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Abstract1

As many ecosystems worldwide are in peril, efforts to manage them sustainably require scientific2

advice. While numerous researchers around the world use a great variety of models to understand3

ecological dynamics and their responses to disturbances, only a small fraction of these models are4

ever used to inform ecosystem management. There seems to be a perception that ecological models5

are not useful for management, even though mathematical models are indispensable in many other6

fields. We were curious about this mismatch, its roots, and potential ways to overcome it. We7

searched the literature on recommendations and best practices for how to make ecological models8

useful to the management of ecosystems and we searched for “success stories” from the past. We9

selected and examined several cases where models were instrumental in ecosystem management.10

We documented their success and asked whether and to what extent they followed recommended11

best practices. We found that there is not a unique way to conduct a research project that is12

useful in management decisions. While research is more likely to have impact when conducted with13

many stakeholders involved and specific to a situation for which data are available, there are great14

examples of small groups or individuals conducting highly influential research even in the absence15

of detailed data. We put the question of modelling for ecosystem management into a socioeconomic16

and national context and give our perspectives on how the discipline could move forward.17
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1 Introduction18

Edward O. Wilson said that “It’s obvious that the key problem facing humanity in the coming19

century is how to bring a better quality of life—for 8 billion or more people—without wrecking the20

environment entirely in the attempt”1. Many ecosystems and agro-ecosystems around the globe21

are disrupted (Messerli and Murniningtyas, 2019), species extinctions exceed the basic rate more22

than a hundred times, and crises and regime shifts are becoming frequent phenomena (Ceballos23

et al., 2015). Scientifically based, consistent, and sustainable ecosystem management is required24

to avert global disaster. We share with others the conviction that a management task of this scale25

and importance needs to be based on a rigorous theory and mathematical modelling (Karunaratne26

and Asaeda, 2002; De Lara and Doyen, 2008; Fulford et al., 2020). We say this despite a common27

perception that mathematical models for ecological processes are not as useful and widespread as28

their counterparts in other areas (Peters, 1991; Sagoff, 2016). The goal of our work is to evaluate29

this perception and to identify ways in which mathematical models have been, and can continue30

to be, instrumental in generating understanding of ecological systems in general and of sustainable31

ecosystem management in particular.32

Mathematical models have a long and distinguished history in ecological theory and have been33

applied to questions of endangered species conservation (Lebreton and Clobert, 1991; Green et al.,34

2005; Williams et al., 2004), biological invasion (Shigesada et al., 1995; Petrovskii and Li, 2005;35

Lewis et al., 2016) and many others. Such models come in many different forms, from simple36

statistical correlation or differential equation models to complex simulation scenarios. The inherent37

complexity of ecological systems and processes is one reason why mathematical models are of38

key importance. A model can act as a ‘virtual laboratory’ (Caswell, 1988; Milton and Ohira,39

2014), where hypotheses can be tested and various scenarios and different management strategies40

can be investigated under controlled conditions, safely and at relatively low cost compared to41

experiments and empirical work (DeAngelis et al., 1998; Francis and Hamm, 2011; Österblom42

et al., 2013; Dietze, 2017). However, the use of mathematical models in ecosystems management is43

not as widespread as in many other areas, such as aerospace engineering, finance, hydrology, power44

grid regulation, disaster preparedness, etc. (Sengupta and Bhumkar, 2020; Howison et al., 1995;45

Singh and Woolhiser, 2002; Deng et al., 2015; Steward and Wan, 2007), where they have become46

indispensable tools to managers. Nonetheless, prominent success stories do exist, a fraction of47

which we revisit in this paper, and inspire us to study ways in which mathematical modeling can48

be better integrated into ecosystems management.49

We focus on mechanistic mathematical models that describe how the state of a system and50

the fate of its constituent species and substances evolve over time. Recent advances in modeling,51

analysis and computing capabilities have increased the emphasis and usefulness of mechanistic52

models. This can include models formulated as traditional dynamical systems in the form of53

(potentially stochastic) differential and difference equations, or, more recently emerging interacting54

particle and agent-based models (Bousquet and Le Page, 2004; Parrott et al., 2011).55

