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Abstract. At Asiacrypt 2020, Moriya et al. introduced two new IND-
CPA secure supersingular isogeny based Public Key Encryption (PKE)
protocols: SiGamal and C-SiGamal. Unlike the PKEs canonically derived
from SIKE and CSIDH, the new protocols provide IND-CPA security
without the use of random oracles. SiGamal and C-SiGamal are however
not IND-CCA secure. Moriya et al. suggested a variant of SiGamal that
could be IND-CCA secure, but left its study as an open problem.
In this paper, we revisit the protocols introduced by Moriya et al. First,
we show that the SiGamal variant suggested by Moriya et al. for IND-
CCA security is, in fact, not IND-CCA secure. Secondly, we propose a
new isogeny-based PKE protocol named InSIDH, obtained by simpli-
fying SiGamal. InSIDH has smaller public keys and ciphertexts than
(C-)SiGamal and it is more efficient. We prove that InSIDH is IND-
CCA secure under CSIDH security assumptions and one Knowledge of
Exponent-type assumption we introduce. Interestingly, InSIDH is also
much closer to the CSIDH protocol, facilitating a comparison between
SiGamal and CSIDH.

Keywords: Post-quantum cryptography · supersingular isogenies · PKE
· CSIDH · SiGamal · InSIDH

1 Introduction

The construction of a broad quantum computer would make the nowadays widely
used public PKE schemes insecure, namely RSA [27], ECC [19] and their deriva-
tives. As a response to the considerable progress in constructing quantum com-
puters, NIST launched a standardization process for post-quantum secure pro-
tocols in December 2016 [24].

The idea of using the isogeny computation problem as hard problem in cryptog-
raphy is due to J. M. Couveignes in 1997 [9]. About a decade later, many isogeny
based schemes surged, among which a Key Exchange protocol by Rostovtsev and
Stolbunov [29] based on ordinary isogenies, a hash function by Charles, Goren
and Lauter[7] and another key exchange protocol (SIDH) by Jao and De Feo [18]
based supersingular isogenies. The submission of SIKE [17] (which is a Key En-
capsulation Mechanism based on SIDH) to the NIST standardization process
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marked the starting point of a more active research in isogeny based cryptogra-
phy. Isogeny based protocols are in general based on the assumption that given
two isogenous curves E and E′, it is difficult to compute an isogeny from E to
E′. Even though they are not the most efficient candidates for post quantum
cryptography protocols, they provide the shortest public keys and ciphertexts.

PKE schemes based on isogeny problems include SIKE, but also CSIDH [5],
SÉTA [12] and more recently SiGamal and C-SiGamal [22]. SÉTA and the PKEs
canonically derived from the key exchange protocols SIDH and CSIDH require
hash functions and/or generic transformations such as the Fujisaki-Okamoto [14]
or OAEP [1] to provide IND-CPA security ([12, §2.4],[17, §1.4], [22, §3.3]). This
motivated Moriya, Onuki and Tagaki to introduce the SiGamal [22, §5] and C-
SiGamal [22, §6] PKE schemes derived from CSIDH. SiGamal and C-SiGamal
provide IND-CPA security under new assumptions they introduce. The authors
noticed that neither SiGamal nor C-SiGamal is IND-CCA secure. In Remark 7
of [22], they suggest a slightly modified version of SiGamal that from their point
of view could be IND-CCA secure, but they left its study as open problem.

Contributions. In this paper, we prove that the variant of SiGamal suggested
by Moriya et al. in Remark 7 of their paper is not IND-CCA secure by exhibiting
a simple and concrete attack. We then modify SiGamal to thwart this attack, and
obtain a new isogeny-based PKE scheme called InSIDH. We prove that InSIDH
is IND-CPA secure relying on CSIDH security assumptions (Assumption 2). This
is a considerable improvement on SiGamal whose IND-CPA security relies on
new assumptions. We introduce a ”knowledge of Exponent” type assumption
(Assumption 3) under which we prove that InSIDH is IND-CCA secure. This
assumption may have some other applications in isogeny based cryptography.
We adapt the Magma code for SiGamal [21] to run a proof of concept imple-
mentation of InSIDH using the SiGamal primes p128 and p256. For the prime
p128, InSIDH is about 1.13x faster than SiGamal and about 1.19x faster than
C-SiGamal. For the prime p256, we get a 1.07x speedup when compared to SiGa-
mal and a 1.21x speedup when compared to C-SiGamal.
For the same set of parameters, InSIDH has smaller private keys, public keys
and ciphertexts compared to SiGamal and C-SiGamal. InSIDH is simple, seats
between SiGamal and CSIDH, helps to better understand the relation between
SiGamal and CSIDH while providing IND-CCA security and being more efficient
compared to SiGamal. Table 3 best summarizes our contributions.

Outline. The remaining of this paper is organized as follows: in Section 2, we
recall the security definitions for PKE schemes, the main ideas of the class group
action and the CSIDH key exchange protocol. In section 3, we present the SiGa-
mal PKE scheme and we show that the variant suggested in [22, Remark 7] is not
IND-CCA secure. Section 4 is devoted to InSIDH and its security arguments. In
section 5 we present the outcome of a proof-of-concept implementation and com-
pare InSIDH to CSIDH and (C-)SiGamal in Section 6. We conclude the paper
in Section 7.



