path (blue
dashed line).
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while the normal force is modulated through the learned relation
between action and force feedback. Hence when contact is
established, there is no immediate deviation from the path,
and the learning-based controller is similar to the baseline if it
is manually tuned for the specific material. During the cutting
stage, the tool intermittently deviates from the reference path due
to the aforementioned inaccuracies in the dynamic model and the
size of the solution space for the action sequence at each time step.
However, the learning-based MPC is able to correct for this
condition in contrast to the generic baseline.

3.3 Future Work
A principal issue with the DNC over the LSTM is the slow inference
times, which are approximately ten times slower than their LSTM
counterpart. The inference time strongly scales with the size of the
external memory, which has been noted as a consequence of
expensive matrix operations on the memory as part of the
network’s attention mechanisms. This has led to more recent
iterations on MANN architecture being proposed, such as the
“sparse DNC” (SDNC) (Rae et al., 2016). The LSTM model
employed uses a highly optimized implementation in the
CUDNN library, while there is currently no equivalent
implementation for the DNC. Furthermore, the autoregressive
nature of the predictive models is a notable performance
bottleneck, since it is necessarily a serial operation. By employing
a similar approach to that presented in works such as Nagabandi
et al. (2018), the required policy can instead be learned using our
MPC method to supervise training of a second DNC model. Since
this removes the constraint on time allowed to compute the optimal
action using the MPC method, this would allow the solution of (Eq.
13) to (or close to) optimality. This is beyond the scope of this work
as the primary focus is to encode the comparison of the LSTM and
DNC architectures as models of the contact dynamics as a proof-of-
concept.

Besides optimization of the DNC approach, a clear future
extension of this work is transferring of the low-level knowledge
gained in simulation to real-world cutting trials. As the dynamics
of the cutting process in the real world are more complex than
considered in the simulation approach in this work, and
dependent on a wider range of conditions, sim-to-real transfer
must be accomplished through real-world data collection and
retraining of the dynamics model. In this case, the comparison
between the LSTM and DNC models would be further enhanced
by the additional comparison this application presents.

4 CONCLUSION

We presented a novel control approach applicable to the problem of
mechanical cutting of objects based on a model predictive control
framework with a memory-augmented neural network (MANN)
dynamics model, incorporating a vision-based path planning system
with dynamic environment position estimation. To our knowledge,
this is the first study investigating the use of MANNs in a robotic
control context. Results show with our path planning framework
there is a capability for cutting objects of arbitrary dimensions, while
the neural network dynamic model is able to generalize to different,

unseen contact dynamics between tasks. Comparison between
simple RNN, LSTM and the differentiable neural computer
(DNC) MANN demonstrate the DNC has superior generalizing
power to data collected from materials unseen during training, with
∼ 21% lower RMS prediction error compared of LSTM with an
equivalent network architecture. Our control framework was
validated in simulation considering a range of four surface-
tracking tasks for a Nissan Leaf 2011 battery module, showing
the ability to outperform the baseline controller used for data
collection if the best controller gains are unknown. Although all
tasks were completed successfully, demonstrating the robustness of
our framework to parametric uncertainties, there are issues with
extrapolation of the model to materials of stiffness beyond the range
of the training dataset. This results in deviations from the desired
path. Furthermore, the increased inference time of the DNC
model—a factor of ten greater than the LSTM—presents a
significant challenge when scaling to real-time applications,
necessitating further optimisations. Future work will focus on
validating the control framework over real-world cutting trials,
with an emphasis on transferring the knowledge gained in
simulation to expedite the process of training on real materials.
Performance optimization of the DNC in our control framework
may be considered using more recent developments such as the
sparse DNC (SDNC).
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