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RESEARCH ARTICLE

Control of Movement

On the encoding capacity of human motor adaptation

Seungyeon Kim,1 Jaewoon Kwon,1 Jin-Min Kim,2 Frank Chongwoo Park,1 and Sang-Hoon Yeo2
1Robotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
and 2School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom

Abstract

Primitive-based models of motor learning suggest that adaptation occurs by tuning the responses of motor primitives. Based on
this idea, we consider motor learning as an information encoding procedure, that is, a procedure of encoding a motor skill into
primitives. The capacity of encoding is determined by the number of recruited primitives, which depends on how many primitives
are “visited” by the movement, and this leads to a rather counterintuitive prediction that faster movement, where a larger num-
ber of motor primitives are involved, allows learning more complicated motor skills. Here, we provide a set of experimental
results that support this hypothesis. First, we show that learning occurs only with movement, that is, only with nonzero encoding
capacity. When participants were asked to counteract a rotating force applied to a robotic handle, they were unable to do so
when maintaining a static posture but were able to adapt when making small circular movements. Our second experiment fur-
ther investigated how adaptation is affected by movement speed. When adapting to a simple (low-information-content) force
field, fast (high-capacity) movement did not have an advantage over slow (low-capacity) movement. However, for a complex
(high-information-content) force field, the fast movement showed a significant advantage over slow movement. Our final experi-
ment confirmed that the observed benefit of high-speed movement is only weakly affected by mechanical factors. Taken to-
gether, our results suggest that the encoding capacity is a genuine limiting factor of human motor adaptation.

NEW & NOTEWORTHY We propose a novel concept called “encoding capacity” of motor adaptation, which describes an inher-
ent limiting-factor of our brain’s ability to learn new motor skills, just like any other storage system. By reinterpreting the existing
primitive-based models of motor learning, we hypothesize that the encoding capacity is determined by the size of the move-
ment, and present a set of experimental evidence suggesting that such limiting effect of encoding capacity does exist in human
motor adaptation.

encoding capacity; motor adaptation; motor primitives; signal-dependent noise

INTRODUCTION

Existing models of human motor control tend to depreci-
ate the value of making larger movements when learning
motor skills. A well-known fact about human movement is
that larger movements are accompanied by higher control
noise (1) and more complex inertial force (2), not to mention
higher metabolic costs (3). Because of those clear drawbacks,
making larger movements does not seem to have any point
or purpose. However, here we claim that larger and more
dynamic movements bring substantial benefits in motor ad-
aptation, especially when learning the complex dynamics of
the body and external environments. We propose that this
benefit comes from a previously unstudied factor that a

larger movement increases the “capacity” of adaptation,
allowing more complicated dynamics information to be
“encoded” in the internal model.

The predominant theory of human motor adaptation pro-
poses that the dynamics of learned motor tasks is repre-
sented as state-dependent policies, specifying what action
needs to be taken for a given state of the sensorimotor sys-
tem (4–6). Specifically, these policies are internally modeled
as population responses of motor primitives distributed in
the state-space, where each primitive contains localized in-
formation of the policy and its generalization pattern to
neighboring states (7, 8). The precise form of themotor prim-
itives, that is, in what domain the state-space is defined, how
their receptive fields are shaped, or what are their outputs,
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are still ongoing research topics in motor control (7, 9–15).
However, in any case, all primitive-based internal models
intrinsically possess limitations in their expressiveness: per-
fectly learnable force fields are confined to a subspace that
can be expressed by a set of primitives recruited for learning;
otherwise, the internal model only can learn the force field
approximately, even if the number of learning trials is suffi-
cient for the adaptation. Despite the lack of thorough investi-
gation, the existence of such an intrinsic ceiling, that is, the
capacity of motor adaptation imposed by the primitive-
based adaptation mechanism, has been observed in the pre-
vious studies (7, 16, 17).

Focusing on this aspect, we consider motor learning as
an information encoding procedure; that is, a procedure
for encoding a certain motor skill into internal storage,
that is, a group of motor primitives in the state-space. The
amount of information to encode corresponds to the com-
plexity of the motor skill, and the “motor encoding
capacity,” the maximum amount of information that can
be held by the internal model, is determined by the num-
ber of primitives that are engaged in the encoding proce-
dure. Importantly, the gradient-decent-type learning rule
that the brain is likely to incorporate (7, 16) imposes that
only motor primitives adjacent to the movement trajectory
are recruited for adaptation, and therefore the encoding
capacity of a motor skill is determined and limited by the
movement itself.

In this study, we focus on how the encoding capacity lim-
its learning to make circle-drawing movements against an
angle-dependent, radially perturbing force field. We predict
that, when the radius of the circle is fixed, faster movement
has higher encoding capacity, as fast movements form larger
circles in the velocity space and therefore can recruit more
motor primitives, allowing a larger amount of information to
be encoded. If we assume that the amount of information is
related to the complexity of the radial force field, this leads
to a testable hypothesis that we can adapt to a more complex
radial force field when we are making higher-speed circular
movements.

This hypothesized effect of encoding capacity can be con-
ceptually demonstrated by a simple computational simula-
tion. To our circle-drawing scenario, we applied the classic
motor adaptation model by Thoroughman and Shadmehr
(7), where motor primitives are represented as Gaussian-like
receptive fields laid out in the velocity space and the activa-
tion levels of the primitives are updated every cycle of the
circle drawing based on the gradient of the force error. Same
as our human experiment, which will be introduced later
(experiment 2, see MATERIALS AND METHODS), we tested how
well the computational model learns simple and complex
force fields under fast and slow circular movements. The
result of the simulation, summarized in Fig. 1, supports our
hypothesis. As expected, a faster circular movement, repre-
sented as a larger circle in the velocity space, can recruit a

Figure 1. Conceptual simulation of the limiting effect of encoding capacity in motor adaptation. A and B: simulations of adaptation to force fields used in
our human experiment (experiment 2). A primitive-based motor adaptation model by Thoroughman and Shadmehr (7) was applied to adjust responses
of motor primitives for each cycle of circle drawing to compensate for an angle-dependent radial force field. A total of 600 cycles, similar to the number
of cycles used in our human experiment, was used for adaptation. Same as experiment 2, the simulation used two different types of force field, i.e., sim-
ple (N1 force field, indicated as a green envelope on the left; A) and complex (N3 force field; B) under two different speed conditions, named FAST and
SLOW. See MATERIALS AND METHODS for details of this experimental design. Circles with red (FAST) and blue (SLOW) envelopes show the encoded force
field in different phases of adaptation. C and D: the left and center plots visualize the activation of motor primitives at the end of adaptation (i.e., at cycle
600), drawn in the two-dimensional velocity space. Same as Thoroughman and Shadmehr (7), primitives were modeled as Gaussians with standard devi-
ation r = 0.12m/s, and the distance between neighboring primitives was set to r. Reference trajectories for FAST and SLOW conditions are drawn as
red and blue circles, respectively. Activation levels of primitives are indicated by green color with varying intensities. Bar plots on the right show the
simulated number of recruited primitives for different periods of circle drawing including those for FAST and SLOW conditions.
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greater number of primitives (Fig. 1, C and D). This increased
encoding capacity of faster circle drawing does not have a
noticeable effect when learning a simple force field (Fig. 1A)
that is sufficiently learnable for both speed conditions.
However, when learning a complex-shaped force field (Fig.
1B), the simulation predicts a clear benefit of fast movement.
With slow movements, the force field can only be partially
learned despite extended training (600 cycles) because of
the limited encoding capacity. Therefore, prediction from
the conventional model conceptually legitimizes our experi-
mental hypothesis.