InSIDH: a Simplification of SiGamal 3

2 Preliminaries

2.1 Public key encryption

We recall standard security definitions related to public key encryption.

Definition 1 (PKE). A Public Key Encryption scheme Pλ is a triple of PPT
algorithms (Key Generation, Encryption, Decryption) that satisfy the following.

1. Given a security parameter λ as input, the key generation algorithm Key Generation
outputs a public key pk, a private key sk and a plaintext space M.

2. Given a plaintext µ ∈ M and a public key pk as inputs, the encryption
algorithm Encryption outputs a ciphertext c = Encryptionpk(µ).

3. Given a ciphertext c and sk as inputs, the decryption algorithm Decryption
outputs a plain text = Decryptionsk(c).

Definition 2 (Correctness). A PKE scheme Pλ is correct if for any pair of
keys (pk, sk) and for every plaintext µ ∈M,

Decryptionsk
(
Encryptionpk(µ)

)
= µ.

Definition 3 (IND-CPA secure). A PKE scheme Pλ is IND-CPA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ), µ0, µ1 ←M,

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← A(pk, c)

]
=

1

2
+ negl(λ).

Definition 4 (IND-CCA secure). A PKE scheme Pλ is IND-CCA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ), µ0, µ1 ← AO(·)(pk,M),

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← AO(·)(pk, c)

]
=

1

2
+negl(λ),

where O(·) is a decryption oracle that when given a ciphertext c′ 6= c, outputs
Decryptionsk(c′) or ⊥ if the ciphertext c′ is invalid.

2.2 Class group action on supersingular curves defined over Fp

We refer to [28,30] for general mathematical background on supersingular ellip-
tic curves and isogenies, to [5,13] for supersingular elliptic curves defined over
Fp and their Fp-endomorphism ring, and to [8,26] for isogenies between Mont-
gomery curves.

Let p ≡ 3 mod 4 be a prime greater than 3. The equation By2 = x3 +Ax2 + x
where B ∈ F∗p and A ∈ Fp \ {±2} defines a Montgomery elliptic curve E over

Fp. The j-invariant of E is defined as j = 256(A2−3)3
A2−4 . Two elliptic curves are

isomorphic if and only if they have the same j-invariant. The curve E : By2 =
x3 + Ax2 + x is isomorphic (over Fp) to the curve defined by the equation
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y2 = x3 + Ax2 + x (resp. −y2 = x3 + Ax2 + x) when B is a square in Fp (resp.
B is not a square in Fp). The curve E is said to be supersingular if ]E(Fp) ≡ 1
mod p, otherwise E is said to be ordinary. If E is a supersingular curve defined
over Fp, then ]E(Fp) = p + 1. All the elliptic curves we consider in this paper
are supersingular curves defined by an equation of the form y2 = x3 + Ax2 + x
where A ∈ Fp is called the Montgomery coefficient of the curve.
The endomorphism ring of a supersingular curve is a maximal order in a quater-
nion algebra. Since E is defined over Fp, then some of its endomorphisms are
also defined over Fp. Let π be the Frobenius endomorphism of E. The Fp-
endomorphism ring O of E is isomorphic to either Z[π] or Z[ 1+π2 ] [13]. As in
the ordinary case, the class group cl(O) of O acts freely and transitively on
the set E``p(O) of supersingular elliptic curves defined over Fp and having Fp-
endomorphism ring O. We have the following theorem.

Theorem 1. [5, Theorem 7] Let O be an be an order in an imaginary quadratic
field such that E``p(O) is non empty. The ideal class group cl(O) acts freely and
transitively on the set E``p(O) via the map

cl(O)× E``p(O)→ E``p(O)
([a], E) 7→ [a]E = E/E[a],

where a is an integral ideal of O and E[a] = ∩α∈a kerα.

From now on, we will consider the quadratic order Z[π] and the action of its
class group cl(Z[π]) on the set E``p(Z[π]). We represent isomorphism classes of
curves in E``p(Z[π]) using the Montgomery coefficient A [3, Proposition 3].

The efficiency of the computation of an isogeny with known kernel essentially
depends on the smoothness of its degree. In [5], the authors work with a prime p

of the form p = 4`1 · · · `n−1. This implies that for i ∈ {1, · · · , n},
(
−p
`i

)
= 1 and

by the Kummer decomposition theorem [20], (`i) = lili in cl(Z[π]), where li =
(`i, π− 1) and li = (`i, π+ 1) are integral ideals of prime norm `i. It follows that
[li][li] = [`i] = [1] in cl(Z[π]), hence [li]

−1 = [li]. Since the primes `i are small,
then the action of the ideal classes [li] and [li]

−1 can be computed efficiently
using Vélu formulas for Montgomery curves [8,26]. In reality, the kernel of the
isogeny corresponding to the action of the prime ideal li = (`i, π−1) is generated
by a point P ∈ E(Fp) of order `i, while that of the isogeny corresponding to
the action of l−1i = (`i, π + 1) is a point P ′ ∈ E(Fp2) \ E(Fp) of order `i such
that π(P ′) = −P ′. The computation of the action of an ideal class

