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Abstract

We prove Turán-type theorems for two related Ramsey problems raised by Bollobás and
by Fox and Sudakov. First, for t ≥ 3, we show that any two-colouring of the complete graph
on n vertices that is δ-far from being monochromatic contains an unavoidable t-colouring
when δ � n−1/t , where an unavoidable t-colouring is any two-colouring of a clique of order
2t in which one colour forms either a clique of order t or two disjoint cliques of order t . Next,
for t ≥ 3, we show that any tournament on n vertices that is δ-far from being transitive con-
tains an unavoidable t-tournament when δ � n−1/�t/2�, where an unavoidable t-tournament
is the blow-up of a cyclic triangle obtained by replacing each vertex of the triangle by a tran-
sitive tournament of order t . Conditional on a well-known conjecture about bipartite Turán
numbers, both our results are sharp up to implied constants and hence determine the order
of magnitude of the corresponding off-diagonal Ramsey numbers.

2020 Mathematics Subject Classification: Primary 05C35; Secondary 05D10

1. Introduction

The starting point of Ramsey theory, namely Ramsey’s theorem [15], is the assertion that
given any natural number t ∈N, every two-colouring (of the edges, here and elsewhere) of
the complete graph Kn on n vertices contains a monochromatic copy of Kt for all large
enough n ∈N; the asymptotic behaviour of the smallest such integer, namely the Ramsey
number R(t), has been the subject of intense scrutiny (see [3,5,7,17], for example) through
the past seventy or so years.

A priori, one cannot expect to find any non-monochromatic patterns in a given two-
colouring of a complete graph, since the colouring in question might itself be monochro-
matic. In the light of this, Bollobás [4] asked what non-monochromatic patterns one is
guaranteed to find in any two-colouring of Kn that is δ-far from being monochromatic for
some δ > 0, where a two-colouring of Kn is said to be δ-far from being monochromatic
if each colour in the colouring, henceforth red and blue, appears on at least δn2 edges.
Call a two-colouring of K2t an unavoidable t-colouring if one colour class forms either
a clique of order t or two disjoint cliques of order t . It is not hard to see that the only
non-monochromatic patterns one could hope to find, even in a given two-colouring of Kn
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2 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

that is far from being monochromatic, are precisely such unavoidable colourings (since the
given colouring might itself be of this form). Confirming Bollobás’s prediction, Cutler and
Montagh [4] showed that for any t ∈N and δ > 0, there exists a least integer C(t, δ) ∈N such
that any two-colouring of Kn that is δ-far from being monochromatic contains an unavoid-
able t-colouring for all n ≥ C(t, δ). Turning to quantitative estimates, Fox and Sudakov [8]
subsequently determined the order of growth of the Ramsey number C(t, δ), showing that
C(t, δ) = (1/δ)�(t).

Our first result, which serves as a warm up for our second result (which is the focus of
this paper), pins down the off-diagonal growth rate of the Ramsey number C(t, δ) for each
t ≥ 3 as δ → 0; bounds of a similar type, albeit with suboptimal exponents, were recently
obtained independently by Caro, Hansberg and Montejano [2]. Our first result in its Turán-
type formulation is as follows.

THEOREM 1·1. For each integer t ≥ 3, there exists a C = C(t) > 0 such that any
two-colouring of the complete graph on n ≥ C vertices that is Cn−1/t -far from being
monochromatic contains an unavoidable t-colouring.

A well-known conjecture of Kovári, Sós and Turán [13], see also [10], asserts that

ex(n, Ka,b) = �(n2−1/a) (1)

for all b ≥ a ≥ 2. Conditional on the truth of (1) in the case of a = b = t , our first result is
easily seen to be sharp up to the multiplicative factor C(t) in its statement for each t ≥ 3.
Theorem 1·1 therefore determines, conditional on (1), the order of magnitude of C(t, δ)

when t is much smaller than 1/δ; indeed, it follows from our result that, for each fixed t ≥ 3
and in the limit of δ → 0, we have

C(t, δ) = �

((
1

δ

)t)
. (2)

Next, we consider a closely related problem for tournaments. Recall that a tournament is
a directed graph obtained by orienting an undirected complete graph, and a tournament is
said to be transitive if there is a linear ordering of the vertices in which all the edges point
in the same direction. The analogue of Ramsey’s theorem for tournaments was proved by
Sterns [16] and Erdős and Moser [6] who showed that every n-vertex tournament contains a
transitive subtournament of order θ(log n).

As before, one cannot hope to find any non-transitive patterns in a general tournament,
since the tournament in question might itself be transitive. Hence, in the spirit of Bollobás’s
question, Fox and Sudakov [8] asked what non-transitive tournaments one is guaranteed to
find in any tournament that is δ-far from being transitive for some δ > 0, where a tourna-
ment of order n is said to δ-far from being transitive if the orientation of at least δn2 of its
edges need to be reversed in order to make it transitive. Consider the tournament with 3t
vertices, which we call the unavoidable t-tournament, formed by taking three disjoint tran-
sitive tournaments each of order t on vertex sets V1, V2 and V3, and directing edges from Vi

to Vi+1 for each i = 0, 1, 2, with indices being taken modulo 3. As before, it is not hard to
see that the only non-transitive patterns one could hope to find, even in a given tournament
that is far from being transitive, are precisely such unavoidable tournaments (since the given
tournament might itself be of this form). Fox and Sudakov [8] showed that for any t ∈N
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Turán theorems for unavoidable patterns 3

and δ > 0, there exists a least integer D(t, δ) ∈N such that any tournament on n vertices
that is δ-far from being transitive contains an unavoidable t-tournament for all n ≥D(t, δ).
Turning to quantitative estimates, Long [14] subsequently determined the order of growth
of the Ramsey number D(t, δ), showing in particular that D(t, δ) = (1/δ)�(t).

Our second result, our main contribution here, pins down the off-diagonal growth rate
of the Ramsey number D(t, δ) for each t ≥ 3 as δ → 0. Our second theorem, also in its
Turán-type formulation, is as follows.

THEOREM 1·2. For each integer t ≥ 3, there exists a C = C(t) > 0 such that any tourna-
ment on n ≥ C vertices that is Cn−1/�t/2�-far from being transitive contains an unavoidable
t-tournament.

Our second result is also tight up to the multiplicative factor C(t) in its statement for each
t ≥ 3, again conditional on the truth of (1) in the case of a = �t/2� and b = t . Theorem 1·2
hence determines, conditional on (1), the order of magnitude of D(t, δ) when t is much
smaller than 1/δ; indeed, it follows from our result that, for each fixed t ≥ 3 and in the limit
of δ → 0, we have

D(t, δ) = �

((
1

δ

)�t/2�)
. (3)

Let us remark that while the statement of Theorem 1·2 and the assertion about its
sharpness bear a close resemblance, respectively, to the statement of Theorem 1·1 and the
assertion about its sharpness, we need to work significantly harder to establish these facts
for tournaments than we do in the case of colourings.

The rest of this paper is organised as follows. We gather some preliminary facts together
in Section 2. We present the short proof of Theorem 1·1, as well as the simple construc-
tion demonstrating its sharpness, in Section 3. We postpone the more delicate proof of
Theorem 1·2, as well as the construction demonstrating its sharpness, to Section 4. Our
main results address unavoidable patterns of order t ≥ 3, and the case of t = 1 is trivial;
the exceptional case of t = 2 however demonstrates some anomalous behaviour, which we
address in Section 5. Finally, we conclude with a discussion of open problems in Section 6.

2. Preliminaries

Here, we collect together the conventions we adopt when dealing with graphs, both
directed and undirected, as well as a few useful results that we shall rely on.

Let G = (V, E) be an undirected graph. We write v(G) and e(G) respectively for the
number of vertices and edges of G. We denote the neighbourhood of a vertex x ∈ V (G)

by NG(x), and we write dG(x) = |NG(x)| for the degree of x in G. More generally, for a
set of vertices X ⊂ V (G), the common neighbourhood NG(X) of X is defined to be the
set of vertices adjacent to all the vertices in X . Here and elsewhere, we omit the subscripts
specifying the graph when the graph in question is clear from the context. Finally, for a set
X ⊂ V (G) of vertices, we write G[X ] for the subgraph of G induced by X , and given two
disjoint sets X, Y ⊂ V (G), we write G[X, Y ] for the induced bipartite subgraph between the
vertex classes X and Y in G.