Despite this logical possibility, very little prior research in
motor learning has investigated the existence of such bene-
fits of higher speed movements. Furthermore, this view
sharply contradicts the conventional perspective on the
adverse effect of the speed on motor performance caused by
the increased uncertainty because of signal-dependent noise
(1, 18), which is considered to impede the adaptation (19).
Therefore, we expect to see an interaction between the effect
of motor encoding capacity and that of the signal-dependent
noise, forming a trade-off between high-precision, low-
capacity (slower the better) and low-precision, high-capacity
(faster the better) movement. The primary goal of this study
is therefore to experimentally demonstrate the existence of
the motor encoding capacity as one of the critical limiting
factors of human motor adaptation and to explore how its
effect is behaviorally manifested through interaction with
other movement factors.

MATERIALS AND METHODS

Ethics Statement

The University of Birmingham Ethics Board approved the
study, and the participants gave written informed consent
before participating.

General Description

The study consisted of three experiments, referred to as
experiment 1, experiment 2, and experiment 3 hereafter.
Experiment 1 tested whether learning requires movement,
that is, a nonzero encoding capacity, by testing participants’
ability to learn a predictable rotating force under two condi-
tions: 1) whenmaintaining a static posture and 2) whenmak-
ing a small movement in synchrony with the rotating force.
In experiment 2, we further investigated the effect of encod-
ing capacity on the adaptation performance. Based on the
assumption that the encoding capacity is modulated by the
speed of movement, we tested whether higher speed move-
ment facilitates learning a more complex force field. Finally,
in experiment 3, we verify whether such benefit of high-
speed movement mainly originates from the state-depend-
ent primitivemechanism.

A total of 30 naive human participants (aged 25.1 ± 2.5 yr,
12 females) participated in the three experiments (6 partici-
pants for experiment 1, 16 for experiment 2, and 8 for experi-
ment 3). All participants were right-handed according to the
Edinburgh handedness inventory (20) and had no reported
neurological disorders. The participants were seated and
grasped the handle of a vBOT planar robotic manipulandum
(21) with their dominant hand. A mirror reflecting a top-

mounted computer screen was located between participants’
eyes and their hands, and provided vertical visual feedback
of their hand position as a yellow filled cursor of a 0.5-cm ra-
dius. The height of the seat was adjusted so that the upper
arm was held parallel to the ground and the right knee was
just below the reference point (or the center of the reference
circle) to provide a comfortable configuration for performing
the tasks. After a brief familiarization period, participants
were asked to maintain static posture or to make circular
movements along a reference circle displayed on the screen
in a constant frequency, indicated by a tone or by a target
cursor movement. While performing the task, the robot
applied force perturbations generated by different force
fields specified in each experiment, and participants were
instructed to cope with the perturbing forces to minimize
the deviation of the cursor from the reference point or
circle while maintaining the required rotation frequency.
In addition to those force-fields, a mild damping force
with a damping ratio 0.04 Ns/cm was added by default to
maintain the overall stability of the handle.

Experiment 1

Experiment 1 was focused on evaluating the adaptation
performance to a “time-dependent periodic force,”
defined as:

Fx

Fy

� �
¼ ða þ b sin4ptÞ �cos 4pt

sin 4pt

� �
ðNÞ; ð1Þ

where a and b are set to 4.4 N and 3.52 N, respectively.
Participants were instructed to compensate this force field
under two different task conditions: 1) HOLD: participants
were instructed to try maintaining the cursor completely
static, that is, without compromisingly making any oscilla-
tory movements, on the reference point against perturbing
forces; and 2) DRAW: participants were asked to draw a small
circle of radius 2 cmwith the same frequency, that is, 2Hz, to
the rotating force. Graphical descriptions of the two condi-
tions can be found in Fig. 2A. The performance of adaptation
was measured by taking the average error around the refer-
ence trajectories, that is, a point for HOLD and a circle for
DRAW. Participants conducted both conditions within a sin-
gle visit where the order of conditions was counterbalanced
across the participants.

The experiment consisted of 35 blocks and each block
lasted for 5 s, which allowed the 2Hz time-dependent peri-
odic force to rotate 10 times per each block. In the HOLD
condition, the participants performed the task of maintain-
ing static posture on the reference point (displayed as a filled
white circle with radius 0.5 cm). The first five blocks were the
preexposure phase (blocks 1–5), applying the null force field
to the participants (i.e., only the mild damping force was
applied). Then, the exposure phase with the time-dependent
force field was started (blocks 6–35). The block composition
is the same with the DRAW condition, and the overall block
composition can be found in Fig. 2B. The tick-tock sound
was played with the same frequency to the time-dependent
periodic force to help participants maintain their tempo.
Participants took a 30s mandatory break for every 10 blocks
but were also encouraged to take rests in-between blocks if
they wished to. The error was defined as the distance
between the reference point and the cursor. The average
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error was calculated using classical root mean square error
for every 5 s, and error feedback was provided in real-time
during the movement based on the average error. The feed-
back message for average error less than 2cm was “great,”
for 2–3cm was “good,” and for average error greater than
3 cm was “try harder.” In the DRAW condition, the partici-
pants performed the task of drawing a small reference circle
(displayed as a dark green ring with a radius of 2 cm and a
thickness of 0.5 cm) with the same frequency as the time-de-
pendent periodic force. The participants were instructed to
keep the trajectory of their hands as circular as possible. The
rest of the design was identical to the HOLD condition,
except that the error was defined as the shortest distance
from cursor to the reference circle.

Experiment 2

Experiment 2 used the “state-dependent force field,”
defined as:

Fx

Fy

� �
¼ ða þ b sin nhÞ cos h

sin h

� �
ðNÞ; ð2Þ

where a and b have same values to the time-dependent force
field used in experiment 1, and h = arctan 2(y, x) is the angle
between the horizontal axis (x-axis) and the vector from the
origin to the handle. Note that the time-dependent periodic
force and the state-dependent force field are phenomenolog-
ically identical if the participants make a perfectly circular
movement with a constant angular velocity. The complexity
of a state-dependent force field was adjusted by the complex-
ity index n, indicating the frequency of how many times the
force oscillates from maximum to minimum per one cycle.
In our study, to represent simple and complex dynamics to
adapt, state-dependent force fields with complexity indi-
ces 1 (simple) and 3 (complex) were used, and they were
named as “N1” and “N3” force field, respectively. The
shapes of these force fields are illustrated in Fig. 3A and
Fig. 4A, respectively.

A total of 16 participants were divided into two groups of
eight each, and performed circle-drawing tasks while adapt-
ing to the following different types of radial force fields: one
group was given the N1 force field and another group was
given the N3 force field. Both the N1 and N3 groups per-
formed circle-drawing tasks of radius 7 cm under two differ-
ent speed conditions: 1) FAST: one cycle per second and 2)
SLOW: one cycle per 2 s. Therefore, there were a total of four
different experimental conditions across two participant
groups: N1-FAST and N1-SLOW for the N1 group, and N3-
FAST and N3-SLOW for the N3 group. The experiment in
each condition consisted of seven preexposure blocks fol-
lowed by 40 exposure and 3 postexposure blocks (Fig. 3B
and Fig. 4B), where each block consisted of 12 continuous
rotations. In addition, some blocks contain error clamp tri-
als (see Error Clamp Trials for detail) to analyze the active
force compensation, and we measured the electromyo-
gram (EMG) of four representative upper-limb muscles
(biceps, triceps, pectoralis, and deltoid) for the N3 group
(i.e., N3-SLOW and N3-FAST conditions) to check the level
of muscle cocontractions (see EMG Analysis for further
details).