∏
[li]

ei where
(e1, · · · , en) ∈ {−m, · · · ,m}n can be done efficiently by composing the actions
of the ideal classes [li] or [li]

−1 depending on the signs of the exponents ei. Since
the prime ideals li are fixed, then the vector (e1, · · · , en) is used to represent the
ideal class

∏
[li]

ei . From the discussion in [5, §7.1], m is chosen to be the least
positive integer such that

(2m+ 1)n ≥ |cl(Z[π])| ≈ √p.
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2.3 CSIDH

CSIDH [5] stands for Commutative Supersingular Isogeny Diffie-Hellman and is
a Diffie-Hellman type key exchange protocol. The base group in Diffie-Hellman
protocol is replaced by the unstructured set E``p(Z[π]) and the exponentiation is
replaced by the class group action of cl(Z[π]) on E``p(Z[π]). Concretely, CSIDH
is designed as follows.

Setup. Let p = 4`1 · · · `n − 1 be a prime where `1, · · · , `n are small distinct odd
primes. The prime p and the supersingular elliptic curve E0 : y2 = x3+x defined
over Fp with Fp-endomorphism Z[π] are the public parameters.

Key Generation. The private key is an n-tuple e = (e1, · · · , en) of uniformly ran-
dom integers sampled from a range {−m, · · · ,m}. This private key represents an
ideal class [a] =

∏
[li]

ei ∈ cl(Z[π]). The public key is the Montgomery coefficient
A ∈ Fp of the curve [a]E0 : y2 = x3 + Ax2 + x obtained by applying the action
of [a] on E0.

KeyExchange Suppose Alice and Bob have successfully computed pairs of private
and public key (e,A) and (e′, B) respectively. Upon receiving Bob’s public key
B ∈ Fp \ {±2}, Alice verifies that the elliptic curve EB : y2 = x3 +Bx2 + x is a
supersingular curve, then applies the action of the ideal class corresponding to
her secret key e = (e1, · · · , en) to EB to compute the curve [a]EB = [a][b]E0.
Bob does analogously with his own secret key e′ = (e′1, · · · , e′n) and Alice’s pub-
lic key A ∈ Fp \ {±2} to compute the curve [b]EA = [b][a]E0. The shared secret
is the Montgomery coefficient S of the common secret curve [a][b]E0 = [b][a]E0.

The security of the CSIDH key exchange protocol relies on the following assump-
tions.
Let λ be the security parameter and let p = 4`1 · · · `n − 1 be a prime where
`1, · · · , `n are small distinct odd primes. Let E0 be the supersingular elliptic
curve y2 = x3 + x defined over Fp, let [a], [b] and [c] be uniformly random ideal
classes in cl(Z[π]).

Assumption 1 The CSSICDH (Commutative Supersingular Isogeny Computa-
tional Diffie-Hellman) assumption holds if for any probabilistic polynomial time
(PPT) algorithm A,

Pr [E = [b][a]E0 | E = A(E0, [a]E0, [b]E0)] < negl(λ).

Assumption 2 The CSSIDDH (Commutative Supersingular Isogeny Decisional
Diffie-Hellman) assumption holds if for any PPT algorithm A,

Pr

b = b∗

∣∣∣∣∣∣
[a], [b], [c]← cl(Z[π]), b

$←− {0, 1},
F0 := [b][a]E0, F1 = [c]E0,
b∗ ← A(E0, [a]E0, [b]E0, Fb)

 =
1

2
+ negl(λ).

In [6], Castryck et al. show that Assumption 2 does not hold for primes
p ≡ 1 mod 4. This does not affect primes p ≡ 3 mod 4, which are used in CSIDH,
SiGamal and in our proposal InSIDH.
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An IND-CPA insecure PKE from CSIDH. A PKE scheme can be
canonically derived from a key exchange protocol. For the case of CSIDH, this
PKE scheme is sketched as follows. Suppose that Alice has successfully computed
her key pair (e,A). In order to encrypt a message m ∈ {0, 1}dlog pe, Bob computes
a random key pair (e′, B) and the binary representation S01 of the corresponding
shared secret S. He sends (B, c = S01 ⊕ m) to Alice as the ciphertext. For the
decryption, Alice computes the shared secret S and its binary representation S01,
then recovers m = S01 ⊕ c. In the comparison in Section 6, the term CSIDHpke
will be used to refer to the previous PKE each time the precision is needed.

The above PKE scheme is not IND-CPA secure. In fact, given two distinct
plaintexts m0 and m1, if (B, c) is a ciphertext for mi, then Si01 = c ⊕ mi is
the binary representation of the Montgomery coefficient of a supersingular curve
while S1−i

01 = c⊕m1−i is that of an ordinary curve with overwhelming probability.
Hence an adversary can efficiently guess if the ciphertext (B, c) is that of m0 or
m1. In practice, a hash function h is used to mask the supersingular property of
the shared secret S, the ciphertext becomes (B, c = h(S01)⊕m).

3 Another look at SiGamal protocol

3.1 SiGamal protocol and variants

The SiGamal PKE scheme can be summarized as follows.

