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On the Dependency of Atlantic Hurricane and European
Windstorm Hazards
M. Angus1 and G. C. Leckebusch1

1Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Abstract The Atlantic hurricane season and the European windstorm season are found to be
negatively correlated in a seasonal forecast model. The probability of extremes occurring in both seasons is
compared to the probability of extremes in each season being independent of one another. An above
average Atlantic hurricane season is followed by an above average European windstorm season less often
than if they were independent, consistent across three intensity measures. The El Niño–Southern
Oscillation is found to be in the positive (negative) phase when hurricane activity is suppressed (enhanced)
and European windstorm activity is enhanced (suppressed). A clear extratropical response in the seasonal
forecast model to El Niño/La Niña provides a probable pathway for the observed correlation between the
extreme event seasons. This result has important predictability implications for both the actuarial and
seasonal forecasting communities.

Plain Language Summary On both sides of the Atlantic Ocean storms with extremely high wind
speeds are a natural hazard, resulting in billions of dollars in damages and loss of life. During the late
summer and autumn, hurricanes which form in the tropical ocean impact the Caribbean and United States.
In the winter, windstorms form in the midlatitude regions primarily impacting Europe. These two seasons
are traditionally considered to be unrelated. Here we present evidence that the two are linked through
the climate system, specifically the El Niño–Southern Oscillation. An active Atlantic tropical cyclone season
precedes an active European windstorm season less often than if the two seasons were independent.
Future efforts to predict how damaging the upcoming European windstorm season may be should take this
into account, and the insurance industry should be aware that these two risks are not independent.

1. Introduction

Following an extreme weather season, focus naturally turns to the climate conditions which preceded it,
especially if such conditions may be predicted. Taking for example the 2017 hurricane season, multiple
explanatory climate factors were observed prior to the historically high hurricane count, including high
ocean heat content in both the tropical Atlantic (Hallam et al., 2019; Lim et al., 2018) and Gulf of Mexico
(Trenberth et al., 2018), as well as low wind shear in the western Atlantic due to a developing La Niña event
(Camp et al., 2018). In the same 2017 season, the combined insured loss from Atlantic hurricanes and
European windstorms was estimated at $100 billion, primarily due to this extremely active hurricane season
(Halverson, 2018; Klotzbach et al., 2018; SwissRe, 2018). These two hazards accounted for around 70% of the
total global insured losses for the year and were the primary cause of insured loss in North America and
Europe, respectively (SwissRe, 2018). Clarifying the relationship between these two leading natural hazard
seasons is therefore crucial for estimates of potential yearly loss. Lloyd's (2016), in an examination of global
hazard relationships, finds a small but significant negative correlation between U.S. tropical cyclone (TC)
risk and EU flooding, further motivating a thorough analysis of their combined risk potential.

Both European windstorm and Atlantic TC frequency is influenced by the El Niño–Southern Oscillation
(ENSO). ENSO modulates the favorability of Atlantic TC development conditions through suppressed (La
Niña) or enhanced (El Niño) wind shear in the tropical Atlantic (Bove et al., 1998; Goldenberg &
Shapiro, 1996; Gray, 1984; Latif et al., 2007; Villarini et al., 2012; Vitart & Anderson, 2001). Over Europe, sev-
eral authors have explored how ENSO impacts the North Atlantic storm track. ENSO produces an extratropi-
cal response through Rossby wave propagation (Branstator, 2014; Goss et al., 2018; Held et al., 1989; Mezzina
etal., 2020;Soulardetal., 2019;Stanetal., 2017), influencingatmospherichazardsglobally (Steptoeetal., 2018).
European temperature and precipitation anomalies associated with ENSO are spatially similar to those
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associated with the North Atlantic Oscillation (NAO) (Pozo‐Vázquez et al., 2001, 2005), attributed to a predo-
minantly positive phase relationship between the two indices during November to December and a negative
phase relationship during January to March (Huang et al., 1998; Moron & Gouirand, 2003). Focusing on this
late winter signal, Brönnimann et al. (2007) found a consistent response of European temperature and preci-
pitation to ENSO. Similarly, Li and Lau (2012a, 2012b) and Drouard et al. (2015) found that sea surface tem-
perature (SST) changes in the North Pacific associated with El Niño events induce negative NAO events.
Due to theestablishmentofENSOeventsmonths in advanceof borealwinter, this tropical to extratropical con-
nection has shown predictive skill in seasonal forecasts (Dunstone et al., 2016; Scaife et al., 2014, 2017;
Toniazzo & Scaife, 2006); however, this is complicated by the nonstationary nature of the ENSO‐North
Atlantic signal (Knippertz et al., 2003; López‐parages et al., 2015; Rodríguez‐fonseca et al., 2016).