To avoid the order effect, half (i.e., 4) of the participants in
each group performed the FAST condition first and the other

performed the SLOW condition first. In addition, to prevent
the transfer of learning across two consecutive sessions, one
of two sessions used a horizontally flipped force field (Fig. 3A
and Fig. 4A). Participants were instructed to keep the trajec-
tories of their hands as close to the reference circle as possi-
ble. To assist participants to keep their desired tempos, tick-
tock sounds were played in the desired frequency. In addi-
tion, visual pacemakers were displayed to provide additional
guidance on the desired movement frequency: pacemakers
were displayed as two radially aligned line segments in red,
placed on the reference circle, spaced 180� apart, and rotat-
ing in the desired frequency. This was based on the previous
study on circular movements by Howard et al. (22), in which
a similar type of pacemakers was used to encourage partici-
pants to maintain their tempo around the desired frequency,
but without triggering any feedback tracking behavior. As in
Howard et al.’s study, participants were instructed not to fol-
low these cursors, but only to use them as pacemakers. Last,
an afterimage of the cursor was also displayed during the
movement, visualizing the recent trajectory of the cursor for
the last 3 s as a thin green curve of width 0.2 cm. This helped
participants to self-assess their circle-drawing performance
in real-time.

Each speed condition consisted of 50 blocks for each
speed condition, each of which was divided into three
phases: preexposure phase (blocks 1–7), exposure phase
(blocks 8–47), and postexposure phase (blocks 48–50). There
were two types of blocks; null and probe. Each null block
consisted of 12 normal rotations, and each probe block con-
tained one error clamp trial (2 rotations) inserted between
the 5th and the 9th of 10 normal rotations in a randomized
way. The preexposure phase consisted of four null blocks
(blocks 1–4) and three probe blocks (blocks 5–7). All blocks in
the exposure and the postexposure phase except the early-
exposure phase (blocks 8–9) were probe blocks. The reason
why probe block was not used in early preexposure and ex-
posure phase is to avoid excessive confusions of the partici-
pants: through preliminary experiment, it has been found
that making participants experience error clamp trials from
the very beginning of the preexposure and exposure phase,
that is, while they are familiarizing themselves to the experi-
mental environment and also to the imposed force fields,
tends to cause a great deal of confusion, despite considera-
tions to minimize disruption by error clamp trials in a circu-
lar mechanical channel (see Error Clamp Trials below for
details).

Participants took a 30 s mandatory break for every 10
blocks, resulting in five mandatory breaks in total for each
condition, but were also encouraged to take a rest between
blocks if they wish to. The error, the average error, and the
corresponding feedback were defined and displayed in the
same way as with the DRAW condition in experiment 1,
except that the average error was calculated for each rota-
tion, that no error feedback was provided during the error-
clamp trials, and that the feedback for average error less
than 0.6 cm was “great,” for 0.6–0.8 cm was “good,” and
for average error >0.8 cm was “try harder.” For data in the
error clamp trials, the average force trajectory of the preex-
posure phase (blocks 5–7) was taken as the baseline and
subtracted from the force trajectory of other blocks for
each participant.
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Experiment 3

To check the potential mechanical effect, referred to as
“instantaneous stabilization” later in RESULT, on the per-
formance of circle drawing in experiment 2, experiment 3
was focused on quantifying how much the performance of
fast movement under the N3 force field, that is, perform-
ance under N3-FAST condition, is affected if the state-de-
pendency of the task is selectively muted; This was done
by slightly desynchronizing the state-force relationship of
the N3 force field. We call this new force field the “asyn-
chronous N3” (N3a) force field. The N3a force field was
defined as:

Fx

Fy

� �
¼ ða þ b sin n

2p� 0:3
2p

ðh� h0ÞÞ cos h
sin h

� �
ðNÞ; ð3Þ

where a and b have the same values, and in this case, h is
the cumulative angle that does not reset to 0 when it
exceeds 2p and keeps increasing. In the other words, the
term h – h0 means the moving angle which starts from 0 in
the initial position. As shown in the equation, the scalar
term 0.3 causes a slight desynchronization and therefore
breaks the state-dependency, which means that when
circle is being drawn, the force field rotates �17.2� per
cycle. Figure 8A illustrates the N3 and N3a force field used
in experiment 3.

Eight naive subjects participated in experiment 3. Each
participant conducted two experimental sessions, N3 and
N3a force field adaptations in the FAST condition of experi-
ment 2, within a single visit. The order of the sessions was
counterbalanced across the participants. The experimental
design of each session was identical to the N3-FAST condi-
tion in experiment 2, except for the fact that the N3a force
field was used in the N3a session (Fig. 8B).

Incremental Area under the Curve

As the measure of adaptation performance, we used the
area under the curve (AUC), that is, the total error, as used in
previous studies (23). However, since the baseline levels for
the FAST and SLOW conditions in experiment 2 are substan-
tially different, we adopted the baseline-adjusted metric,
incremental area under the curve (iAUC). As the name
stands, iAUC is the integral of the learning curve minus the
area below the baseline. For each adaptation curve in experi-
ment 2 and experiment 3, the baseline was determined per
subject by themean error level during the preexposure phase
and the area under the curve was computed via the trapezoi-
dal method.

Error Clamp Trials

Trials in experiment 2 and experiment 3 included error
clamp trial. In contrast to the conventional error clamp trials
implemented as a rigid mechanical channel for point-to-
point movement (24), a circular version of error clamp trial
was used, during which the hand was constrained in a circu-
lar mechanical channel and the force applied against the
channel was measured. Along the reference circle of a 7 cm
radius, a stiff mechanical channel with a width of 0.01 cm
was generated during the error clamp trial. The mathemati-
cal definition is:

FCx

FCy

" #
¼ �K

gðx; yÞ
hðx; yÞ

" #
ðNÞ

gðx; yÞ ¼
x� ðR� dÞcos h

0

x� ðR þ dÞcos h

x2 þ y2 � ðR� dÞ2

ðR� dÞ2 < x2 þ y2 � ðR þ dÞ2

x2 þ y2 > ðR þ dÞ2
ðcmÞ

8>>><
>>>:

hðx; yÞ ¼
y� ðR� dÞsin h

0

y� ðR þ dÞsin h

x2 þ y2 � ðR� dÞ2

ðR� dÞ2 < x2 þ y2 � ðR þ dÞ2

x2 þ y2 > ðR þ dÞ2
ðcmÞ;

8>>><
>>>:

ð4Þ
where d = 0.005 cm and R = 7 cm. The value of spring stiff-
ness was set as K = 80N/cm. As one block in our experi-
ment consisted of continuous circular movements, our
error clamp trial was implemented in such a way that one
of the turns was randomly picked and switched to the
error clamp trial. Because of this continuity, directly
introducing the mechanical channel was impracticable as
it often caused excessive mechanical impacts. Therefore,
the beginning and the end of the error clamp trial were
padded with smooth fade-in and fade-out half-turns, dur-
ing which the mechanical channel smoothly appeared or
disappeared. This made the error clamp trial to consist of
two full turns. If j be the angle of the handle in the error
clamp trial (i.e., j e[0,4p]), we defined an a function a(j)
expressed as:

aðjÞ ¼
j=p
1

4� j=p

0 � j <p
p � j <3p
3p � j � 4p

:

8<
: ð5Þ

If the force applied during normal trials is [FDx FDy]
T, then

the participant receives the force during the error clamp
trial:

Fx

Fy

� �
¼ ð1� aðjÞÞ FDx

FDy

� �
þ aðjÞ FCx

FCy

� �
ðNÞ: ð6Þ

Using this a function, the mechanical channel was line-
arly engaged and disengaged during the first and last half
turns respectively, without abruptly interrupting the pres-
ent force field in normal trials. For error clamp trials, we
compute the force compensation rate by linear regression
of the measured force pattern onto the desired force pat-
tern, as used in previous studies (25, 26). The slope
obtained as a result of linear regression is defined as the
force compensation rate. This force compensation rate is
zero when the force trajectories are uncorrelated and one
if the measured force trajectory is identical to the desired
force trajectory.