Key Generation. Let p = 2r`1 · · · `n− 1 be a prime such that `1, · · · , `n are small
distinct odd primes. Let E0 be the elliptic curve y2 = x3 +x and let P0 ∈ E(Fp)
be a point of order 2r. Alice takes a random integral ideal a = (α)le11 · · · lenn
where α is a uniformly random element of Z×2r , computes E1 := [a]E0 and
P1 := aP0. Her public key is (E1, x(P1)) and her private key is (α, e1, · · · , en).
Let Z2r−2 = Z/2r−2Z be the message space.

Encryption. Let m ∈ Z2r−2 be a plaintext, Bob embeds m in Z×2r via m 7→ M =
2m + 1. Bob takes a random integral ideal class b = (β)le11 · · · lenn where β is
a uniformly random element of Z×2r . Next, he computes [M ]P1, E3 = [b]E0,
P3 := bP0, E4 = [b]E1 and P4 := b([M ]P1). He sends (E3, x(P3), E4, x(P4)) to
Alice as the ciphertext.

Decryption. Upon receiving (E3, x(P3), E4, x(P4)), Alice computes aP3 and solves
a discrete logarithm instance between P4 and aP3 using the Pohlig-Hellman al-
gorithm [25]. Let M ∈ Z×2r be the solution of this computation. If 2r−1 < M ,
then Alice changes M to 2r −M . She computes the plaintext m = (M − 1)/2.

In C-SiGamal, a compressed version of SiGamal, one replaces the point abP0

by a distinguished point PE4
∈ E4 of order 2r, which then does not need to be

transmitted. The scheme integrates an algorithm that canonically computes a
distinguished point of order 2r on a given supersingular curve defined over Fp
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where p = 2rl1 · · · ln − 1. We refer to [22] for more details on the SiGamal and
C-SiGamal.

Moriya et al. prove that SiGamal and C-SiGamal are IND-CPA secure relying
on two assumptions they introduce. However, they point out that SiGamal is not
IND-CCA secure since one can efficiently compute a valid encryption of 3m + 1
from a valid encryption of m. Indeed, given ([b]E0, bP0, [b]E1, [2m + 1]bP1) one
easily computes ([b]E0, bP0, [b]E1, [3][2m + 1]bP1) = ([b]E0, bP0, [b]E1, [2(3m +
1) + 1]bP1). A similar argument applies for C-SiGamal as well.
As a remedy, Moriya et al. suggest to omit the curve [b]E1 in the ciphertext
(see [22, Remark 7]). We now show that this variant is still vulnerable to IND-
CCA attacks.

3.2 An IND-CCA attack on Moriya et al.’s variant

In this version of SiGamal, a ciphertext for m is of the form ([b]E0, bP0, [2m +
1]bP1) and the decryption process is identical to that of the original SiGamal.
We prove the following lemma.

Lemma 1. Let (m, c) be a pair of plaintext-ciphertext, and let m′ be any other
plaintext. One can compute a valid ciphertext for m′ in polynomial time.

Proof. Write c = ([b]E0, bP0, [2m+1]bP1). Since 2m+1, 2m′+1 ∈ Z×2r , then α =
(2m+ 1)(2m′+ 1)−1 ∈ Z×2r . Since the curve [b]E0 and its point bP0 are available
in c, then the ciphertext c′ = ([b]E0, [α]bP0, [2m + 1]bP1) can be efficiently
computed at the cost of a point multiplication by α.

We now show that c′ is a valid encryption ofm′. To decrypt c′, Alice computes
[a][b]E0 and a([α]bP0) = [α]abP0, then she solves a discrete logarithm problem
between [2m + 1]bP1 = [2m + 1]abP0 and [α]abP0. We have

[2m + 1]abP0 = [α−1(2m + 1)][α]abP0.

Hence the solution of the discrete logarithm problem is

M ′ = ±α−1(2m + 1) = ±(2m′ + 1)(2m + 1)−1(2m + 1) = ±(2m′ + 1).

It follows that the corresponding plaintext (after changing M ′ to 2r −M ′ when
necessary) is (M ′ − 1)/2 = m′.

Corollary 1. The variant of SiGamal suggested by Moriya et al. in [22, Remark
7] is not IND-CCA secure.

4 InSIDH (Intermediary Supersingular Isogeny
Diffie-Hellman)

We now introduce a new protocol that resists the previous attack. Its name
highlights the fact that our scheme is intermediary between CSIDH and SiGamal,
and the fact that it provides additional insight on the relationships between
CSIDH and SiGamal.
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4.1 Overview

We observe that the attack presented in the previous section is effective because
the ciphertext contains the curve bE0 and its 2r-torsion points bP0.

InSIDH is obtained by adjusting SiGamal in such a way that when a curve is
part of the ciphertext, then none of its points is, and the other way around. In
order to achieve this, we replace the point abP0 in the the (C)SiGamal protocol
by a canonical point PE4

∈ E4 = [a][b]E0. More concretely, in InSIDH, Alice’s
secret key is an ideal class [a], and her public key is the curve E1 = [a]E0. To
encrypt a message m, Bob chooses a uniformly random ideal class group [b], he
computes E3 = [b]E0, E4 = [b]E1 and he then canonically computes a point
PE4 ∈ E4(Fp) of smooth order 2r|p + 1. He sends E3 and P4 = [2m + 1]PE4 to
Alice. In order to recover m, Alice computes E4 = [a]E3 and PE4 , then solves
a discrete logarithm instance in a group of order 2r using the Pohlig-Hellman
algorithm. Figure 1 pictures the scheme.