For a fixed graph H , the Turán number ex(n, H) is the maximum number of edges in an
n-vertex graph with no subgraph isomorphic to H . It is known that the Kovári–Sós–Turán
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4 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

conjecture (1) is, if true, tight up to multiplicative constants. The following fact, which may
be deduced using the technique of dependent random choice, demonstrates this and a bit
more; see [9], for example.

PROPOSITION 2·1. For all k, t ∈N, there exists a C = C(k, t) > 0 such that any graph G
on n vertices with e(G) ≥ Cn2−1/t edges contains a set S ⊂ V (G) of k vertices in which each
subset X ⊂ S of t vertices satisfies |N (X)| ≥ k.

It will be convenient to record the fact that bipartite Turán problems are ‘degenerate’ in
the following sense.

PROPOSITION 2·2. For all t ∈N and ε > 0, there exists a C = C(t, ε) > 0 such that every
bipartite graph G between vertex classes X and Y with |X |, |Y | ≥ C and e(G) ≥ ε|X ||Y |
contains a copy of Kt,t .

We also need the following simple asymmetric analogue of the above claim.

PROPOSITION 2·3. Let G be a bipartite graph between vertex classes X and Y , with |X | ≤
|Y | and e(G) ≥ ε|X ||Y |, where 0 < ε < 1/2. Then, provided |X | ≥ 4ε−1k, there is a copy of
Kk,(ε/2e)k+1|Y | in G.

Proof. Let X ′ ⊂ X be the set of vertices x ∈ X with d(x) ≥ ε|Y |/2, and note that |X ′| ≥
|X |/2 ≥ 2ε−1k. Choose a subset X ′′ ⊂ X ′ size exactly 2ε−1k. By double counting, we see
that the set Y ′ of y ∈ Y with at least k neighbours in X ′′ satisfies |Y ′| ≥ ε|Y |/2. As there are
at most

(
2ε−1k

k

)
≤ (2e/ε)k

sets of size k within X ′′, at least (ε/2e)k |Y ′| ≥ (ε/2e)k+1|Y | vertices in Y are all joined to all
the vertices of some k-set contained in X ′′, and we are done.

Our notation when dealing with directed graphs mirrors our notation for undirected
graphs: for instance, we write N+(·) for out-neighbourhoods, d−(·) for in-degrees, and so
on; also, we shall simply write xy for an edge in a digraph directed from x to y. We shall
require some simple properties of orderings of tournaments that minimise the number of
‘backward edges’. Let σ = (v1, v2, . . . , vn) be an ordering of the vertex set of an n-vertex
digraph D. A forward edge in σ is an edge of D of the form viv j with i < j , and a backward
edge is any edge of D that is not a forward edge. Given i < j , the interval or segment [i, j]
in σ refers to the set of vertices {vi , vi+1, . . . , v j }. Also, for i < j , we say that the distance
between vi and v j is j − i , the length of an edge then being the distance between its end-
points. Finally, given two disjoint sets X, Y ⊂ V (D), we say X precedes Y in σ , or X < Y
in short, if each vertex of X appears in σ before every vertex of Y .

The following proposition, see [14], follows easily from ‘switching’ arguments.

PROPOSITION 2·4. Let T be an n-vertex tournament and let σ = (v1, v2, . . . , vn) be an
ordering of V (T ) that minimises the number of backward edges. Then for any 1 ≤ i < j ≤ n,
we have:
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Turán theorems for unavoidable patterns 5

(1) |N+(vi) ∩ [i + 1, j]| ≥ ( j − i)/2;
(2) |N−(v j ) ∩ [i, j − 1]| ≥ ( j − i)/2; and
(3) σ minimises, when restricted to the interval [i, j], the number of backward edges in

T [[i, j]].
We also require the following variant of a lemma due to Long [14] that says, roughly

speaking, that a tournament either has many ‘long backward edges’ or a subtournament that
is ‘further from being transitive’.

LEMMA 2·5. Let α > 0, let T be an n-vertex tournament that is α-far from being tran-
sitive and suppose that σ is an ordering of V (T ) that minimises the number of backward
edges. Then T either contains:

(i) αn2/1000 backwards edges in σ each of length at least n/50; or
(ii) a subtournament of order at least n/20 that is 6α-far from being transitive.

Proof. Suppose that the number of backward edges in σ of length at least n/50 is at most
αn2/1000, so writing F for the set of backward edges in σ of length at most n/50, we have
|F | ≥ (999/1000)αn2.

Let A be the initial segment of the first n/20 vertices in σ , and let B be the terminal
segment of the final n/20 vertices in σ . If there are more than 6α(n/20)2 backward edges
within either A or B, then we are done by Proposition 2·4. Let F ′ ⊂ F be the set of those
edges with at most one endpoint in A or in B, and note that |F ′| ≥ |F | − 12α(n/20)2 ≥
(28/30)αn2.

Now, each edge in F ′ has length at most n/50 and does not lie entirely within either A
or B, so each edge of F ′ lies entirely within the interval [n/40, 39n/40]. Since we have
excluded edges at the extremes of σ in F ′, it is straightforward to check that a uniformly
random interval of n/20 vertices contains both endpoints of an edge in F ′ with probability at
least 1/40. Hence, there is an interval I of n/20 vertices in σ with at least (1/40)(28/30)αn2

backward edges within it. From Proposition 2·4, it follows that T [I ] is at least 9α-far from
being transitive, as required.

We shall make use of Ramsey’s theorem in its various guises; see [12], for instance.

PROPOSITION 2·6. For all t ∈N, there exist integers R(t), B(t) and T (t) such that the
following hold. Every two-colouring of Kn with n ≥R(t) contains a monochromatic copy
of Kt . Every two-colouring of Kn,n with n ≥B(t) contains a monochromatic copy of Kt,t .
Every tournament on n ≥ T (t) vertices contains a transitive subtournament on t vertices.

Finally, a word on asymptotic notation is also in order. We shall make use of standard
asymptotic notation; the variable tending to infinity will always be n unless we explic-
itly specify otherwise. When convenient, we shall also make use of some notation (of
Vinogradov) that might be considered non-standard: given functions f (n) and g(n), we
write f  g if f = O(g) and f � g if g = O( f ). Here, constants suppressed by the asymp-
totic notation may depend on fixed parameters such as t , but not on n or quantities depending
on n such as δ.
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6 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

3. Colourings

In this section, we deal with unavoidable colourings. We start by presenting an extremal
construction complementing Theorem 1·1.

PROPOSITION 3·1. For each integer t ≥ 3 and all large enough n ∈N, there is a two-
colouring of Kn not containing an unavoidable t-colouring that is δt -far from being
monochromatic, where δt(n) = (ex(n, Kt,t) − 1)/2n2.

In particular, if the conjectural bound (1) holds, we actually have δt(n) � n−1/t in the
above construction for each t ≥ 3.

Proof of Proposition 3·1. Given t ≥ 3, start with a graph G on [n] with m = ex(n, Kt,t) − 1
edges that does not contain any copies of Kt,t , and pass to a bipartite subgraph H of G with
at least m/2 edges. Now, colour the edges of the complete graph on [n] by colouring all the
edges of H red, and all the other edges blue. The construction ensures that there is no red
clique on three vertices, and that there are no red copies of Kt,t . Since m = o(n2), clearly the
number of both the red edges and the blue edges is at least m/2 provided n is sufficiently
large, so the claim follows.

Having demonstrated its sharpness, we now give the proof of Theorem 1·1.

Proof of Theorem 1·1. Let us fix C = C(t) to be large enough to support all of the estimates
that follow, and suppose that we have a two-coloured complete graph G on n ≥ C vertices in
which the number of both the red and the blue edges is at least Cn2−1/t . We assume that G is
a counterexample to the result that does not contain an unavoidable t-colouring and thereby
derive a contradiction.