EMG Analysis

For the N3 group of experiment 2, surface EMGs of
four major muscles of the upper limb, pectoralis major,
posterior deltoid, triceps long head, and biceps long
head, were measured using a single differential elec-
trode EMG system (Delsys Bagnoli DE-2.1). Electrodes
were placed over the muscle bellies and the analog sig-
nals were transferred to a desktop PC using a multifunc-
tion in/out device (NI PCIe-6323). The measured EMG
signals were observed in real-time via MATLAB Simulink
(2019 b) and simultaneously stored in the PC. Collected
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EMG signals were low-pass filtered in MATLAB (Butter-
worth 4th order, 10Hz cut-off frequency) and were aver-
aged over each block. To handle between-subject vari-
ability of the EMG levels, EMG data per participant was
normalized with respect to the average EMG level in the
SLOW condition of the late pre-exposure phase (blocks
5–7) of each subject. Six participants’ data in the N3
group were measured, but still maintained counterbal-
anced to speeds. Pectoralis data of one participant were
excluded in the analysis since the participant had a mild
skin irritation issue, resulting in a highly atypical EMG
pattern.

Statistical Analysis

Data were analyzed using MATLAB R2018a and statisti-
cal tests were performed using SPSS Statistics 25.
Statistical significance was considered at the P < 0.05
level for all tests. In the figures, n.s. indicates no signifi-
cance, � indicates P < 0.05, �� indicates P < 0.01, and ���
indicates P < 0.001.

Data Availability

The data that support the findings of this study are avail-
able from the corresponding author upon request.

RESULTS

Experiment 1: Learning a Motor Skill Necessitates
Movements

The result of experiment 1 is summarized in Fig. 2. During
the preexposure phase, participants stayed static in HOLD
and made circular movements in DRAW as instructed (Fig.
2C, preexposure). As expected, the error level of DRAW dur-
ing the preexposure phase was significantly higher than that
of HOLD (Fig. 2D, blocks 1–5; F1,5 = 17.774; P = 0.008). When
the time-dependent periodic force was introduced, the hand
paths in both conditions deviated substantially from their
references (Fig. 2C, early-exposure), indicated by signifi-
cantly high error levels in the early-exposure phase (Fig. 2D,
blocks 4–8; F4,20=44.377; P < 0.001 for HOLD and
F4,20= 15.798; P < 0.001 for DRAW). As exposure to this force
field continued, participants were able to reduce the error
substantially in DRAW (Fig. 2D, blocks 6–7 and 33–35, light
blue; F4,20=6.115; P = 0.002), down to a similar level to the
baseline (Fig. 2C, late-exposure, light blue). However, partici-
pants were unable to reduce the error in HOLD (Fig. 2D,
blocks 6–7 and 33–35, orange; F4,20=0.888; P = 0.489) and
therefore the error remained high, or even became higher,
during the entire exposure phase (Fig. 2C, late-exposure,

Figure 2. Experiment 1: learning a motor skill necessitates movements. A: experimental setup: participants held the handle of the robotic manipulandum
and performed two tasks (left): HOLD (orange dot) and DRAW (light blue circle). While performing the tasks, the robot applied a time-dependent periodic
force to the handle (right). B: experimental protocol. C: representative hand paths of HOLD (orange) and DRAW (light blue) during preexposure (block 5),
early-exposure (block 6), and late-exposure (block 35) phases. The reference circle for DRAW is drawn as a broken circle. D: adaptation curves of HOLD
(orange) and DRAW (light blue), shown as block number vs. corresponding means ± standard error across all six participants (n =6). One-way repeated-
measure ANOVA was used for statistical tests on average errors.
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orange). This suggests that participants were able to com-
pensate for the periodic force pattern in the DRAW task but
not in the HOLD task.

The HOLD task can be considered as a classical adaptive
control problem, where a controller is required to learn the
periodic external forces and develop a counteracting con-
trol strategy generating time-dependent (i.e., periodic)
control forces. The result suggests that participants were
unable to develop such a time-dependent strategy, which
reconfirms the result of a previous study on the lack of
time-dependency in motor adaptation (27). This would
have been the same for the DRAW task, but it is likely that
participants have developed a state-dependent strategy
equivalent to the time-dependent strategy since the peri-
odic force can be regarded as an angle-dependent (i.e.,
state-dependent) force field when the frequency of the
circle-drawing is synchronized to that of the perturbing
forces (27–29), building a one-to-one relationship between
the state of the hand position and the phase of the force.
Since the only difference between the two tasks was that
DRAW involves movement whereas HOLD does not, the
result suggests that movement is an important factor that
enables adaptation. From the perspective of the encoding
capacity, this can be restated as that adaptation requires
nonzero encoding capacity, that is, a group of motor primi-
tives being involved.

Experiment 2 with N1 Group: When Learning a Simple
Force Field, Higher Speed Has No Benefit on the
Adaptation Performance

In experiment 2, we further explored how the encoding
capacity, determined by the size of the movement, limits the
adaptation performance, and how it interacts with the com-
plexity of the force field to learn. Figure 3 summarizes the ex-
perimental result of the N1 group (N1-SLOW and N1-FAST).
In the preexposure phase, participants successfullymade cir-
cular movements at both speeds, with higher variability in
N1-FAST (Fig. 3C, preexposure), and accordingly, a signifi-
cantly higher average baseline error observed in the N1-
FAST as expected (Fig. 3D, blocks 5–7; F1,7 = 14.500; P =
0.007). When the N1 force field was introduced, hand trajec-
tories in both conditions became significantly deviated out-
wardly from the circular shape because of radially
perturbing forces (Fig. 3C, early-exposure; Fig. 3D, blocks 6–
10; F4,28= 29.847; P < 0.001 for FAST and F4,28= 25.505; P <
0.001 for SLOW), but participants were able to significantly
reduce the error in the later exposure blocks for both speed
conditions (Fig. 3C, late-exposure; Fig. 3D, blocks 9–10 and
45–47; F4,28 =4.800; P = 0.004 for FAST and F4,28 = 18.274;
P < 0.001 for SLOW). Notably, the significant difference
between the errors in the two conditions persisted in the
late-exposure phase (Fig. 3D, blocks 45–47; F1,7 = 18.748; P =

Figure 3. Experiment 2 with N1 group: when learning a simple force field, higher speed has no benefit on the adaptation performance. A: experimental
setup: participants performed clockwise circle-drawing tasks under the N1 force field (left). The N1 force field and its flipped version are shown as vector
fields in the positional space (center and right). B: experimental protocol. C: representative hand paths of N1-FAST (red) and N1-SLOW (blue) during pre-
exposure (block 7), early-exposure (block 8), late-exposure (block 47), and postexposure (block 48) phases. Reference circles are drawn as broken
circles. D: adaptation curves of N1-FAST (red) and N1-SLOW (blue), shown as block number vs. corresponding means ± standard error across all eight
participants (n =8). The pale-colored graph in the background shows the magnitude of the errors on a per-cycle basis. One-way repeated-measure
ANOVA was used for statistical tests on average errors. Inset is a box plot of incremental area under the curve (iAUC) values for each speed condition. A
paired t test was used for statistical tests on iAUC values.
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0.003). When the force field was turned off, the trajectories
in both conditions were again significantly deviated from
the reference circle but inwardly (Fig. 3C, Postexposure) by
which the error level became higher again (Fig. 3D, blocks
46–48; F2,14 =6.031; P = 0.013 for FAST and F2,14 = 8.448; P =
0.004 for SLOW), suggesting that there were aftereffect.
Error levels in the post-exposure phase compared to the late-
exposure phase were not significantly different across two
speed conditions (Fig. 3D, block 48; F1,7 = 3.874; P = 0.090).