Despite all recent advances and successes, only a small portion of ecological modelling research56

is used in management, regulatory, and decision-making processes. Given the sheer magnitude of57

the challenges that we face and the success of mathematical models in other areas, this disconnect58

seems surprising, to say the least. It also indicates a great untapped potential in dealing with59

some of the foremost challenges of our times. In this study, we endeavour to gain insight into60

this disconnect. We give examples of mechanistic ecological models that have had great impact in61

management and decision making. We give insights to modelers for how to make their work more62

1As told to Fred Branfman “Living in Shimmering Disequilibrium” Salon.com, April 22, 2000.
https://www.salon.com/2000/04/22/eowilson/
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relevant for applications to sustainable ecosystem management, and pave the way for mechanistic63

ecological models to take a prominent role in supporting decision making for a sustainable future.64

To affect the decision-making process, one has to know its components and their interplay. We do65

not explicitly study it here in detail because this has been done elsewhere, see, e.g., Dafoe (2003)66

and references therein. We do, however, mention various aspects of this process throughout our67

work where this context information is necessary.68

It is sometimes helpful to categorize the broad variety of process-based models according to69

various criteria, but such a classification is neither obvious nor unique. Classification according to70

mathematical criteria (e.g., deterministic or stochastic, discrete or continuous) can be helpful for71

experts but gives little information about predictive or explanatory power. We will refer to the72

distinction that Holling (1966) proposed between strategic models, which are simple yet capable of73

revealing potential explanatory generalities, and tactical models, which are designed to predict the74

dynamics of specific systems and tend to be more complex. Such distinctions about models are not75

always so clear, and sometimes the classification may refer to an objective. Other classifications76

exist, for example by Levins (1966) who rated models on the three axes of generality, realism and77

precision; see Evans et al. (2013) for a review and discussion of this and other approaches.78

We begin by reviewing the current literature on the topic from both academic and government79

sources, and we highlight their recommendations in terms of presentation, collaboration, and type80

of model to use. Then we critically analyse several success stories, where mechanistic models,81

published in the scientific literature, had significant impact on policy and decision making. We82

consider a variety of attributes for each study, from simple article metrics and the type of model83

used to questions of model presentation and urgency of the problem. By contacting the authors,84

we also investigate the level of collaboration between researchers and managers or decision makers85

throughout the research process. We discuss a few specific “pathways to success” that are common86

in this area. We also reveal how the communication between the academic researcher community87

on the one hand, and the community of managers and decision makers on the other, is organized88

in different countries around the world, and how different standards can create obstacles for col-89

laboration while other aspects can become opportunities for collaboration. We believe that our90

analysis and findings will prove helpful to theoretical ecologists and ecological modelers interested91

in learning how to facilitate the uptake of their research by decision makers.92

2 Characteristics of models for environmental decision-making93

Models have long been essential for ecological theory in explaining how ecological systems work94

and have been used in a more applied manner in special areas of environmental management, such95

as ecotoxicological risk assessment (Pastorok et al., 2003), integrated pest control (Huffaker, 1980),96

wildlife management (Norton and Possingham, 1993), fisheries (Collie et al., 2016), and invasive97

species (Epanchin-Niell et al., 2012; Liebhold et al., 2016).98

Some of the first ecological models used in the realm of legal decision-making were linear com-99

partmental models (ordinary differential equations). Such models can be used to trace the fate of100

a substance through the environment (Sheppard, 1948). Motivated by the fallout of radionuclides101

from nuclear weapons testing, food chain compartment models were developed to follow the move-102

ment and concentration of those and, later, other contaminants. Reichle and Auerbach (2003) note103

that “Food chain models have had important application in developing regulatory standards for104

environmental exposures (ingestion) and in developing risk analysis for chemical release”, although105

these models did not simulate the dynamics of these food chains, only the movement of chemicals106

through the static chains.107
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Nevertheless, applications of mechanistic models in important environmental management de-108

cisions have remained rare. Skepticism still exists among many ecologists and managers on the109

usefulness of ecological models in management (Clark and Schmitz, 2001; Lester, 2019). According110

to Bunnell (1989), this problem of trust has emerged from numerous failures of models to pro-111

vide useful information to environmental problems. He identifies some of the main reasons for112

this failure, including models not addressing managers’ real questions, there not being an actual113

user envisioned at the start of model development, and model complexity exceeding what can be114

supported by data, leading to models not being adequately evaluated. Wright et al. (2020) found115

that there is often a big gap between finding an optimal solution for a given conservation chal-116

lenge and implementing it. It is therefore possible that the perceived lack of usefulness of models117

in conservation decisions is attributable to challenges in implementation and not to the models118

themselves.119

A number of authors have made recommendations for how to improve ecological modeling de-120

signed for decision-making. A few key pieces of advice can be summarized. First, there is broad121

agreement that a clear statement of the model objective is needed (Pastorok et al., 1997; Starfield,122