Given the associations between NAO conditions and the North Atlantic storm track location (Donat
et al., 2010; Pinto et al., 2009), the ENSO‐NAO relationship has clear implications for interannual variation
in European windstorm climatology. Fraedrich and Müller (1992) found that during El Niño events,
cyclones occurred further south, leading to a precipitation increase over western Europe. Merkel and
Latif (2002) agree but stress that the opposite conditions during La Niña could not be recreated. Schemm
et al. (2018) found competing effects over Europe, with gulf stream cyclogenesis enhanced (suppressed) dur-
ing El Niño (La Niña) events and Greenland cyclogenesis suppressed (enhanced). This is in good agreement
with the results of Fraedrich and Müller (1992) and Merkel and Latif (2002), with an increase of cyclones
over mainland Europe during El Niño.

Here we seek to establish whether covariability exists between the North Atlantic TC season and the
European windstorm season. We aim to answer the following questions: Does an active Atlantic TC season
increase the likelihood of an active European windstorm season over western Europe, or vice versa? If so,
how are these two seasons related dynamically?

2. Data and Methods

We track TCs and European windstorms using merged 10m wind speed of the latest European Centre for
Medium‐Range Weather Forecasts (ECMWF) seasonal forecast, SEAS5 (Johnson et al., 2019). All 51 ensem-
ble members of SEAS5 are tracked, for the period 1981 to 2016. SEAS5 is initialized from ERA‐interim (Dee
et al., 2011) atmospheric conditions and state‐of‐the‐art land and ocean models, on the first of every month.
The ensemble is created by perturbing the initial conditions of multiple fields across multiple levels in the
atmosphere, as discussed in Johnson et al. (2019). We tracked storms for each model year initialized on
the first of August, covering the peak seasons for both Atlantic hurricanes (Blake et al., 2007; Stockdale
et al., 2018), August–October (ASO), and for European windstorms (Roberts et al., 2014), December to
February (DJF). In total, 1,836 (51 × 36) model years from SEAS5 were tracked. The ensemble is physically
consistent in reproducing the location of the European storm track, and the climatology of European wind-
storms has been validated and found to be physically consistent with both reality and previous iterations of
the seasonal forecast (Befort et al., 2019). SEAS5 has a spectral horizontal resolution of T319, approximately
36 km, and has previously been shown to skilfully recreate the location of TCs globally, although the fre-
quency and intensity of TCs are underestimated in the Atlantic (Klotzbach et al., 2019). Additionally to
the 10m u and v winds required for tracking, SST and 700 mbar geopotential height (GHT) from the same
SEAS5 initialization are composited to analyze the dynamical conditions associated with the hypothesized
TC/European windstorm relationship. We also track European windstorms and Atlantic TCs in
ERA‐interim for verification, and the climatology of Atlantic TC tracks is provided by the International
Best Track Archive for Climate Stewardship (IBTrACS) v03r10 (Knapp et al., 2010).

SEAS5 provides an ideal test data set for comparison between the two hazard seasons as it fulfills two key cri-
teria. First, a fundamental requirement for assessing the relationship between two extreme seasons is a high
temporal resolution. A 1 in 10 North Atlantic hurricane season occurring during the same year as a 1 in 10
European windstorm season would be a 1 in 100 year event, assuming independence. Reliable measures of
seasonal activity such as best track data only cover a short period of time (with low uncertainty only for
the satellite era, 1980 to present). Detecting a signal between the two seasons is therefore nontrivial. By asses-
sing the relationship between European windstorms and Atlantic TCs in a seasonal forecast system such
as SEAS5, this issue is addressed by increasing the number of “observations” (Osinski et al., 2015). Thismeth-
odology assumes that each model initialization represents an independent realization of the climate
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system. In SEAS5, mean storm track position and European windstorm count are both found to be indepen-
dent of calendar year, providing confidence that this assumption is valid. Second, each model run includes
both seasons driven by the same initial climate conditions, allowing for analysis of any dynamical factors
which relate the two seasons.