Fig. 1: InSIDH scheme. The elements in black are public, while those in blue are
known only by Bob and those in red only by Alice.

The IND-CCA attack presented in Section 3.2 is no more feasible in InSIDH
since no point of the curve E3 nor the curve E4 are part of the ciphertexts.

4.2 The InSIDH public key encryption protocol

Now let us concretely describe the key generation, encryption and decryption
processes. We use the Algorithm 1 to canonically compute the point PE ∈ E(Fp)
of order 2r|p+ 1.

Before we describe the protocol, let us notice that revealing P4 or it x-
coordinate may leak too much information about the curve E4. To avoid this,
we make use of a randomizing function fE : Fp → Fp, indexed by supersingular
curves defined over Fp, satisfying the following conditions:

– fE is bijective, fE and its inverse gE = f−1E can be efficiently computed
when E is given;

– for every element x ∈ Fp, an adversary having no access to x and E can not
distinguish fE(x) from a random element of Fp;

– for every element x ∈ Fp, for every non identical rational function R ∈
Fp(X), an adversary having no access to x and E can not compute fE(R(x))
from fE(x).
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Example 1. In the proof of concept implementation in Section 5, we use the
function fE : x 7→ x′ where bits(x′) = bits(x) ⊕ bits(AE) and bits(·) takes an
element in Fp and returns its binary representation.

Having such a function, InSIDH is designed as follows.

Key Generation: Let p = 2r`1 · · · `n− 1 be a prime such that `1, · · · , `n are small
distinct odd primes and λ + 2 ≤ r ≤ 1

2 log p where λ is the security parame-
ter. Let E0 be the elliptic curve y2 = x3 + x. Alice takes a random ideal class
[a] ∈ cl(Z[π]), computes E1 := [a]E0. Her public key is E1 and her private key is
[a]. The plaintext space is the set M = Z2r−2 .

Encryption: Let m ∈ Z2r−2 be a plaintext, Bob embeds m in Z×2r via m 7→ 2m+1.
Bob takes a random ideal class [b] ∈ cl(Z[π] and computes E3 = [b]E0, E4 =
[b]E1 and P4 = [2m + 1]PE4 . He sends (E3, x

′ = fE4(x(P4))) to Alice as the
ciphertext.

Decryption: Upon receiving (E3, x
′), Alice verifies that E3 is a supersingular

curve, computes E4 = [a]E3 and PE4
. If gE4

(x′) is not the x-coordinate of a
2r-torsion point on the curve E4, then Alice aborts. She solves the discrete log-
arithm instance between P4 = (gE4

(x′),−) and PE4
using the Pohlig-Hellman

algorithm. Let M ∈ Z×2r be the solution of this computation. If 2r−1 < M , then
Alice changes M to 2r −M . She computes the plaintext (M − 1)/2.

Theorem 2. InSIDH is correct.

Proof. As in CSIDH, the Montgomery coefficients of the curves [a][b]E0 and
[b][a]E0 are equal. Therefore Alice and Bob obtain the same distinguish point
PE4 . Since the points PE4 and P4 = [2m+ 1]PE4 have order 2r, then the Pohlig-
Hellman algorithm can be implemented on their x-coordinates x(P4) = gE4(x′)
and x(PE4

) only to recover M ≡ ±(2m + 1) mod 2r. Since m ∈ Z2r−2 , then
2m+ 1 < 2r−1. Alice changes M to 2r −M if 2r−1 < M , then she computes the
plaintext (M − 1)/2 = m.

Remark 1. Instantiating InSIDH with SIDH would lead to a PKE scheme which
is not IND-CCA secure because SIDH is vulnerable to adaptive attacks [15].

4.3 Security arguments

We prove that the IND-CPA security of InSIDH relies on Assumption 2. We
also prove that InSIDH is IND-CCA secure under a Knowledge of exponent-
type assumption which we introduce.

Theorem 3. If Assumption 2 holds, then InSIDH is IND-CPA secure.

Proof. We adapt the proof of [10, Theorem 1] to our setting. Let us suppose
that InSIDH is not IND-CPA secure, then there exists a PPT adversary A that
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can successfully distinguish whether a given ciphertext (E3, x
′) was encrypted

from a plaintext m0 or m1 with a non negligible advantage γ. We will use A to
construct a PPT CSSIDDH solver A′ that breaks Assumption 2.

Let (E0, [a]E0, [b]E0, E) be a tuple given to us as a CSSIDDH instance input.
Our goal is to decide if this is a correct tuple ([a][b]E0 = E) or a bad tuple
([a][b]E0 6= E).
Let T be the following two-steps test.

– Simulation. One simulates an InSIDH instance using (E0, [a]E0, [b]E0, E).
Concretely, one computes PE , secretly chooses a random bit b ∈ {0, 1} and
returns the ciphertext c = ([b]E0, fE(x([2mb + 1]PE))).

– Query A. One queries A with the ciphertext c and gets a response b′. The
result of the test T is 1 if b = b′ and 0 if b 6= b′.