We denote the graphs spanned by the red and blue edges of G by R and B respectively.
We also assume, without loss of generality, that there are at least as many blue edges as there
are red edges in G.

The first step in the proof is to show that we may remove a very small number of vertices
from G so that there are no red copies of Kt in the resulting graph.

CLAIM 3·2. For every ε > 0, there exists C1 = C1(t, ε) so that we may find a set S ⊂
V (G) of size at most C1 such that in G ′ = G[V (G) \ S], every vertex is incident to at least
(1 − 2ε)n′ blue edges, where n′ = v(G ′).

Proof. We fix C1 to be large enough, with the benefit of hindsight, to support the argument
that follows.

If the set Sr of vertices x with dR(x) ≥ εn has size at most C1, the claim follows by taking
S = Sr . Hence, assume that |Sr | ≥ C1. As blue is the most common colour, we know that
e(B) ≥ (n

2

)
/2, so there are at least n/8 vertices x for which dB(x) ≥ n/4; let Sb be a set of

C1 such vertices disjoint from Sr .
We claim that there is an m = m(t, ε) such that Sr does not contain any blue copies of

Km , and such that Sb does not contain any red copies of Km . To see this, assume that m
is sufficiently large and that X ⊂ Sr induces a blue copy of Km . Then, provided m is large
enough, Propostion 2·2 implies that there is a subset Y ⊂ X of order t for which the common
neighbourhood |NR(Y )| ≥R(t). Ramsey’s theorem applied to NR(Y ) now shows that there
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Turán theorems for unavoidable patterns 7

is an unavoidable t-colouring in G, a contradiction. Hence, we may assume that Sr does
not induce any blue copies of Km in G. The same argument, with the colours interchanged,
allows us to assume that Sb does not induce any red copies of Km in G.

Now, from the bipartite form of Ramsey’s theorem applied to the complete bipartite graph
between Sr and Sb, we may find S′

r ⊂ Sr and S′
b ⊂ Sb, both of order R(m), such that the

complete bipartite graph between S′
r and S′

b is monochromatic. Applying Ramsey’s theorem
to each of S′

r and S′
b (combined with our earlier observation), we find a red copy of Km inside

S′
r and a blue copy of Km inside S′

b, which together yield an unavoidable t-colouring in G, a
contradiction.

We apply the previous claim with ε = 1/(10t) to pass to a two-coloured complete graph
G ′ where all the vertices are incident to many blue edges, and as before, we denote the
graphs spanned by the red and the blue edges of G ′ by R′ and B ′ respectively.

CLAIM 3·3. There are no red copies of Kt in G ′.

Proof. Suppose that X forms a red clique on t vertices in G ′. Since dB ′(x) ≥ (1 − 2ε)n′ for
each x ∈ X , it follows that |NB ′(X)| ≥ n′ − t (n′/10t) ≥ n′/2 ≥R(t). By applying Ramsey’s
theorem to NB ′(X), we find an unavoidable t-colouring in G, a contradiction.

Observe that the number of red edges in G ′ is at least C2(n′)2−1/t for some C2 = C2(t),
since we have removed at most C1 vertices and C1n red edges in passing from G to G ′.
Provided C2 is large enough, it is easy to see that there are many red copies of Kt,t in G ′.

The second step in the proof is to find a reasonably ‘well distributed’ collection of such
copies that we may use to produce an unavoidable t-colouring. If C2 is large enough, then
it follows from Proposition 2·1 that there is a set Y ⊂ V (G ′) of size at least R(t) such that
every X ⊂ Y of order t satisfies |NR′(X)| ≥R(t).

CLAIM 3·4. There are no blue copies of Kt in G ′[Y ].
Proof. If X ⊂ Y induces a blue clique on t vertices in G’, then since |NR′(X)| ≥R(t), the
previous claim combined with Ramsey’s theorem allows us to find a blue clique of order
t within NR′(X), and consequently, an unavoidable t-colouring in G; again, we have a
contradiction.

We may now finish as follows. Applying Ramsey’s theorem to Y , we know there must
exist either a red or a blue copy of Kt within Y since |Y | ≥R(t). By Claim 3·4, it must be a
red copy which contradicts Claim 3·3; this completes the proof of Theorem 1·1.

4. Tournaments

In this section, we deal with unavoidable tournaments. In what follows, to save space, we
write Ut to denote the unavoidable t-tournament on 3t vertices.

4·1. Extremal construction

As before, we start by presenting an extremal construction complementing Theorem 1·2.
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8 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

PROPOSITION 4·1. For each integer t ≥ 3 and all large enough n ∈N, there is a tourna-
ment on n vertices not containing Ut that is δt -far from being transitive, where δt(n) =
10−6 ex(n, K�t/2�,t)/n2.

Again, if the conjectural bound (1) holds, then this tells us that we actually have δt(n) �
n−1/�t/2� in the above construction for each t ≥ 3. While the construction demonstrating
the above proposition is analogous to the construction for colourings presented earlier in
Section 3, the argument justifying this construction is somewhat more involved.

Proof of Proposition 4·1. Given t ≥ 3, we first set r = r(t) = �t/2� ≥ 2. To prove the result,
we shall now construct, for all large enough n ∈N, a tournament T on n vertices not con-
taining any copies of Ut with at least ex(n, Kr,t)/106 backward edges in any ordering of its
vertex set. As usual, we assume that n is large enough to support the estimates that follow.
Note that since t ≥ r ≥ 2, we have ex(n, Kr,t) � n3/2; see [10], for example.

Let G be an n-vertex graph with ex(n, Kr,t) − 1 edges which does not contain a copy of
Kr,t and let H ⊂ G be a spanning bipartite subgraph of G with at least e(G)/2 edges with
vertex classes A and B. We construct a tournament T on the same vertex set as H as follows:
fix an ordering σ of the vertices of H where all vertices of A precede all the vertices of B,
and for every edge xy ∈ E(H) with x ∈ A and y ∈ B, we direct the corresponding edge in T
backwards in σ from y to x in T , and every other edge forwards. In what follows, we speak
about the edges in H and the edges in T directed from B to A interchangeably, since these
are in one-to-one correspondence with each other.

It is not hard to see that T does not contain any copies of Ut , a fact that we record below.

CLAIM 4·2. T does not contain any copies of Ut .

Proof. Suppose to the contrary that there is a copy of Ut in T , and let X, Y, Z ⊂ V (T ) be
the three transitive vertex classes of this copy of Ut in T , with edges oriented from X to Y ,
from Y to Z , and from Z to X .

Observe that it cannot happen that each of X , Y and Z meet A, since this would yield a
cyclic triangle in A, while T [A] is transitive by construction; hence, suppose without loss
of generality that Z ⊂ B. The same argument applied to B shows that one of X or Y must
necessarily be contained in A; since there are no copies of Kr,t in H (which specifies the set
of edges directed from B to A), it must be the case that Y ⊂ A.

We now know that Y ⊂ A and Z ⊂ B. Of course, either |X ∩ A| ≥ �t/2� = r or |X ∩ B| ≥
r . If the former happens, then we find a copy of Kr,t between X ∩ A and Z in H , and if the
latter happens, then we find a copy of Kr,t between X ∩ B and Y in H , a contradiction
regardless.

The bulk of the work, which we accomplish in the next lemma, lies in demonstrating that
T is not too close to being transitive.

LEMMA 4·3. In any ordering of V (T ), there are at least e(H)/105 backward edges.

Proof. Suppose this does not hold, and let τ = (v1, v2, . . . , vn) be an ordering of the vertices
of T that minimises the number of backward edges, so that the number of backward edges
in τ is less than e(H)/105. The basic idea now is simple. Since many of the backward edges
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Turán theorems for unavoidable patterns 9

in σ are forward edges in τ , we expect to be able to find large sets A′ ⊂ A and B ′ ⊂ B such
that B ′ precedes A′ in τ with H [A′, B ′] containing a positive fraction of the edges in H .
However, we may then use the fact that H has no copies of Kr,t to conclude that at least half
of the edges, say, between A′ and B ′ in T must be directed backward from A′ to B ′ in τ .
While this sketch is conceptually straightforward, filling in the details however necessitates
dealing with some technicalities.