For both European windstorms and TCs, events are classified by identifying and tracking clusters of wind
speed exceeding a local threshold. Classification is performed using the algorithm WiTRACK (introduced
by Leckebusch et al., 2008, applied in Befort et al., 2020; Kruschke, 2015; Renggli et al., 2011). For the local
threshold, the 98th percentile is chosen because of its association with extratropical cyclone‐related damage
over Europe (Klawa & Ulbrich, 2003). Befort et al. (2020) show the majority of high‐impact TCs can also be
captured by this method. TCs are excluded beneath a wind speed exceedance area of 15,000 km2, while
European windstorms are excluded beneath a wind speed exceedance area of 130,000 km2. WiTRACK is
otherwise applied to each season using the setup defined in Kruschke (2015).

As WiTRACK does not distinguish between extreme windstorms caused by tropical or extratropical
cyclones, postprocessing is required to select only the tracks of TC origin within SEAS5 over the August
to October period. Tracking is performed on 6‐hourly fields, but midlevel temperature is available at only
12‐hourly intervals, precluding dynamical identification of warm core and cold core storms. Instead, we
apply geographical filters to exclude tracks which do not form in the tropical Atlantic. The filters were
designed by examination of IBTrACS. By design, therefore, no Atlantic, Gulf of Mexico, or Caribbean cate-
gorized event within the IBTrACS climatology would be removed by the application of these filters, resulting
in a climatology of SEAS5 tracks which are physically consistent with observed TCs. A similar geographical
filter approach was applied successfully by Befort et al. (2020) to identify high‐impact Pacific cyclones.
Tracks were removed in the following: where the track originated in the Pacific; where the track's central
location remained either south of 10°N, north of 40°N, or east of 40°W; and where the track's central location
was at any time both north of 35°N and west of 85°W. To remove windstorms which did not impact the
European continent, the following constraints were placed on European windstorm tracks: All tracks were
removed where the central location remained west of 30°W and/or where the storm remained north of 70°N.

Tracks identified by WiTRACK in ERA‐interim were matched to IBTrACS. Following Befort et al. (2020)
tracks fulfilling the follow criteria are considered matched: a temporal overlap of at least four time steps,
with a distance between track centers below 400 km, and a mean distance of less than 1,000 km over the
entire track. To compare track density between IBTrACS, ERA‐Interim, and SEAS5, the number of storms
per grid cell over a 0.75 × 0.75° grid was calculated.

We calculate three separate measures of intensity for each season. The first is simply the number of tracks,
referred to subsequently as nStorms. The second is a Seasonal Storm Severity Index (SSSI), a measure of the
total “storminess” throughout a given ASO or DJF period. Storm Severity Index (SSI) is calculated as a nor-
malized value of the 98th percentile exceedance in the wind field, following Leckebusch et al. (2007). SSSI is
the summation of the individual SSI value for each track over a complete ASO or DJF season. The third
intensity measure is Land impacting Seasonal Storm Severity Index (LiSSSI). LiSSSI is determined by calcu-
lating the SSSI of the WiTRACK cluster points which occur over land.

To classify the relationship between the two seasons, we adopt a probability of independence approach. For a
given threshold, the independent probability that the seasonal intensities of both the Atlantic hurricane and
European windstorm season exceed that threshold is calculated, determining an expected number of model
initialization years. We test the hypothesis that the two seasons are independent by comparing the true num-
ber of model years which meet a given threshold to this predicted independent value. If the two seasons are
independent, both seasons will exceed thresholds independently of one another, and no consistent differ-
ence will be observed between seasonal threshold exceedance within and without the same ensemble mem-
ber model year. The advantage of this approach over other test of covariability, such as correlation
coefficient, is that it allows us to determine if a relationship exists across the distribution of observed seasons
simultaneously. It is therefore a better tool for assessing hazard dependence where the tails of the distribu-
tion are crucial. Additionally, it does not assume the relationship to be symmetrical.

To assess significance, bootstrapping (Feng et al., 2011; Hall & Horowitz, 1996; Horowitz, 2001; Marchand
et al., 2006) is applied to generate 1,000 random samples with replacement from the seasonal intensities
within the full model ensemble of August initializations. A 95% confidence value is drawn from the
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bootstrapped random sample distribution, and relationships are considered significant where this value is
exceeded.

Data generated in this study are publicly available from Angus and Leckebusch (2020), and we encourage
researchers to make use of this resource.

3. Results
3.1. Evaluation of WiTRACK Performance in SEAS5

WiTRACK was primarily developed for assessing damage potential of European windstorms (Leckebusch
et al., 2008) and has been validated extensively for this application (Donat et al., 2010; Kruschke, 2015;
Osinski et al., 2015; Renggli et al., 2011; Walz et al., 2018). Befort et al. (2020) has recently demonstrated
the skill of WiTRACK in tracking TCs in the West Pacific, and we apply it here for the first time to
Atlantic hurricanes so that the damage potential from both seasons can be compared directly.