Now we distinguish two cases.

Case 1: the adversary A can detect invalid ciphertexts by returning
an error message. Here we run the test T once.
If the result of the query step is an error message instead of a bit, then c is an
invalid ciphertext. Hence E 6= [a][b]E0.
If in the query step A returns a bit b′, then c is a valid ciphertext. Hence
[a][b]E0 = E.
We therefore construct our CSSIDDH solver A′ as follows: if the query step
result is an error message, A′ returns bad; if it is a bit, A′ returns correct.

Case 2: the adversary A cannot detect invalid ciphertexts. Here the
query step result will always be a bit b′. The CSSIDDH solver A′ repeats the
test T and studies the proportion PrT (1) of 1’s obtained.
Suppose that (E0, [a]E0, [b]E0, E) is a correct tuple, then all the ciphertexts c
computed in the simulation steps are valid, hence the adversary A has the same
advantage as in an actual attack. Therefore,

PrT (1) =
1

2
+ γ.

On the other hand, let suppose that (E0, [a]E0, [b]E0, E) is a bad tuple. Then
[a][b]E0 6= E and the ciphertext c is invalid. Since A does not have access to
E and x([2mb + 1]PE), then x′ = fE(x([2mb + 1]PE)) is random, therefore the
output b′ of the query step is independent of b. Hence one expects to have roughly
the same number on 1’s and 0’s after repeating the test T several times. This
implies that

PrT (1) =
1

2
± ngl(λ).

We therefore construct our CSSIDDH solver A′ as follows: if PrT (1) = 1
2±ngl(λ),

then A′ returns bad; if not, then A′ returns correct. ut

Compared to the IND-CPA game setting, the adversary also has access to a
decryption oracle O(·) in the IND-CCA game setting. To prove that InSIDH is
IND-CCA secure, it is sufficient to prove that the decryption oracle is useless.
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This immediately follows if we assume that no PPT adversary having access to
E0, E1 and a valid ciphertext c, can produce a brand new valid ciphertext c′

unless she encrypts c′ herself. This is formalized in the following assumption.

Assumption 3 The CSSIKoE (Commutative Supersingular Isogeny Knowledge
of Exponent) assumption is stated as follows.
Let λ be a security parameter, let p = 2r`1 · · · `n − 1 be a prime such that
λ + 2 ≤ r ≤ 1

2 log p. Let [a] be a uniformly sampled element of cl(Z[π]). Let
c = (E3, x

′) be a valid ciphertext.
Then for every PPT adversary A that takes E0, [a]E0, c as inputs and returns a
valid ciphertext (F, y′) 6= c, there exists a PPT adversary A′ that takes the same
inputs and returns ([b], F, y′) where [b] ∈ cl(Z[π]) such that F = [b]E0.

This assumption is analogous of the “knowledge of exponent” assumption
(see Appendix A) introduced by Damg̊ard in the context of discrete logarithm-
based cryptography [11] and also used in [16].

Theorem 4. Let us suppose that InSIDH is IND-CPA secure, and that Assump-
tion 3 holds. Then InSIDH is IND-CCA secure.

Proof. Let us suppose that Assumption 3 holds and InSIDH is not IND-CCA
secure, and let us prove that InSIDH is not IND-CPA secure.

Since InSIDH is not IND-CCA secure, then there exists a PPT adversary
AO(·) = (A1, O(·)) (where O(·) is the decryption oracle) that successfully deter-
mines if a given ciphertext c is that of a plaintext m0 or m1 with a non negligible
advantage γ.

Suppose that the adversary AO(·) queries the decryption oracle O(·) with
some valid ciphertexts c1 = (F1, x1), · · · , cn = (Fn, xn) computed by A1. By As-
sumption 3, there exists a polynomial time algorithm A2 that when outputting
c1 = (F1, x1), · · · , cn = (Fn, xn) also outputs the ideal classes [b1], · · · , [bn] such
that Fi = [bi]E0 for i ∈ {1, · · · , n}. From the knowledge of the ideal classes
[b1], · · · , [bn] and [a]E0, the adversary A2 successfully decrypts c1, · · · , cn.
Replacing the decryption oracle O(·) by A2, we obtain an adversary A′ =
(A1,A2) that successfully determines if a given ciphertext c is that of m0 or
m1 with advantage γ (which is non negligible) and without making any call to
the decryption oracle. This contradicts InSIDH’s IND-CPA security. ut

5 Implementation results

Here we present the experimentation results obtained by adapting the code of
SiGamal [21]. The implementation is done using the two primes proposed by
Moriya et al. for SiGamal.

SiGamal prime p128. Let p128 be the prime 2130 · `1 · · · `60 − 1 where `1 through
`59 are the smallest distinct odd primes, and `60 is 569. The bit length of p128 is
522. The private key bound is m = 10.
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SiGamal prime p256. Let p256 be the prime 2258 · `1 · · · `43 − 1 where `1 through
`42 are the smallest distinct odd primes, and `43 is 307. The bit length of p256 is
515. The private key bound is m = 32.