Let us start by recording the following fact that we shall make use of repeatedly.

CLAIM 4·4. If A′ ⊂ A and B ′ ⊂ B are such that every vertex of B ′ precedes every vertex
of A′ in τ , then e(H [A′, B ′]) ≤ e(H)/105.

Proof. Suppose the claim fails for some A′ ⊂ A and B ′ ⊂ B. Since e(H) � n3/2, we must
have |A′|, |B ′| � √

n. Now, the graph H [A′, B ′] contains no copies of Kr,t , and both |A′| and
|B ′| are sufficiently large, so it follows from Proposition 2·2 that e(H [A′, B ′]) ≤ |A′||B ′|/2.
Therefore,

e(H)/105 ≤ e(H [A′, B ′]) ≤ |A′||B ′|/2 ≤ e(H [A′, B ′]),
where H is the complement of H . Since each non-edge of H [A′, B ′] is directed from A′ to
B ′ in T , this yields at least e(H)/105 backward edges in τ , which is a contradiction; this
concludes the proof of Claim 4·4.

Write |A| = a and |B| = b so that a + b = n, and define X and Y to be the first a vertices
and the last b vertices in τ respectively. Let X B = B ∩ X be those vertices of B appearing in
the first a vertices in τ , and let YA = A ∩ Y . Of course, we have |X B | = |YA|; we write m for
their common size.

Observe that since there are at most e(H)/105 backward edges in τ , at least e(H)/2 edges
of H are forward edges in τ ; each such forward edge must necessarily be directed out of
some vertex in X B or into some vertex in YA (or both). Hence, we assume by pigeonholing
that F ⊂ E(H) is some set of e(H)/4 edges of H that are all forward edges in τ directed
into some vertex in YA (the other case being symmetric). Note that it must be the case that
m � n1/2 ≥ n1/10, say, since we know that mn � e(H) � n3/2.

We may partition F as F = F ′ ∪ F ′′, where F ′ consists of all the forward edges in τ

directed from B ∩ Y to YA, and F ′′ consists of all those forward edges in τ directed from X B

to YA. We know from Claim 4·4 that |F ′′| ≤ |F |/2, so we must have |F ′| ≥ |F |/2 ≥ e(H)/8.
We now need the notion of a ‘balanced interval’. We fix a sufficiently large constant

C1 = C1(t) > 0 to support what follows, and say that a sub-interval W ⊂ Y is balanced if:

A1 the number of edges of F ′ within W is at least |F ′|/2;
A2 1/50 < |W ∩ A|/|W ∩ B| < 50; and
A3 either the initial segment W +

i ⊂ W of the first i vertices in W satisfies |W +
i ∩ A| <

50|W +
i ∩ B| or the the terminal segment W −

i ⊂ W of all but the first i vertices in W
satisfies |W −

i ∩ B| < 50|W −
i ∩ A| for each C1 ≤ i ≤ |W | − C1.

We first show that a balanced interval may always be found.

CLAIM 4·5. There exists a balanced sub-interval W ⊂ Y .
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10 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

Proof. Starting with the interval Y , we shall successively refine the interval under con-
sideration into a ‘more structured’ sub-interval, repeating this iteratively until we reach
our goal. We start with W0 = Y and in each step 0 ≤ j ≤ 30 log n, we do the following.
If the interval W j is balanced, then we stop. If not, then we shall find a sub-interval
W j+1 ⊂ W j with |W j+1| ≤ 9|W j |/10 that contains all but C2n edges of F ′ within W j , for
some C2 = C2(t) > 0. We claim that such an iterative process must terminate in a balanced
interval. Indeed, if the process does not terminate within the first 30 log n steps, then as we
have lost at most 30C2n log n edges of F ′, the number of surviving edges from F ′ is at least
|F ′| − 30C2n log n ≥ 3|F ′|/4 � n3/2 since |F ′| � n3/2, while on the other hand, the number
of surviving vertices is O(1), which is clearly impossible.

We now describe how to construct W ′ = W j+1 from an unbalanced W = W j at some stage
0 ≤ j < 30 log n. We may assume inductively, as we saw earlier, that the number of edges of
F ′ with both endpoints in W is at least 3|F ′|/4 � n3/2, so in particular, we have |W | � n3/4.
Since W is not balanced, it must violate one of A2 or A3. We now describe how to construct
W ′ in the case where W violates A2 on account of |W ∩ B| > 50|W ∩ A|, and then indicate
the minor modifications needed to handle the other cases.

Consider the set Z of the last C2 vertices from A in W and suppose that vk+1 is the first
vertex in Z . We claim that we may take W ′ = W +

k to be the initial segment of those vertices
preceding vk+1 in W .

To show that this choice of W ′ works, we first claim that |W ′ ∩ B| < 4/5|W ∩ B| ≤
9|W |/10, where the second inequality holds on account of |W ∩ B| > 50|W ∩ A|. Indeed, if
this is not the case, we may find a copy of Kr,t in H by arguing as follows. Given a vertex
v = vi+1 ∈ Z , since τ is an ordering that minimises the number of backward edges, we know
from Proposition 2·4 that at least 1/2 of the edges between W +

i and v are directed into v.
Since

|W ′ ∩ B| ≥ 4|W ∩ B|/5 ≥ (4/5)(50/51)|W | ≥ 3|W |/4,

the number of edges directed from W ′ ∩ B to v is at least

|W ′ ∩ B| − |W +
i |/2 ≥ 3|W |/4 − |W |/2 = |W |/4.

It then follows that the number of edges directed from W ′ ∩ B to Z , all necessarily edges
in H , is at least |W ′ ∩ B||Z |/4. Therefore, as |W ′ ∩ B| ≥ 3|W |/4 � n3/4 and |Z | = C2, then
provided C2 is suitably large, we conclude from Proposition 2·2 that there is a copy of Kr,t

in H between W ′ ∩ B and Z , a contradiction.
If W violates A2 on account of |W ∩ A| > 50|W ∩ B|, then we analogously construct

W ′ by considering the first C2 vertices from B in W . Finally, if W violates A3 for some
C1 ≤ i ≤ |W | − C1, then we apply the above argument to both W +

i and W −
i , looking at the

first C2/2 vertices from B in the former interval, and the last C2/2 vertices from A in the
latter interval.

To finish the proof of Lemma 4·3, we shall show that the existence of a balanced interval
J ⊂ Y yields too many backward edges in τ . We need a little notation: for a partition of
J = J1 ∪ J2 into an initial segment J1 and a terminal segment J2, we decompose the subset
of at least |F ′|/2 edges of F ′ within J into three parts as F1 ∪ F2 ∪ F12, were Fi ⊂ F ′ is the
set of such edges entirely within Ji for i = 1, 2 and F12 ⊂ F ′ is the set of such edges directed
from J1 to J2.
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Turán theorems for unavoidable patterns 11

Now, fix J1 to be the smallest initial segment of J for which |F1| ≥ |F ′|/4 and set J2 =
J \ J1. Since |F ′| � n3/2 � n, it follows that |F ′|/4 ≤ |F1| ≤ |F ′|/3. We cannot have |F12| ≥
|F ′|/10, since this would imply that there are too many edges directed from J1 ∩ B to J2 ∩ A,
contradicting Claim 4·4. Thus, we may assume that |F1|, |F2| ≥ |F ′|/4. It must be the case
that |J1 ∩ B| ≤ |J ∩ B|/1000, for if not, then we would have

|J1 ∩ B||J2 ∩ A| ≥ |J2 ∩ B||J2 ∩ A|/1000 ≥ |F2|/1000 ≥ |F ′|/4000 ≥ 2e(H)/105,

which when combined with Claim 4·4 promising us that the number of edges from J1 ∩ B
to J2 ∩ A is at most e(H)/105, yields at least e(H)/105 backward edges in τ , a contra-
diction. The same reasoning also leads us to conclude that |J2 ∩ A| ≤ |J ∩ A|/1000. These
two assertions taken together contradict the fact that J , being balanced, satisfies A3; this
completes the proof of Lemma 4·3.