The climatology of hurricanes in IBTrACS (Figure 1a), WiTRACK ERA‐Interim (Figure 1b), and WiTRACK
SEAS5 (Figure 1c) broadly share the same features, with a clear maxima at 20–40°N, 90–30°W. There are
clear track density differences in the main development region (MDR, 10–20°N, 80–20°W) and north of
40°N in the cyclolysis region (Figure 1e). This is an expected result of comparing a central pressure‐based
tracking scheme (IBTrACS) to the wind speed clustering methodology (WiTRACK). As the TC becomes
more organized, consistent regions exceeding the minimum cluster size with >98th percentile wind speed
are more likely. This is a recognized advantage of the application of WiTRACK rather than aminimum pres-
sure or vorticity tracking scheme; however, the well‐matched track density pattern over the Caribbean and
U.S. East Coast (difference of approximately one cyclone per year) gives us confidence that the climatology of
mature cyclones is well represented. Track density here is the mean value over all ensemble members for
SEAS5 (Figure 1c), resulting in the smoother spatial pattern. In the peak maxima region, there are 0.5–2
more storms per year in ERA‐interim than in the SEAS5 ensemble (Figure 1f), consistent with the findings
of Klotzbach et al. (2019). The number of tracks in individual SEAS5 model years exceeds the number of
tracks in ERA‐interim only 26.8% of the time, confirming the negative bias observed in the track density pat-
tern. The spatial pattern is otherwise qualitatively similar.

Figure 1. Track Density per year of TC events in (a) IBTrACS, (b) WiTRACK ERA‐interim, and (c) WiTRACK SEAS5 ensemble mean. (d) Matched events
(purple) between IBTrACS and WiTRACK ERA‐interim for tropical depressions (TS), tropical cyclones (TC), Categories 1–2 hurricanes (Hurricane), and
Categories 3–5 hurricanes (>Cat3). All categorizations from IBTrACS. (e) Difference between (b) and (a), with pink indicating greater IBTrACS track density.
(f) Difference between (b) and (c), with green indicating greater ERA‐interim track density. Difference in spatial structure (e) attributable to comparison of wind
and pressure‐based tracking schemes.
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Increasing skill in the tracking of higher category storms is also observed bymatching IBTrACS events to the
ERA‐interim WiTRACK events (Figure 1d). Dividing by TC strength, 79% of hurricanes which reached
Category 3 on the Saffir‐Simpson Scale and 57% of hurricanes which reached Category 2 were matched suc-
cessfully. Lower‐intensity TCs are matched 25% of the time, while only 2 of 53 tropical depressions (4%) were
matched. No Category 5 event was unmatched. Again, this is an expected result of the WiTRACK approach
where fewer overall tracks of shorter duration and higher average damage potential are found in the surface
wind field. Our results are in good agreement with those of Befort et al. (2020), who found an overall hit rate
of 62% and an intense storms hit rate of 85%. The performance of WiTRACK for Atlantic TCs is therefore
similar to the performance in tracking Pacific TCs, with clear skill representing higher‐category storms.

3.2. Atlantic Hurricane and European Windstorm Correlation
3.2.1. Assessment of Independence
For each intensity measure (nStorms, SSSI, and LiSSSI), empirical distributions are derived for each hazard
season (hurricane and windstorm) independently. For a wide range of seasonal intensity thresholds within
these distributions, the independent probability that the number of hurricane seasons and the number of
European windstorm seasons will fulfill that threshold is then calculated. For example, of the 1,836 model
years we find 11 or more TC events in 151 TC seasons (8.22%). We find 16 or more European windstorms
in 210 European windstorm seasons (11.4%). If the two seasons are truly independent, we would therefore
expect both 11 or more TCs and 16 or more European windstorms in the same ensemble membermodel year
0.94% of the time, or in 17.25 of 1,836 model years. Finally, the number of SEAS5 ensemble model years
where the given threshold is met for both seasons is calculated and compared to the theoretically indepen-
dent value.