All the costs (number of field multiplications, where 1S=0.8M and 1a=0.05M)
of CSIDH presented are done with the csidh-512 prime (of 512 bits) while those
of InSIDH, SiGamal and C-SiGamal are with p128 and p256. The costs presented
in Table 1 and Table 2 are the average costs of 20, 000 rounds of key generation,
encryption and decryption of each scheme.

Prime csidh-512 p128 p256
Scheme CSIDH InSIDH (C)SiGamal InSIDH (C)SiGamal

Costs 441, 989 576, 124 663, 654 1, 023, 400 1, 140, 189

Table 1: Cost of class group action for CSIDH, SiGamal, C-SiGamal and InSIDH.

p128 p256
KGen Enc. Dec. KGen Enc. Dec.

C-SiGamal
663, 594

1, 433, 805 767, 176
1, 151, 447

2, 685, 714 1, 528, 020
SiGamal 1, 326, 856 760, 861 2, 208, 530 1, 536, 829

InSIDH 576, 124 1, 159, 533 679, 733 1, 023, 827 2, 057, 297 1, 417, 401

Table 2: Computational costs for C-SiGamal, SiGamal, and InSIDH.

Remark 2. In this proof of concept implementation, the class group algorithm
considered does not take into account the improvements in [4], [2], [3].

6 Comparison with SiGamal and CSIDH

Here we compare InSIDH, (C-)SiGamal and CSIDH (or CSIDHpke more pre-
cisely). The comparison is done at four levels: design, security, keys and cipher-
text sizes, and efficiency.
Design. At the design level, InSIDH seats between (C)SiGamal and CSIDH.
InSIDH’s private keys are ideal classes, as in CSIDH, while in (C)SiGamal they
are integral ideals. In the class group action in (C-)SiGamal, a point has to be
mapped through the isogeny as well, as opposed to CSIDH and InSIDH.
Securiy. Security wise, InSIDH IND-CPA security relies on CSIDH assumptions,
contrarily to SiGamal whose IND-CPA security relies on new assumptions. More-
over, InSIDH is IND-CCA secure.
Keys and ciphertext sizes. The size of InSIDH’s ciphertexts is equal to that of
C-SiGamal’s ciphertexts, and is half that of SiGamal ciphertexts. The size of
InSIDH’s public keys is half that of the public keys in SiGamal and C-SiGamal.
The size of the private key in (C)SiGamal, compared to that of InSIDH, is
augmented by r bits that are used to store the integer α such that the secret
ideal a is in the form a = (α)le11 · · · lenn .
Efficiency. InSIDH is more efficient compared to SiGamal and C-SiGamal when
using the same primes. From the results in Table 1, we have that for the prime
p128, the InSIDH class group action computation is 1.15x faster than that of
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(C)SiGamal and is 1.30x slower than that of CSIDH; and for the prime prime
p256, it is 1.11x faster than that of (C)SiGamal and is 2.31x slower than that of
CSIDH. For Encryption and decryption with the prime p128, InSIDH is about
1.13x faster than SiGamal and about 1.19x faster than C-SiGamal. For the prime
p256, we get a 1.07x speedup when compared to SiGamal and a 1.21x speedup
when compared to C-SiGamal.
We summarize the comparison in Table 3.

CSIDHpke InSIDH SiGamal C-SiGamal
Private key [a] [a] a a
Size of plaintext log2 p r − 2 r − 2 r − 2
Size of Alice’s public key log2 p log2 p 2 log2 p 2 log2 p
Size of ciphertexts (or Bob’s public key) 2 log2 p 2 log2 p 4 log2 p 2 log2 p
Class group cost for p128 compared to CSIDH x1.00 x1.30 x1.50 x1.50
Class group cost for p256 compared to CSIDH x1.00 x2.31 x2.57 x2.57
Enc + Dec cost for p128 compared to CSIDHpke x1.00 x1.38 x1.57 x1.65
Enc + Dec cost for p256 compared to CSIDHpke x1.00 x2.62 x2.82 x3.17
Security OW-CPA IND-CCA IND-CPA IND-CPA

Table 3: Comparison between CSIDHpke, InSIDH, SiGamal and C-SiGamal.

7 Conclusion

In this paper, we revisited the protocols introduced by Moriya et al. at Asi-
acrypt2020, and obtained several results. We proved that the variant of SiGa-
mal suggested by Moriya et al. is not IND-CCA secure. We construct a new
isogeny based PKE scheme InSIDH by simplifying SiGamal in such a way that
it resists the IND-CCA attack on SiGamal and its variants. InSIDH is more effi-
cient than SiGamal and it has smaller private keys, public keys and ciphertexts.
We prove that InSIDH is OW-CPA and IND-CPA secure relying on CSIDH as-
sumptions. We introduce a Knowledge of Exponent assumption in the isogeny
context. Relying on the later assumption, we prove that InSIDH is IND-CCA se-
cure. Interestingly, InSIDH is also closer to CSIDH than SiGamal was, allowing
for a better comparison between those two protocols.