We have shown that the tournament T we constructed has both the properties we require:
T is δt(n)-far from being transitive, and T does not contain a copy Ut ; this establishes
Proposition 4·1.

4·2. Proof of Theorem 1·2
Let us introduce some conventions that we adopt in the sequel. In what follows, given a

tournament T , we shall work exclusively with an ordering σ of its vertex set minimising
the number of backward edges, so all subsequent references to forward or backward edges,
intervals of vertices, lengths of edges, etc., will be with respect to this ordering. Given two
disjoint sets of vertices A < B of a tournament T , we define d(A, B) to be the distance
between the largest vertex of A and the smallest vertex of B, and we abuse notation slightly
and define d(A) to be the distance between the smallest vertex and the largest vertex of A.
With this language in place, we are now ready to prove our second main result.

Proof of Theorem 1·2. We start by fixing t ≥ 3 and setting r = r(t) = �t/2� ≥ 2, and we take
C = C(t) > 1 to be large enough to support the argument that follows.

Our argument will be by contradiction. Starting with a tournament on n0 vertices that is at
least Cn−1/r

0 -far from being transitive with no copy of Ut , we repeatedly apply Lemma 2·5
until we reach a subtournament T on n vertices which has an ordering σ of its vertex set
minimising the number of backward edges in which at least Cn2−1/r/1000 backward edges
have length least n/50. Furthermore, we may of course suppose that n is large enough to
support the arguments that follow.

We justify the above claim as follows. After k unsuccessful applications of Lemma 2·5,
we are left with a tournament on n = n0/20k vertices, whose distance from being transitive
is at least 6kCn−1/r

0 , so the number of backward edges in any ordering of such a tournament
is at least

6k · Cn−1/r
0 · n2 = (6/201/r )k · Cn2−1/r .

Now, we know r ≥ 2, so 6/201/r ≥ 6/
√

20 > 1, so it follows that we must have a successful
application of Lemma 2·5 before n becomes too small, since the number of backward edges
is both at least Cn2−1/r and at most n2/2, and indeed, if we start with C large enough, we
may assume that we succeed at a stage where n is sufficiently large.
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12 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

In what follows, we shall work with T , which is a tournament on n vertices with no copy
of Ut . Furthermore, we also fix σ , an ordering of V (T ) minimising the number of backward
edges with respect to which we know that there are at least Cn2−1/r/1000 backward edges
of length at least n/50.

First, we shall prove a claim (somewhat similar in spirit to Claim 3·2) that allows us to
deal with vertices of atypically large degree with respect to the backward edges.

CLAIM 4·6. For any ε > 0, there exist positive integers C1 = C1(t, ε) > 0 and C2 =
C2(t, ε) > 0 such that the following holds. For any interval I in σ of at least m ≥ C1 ver-
tices, the induced tournament T [I ] contains at most C2 vertices that are incident with more
than εm backward edges in σ .

Proof. We argue by contradiction, always ensuring that the numbered constants
C1, C2, C3, . . . in our argument are sufficiently large as a function of t and ε. Suppose there
exists a set S ⊂ I consisting of C2 vertices each sending out at least εm backward edges
in σ ; the other case where these vertices receive many backward edges may be handled
analogously.

First, by pigeonholing, we pass to a large subset S′ ⊂ S of order at least C3 = C3(t, ε) > 0
with the property that d(S′) ≤ εm/100. Now, consider the subsegment I ′ of I consisting of
exactly εm/10 vertices, immediately to the left of the first vertex of S′ in σ . Each vertex
of S′ sends out at least εm backward edges in σ , so each such vertex sends at least εm/2
backward edges to the left of I ′ to the interval I ′′, where I ′′ is the subinterval of I preceding
I ′ in σ .

Next, we may find a large set of at least C4 = C4(t, ε) > 0 vertices in S′ with linear-sized
common out-neighbourhood in I ′′; more precisely, applying Proposition 2·3 to the graph
consisting of the backward edges between S′ and I ′′, we may find a set A ⊂ S′ of size C4

with at least (ε/2e)C4+2m/2 out-neighbours in I ′′; call this set of common out-neighbours
B+. Note that since d(S′) ≤ εm/100 and I ′ is an interval of order εm/10 immediately to the
left of the first vertex of S′, Proposition 2·4 tells us that each vertex in A receives at least
εm/30 edges from I ′. By exactly the same argument as above, we may pass to a large subset
A′ ⊂ A of size at least C5 = T (t) having at least (ε/100)C5+1m common in-neighbours in
I ′; call this set of common in-neighbours B−.

We may now finish as follows. If there is a KT (t),T (t) directed from B+ to B−, then by
passing to transitive tournaments within the partite classes of this copy and within A′, we
may find a copy of Ut in T , which is a contradiction. Therefore, by evoking Proposition 2·2,
we conclude that there are at least c(t, ε)m2 backward edges between I ′′ ∪ I ′ for some
c(t, ε) > 0. Since I ′′ ∪ I ′ is an interval in σ of order at most m, by Proposition 2·4, we
conclude that T [I ′′ ∪ I ′] has distance at least c(t, ε) from being transitive, and therefore by
the result of Fox and Sudakov [8] mentioned earlier, we know that there is a copy of Ut

within I ′ ∪ I ′′, provided m is sufficiently large. This a contradiction and completes the proof
of the claim.

We apply the previous claim with ε = 1/(100t2) to the entire tournament T , concluding
that we may remove O(1) vertices from T and guarantee that in the resulting tournament
T ′ on m vertices, no vertex is incident to more than 2εm backward edges in the ordering
induced by σ on V (T ′), and that T ′ has at least C ′m2−1/r backward edges of length at least
m/60 with respect to σ . Recall that since we have removed at most O(1) vertices from T ,
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Turán theorems for unavoidable patterns 13

every remaining backward edge in T whose endpoints are at distance at least n/50 in σ are
at distance at most m/60 in T ′.

In what follows, we work with T ′ and the ordering induced by σ on V (T ′), though we
abuse notation slightly and refer to this induced ordering as σ as well. We call a backward
edge of T ′ good if its length is at least m/60; of course, we know that T ′ has at least C ′m2−1/r

good backward edges.

CLAIM 4·7. We may assume that T ′ does not contain a copy of Kt,t formed from good
backward edges, where one partite class of this copy precedes the other in σ , and each of
the partite classes of this copy forms a transitive subtournament.

Proof. Suppose that such a copy exists, say with partite classes A and B with A < B where
both T [A] and T [B] are transitive. We know there are at least m/60 vertices between the
last element of A and the first of B; call this intervening interval P . Since we removed all
vertices incident to many backward edges in passing to T ′, we know that A has at least
|P| − 2tm/(100t2) ≥ 2|P|/3 common out-neighbours in P , and that B similarly has at least
2|P|/3 common in-neighbours in P . Provided m is large enough, we can then find a set
S ⊂ P of T (t) vertices in P where all the edges are directed from A to S and from S to
B. Passing to a transitive subtournament inside S, we find a copy of Ut in T ′, which is a
contradiction.

Now, we partition V (T ′) into 130 intervals of size m/130, and observe that at least a
(1/15)4-fraction of the good backward edges of T ′ lie between two of these intervals; call
these intervals I and J with I < J and note that we necessarily have d(I, J ) ≥ m/130,
because I, J can not be consecutive intervals of σ . To summarise, we now have two intervals
I < J of order m/150 for which there exists at least C ′m2−1/r good backward edges directed
from J and I , for some large C ′ = C ′(t) > 0 and d(I, J ) ≥ m/150.

Next, we shall find two disjoint sets of edges from the good backward edges between I
and J in such a way that every pair of edges across these two sets interlace nicely. To do
so, we need to prepare I and J appropriately. We know that the number of good backward
edges between I and J is at least C ′(|I | + |J |)2−1/r , so we pass to subintervals I ′ ⊂ I and
J ′ ⊂ J chosen such that the number of good backward edges from J ′ to I ′ is of the form
λ(|I ′| + |J ′|)2−1/r with λ ≥ C ′ as large as possible. We now show that the sizes of I ′ and J ′

must be comparable.