To avoid confusion, we use the term “motor perform-
ance,” the net performance of circle drawing, separately
from the “adaptation performance.” Comparing the adapta-
tion curves of two conditions, it is clear that the motor per-
formance in N1-FAST was consistently worse because of the
inherent signal-dependency of motor noises, which is al-
ready noticeable in the baseline level. We analyzed whether
this higher error level has affected the adaptation perform-
ance during the exposure phase using a baseline-adjusted
statistical test, iAUC with respect to the average preexposure
(i.e., the baseline) error (see Incremental Area under the
Curve in MATERIALS AND METHODS). A paired t test on iAUC
values of the exposure phase revealed that there is no signifi-
cant difference in iAUC values between N1-FAST and N1-
SLOW (Fig. 3D; t7 = �1.326; P = 0.227), suggesting that the
higher error level of N1-FAST did not have a significant
impact on the adaptation performance. Looking at the after-
effect in the early post-exposure phase, the relative increases

of the error level with respect to the late-exposure phase for
two speed conditions were not significantly different.
Altogether, these results suggest that the adaptation per-
formance of N1-FASTwas no better than that of N1-SLOW.

Experiment 2 with N3 group: When Learning a Complex
Force Field, Higher Speed Improves the Adaptation
Performance

Figure 4 summarizes the experimental result of the N3
group (N3-SLOW and N3-FAST). Because of the increased
complexity of the force field, trajectories during the early
phase of the adaptation show greater and more complicated
deviations from the reference circle (Fig. 4C, early-exposure;
Fig. 4D, blocks 6–10; F4,28= 34.043; P < 0.001 for FAST and
F4,28=46.958; P < 0.001 for SLOW), compared to those in the
N1 group. These errors were significantly reduced through-
out the adaptation trials in both conditions (Fig. 4D, blocks
9–10 and 45–47; F4,28 = 27.649; P < 0.001 for FAST and
F4,28= 17.476; P< 0.001 for SLOW), but a faster reduction was
observed in N3-FAST, resulting in more circular trajectories
(Fig. 4C, late-exposure) and significantly lower error level in
the late-exposure phase (Fig. 4D, blocks 45–47; F1,7 = 22.054;
P = 0.002). A paired t test confirmed that the iAUC of the
entire exposure phase of N3-SLOW was significantly higher
than that of N3-FAST (Fig. 4D; t7 = �5.432; P = 0.001). This
suggests that the learning was facilitated more in N3-FAST,

Figure 4. Experiment 2 with N3 group: when learning a complex force field, higher speed improves the adaptation performance. A: experimental setup: par-
ticipants performed clockwise circle-drawing tasks under the N3 (complex) force field (left). The N3 force field and its flipped version are shown as vector fields
(center and right). B: experimental protocol. C: representative hand paths of N3-FAST (red) and N3-SLOW (blue) during preexposure (block 7), early-exposure
(block 8), late-exposure (block 47), and postexposure (block 48) phases. Reference circles are drawn as broken circles. D: adaptation curves of N3-FAST (red)
and N3-SLOW (blue), shown as block number vs. corresponding means ± standard error of all eight participants (n=8). The pale-colored graph in the back-
ground shows the magnitude of the errors on a per-cycle basis. One-way repeated-measure ANOVAwas used for statistical tests on average errors. Inset is a
box plot of incremental area under the curve (iAUC) values for each speed condition. A paired t test was used for statistical tests on iAUC values.
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which contrasts sharply with the result of the N1 group.
Similarly, the aftereffect of N3-FAST with respect to the error
level in the late-exposure phase was significantly higher
than that of N3-SLOW (Fig. 4D, Block 48; F1,7 = 6.414; P =
0.039).

Although high-speed movements clearly had a beneficial
effect on the adaptation performance, there was an effect of
the speed on the motor performance that did not seem to be
related to the adaptation. The initial part of adaptation
curves suggests that the initial error level of N3-FAST was al-
ready significantly lower in the early-exposure (Fig. 4D,
blocks 8–10; F1,7 = 9.699; P = 0.017), whereas the initial error
level of N1-FAST was significantly higher than that of N1-
SLOW (Fig. 3D, blocks 8–10; F1,7 = 20.496; P = 0.003). This
can be also observed in experiment 1, where there was an in-
stantaneous drop of the error in DRAW compared with that
of HOLD. In addition, faster deadaptation observed in all
experiments may also be affected by this instantaneous
reduction. These observations indicate that the observed dif-
ference in the performance may have been influenced by
some neuromechanical factors, such as an increased level of
arm impedance because of cocontracting muscles (30, 31) or
up-regulated reflex gains (32, 33) (see DISCUSSION). We collec-
tively call these unmodeled effects “instantaneous stabiliza-
tion” and, to investigate its effect on the observed adaptation
performance, we have conducted the following additional
analyses on the error clamp trials and EMG recordings, and
experiment 3.

Adaptation Performance Is Determined Through an
Interaction between Speed and Force Field
Complexity

Taking together the results of two subexperiments done in
experiment 2, the final statistical test tested if there is an
interaction between the force field groups (N1 and N3) and
speed conditions (FAST and SLOW) on the iAUCmeasures. A
two-waymixed ANOVA with force field groups as a between-
subject factor and speed as within-subject factor revealed
that there was a significant and large interaction between ex-
perimental groups according to force complexities and speed
conditions (F1,14 = 16.663, P = 0.001, the partial g2 =0.543,
Greenhouse–Geisser corrected). This large interaction fits
our hypothesis that the effect of encoding capacity is promi-
nent only when the complexity of the force field is high, i.e.,
when the information to encode exceeds the encoding
capacity.

Force Patterns during Error Clamp Trials Indicate the
Evolution of Active Compensation Strategies

Our results can be further examined through the results
of error clamp trials (Fig. 5). An error clamp trial was a sin-
gle rotation randomly chosen among the middle of the
twelve rotations per block, that is, between rotation 5 and
9, during which the hand movement was constrained
within a circular mechanical channel generated along the
reference circle (see Error Clamp Trials in MATERIALS AND

METHODS). The amount of active compensation can be esti-
mated by the pattern of the force that the participants
applied to the mechanical channel. As the shape is the key
factor that separates the N1 and N3 force fields, we first

focus on how much the shape of the force field was
learned.

For all four conditions, participants were able to learn
active compensation: during the late-exposure phase (Fig. 5,
blocks 35–47) Both N1-FAST and N1-SLOW showed single-
peaked force compensation patterns, and N3-FAST and N3-
SLOW showed triple-peaked compensation patterns. This
suggests that the observed learnings were mainly based on
an active, predictive compensation of the force field.
However, while there was no noticeable difference between
the compensation patterns of N1-FAST and N1-SLOW (Fig. 5,
A and B), the shape of the compensation pattern of N3-FAST
(Fig. 5C) was closer to the shape of the N3 force field com-
pared to N3-SLOW (Fig. 5D), showing clearer and more dis-
tinct peaks. This supports our observations made on the
normal trials that the learning performance was not signifi-
cantly different between N1-FAST and N1-SLOW, but it was
better in N3-FAST compared to N3-SLOW. The aftereffect
were not particularly notable at either speed (Fig. 5, C and D,
block 48).