For all three intensity measures, we find statistically significant differences from the independent probability
that the two hazard seasons are unrelated (Figure 2). Figure 2 should be interpreted as follows: for each
panel (a–c), the four separated quadrants represent a different relationship between the extreme seasons.
The top left quadrant represents an intense hurricane season and weak European windstorm season, top
right quadrant the case where both are more intense than the mean, bottom left quadrant where both are
weaker than the mean, and bottom right quadrant where European windstorms are more intense and hur-
ricanes less intense. Colored boxes indicate where the number of ensemble model years exceeded (green) or
were fewer than (pink) the theoretically independent number. Returning to the example above, the dark
pink shading in the more than 11 TCs andmore than 16 European windstorms box (Figure 2a) indicates that
the true value lies between 30% and 45% less than the theoretically independent 17.25 model years (actually
11 model years). This is statistically significant at the 95% confidence interval, based on a bootstrap of 1,000
random samples.

There is a clear pattern in Figure 2 of fewer seasons than predicted where both seasons are above or below
average and more seasons than predicted where one is above average and the other below. In very few cases
across all intensity measures is there a significant threshold met where this relationship is reversed. This
indicates that an above average Atlantic hurricane season is followed by a below average European wind-
storm season less often than if they were independent and vice versa. In the case of nStorms (Figure 2a)
the relationship is most prevalent when the hurricane season is above normal, with little to no relationship
observed for below normal hurricane seasons. Depending on threshold, the difference ranges from a 0% to
45% change from the predicted seasonal count. For SSSI (Figure 2b), the relationship is broadly symmetrical,
although most consistent in the case of an above average hurricane season and below average windstorm
season. The intensity measure LiSSSI (Figure 2c) is consistent with the other intensity measures for above
average European windstorms, particularly above the 75th percentile threshold, where the magnitude of
the percentage change in seasonal count is persistently between 15% and 30%. However, the relationship
is not observed for weaker than average European windstorms, indicating little difference between normal
and less than average hurricane seasons in terms of direct damage potential in Europe the following winter.

European windstorm track density was calculated for the most and least intense hurricane season model
years (Figure 3). For nStorms (Figure 3a) and SSSI (Figure 3b) derived hurricane seasonal intensity there is
a significant difference in European windstorms across much of western Europe. This is not replicated for
LiSSSI, with the spatial pattern shifted to the southeast and weaker overall. North of 60°N, the sign of the
relationship is reversed with a positive signal indicating more European windstorms following an above
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Figure 2. Percentage difference between number of seasons which meet the shown thresholds and the expected
statistically independent value for (a) nStorms, (b) SSSI, and (c) LiSSSI. Grid cells shown where the difference from
independent predicted value exceeds the 95th percentile confidence interval, derived from a random sample of 1,000
independent seasons.
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Figure 3. European windstorm track density difference between model years with top 10% hurricane intensity and
bottom 10% hurricane intensity for (a) nStorms, (b) SSSI, and (c) LiSSSI. Stippling represents where the difference
from independent predicted value exceeds the 95th percentile confidence interval, derived from a random sample of
1,000 independent seasons.
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average Atlantic hurricane season, significant in the nStorms and LiSSSI composite. The SSSI composite is
qualitatively similar but not significant. This north/south track difference is reminiscent of shifts in the
storm track location associated with the NAO, with similar centers of action (Walz et al., 2018).
3.2.2. Physical Mechanism Explaining Dependence
ENSO is the dominant SST pattern associated with the SSSI hurricane‐windstorm hazard correlation
(Figure 4). A persistent La Niña pattern in both ASO and DJF is associated with the high‐hurricane,
low‐windstorm phase of the relationship (Figures 4a and 4b), while El Niño is associated with the opposite
low‐hurricane, high‐windstorm phase (Figures 4d and 4e). Weak SST anomalies in the Pacific resembling
the SST tripole (Peng et al., 2003) are observed in ASO but do not persist to the DJF season. An extratropical
response (Figures 4c and 4f) is observed in DJF, particularly in association with the high‐hurricane,
low‐windstorm La Niña composite. Johnson et al. (2019) note the ability of SEAS5 to recreate
tropical‐extratropical responses over Europe, as observed here. An anomalous high and associated low over
the Atlantic region, similar in structure to the NAO, provides a direct pathway between climate influences on
the two seasons. The SST pattern and associated atmospheric response described here are replicated across all
three intensity measures (nStorms and LiSSSI not shown).