CLAIM 4·8. We have |J ′|/3 < |I ′| < 3|J ′|.
Proof. Suppose this does not hold, and assume |J ′| ≥ |I ′| = q. Writing |J ′| = p · q + s, we
may partition J ′ into p consecutive intervals of size q and one interval of size s ≤ q. By
the maximality of λ, the number of good backward edges between I ′ and any interval in this
decomposition of J ′ is at most λ(2q)2−1/r , so the total number of good backward edges from
J ′ to I ′ is at most

(p + 1) · λ(2q)2−1/r < λ((p + 1)q)2−1/r < λ(|I ′| + |J ′|)2−1/r ,

provided p ≥ 3 and r ≥ 2; this is a contradiction that proves Claim 4·8.

We now find an appropriate collection of interlacing edges between I ′ and J ′ using the
following density increment lemma, which may be of independent interest.
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14 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

LEMMA 4·9. For every α ∈ [0, 1/2] and ε > 0, there exists C7 = C7(α, ε) > 0 such that
the following holds. Let T be a tournament and τ an ordering of its vertices. For any two
intervals I < J of vertices with |I | + |J | = n for which there are L ≥ C7n2−α backward
edges from J to I the following holds:

(i) either there exists a partition of I into two intervals I = I1 ∪ I2 and a partition of J =
J1 ∪ J2 into two intervals with I1 < I2 and J1 < J2 such that the number of backward
edges from J1 and I1 and from J2 and I2 is at least εL, or

(ii) there exist two intervals I ′ ⊂ I and J ′ ⊂ J with |I ′| + |J ′| ≤ n/2 where the number
of backward edges from J ′ and I ′ is at least (1/2 − 3ε)L.

Proof. We argue as follows. Consider the smallest initial segment of I , say I1, such that the
number of backward edges with an endpoint in I1 is at least L/2. Since L = ω(n), the set
I \ I1 = I2 must also be incident with at least L/2 + o(L) backward edges.

Now, let J = {1, 2, . . . , |J |} and for each j ∈ J , let us define b( j) to be the differ-
ence between the number of backward edges from I1 to {1, . . . , j − 1} and the number
of backward edges between I2 and { j, . . . , |J |}. We know that b(1) = −L/2 + o(L) and
b(|J |) = L/2 + o(L), and since b(t + 1) = b(t) + o(L), there exists a vertex p ∈ J such
that b(p) = o(L); accordingly, let J1 = {1, . . . , p − 1} and J2 = {p, . . . , |J |}.

Suppose that the number of backward edges between I1 and J1 is at least 2εL . Then, since
b(p) = o(L), there must also exist at least 2εL + o(L) ≥ εL backward edges between I2 and
J2, in which case, we are done. If the above assumption does not hold, then the number of
backward edges between I1 and J2 and the number of backward edges between I2 and J1

are both at least (1/2 − 3ε)L; we find I ′ and J ′ by now taking the pair with the smaller total
size, thus proving Lemma 4·9.

We now apply Lemma 4·9 to I ′ and J ′ — recall these intervals were defined before
Claim 4·8 — to find many interlacing good backward edges between them. Indeed, we apply
Lemma 4·9 with α = 1/r and ε = 1/100 to the backward edges between I ′ and J ′. If the
latter conclusion of the lemma holds, then we find two intervals I ′′ ⊂ I ′ and J ′′ ⊂ J ′ such that
the number of backward edges between I ′′ and J ′′ is at least (1/2 − 1/50)λ(|I ′| + |J ′|)2−1/r .
However |I ′′| + |J ′′| ≤ (|I ′| + |J ′|)/2, from which it follows that

(1/2 − 1/50)λ(|I ′| + |J ′|)2−1/r ≥ (3λ/2)(|I ′′| + |J ′′|)2−1/r ,

which contradicts the maximality of λ. Therefore the former conclusion of the lemma must
hold, which means that we may find four intervals I1 < I2 < J1 < J2 where |I1| + |I2| = |I ′|
and |J1| + |J2| = |J ′| such that the number of good backward edges between I1 and J1 is at
least (λ/400)(|I1| + |J1|)2−1/r and the number of good backward edges between I2 and J2

is at least (λ/400)(|I2| + |J2|)2−2/t . Moreover, as we already know, the distance between I2

and J1 is at least m/150.
In the light of the above discussion, let us select a collection of four intervals I1 < I2 <

J1 < J2 with d(I2, J1) ≥ m/150 such that the numbers of good backward edges between
I1 and J1 and between I2 and J2 are respectively at least λ1(|I1| + |J1|)2−1/r and λ2(|I2| +
|J2|)2−1/r where λ1, λ2 ≥ λ/400 and conditional on this, λ1 + λ2 is as large as possible. In
what follows, we argue under the assumption that |I2| ≥ |I1| and |J2| ≥ |J1|; the three other
cases may be handled analogously.
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Turán theorems for unavoidable patterns 15

Now, let |J2| = p and |I2| = p′, and assume p′ ≤ p. Using the exact same reasoning that
established that |I ′| and |J ′| were comparable, namely the proof of Claim 4·8, we may
suppose that p/3 ≤ p′ ≤ p. Just as we have some separation between I2 and J1, it will also
be convenient to introduce some separation between I1 and I2 and between J1 and J2. For
this purpose, we shall subdivide I2 and J2 into two new intervals. Indeed, let I2 = I3 ∪ I4

where I3 is the initial segment of I2 order |I2|/100, and similarly let J2 = J3 ∪ J4 where J3

is the initial segment of J2 of order |J2|/100. Finally, using the maximality of λ2 once I1 and
J1 (and hence λ1) are fixed, we see that the number of good backward edges between I4 and
J4 is at least

λ2(p + p′)2−1/r − λ2(p′ + p/100)2−1/r − λ2(p + p′/100)2−1/r ,

which may be verified to be at least (λ2/100)(|I4| + |J4|)2−1/r .
In the rest of the argument, we work exclusively with these four intervals I1 < I4 < J1 <

J4. Below, we summarise the properties of these four intervals that we shall need for the rest
of the proof:

B1 I1 < I4 < J1 < J4;
B2 d(I4, J1) ≥ m/150;
B3 d(I1, I4) ≥ (|I1| + |I4|)/200;
B4 d(J1, J4) ≥ (|J1| + |J4|)/200;
B5 the number of good backward edges between I1 and J1 is at least λ′(|I1| + |J1|)2−1/r ,

for some suitably large constant λ′ > 0.
B6 the number of good backward edges between I4 and J4 is at least λ′(|I4| + |J4|)2−1/r ,

for some suitably large constant λ′ > 0.

We need to rule out the possibility of finding a copy of Kt,t in the backward edges between
either I1 and I4 or J1 and J4. We may accomplish this as before. We first observe that
|Ii |, |Ji | with i ∈ {1, 4} must all be sufficiently large in order to satisfy these properties
since λ′ may be assumed to be sufficiently large. Moreover, by mimicking the argument
used to prove Claim 4·6 and using the fact that we have only deleted O(1) vertices so
far, we may delete O(1) further vertices from I1 ∪ I4 so that none of remaining vertices
are incident to more than than ε|V (T ∗)| backward edges in σ , where T ∗ is the induced
tournament on the interval spanning I1 to I4 and ε = 1/(100t2). We analogously remove the
O(1) vertices incident to many backward edges from J1 ∪ J4 as well. To avoid introducing
more notation, we shall allow ourselves a slight abuse and continue calling these four new
intervals I1 < I4 < J1 < J4.

Now, our plan is to find a Kr,t using good backward edges, where the smaller partite class
H1 of size r lies in I1 and the larger partite class H2 of t vertices lies in J1, and similarly,
to find a copy of Kr,t with the smaller partite class F1 in J4 and the larger partite class F2

in I4. This can obviously be done by Proposition 2·1 since we know there are many good
backward edges between these sets (by properties B5 and B6). What is crucial however,
is to find two such copies where the edges between H1 and F2 and between H2 and F1 are
forward edges directed from left to right; we will accomplish this with the help of Claim 4·7.