Although the observed force compensation patterns in
channel trials suggest that different speed conditions result
in noticeable differences in the performance of compensat-
ing the force field imposed for non-channel trials, finding a
single metric that can effectively summarize the above-men-
tioned trends of force compensation patterns poses a chal-
lenge. We adopted a matching-based metric for force
compensation (25, 26) to quantify how much the forces were
compensated (for definition, see MATERIALS AND METHODS).
Figure 5E shows the resultant force compensation patterns.
Once the force field was introduced, both N1 and N3 condi-
tions showed an immediate increase in the force compensa-
tion level up to around 50%–60% within three blocks (�30
cycles). The initial force compensation levels of two speed
conditions were not significantly different (Fig. 5E, blocks
10–12; F1,7 =0.030; P = 0.866 for N1, F1,7 = 1.637; P = 0.241 for
N3). However, different trends of the N1 and N3 groups were
observed later in adaptation trials: The N1 group showed no
significant increase in force compensation level for both
speed conditions (Fig. 5E, left, blocks 10–11 and 45–47;
F4,28=0.504; P = 0.733 for FAST and F4,28 =0.672; P = 0.617
for SLOW), but the N3 group showed significant increases in
force compensation level for the both speed conditions (Fig.
5E, right, blocks 10–11 and 45–47; F4,28 = 3.355; P = 0.023 for
FAST and F4,28=4.087; P = 0.010 for SLOW). At the end of the
training phase, the N3 group showed a significant difference
in force compensation level between two speeds (Fig. 5E,
right, blocks 45–47; F1,7 = 10.306; P = 0.015), but not in the N1
group (Fig. 5E, left, blocks 45–47; F1,7 =0.450; P = 0.524).
There were remarkable aftereffect compared to the preexpo-
sure phase for the SLOW condition in the N1 case (Fig. 5E,
left, blocks 5–7 and 48; F3,21 = 2.618; P = 0.078 for the FAST
and F3,21 = 7.361; P = 0.001 for the SLOW condition) and for
both speed conditions in the N3 case (Fig. 5E, right, blocks
5–7 and 48; F3,21 = 12.874; P < 0.001 for the FAST and
F3,21 = 26.223; P < 0.001 for the SLOW condition). Finally, the
difference of the post-exposure phase force compensation
between two speed conditions was not significant in the N1
case (Fig. 5E, left, block 48; F1,7 = 1.320; P = 0.396), but signifi-
cant in the N3 case (Fig. 5E, right, block 48; F1,7 = 5.732; P =
0.048).
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The Benefit of Higher Speed Movement Does Not
Originate from Increased Muscle Activities during
Adaptation

To test how much the result of the N3 group, which
showed a benefit of higher speed movement, was affected by
increased muscle activities, we compared the EMG signals
measured in N3-FAST and N3-SLOW. Figure 6 summarizes
the change of EMG-levels for all fourmuscles, both for normal
and channel trials. In overall, the EMG profiles show typical
patterns of adaptation: higher EMG levels in the early-

exposure phase followed by a gradual decrease throughout
the exposure. For normal trials, two-way ANOVAs with phase
(pre-, early- and late-exposure) and speed as within-subject
factors revealed that there were significant effects of phase in
general on the EMG levels of all four muscles (Fig. 6; biceps:
F2,10 = 22.071, P < 0.001; Triceps: F2,10 =3.833, P = 0.058; pec-
toralis: F2,8 = 5.729, P = 0.029; deltoid: F2,10 =9.098, P = 0.006),
but no significant main effect of speed was found for all four
muscles (biceps: F1,5 =0.014, P = 0.912; triceps: F1,5 =0.858, P =
0.397; pectoralis: F1,4 =3.943, P = 0.118; deltoid: F1,5 =0.228, P =
0.653). In addition, no significant interaction between speed

Figure 5. Force patterns during error clamp trials indicate the evolution of active compensation strategies. A–D: timelines of force profiles that partici-
pants applied against the mechanical channel during error clamp trials in different blocks, averaged over all eight participants per condition. Force pro-
files of the exposure and postexposure phases are baseline-adjusted by subtracting the average force profiles during the preexposure phase. The
colored area is the trajectory of the force applied against the channel during error clamp trials in the N1-FAST (A), N1-SLOW (B), N3-FAST (C), and N3-
SLOW (D) conditions, respectively, using the same color-coding used in the previous figures (i.e., red means FAST and blue means SLOW). The gray
area behind the colored area represents the shape of the force field (N1 or N3) generated during normal exposure trials for each condition. For the par-
ticipants experiencing flipped N1 or N3 force fields, force trajectories were also flipped and averaged together with participants experiencing nonflipped
force fields. E: corresponding force compensation profiles of N1 (left) and N3 (right) groups. Force compensation curves are shown as the means ± stand-
ard error across three consecutive blocks of all eight participants (n =8). The pale-colored graph of the background shows the magnitude of the force
compensations on a per-block basis. One-way repeated-measures ANOVA was used for statistical tests on force compensation values.

ON THE ENCODING CAPACITY OF HUMANMOTOR ADAPTATION

132 J Neurophysiol � doi:10.1152/jn.00593.2020 � www.jn.org
Downloaded from journals.physiology.org/journal/jn (002.026.129.232) on October 5, 2021.

http://www.jn.org


and phase was found for all four muscles (biceps: F2,10 = 2.468,
P = 0.134; triceps: F2,10= 2.514, P = 0.130; pectoralis: F2,8 = 1.326,
P = 0.318; deltoid: F2,10 = 1.920, P = 0.197). The same results,
that is, significant effects of phase, no significant effect of
speed, and no significant interaction between phase and
speed, were observed for channel trials (statistical test results
omitted for simplicity). Altogether, the presented EMG analy-
ses suggest that the observed differences in EMG levels
between the SLOW and the FAST condition during adaptation
were no different than those of the baseline. This indicates
the observed advantage of the speed in adapting to the N3
force field is unlikely to result from muscle activations being
particularly higher during adaptation. The similar trend
observed on the EMG levels in channel trials also suggests
that the levels of co-contraction were not particularly higher
during N3-FAST adaptation and the baseline differences were
maintained throughout the adaptation.

In addition to the block-averaged EMG levels, additional
analysis was focused on the per-cycle EMG pattern to see if
there was any noticeable change in the way muscles were acti-
vated during the circle drawing in different phases of the
experiment. As within-cycle EMG patterns are highly variable
across participants, the analysis was focused on data from rep-
resentative participants. Figure 7 plots the average per-cycle
EMG patterns for all four muscles of a single subject during
five different phases of the experiment. First, the within-cycle
EMG profiles in different adaptation phases well reflect the ad-
aptation pattern observed in Fig. 6, showing an abrupt increase

in EMG level in early exposure (blocks 7–8) followed by a grad-
ual reduction throughout the exposure trials (blocks 8–47).
While such reductions can be clearly seen in the FAST condi-
tion, only small amounts of reduction were observed in the
SLOW condition for all four muscles, which confirms our ob-
servation in Fig. 6. Understanding the shapes of EMG profiles
is not straightforward without additional analyses incorporat-
ing motion capture and inverse dynamics, which are out of the
scope of our study. However, it can be observed that in the
SLOW condition there are noticeable differences between the
EMG patterns in the pre-exposure phase (block 7) and those in
the end of adaptation (block 47), in terms of overall level and
shape. This is in sharp contrast to the FAST condition where
participants were able to restore to some extent the pre-expo-
sure EMG patterns at the end of adaptation, except some fine
modulations of timings (biceps) or activation levels (pectoralis).
Note that the similarities between the EMG profiles of FAST
and SLOW conditions at the end of adaptation (block 47) could
be purely a coincidence since, as noted in the MATERIALS AND

METHODS, force fields that each participant experienced in the
FAST and SLOW conditions were flipped to each other.
Although follow-up studies are required to confirm these
observations, this may indicate that participants were able to
come up with fine-tuned muscle activation patterns that effi-
ciently compensate for the force field in the N3-FAST condi-
tion, while they were only able to compensate the force field
with substantially higher and disparate muscle tones in the
N3-SLOW condition.