4. Conclusions and Discussion

We show here that the the Atlantic hurricane and European windstorm seasons are related in a seasonal
forecast model. Probabilistically, an above average Atlantic hurricane season is followed by an above average
European windstorm season less often than if they were independent. This finding is confirmed for three
separatemeasures of seasonal intensity. During La Niña (El Niño), enhanced (suppressed) hurricane activity
during ASO is followed by suppressed (enhanced) European windstorm activity during DJF. The following
pathway is proposed to explain this cohazard relationship: ENSO, through the well‐established modulation
of wind shear in the MDR during ASO (Bove et al., 1998; Goldenberg & Shapiro, 1996; Gray, 1984), influ-
ences Atlantic hurricane seasonal intensity. The ENSO phase frequently persists from ASO to DJF.
Through an extratropical response (Branstator, 2014; Scaife et al., 2017), ENSO excites an NAO‐like modu-
lation of the location and intensity of the North Atlantic storm track (Figures 4c and 4f).

To assess this cohazard relationship, we expand the number of observed storms by employing the seasonal
forecast SEAS5. This is a necessary step due to the small number of years for which track data are reliable.
It is worth noting, however, that the limited evidence from observations supports the conclusions of this

Figure 4. (a) SST composite of top 10% ranked difference between hurricane SSSI and windstorm SSSI during ASO (above average hurricane season, below
average windstorm season). (b) As in (a), during DJF. (d and e) As in (a) and (b), for bottom 10% ranked difference (below average hurricane season, above
average windstorm season). (c and f) Corresponding 700mbar GHT composite during DJF. Grid cells shown where the difference from independent predicted
value exceeds the 95th percentile confidence interval, derived from a random sample of 1,000 independent seasons.
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study (Lloyd's, 2016). Although the relationship was observed in three separate intensity measures, some
asymmetries were observed in the nStorms and LiSSSI response. The number of observed European wind-
storms following an above average hurricane season is more significantly related than following a below
average season. This implies the response of European windstorms is more strongly influenced by La
Niña than El Niño, supported by the difference in extratropical response (Figures 4c–4f). Conversely, the
intensity of European windstorms over the continent is only impacted during above average years. This
may be explained by the location of the storm track (Figure 3). During lower than average European wind-
storm seasons, the storm track is shifted northward, and the total accumulated SSI over Europe is not sta-
tistically different from normal. During above average years, however, the storm track is shifted south over
continental Europe demonstrated by the clear hurricane‐windstorm LiSSSI cohazard relationship. This
agrees well with the findings of Schemm et al. (2018), who attribute decreased cyclogenesis over the Gulf
Stream region to La Niña, accompanied by increased cyclogenesis further north near Greenland, as
observed in Figures 3a and 3c.

El Niño events have previously been shown to correlate with the negative NAO phase (Brönnimann
et al., 2007; Drouard et al., 2015; Li & Lau, 2012a, 2012b), which would imply the opposite cohazard rela-
tionship to our findings. We explain this apparent contradiction by referring to Moron and
Gouirand (2003), who show that the phase of the ENSO‐NAO relationship is dependent on whether early
(November–December) or late (January–March) winter is used to calculate the NAO. The prior findings
are based on this late winter period, whereas the 700mbar GHT response in SEAS5 shown in Figure 4
remains consistent throughout December–February. The exact nature of the nonstationary (Knippertz
et al., 2003; López‐parages et al., 2015; Rodríguez‐fonseca et al., 2016) ENSO‐NAO relationship is a subject
for further study.

The pathway we propose explaining the observed numerical relationship between the two hazard seasons is
defined post hoc by examining the associated climate of those model years exhibiting the strongest signal.
One possible source of bias is the Atlantic SST in SEAS5 during DJF, which is significantly too warm in
the Gulf Stream exit region (Johnson et al., 2019). Baroclinic instability introduced through an unrealistic
SST Atlantic gradient may impact the location and intensity of the SEAS5 North Atlantic storm track, bias-
ing the frequency and location of observed European windstorms. While the ENSO response observed is
robust, further work will focus on replicating the cohazard relationship in SST prescribing numerical mod-
els. This would also address the impact of ENSO intensity unaccounted for here. The covariability of the two
extreme wind hazards has important implications for both the actuarial and seasonal forecasting commu-
nities, and we encourage further study of the predictive implications.`

Data Availability Statement

Data sets for this research are available in Knapp et al. (2010), (IBTrACS freely available from https://data.
nodc.noaa.gov/cgi‐bin/iso?id=gov.noaa.ncdc:C01552), Dee et al. (2011), and Johnson et al. (2019) (both
ERA‐interim and SEAS5 available with academic license from the ECMWF Meteorological Archival and
Retrieval System). Data created in the results section are available at the University of Birmingham eData
repository (https://doi.org/10.25500/edata.bham.00000569).
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