We argue as follows using dependant random choice. For suitably large constants
C8 = C8(t) > 0, C9 = C9(t) > 0 and C10 = C10(t) > 0 with C10 sufficiently larger than C9

and C9 sufficiently larger than C8, we may appeal to Proposition 2·1 to find two sets A ⊂ I1

and B ⊂ J4 such that:
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16 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

C1 |A| = C8, |B| = C9;
C2 the induced tournaments on A and B are transitive;
C3 all the edges between A and B are directed from A to B;
C4 every subset of size r in A has at least C10 common in-neighbours in J1; and
C5 every subset of size r in B has at least C10 common out-neighbours in I4.

To see this, first observe that by a straightforward application of Proposition 2·1 to
I1 ∪ J1 and to I4 ∪ J4, we may find two suitably large sets A′′ ⊂ I1 and B ′′ ⊂ J4 satisfying
properties C4 and C5, respectively. We may invoke Ramsey’s theorem for tournaments to
pass to suitably large transitive subsets A′ ⊂ A′′ and B ′ ⊂ B ′′ so that properties C1 and C2
are also satisfied. Finally, we know that there is no copy of a Kt,t in the backward edges
between A′ and B ′ by Claim 4·7, so we may now appeal to Ramsey’s theorem for bipartite
graphs to find a suitably large complete bipartite graph (A, B) where A ⊂ A′ and B ⊂ B ′

where all the edges directed forwards from left to right, yielding C3.
We repeat the above process of ‘two-step cleaning’ via Ramsey’s theorem over all pairs

of the common in-neighbours of the r -sets in A and the common out-neighbours of the
r -sets in B. Concretely, for each S1 ⊂ A of size r , start by setting N (S1) = N−(S1), and
similarly, for each S2 ⊂ B of size r , start by setting N (S2) = N+(S1). Now, we iterate over
all such pairs (S1, S2) and repeatedly do the following: find, by the same argument as above,
sets N ′(S1) ⊂ N ′(S1) and N ′(S2) ⊂ N (S2) such that N ′(S1) and N ′(S2) form transitive tour-
naments where all the edges are directed from N ′(S2) to N ′(S1), and then replace N (S1) by
N ′(S1) and N (S2) by N ′(S2). At the end of this procedure, we may assume that, for a suitably
large C11 = C11(t) > 0, we have the following: every r -set A′ ⊂ A has a set of C11 common
in-neighbours N (A′) in J1 and every r -set B ′ ⊂ B has a set of C11 common out-neighbours
N (B ′) in I4 such that the induced tournaments on A′′ and B ′′ are transitive, and all the edges
between B ′′ and A′′ are directed forwards from N (B ′) to N (A′). In summary, we have:

D1 |A| = C8, |B| = C9;
D2 the induced tournaments on A and B are transitive;
D3 all the edges between A and B are directed from A to B;
D4 for every r -subset A′ ⊂ A, there is a set N (A′) ⊂ N−(A′) ∩ J1 of size C11 which

forms a transitive tournament, and similarly, for every r -set B ′ ⊂ B, there is a set
N (B ′) ⊂ N+(B ′) ∩ I4 of size C11 which forms a transitive tournament and

D5 for every r -subset A′ ⊂ A and every r -set B ′ ⊂ B, all edges are directed from
N (B ′) to N (A′).

Next, since |B| is much larger than |A|, we refine B as follows. For each r -set A′ ⊂ A, we
consider its set N (A′) of C11 common in-neighbours in J1. We know by Claim 4·7 and B4
that there is no copy of Kt,t in the backward edges between N (A′) and B, so by Ramsey’s
theorem, we may find a sufficiently large complete bipartite graph (A∗, B∗) consisting of
forward directed edges from N (A′) to B, where A∗ ⊂ N (A′) and B∗ ⊂ B. We iterate this
cleaning procedure through all the r -sets A′ in A, replacing B by B∗ each time. At the end,
we conclude that for a suitably large constant C12 = C12(t) > 0, we now have |B| = C12

and every r -set A′ ⊂ A has a set of t common in-neighbours A∗ in J1 such that all edges
between A∗ and B are directed from A∗ to B.

We are now done since we may find a copy of Ut as follows. We select any subset B̃ ⊂ B
of size r . Consider its set of N (B̃) of C11 common out-neighbours in I4. Again, by Claim 4·7
and B3, we know that there is no copy of Kt,t with the edges directed from N (B̃) to A.
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Therefore, we may find, by Ramsey’s theorem, a complete bipartite graph consisting of
forward edges between a set X ⊂ N (B̃) of size t and a set Ã ⊂ A of size r . Let Y ⊂ N ( Ã) be
a set of t common in-neighbours of Ã in J1. Then it is easy to see that the transitive classes
Ã ∪ B̃, X and Y together induce a copy of Ut . This completes the proof by contradiction.

5. Exceptional patterns

The results established earlier in the paper for unavoidable patterns of order at least three
might suggest at first glance that the Ramsey numbers for patterns of order two should satisfy
C(2, δ) = �(δ−2) and D(2, δ) = �(δ−1). However, this is not the case; patterns of order two
exhibit some degenerate behaviour, as we shall now demonstrate.

First, we deal with unavoidable 2-colourings. While it is not hard to prove a much more
precise result, we settle for the following.

PROPOSITION 5·1. C(2, δ) = �(1/δ).

Proof. By taking a colouring of Kn where all edges are coloured blue except the edges
incident with some vertex (which are coloured red), we obtain a colouring which does not
contain a K4 inducing an unavoidable 2-colouring. Clearly, both colours appear on at least
n − 1 edges.

Next, we shall show that there exists an absolute constant C > 0 such that any colouring
of Kn where both colours appear on at least Cn edges contains a K4 inducing an unavoidable
2-colouring.

Suppose G = Kn has a colouring where both colours appear at least Cn times. We may
assume that there are at least as many blue edges as red ones. Now, following the proof of
Theorem 1·1, from Claim 3·2 (with ε = 1/6), we are guaranteed that there is a set S of at
most C1 vertices such that in V (G) \ S every vertex is incident with at least 2n/3 blue edges.
Assuming C > C1, we deduce G \ S must span a red edge xy. Using the fact that the blue
neighbourhoods of x and y must intersect in at least two vertices, we obtain a K4 inducing
an unavoidable 2-colouring.

The case of unavoidable 2-tournaments is somewhat harder, and we are unfortunately
unable to determine the correct rate of growth of D(2, δ). Nonetheless, we are able to show
the following.

PROPOSITION 5·2. log(1/δ)/δ D(2, δ)  (log(1/δ))2/δ.

Proof. First, we dispose of the lower bound using an inductive construction. Let Tn be a
tournament on n vertices which does not contain a copy of U2 and which is log n/(5n)-far
from being transitive; such a tournament exists when n = 3, as can be seen from considering
a cyclic triangle. Given Tn , we shall construct a tournament T on 2n + 1 vertices with the
required properties. To do so, we take two vertex-disjoint copies of Tn , say on vertex sets A
and B, and direct all the edges from A to B. Then, we add a new vertex z where all the edges
are directed from B to z and from z to A. We observe that this tournament does not contain a
U2. Indeed, any such copy must contain z as U2 is strongly-connected. Furthermore, note that
U2 contains two vertex-disjoint copies of a cyclic triangle. Therefore, one such copy must
use z, and the other must be entirely inside A or entirely inside B, but this is impossible.
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18 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

Now, we claim that T is log(2n + 1)/(5(2n + 1))-far from being transitive. To see this,
observe that any ordering of A must span at least n log n/5 backward edges, and the
same holds for B, by the induction hypothesis. Hence, any ordering of V (T ) must have
at least 2n log n/5 backward edges from E(T [A]) ∪ E(T [B]). Finally, note that one of
the following must hold. Either there are n/2 vertices in A which precede every ver-
tex in B, in which case, regardless of where z is in the ordering, z must be incident to
least n/2 backward edges, or the first vertex of B in the ordering must be incident to
at least n/2 backward edges from A. In either case, any ordering of V (T ) spans at least
n/2 + 2n log n/5 ≥ (2n + 1) log(2n + 1)/5 backward edges, as claimed.