The Knowledge of Exponent assumption we introduce is new, we leave a
better study of it for future work. Nevertheless, it may have other applications
in isogeny based cryptography.
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Assumption 4 (Knowledge of Exponent assumption [23]) Let G = 〈g〉
be a cyclic group of prime order q where q is of cryptographic size. Let x be a
uniformly random exponent in {2, · · · , q−1} and let h = gx. The adversary tries
to compute h1, h2 ∈ G such that h1 = gz and h2 = hz for some z ∈ {2, · · · , q−1}.
The knowledge of exponent assumption holds if for every polynomial time adver-
sary A that when given g, q and h outputs (gz, hz), there exists a polynomial
time adversary A′ that for the same inputs outputs (z, gz, hz).

Intuitively, this assumption states that the only efficient way to compute
(gz, hz) is to first fix z, then to compute gz and hz.

In InSIDH, the ciphertexts are of the form c = ([b]E0, f[b][a]E0
(x([2m0 +

1]P[b][a]E0
)). Assumption 3 states the only efficient way to compute a valid ci-

phertext is to first fix the ideal class [b], then run the encryption algorithm of
InSIDH to compute c = ([b]E0, f[b][a]E0

(x([2m0 + 1]P[b][a]E0
)).

B Generating the distinguished point of order 2r

Here we discuss how when given a supersingular curve E defined over Fp where
p = 2r`1 · · · `n− 1, one can efficiently generate a distinguished point PE of order
2r. The algorithm used by Moriya et al. in C-SiGamal to generate such a point
mainly relies on the following result.

Theorem 5. ([22, Appendix A]) Let p be a prime such that p ≡ 3 mod 4 and let
E be a supersingular Montgomery curve defined over Fp satisfying EndFp(E) ∼=
Z[π]. Let P ∈ E.
If P ∈ E[π − 1] \ E[2], then x(P ) ∈ (F∗p)2 ⇐⇒ P ∈ 2E[π − 1].
If P ∈ E[π + 1] \ E[2], then x(P ) /∈ (F∗p)2 ⇐⇒ P ∈ 2E[π + 1].

Hence when searching for the x-coordinate of points of order 2r in E, we need
to avoid elements of Fp that are squares. Since p = 2r`1 · · · `n − 1 with r > 1,

then
(
−1
p

)
= −1,

(
2
p

)
= 1 and

(
`i
p

)
= 1 for i ∈ {1, · · · , n}. Furthermore,

let us suppose that `1, · · · , `n−1 are the first smallest odd primes, then for

every I ⊂ {0, 1, · · · , n − 1},
(
−

∏
i∈I `i
p

)
= −1 where `0 = 2. Moriya et al.’s

Algorithm [22, Appendix A] exploits this to consecutively sample x from the
sequence −2,−3,−4, · · · and when x is the x-coordinate of a point in E(Fp), it
checks if this point has order divisible by 2r. Corollary 2 proves that if a such x
is the x-coordinate of a point in E(Fp) then the corresponding point has order
divisible by 2r, hence the check is not necessary.

Corollary 2. Let p be a prime such that p ≡ 3 mod 4 and let E be a super-
singular Montgomery curve defined over Fp satisfying EndFp(E) ∼= Z[π]. Let
P ∈ E(Fp) such that x(P ) 6= 0.
If x(P ) /∈ (F∗p)2 then [`1 × · · · × `n]P is a point of order 2r.

Proof. Since E(Fp) = E[π − 1] is a cyclic group, then there exist a point Q
of order p + 1 = 2r`1 · · · `n such that E(Fp) = 〈Q〉. Set P = [αP ]Q. Since
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E is in the Montgomery form, then E(Fp) ∩ E[2] = 〈(0, 0)〉. Since x(P ) 6= 0,
then P ∈ E[π− 1] \E[2]. Let us suppose that x(P ) /∈ (F∗p)2, then by Theorem 5
P /∈ 2E[π−1], hence αP is odd. Therefore, gcd(p+1, αP ) = gcd(2r`1 · · · `n, αP ) =
gcd(`1 · · · `n, αP ). This implies that P = [αP ]Q is a point of order

p+ 1

gcd(p+ 1, αP )
= 2r · `1 · · · `n

gcd(`1 · · · `n, αP )
.

Hence [`1 × · · · × `n]P is a point of order 2r.

Exploiting Corollary 2 we get Algorithm 1 which improves on that used by
Moriya et al. for the same purpose.

Algorithm 1 Computing the distinguished point PE

Require: The prime p = 2r`1 · · · `n − 1 and Montgomery coefficient A ∈ Fp of
a supersingular curve.

Ensure: PE ∈ E(Fp) of order 2r.
1: Set x← −2
2: while x3 +Ax2 + x is not a square in Fp and −x ≤ `n−1 + 1 do
3: Set x← x− 1

4: if −x ≤ `n−1 + 1 then
5: Set P = (x, ·) ∈ E(Fp)
6: Set PE = [`1 × · · · × `n]P
7: return PE
8: else
9: return ⊥.

A random element x ∈ F∗p \ (F∗p)2 is the x-coordinate of a point P ∈ E(Fp)
with probability 1

2 . The probability that Algorithm outputs ⊥ is bounded by(
1
2

)`n−1
. For SiGamal primes p256 and p128 (see Section 5), `n−1 is 191 and 281

respectively, hence the output is ⊥ with probability 2−191 and 2−281 respectively.

Remark 3. Algorithm 1 is deterministic, hence always outputs the same point
PE when the input in unchanged.
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