Figure 6. The benefit of higher speed movement does not originate from increased muscle activities during adaptation. Plots for normalized average
EMG values for biceps (A), triceps (B), pectoralis (C), and deltoid (D) muscles in the N3-FAST (red) and N3-SLOW (blue) conditions for nonchannel and
channel (offset below) trials. Before averaging, each EMG level for each participant was normalized with respect to the baseline EMG levels of the N3-
SLOW condition (i.e., EMG values on blocks 5–7). For each muscle, the left subfigure shows the timelines of EMG levels during the N3-FAST (red) and
N3-SLOW (blue) conditions, shown as block number vs. corresponding means ± standard error of participants (n =5 for pectoralis and n =6 for others).
Overlapped with the block-averaged errors in thick colors, pale-colored plots in finer scales show the errors averaged per each cycle (one block con-
tains 12 cycles). Offset below them, pale-colored plots show the EMG levels during channel trials. The right subfigure shows an interaction plot for EMG
values between the three phases (blocks 5–7 for preexposure, blocks 8–10 for early-exposure, and blocks 45–47 for late-exposure) and the two speed
conditions (FAST and SLOW). Offset below them, the pale-colored plot shows an interaction plot for EMG values during channel trials between the
phases and speed conditions. Two-way repeated-measures ANOVA was used for statistical tests on normalized average EMG values. ���P< 0.001.
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Experiment 3: The Benefit of Higher Speed Movement Is
Related to the State-Dependent Policy

Experiment 3 was targeted to quantify the contribution of
instantaneous stabilization to the observed benefit of fast
movement in learning complex force field. Our hypothesis
predicts that the adaptation performance would be signifi-
cantly worse when learning the N3a force field since there is
no state-dependent representation available. Alternatively,

if the observed benefit of the fast movement is mainly from
the instantaneous stabilization, there will be no performance
difference between the two conditions.

Figure 8 summarizes the result of experiment 3. Comparing
the average trajectories and adaptation curves for two
conditions (Fig. 8, C and D), the initial error levels at the pre-
exposure phase (Fig. 8D, blocks 5–7; F1,7 =0.189, P = 0.677), the
early-exposure phase before the instantaneous stabilization
(Fig. 8D, block 8; F1,7 = 1.832, P = 0.218), and after the

Figure 7.Within-cycle normalized EMG profile for N3-group of experiment 2. A and B: within-cycle normalized EMG profile for biceps, triceps, pectoralis,
and deltoid muscles in the N3-FAST (A, red) and N3-SLOW (B, blue) conditions. For each muscle, the figure shows EMG profiles of a representative sub-
ject on the following three phases: preexposure (block 7), early-exposure (block 8), middle-exposure (blocks 10 and 25), and late-exposure (block 47).
The EMG time series in each block (containing 12 cycles) is divided by individual cycles (i.e., drawing one circle), and in each cycle, the duration of the
EMG profile is normalized. The EMG profiles of each muscle and each phase are shown as normalized time vs. corresponding means ± standard devia-
tion across the cycles. C: illustration of arm configurations in five different time points within a cycle.
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instantaneous stabilization (Fig. 8D, block 10; F1,7 =0.110, P =
0.750) and the patterns of quick reduction in the early-expo-
sure phase was similar (Fig. 8D, blocks 9–10 and 45–47;
F4,28 =28.776, P < 0.001 for N3-FAST and F4,28 =9.728, P <
0.001 for N3a-FAST), but it is clear that the gradual reduction
of the error was not so prominent in N3a-FAST compare to
N3-FAST (Fig. 8D, blocks 45–47; F1,7 = 22.500, P = 0.002),
resulting in substantially higher iAUC in N3a-FAST during
the exposure phase (Fig. 8D; t7 = �7.490, P < 0.001). Looking
at the aftereffect in the post-exposure phase, trajectories of
N3-FAST andN3a-FAST showed inward distortions, but larger
distortions, and therefore significantly higher aftereffect,

were observed in N3-FAST. The aftereffect of N3-FAST with
respect to the error level was significantly higher than that of
N3a-FAST (Fig. 8D, block 48; F1,7 = 5.775; P = 0.047). Force pat-
terns in the error clamp trials shown in Fig. 8, E and F, where
the force pattern of the N3a-FAST was adjusted so that the
perfect compensation would exactly match the underlying
grey reference shape. The clear absence of peaks in N3a-FAST
(Fig. 8F) compared to N3-FAST (Fig. 8E) suggests that partici-
pants could not develop any active strategy for compen-
sation under the N3a force field. Taken together, these
results support our hypothesis that the main benefit of
the fast movement, observed during the entire course of

Figure 8. Experiment 3: the benefit of higher speedmovement is related to the state-dependent policy. A: experimental setup. Subfigure on the right is a sche-
matic diagram showing how the N3a force field is desynchronized. B: experimental protocol. C: representative hand paths of N3-FAST (red) and N3a-FAST
(brown) during the preexposure (block 7), the early-exposure (block 8), the late-exposure (block 47), and the postexposure (block 48) phases. D: adaptation
curves of the N3-FAST (red) and N3a-FAST (brown), shown as block number vs. corresponding means ± standard error of all eight participants (n=8). The pale-
colored graph in the background shows the magnitude of the errors on a per-cycle basis. One-way repeated-measures ANOVAwas used for statistical tests on
average errors. Inset is a box plot of iAUC values for each condition. A paired t test was used for statistical tests on iAUC values. Timelines of baseline-adjusted
force profiles during error clamp trials in different blocks, averaged over all participants for the N3-FAST (E) and N3a-FAST (F). The gray area behind the colored
area indicates the shape of the force field (N3 or N3a) generated during non-error clamp trials. ���P< 0.001. iAUC, incremental area under the curve.
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the adaptation, originates from the state-dependent
adaptive mechanism that is specific to the shape of the
force, whereas the effect of instantaneous stabilization
mainly limited to early adaptation phase.

DISCUSSION
In this study, we have examined the effect of the encoding

capacity of human motor adaptation, which describes how
much information on newly experienced dynamics can be
held by motor primitives. Our main hypothesis was that the
performance of motor adaptation is upper limited by the
encoding capacity that is determined by the size of
the movement. In order to verify that, we have presented the
results of three experiments which concluded, in brief, that
1) learning requires movement, 2) larger encoding space,
that is, a higher speed movement, benefits learning complex
dynamics, and 3) such benefit of high-speed movement is a
genuine aspect of motor learning, whereas the effect of in-
stantaneous stabilization is limited only to the early phase.

In motor learning studies, the term “encoding” collec-
tively refers to the process of internally representing sensori-
motor information, such as body kinematics (12, 13, 16, 34,
35), action (11, 36–39), or perceived errors (10, 15, 40–42). In
this study, encoding refers to the process of representing
external dynamics (43–45). With this view, a key assumption
of our study was that the encoding capacity is determined by
the size of the state-space covered by the movement, which
was also based on the predominant models of primitive-
based motor learning (7, 9). Although this study combined
existing terms and models widely used in the field, we pro-
posed a novel perspective explaining how this primitive-
based encoding procedure affects the performance of motor
adaptation. As far as we know, this study is the first to experi-
mentally show that such a limiting factor does exist in
human motor adaptation and plays an important role in
determining the adaptation performance.