Next, we deal with the upper bound, again proceeding by induction on the number of
vertices. The argument closely resembles the proof of Theorem 1·2, so we restrict ourselves
to sketching the main points of departure. Clearly, it suffices to handle the case where the
number of vertices n is sufficiently large, say, greater than a sufficiently large constant C > 0.
Let T be a tournament on n vertices which is C(log n)2/n-far from being transitive, and let
σ be an ordering of V (T ) which minimises the number of backward edges.

Let I1 and I2 be the intervals corresponding to the first half and the last half of σ of sizes
n/2 each. By the induction hypothesis, both I1 and I2 induce at most C(n/2)(log(n/2))2

backward edges in σ . Therefore, the number of backward edges from I2 to I1 is at least
Cn(log n)2 − Cn(log(n/2))2 ≥ Cn log(n)/2.

In the same fashion as in the proof of Theorem 1·2, let J1 < J2 be two disjoint intervals for
which the number of backward edges between J1 and J2 is λ(|J1| + |J2|) log(|J1| + |J2|),
with λ ≥ C/2 as large as possible. We proceed assuming |J2| ≥ |J1|, the other case being
analogous. Let X ⊂ J2 be the initial segment of J2 of size |J2|/10. By the maximal-
ity of λ, we know that the number of backward edges between J1 and X is at most
λ(|J1| + |X |) log(|J1| + |X |) ≤ (19λ/20)(|J1| + |J2|) log(|J1| + |J2|). Therefore, the num-
ber of backward edges between J1 and J3 = J2 \ X is at least (λ/20)(|J1| + |J3|) log(|J1| +
|J3|), and additionally, we also know that d(J1, J3) ≥ (|J1| + |J3|)/200. Now, let Y1 < Y2

be two disjoint intervals satisfying both the above properties where the number of backward
edges between Y1 and Y2 is as at least λ′(|Y1| + |Y2|) log(|Y1| + |Y2|), with λ′ ≥ λ/20 as large
as possible.

A minor modification of the proof of Lemma 4·9 (roughly, partition Y1 = P1 ∪ Q1 and
Y2 = P2 ∪ Q2 as in Lemma 4·9, and then note that if we do not have a linear number of
edges between P2 and P1 and between Q2 and Q1, then one of P1 ∪ P2 or Q1 ∪ Q2 spans
more backward edges than what it should), with an extra loss of a logarithmic factor shows
that we can split Y1 = P1 ∪ Q1 and Y2 = P2 ∪ Q2, with P1 < Q1 < P2 < Q2 such that the
number of backward edges between P1 and P2 and between Q1 and Q2 are respectively at
least λ1(|P1| + |P2|) and λ2(|Q1| + |Q2|). As before, we shall suppose that we have picked
P1 < Q1 < P2 < Q2 as above for which λ1 + λ2 is as large as possible, conditioned on both
λ1 and λ2 being large enough.

We shall sketch how to handle the case where |Q2| ≥ |P2|, the other case being analogous.
Moreover, in the argument that follows, we may assume without loss of generality that
|Q1| ≤ |Q2|.

Delete the first |Q2|/20 vertices of Q2 and denote the remaining interval by Q ′
2. As in the

proof of Theorem 1·2, this allows us to separate Q ′
2 from P2, since we now have d(P2, Q ′

2) ≥
(|P2| + |Q ′

2|)/50. We now need to show that there are still sufficiently many backward edges
between Q1 and Q ′

2. Indeed, Q1 and Q2 span λ2(|Q1| + |Q2|) backward edges between
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them, and the maximality of λ2 (with λ1 fixed) allows us to bound from above the number
of backward edges between Q1 and Q2 \ Q ′

2, from which we may conclude that the number
of backward edges between Q1 and Q ′

2 is at least (λ2/200)(|Q1| + |Q ′
2|). Replacing Q2 by

Q ′
2, we may now assume that P1 < Q1 < P2 < Q2 are four intervals as above, again with

the number of backwards edges between these intervals assumed to be maximal in the same
sense as before.

Now that we have separation between Q1 and P2 and between P2 and Q2, all that is left
to do is to enforce some separation between P1 and Q1. We are led to handle two different
cases, depending on whether or not Q1 and Q2 have comparable sizes.

Suppose first that |Q1| ≤ |Q2| ≤ 4|Q1|. Then, we may proceed as we did before, deleting
the first |Q1|/20 vertices from Q1 to create separation between P1 and Q1 while still ensur-
ing that a positive fraction of the backward edges between Q1 and Q2 still survive; the rest
of the argument is identical to the proof of Theorem 1·2.

Next, suppose that |Q1| < |Q2|/4. Then, let Q ′
2 be the initial segment of Q2 of the same

length as Q1, and let Q ′′
2 = Q2 \ Q ′

2. If there are fewer than (K2/10)(|Q ′
2| + |Q1|) backward

edges between Q1 and Q ′
2, then the intervals Q1 and Q ′′

2 must have at least K2(|Q1| +
|Q2|) − (K2/10)(|Q ′

2| + |Q1|) > K2(|Q ′′
2| + |Q1|) backward edges between them, which is

a contradiction. This implies that, replacing Q2 by Q ′
2 if necessary, we may assume Q1 and

Q2 have comparable sizes. Now, we take four such intervals P1 < Q1 < P2 < Q2 as above
(with the appropriate separation between intervals), with the additional constraint that Q1

and Q2 have comparable sizes, and again with the number of backwards edges between
intervals assumed to be appropriately maximal; the rest of the argument is identical to the
proof of Theorem 1·2.

6. Conclusion

Our main contribution in this paper was to pin down the order of magnitude of the Ramsey
numbers C(t, δ) and D(t, δ) for fixed t ∈N as δ → 0. If one is however willing to settle for
just the correct exponents governing the growth rates of these Ramsey numbers, then more
can be said.

A careful rendering of our argument yields dependencies governed by iterated logarithms,
allowing us to establish weaker forms of the bounds (2) and (3) that are valid as long as t is
much smaller than 1/δ. Concretely, we have

C(t, δ) = (1/δ)t (1+o(1))

as δ → 0 with 3 ≤ t ≤ log(3)(1/δ), and

D(t, δ) = (1/δ)�t/2�(1+o(1))

as δ → 0 with 3 ≤ t ≤ log(4)(1/δ). It would be of interest to work out, even roughly, at what
point the above bounds cease to be valid.

It would also be interesting to understand the growth rate of the Ramsey numbers C(t, δ)

and D(t, δ) in the other off-diagonal regime where t is much bigger than 1/δ, as well as in
the diagonal regime where t ≈ 1/δ. Both these questions pose interesting challenges of their
own, somewhat orthogonal to the problems under consideration here.

It is somewhat embarrassing that we are unable to pin down the rate of growth of D(2, δ).
While we have managed to estimate this degenerate case here up to a logarithmic multiplica-
tive factor, we suspect that our lower bound gives the correct rate of growth. It would be of
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20 ANTÓNIO GIRÃO AND BHARGAV NARAYANAN

interest to improve on our upper bound and demonstrate that D(2, δ)  log(1/δ)/δ, thereby
closing a small but annoying gap in the existing bounds.

It would also be of interest to pursue similar lines of questioning in other settings that arise
in Ramsey theory. Concretely, one could ask about the multi-colour setting, asymmetric
Ramsey properties, as well as the infinitary setting, to name but a few; see [1] for some
preliminary results on such questions.

Finally, we conclude with an application of our main result that might be of some inde-
pendent interest. The following is an easy corollary of our main theorem, and resolves a
problem of Gishboliner [11] rooted in generalised Turán theory.

COROLLARY 6·1. For each t ≥ 3, there is a C = C(t) > 0 such that any tournament T on
n vertices with at least Cn3−1/�t/2� directed triangles contains an unavoidable t-tournament.

The implication is trivial: any tournament on n vertices which contains Cn3−1/�t/2�

directed triangles must be at least ((C/10)n−1/�t/2�)-far from being transitive. Perhaps more
interesting is the fact that this bound is tight up to the constant C(t) in its statement (again
assuming the truth of the Kovári–Sós–Turán conjecture); this may be seen by considering
the same construction used to prove Proposition 4·1, but we omit the details.
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