To control the complexity of the dynamics to adapt, we
introduced the concept of a complexity index. The complex-
ity index is not exactly the same but was mentioned in previ-
ous papers under the name spatial frequency (7, 46). In the
language of our paper, a higher spatial frequency of the force
field contains a larger amount of information to be encoded
and thus requires a larger encoding capacity. Our experi-
mental designs were focused on examining the circumstan-
ces under which the encoding capacity was just above or
below the amount of information of a complex force field
and therefore significantly affects the adaptation perform-
ance, while the performance of learning a simpler force field
is unaffected. The complexity indices used in the experi-
ment, N1 and N3, along with different movement velocities,
FAST and SLOW, successfully captured the interaction
between the complexity of the external dynamics and the
encoding capacity.

In our study, the encoding capacity was modulated by
changing the movement speed. An alternative, or even a
more intuitive choice would have been to change the posi-
tional properties, for example, the radius of the reference
circle. However, we decided to keep the positional properties
constant in order to avoid comparing the performance of
movements in different arm configurations. For this reason,

we focused on assessing the effect of different speeds in
motor adaptation performance while keeping the shape of
the trajectory constant. Although this design was necessary
for the fair comparison, it posed some significant but
unavoidable challenges: The most obvious source of compli-
cation was the effect of the signal-dependent noise. Not sur-
prisingly, movement with a different speed causes a default
difference in the baseline performances and also in the ini-
tial error levels of the adaptation phase, which makes it hard
to definitely determine whether the learning performance in
one condition is better than the other, even with the widely-
used iAUC-based comparison incorporated in our study. In
addition, since the number of trials was fixed, different
movement speeds resulted in different durations of the ad-
aptation. Because of these complicated factors, our analysis
was mainly focused on highlighting how the effect of move-
ment speed interacts with force field complexities. The clear
interaction shown in our result suggests that, if and only if the
complexity of the force field exceeds the encoding capacity,
the adaptation performance becomes bottlenecked.

Our result shows the benefit of high-speed movement in
learning new external dynamics. Such effect of movement
speed in motor adaptation has not been studied previously,
but there exist studies on speed generalization, investigating
how amotor skill acquired in one speed generalizes to differ-
ent speeds (13, 47–49). Specifically, studies have suggested
that the extrapolation quality of the speed along a single
movement direction, that is, how learning generalizes when
movement is made in the same direction but with a speed
outside of the training range, is substantially better com-
pared to what is predicted by the Gaussian-like primitives,
implying that generalization of learning in velocity space
may not be local, and the shape of the primitives in position-
velocity space could be anisotropic (13, 48). Our study delib-
erately avoided this potential complication by incorporating
circular movements, in which the direction of the velocity
varies constantly.

Similar to other motor learning studies, it is possible that
the observed adaptation behaviors are affected by certain
cognitive strategies. However, our experimental design
effectively rules out such possibilities. First of all, the result
of experiment 1 strongly suggests that participants are not
able to utilize any cognitive strategy in our adaptation tasks.
In the HOLD condition in experiment 1, participants were
asked to hold the handle still against the repeated pattern of
force perturbations. Our result clearly shows that, even
though participants had sufficient understanding on how
the direction and magnitude of the force perturbation were
repeated, none of them were able to effectively compensate
for such perturbation. Although this confirms our main hy-
pothesis that zero encoding capacity renders zero learning,
this also suggests that, inmore complex adaptation scenarios
in experiment 2 and experiment 3, the chance that any cogni-
tive strategy was developed and involved during adaptation
is very limited. Second, even if we assume that some explicit
strategies were involved in the earlier phase of the adapta-
tion, it is highly likely that such strategies might have been
overridden by an implicit strategy after prolonged training
(50). Last, even when participants were able to keep using
cognitive strategies in the SLOW condition throughout the
entire training, making persistent efforts to keep such
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strategies does not seem to be a successful choice from the
performance perspective, because the observed performan-
ces in SLOW condition were no more effective than that of
the FAST condition for the N1 group, and significantly less
effective than the FAST condition for the N3 group. All these
results strongly suggest that the effect of cognitive strategy
on our result is minimal.

Although the observed adaptation patterns are largely
consistent with the conventional pattern of motor adapta-
tion, we also observed a different type of benefit of fast
movement, called instantaneous stabilization, that is effec-
tive in the early stages of adaptation and de-adaptation. It is
possible that such stabilization effect simply originates from
the increased impedance of upper limb in high-speed move-
ments, which is known to play the main role in stabilizing
movement in the early phase of force field adaptation (51, 52)
and also known to be able to compensate specific pattern of
instability (53, 54), including the uncertainty induced by sig-
nal-dependent noise (55, 56). However, our EMG analysis
suggested that this stabilization effect may not be caused
solely by the impedance mechanism since, unlike previous
studies where higher levels of EMG signals were reported (51,
52, 57), differences in muscle activation levels between FAST
and SLOW condition during adaptation were no greater than
their baseline differences. It is possible that the instantaneous
stabilization effect may originate from the ability of our brain
that quickly develops a crude estimation of the perturbing
forces and corresponding feedforward mechanism, as early as
the second exposure to the force field (58). It is important to
note that our circle-drawing experiments involve longer trials
(twelve continuous cycles) compared to the conventional
point-to-point reaching experiments. For this reason, it is pos-
sible that the participants already developed a crude internal
model that roughly compensates the external force field dur-
ing the first block of the exposure phase. In any case, we have
shown that this instantaneous stabilization does not under-
mine the main conclusion of the paper. Our follow-up experi-
ment (experiment 3) has confirmed that the effect of
instantaneous stabilization is only limited to the early phase
of the adaptation.

We also incorporate the error clamp trials using mechani-
cal channels to better assess the feedforward component of
the adaptation. Although error clamp trials in previous stud-
ies were used for point-to-point movements (24), our study
is the first, as far as we are aware, to implement a circular
version of the error clamp trial. Compared with the point-to-
point movements where each movement is distinct from the
other, and also the target direction and the error are always
constant, we have encountered several technical issues in
implementing error clamp trials for continuous circular
movements, and have come up with novel technical solu-
tions. For example, we made the force channel to be gradu-
ally engaged and disengaged in order to prevent noticeable
mechanical impacts when entering the channel, where the
details can be found in “Error Clamp Trials” of MATERIAL AND

METHODS. Despite these solutions, it was still challenging to
make a circular error clamp trial that feels perfectly the same
as the conventional error clamp trials, and it is possible that
this different force feedback that participants experienced
during error clamp trials may have induced a contextual
effect (59, 60) separating the motor memories of normal and

error clamp trials. In addition to the effect of instantaneous
stabilization, this contextual effect could have potentially
contributed to the observed force compensation patterns
that look somewhat different from the conventional pat-
terns. However, it can be clearly seen from the recorded
force patterns in error clamp trials shown in Fig. 5, which
closely resembles the force field patterns in the late adapta-
tion phase, that our error clamp trials can successfully cap-
ture the aspect of learning.

Taken together, we have experimentally shown that the
effect of encoding capacity works as a major limiting factor
of the performance of motor adaptation. Our result high-
lighted the importance of securing a large encoding space,
i.e., making larger movements, in order to learn complex dy-
namics of the body and environment.
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