1997; Clark, 2010; Nichols, 2001; Glaser and Bridges, 2007; Grimm et al., 2020). Formulation of123

a clear objective includes deciding what the key variables are, the types of outputs, and the data124

requirements to attain the objective. Second, there must be close coordination between environ-125

mental decision makers and modelers to develop a common understanding so that the science can126

be transferred to managers (Swannack et al., 2012; Schuwirth et al., 2019) and other stakeholders127

(Parrott, 2017; Schmolke et al., 2010). Third, only those features that are essential to the objective128

should be included in the model (Nichols, 2001). Fourth, clear measures should be identified to129

evaluate the model’s success in attaining its objective (Starfield, 1997). Fifth, as noted by Bunnell130

(1989), working in teams is important, as most management problems are multidisciplinary and131

require several types of expertise. However, some of our examples will show that large interdisci-132

plinary teams are not necessary for producing high impact papers.133

A systematic strategy for using models for environmental decision support is proposed by134

Schmolke et al. (2010). In addition to the principles noted above, they stress the importance of an135

initial conceptual model formalization that includes all of the assumptions and a careful selection136

of the appropriate complexity level for the problem. They list the standard processes of param-137

eterization, verification of the correct formulation, sensitivity analysis, uncertainly quantification,138

validation, and thorough documentation of steps.139

Government agencies charged with making decisions about the environment have often devel-140

oped their own standardized protocols for model development and application. Swannack et al.141

(2012) describe this process for ecological restoration by the U.S. Army Corps of Engineers. In142

theory, the modeling process develops smoothly from the conceptual model development through143

the quantitative model and evaluation to application. In practice, the process is more iterative,144

with both conceptual and quantitative models being changed as problems are met or new ideas145

arise along the way. Problems may include data gaps for key parts of the model, which may have146

to be filled with expert opinion (Lester, 2019). Such a process of successive model elaboration and147

refinement has also been described by Getz et al. (2018).148

In such agency models, documentation and communication are essential parts of the process149

(Swannack et al., 2012). Communication is essential at all stages of the modeling process, including150

a clear statement of the objectives to stakeholders at the outset (see above). Cartwright et al. (2016)151

give a comprehensive guide on how to effectively communicate each aspect of the process, including152

schematics for presentations. To assist in decision-making, complex output must be communicated153

effectively. Communication with stakeholders may be improved by linking mental models of the154

stakeholders in the simulation models themselves (Elsawah et al., 2015).155
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There are many styles of ecological models, and there has been debate over which approaches156

are best for models aimed at decision-making. Norton and Possingham (1993) provide a taxonomy157

of various kinds of wildlife models. They felt that dynamic spatial simulation models were best for158

projecting various management scenarios and responses of systems to climate change. The most159

appropriate models for projecting novel situations may be process-driven models, which are based160

on a theoretical understanding of relevant ecological processes (Evans et al., 2013; Cuddington et al.,161

2013; Schuwirth et al., 2019). If knowledge of the basic processes is available, especially at the level162

of individuals, these models can project the response of an ecological system to changing land use163

and climate. They can help distinguish among the relative benefits of management alternatives and164

test hypotheses (Glaser and Bridges, 2007; Lester, 2019). Process models have also been useful in165

providing and suggesting ‘optimal’ ways to apply management in these areas (Clark, 2010; Huffaker,166

1980; Buongiorno and Gilless, 1987). However, data at the level of detail needed are not always167

available. As an alternative, Sutherland et al. (2012) propose that models for decision-making168

use an empirically driven approach; that is, use phenomenological relationships. Even though169

processes are modeled explicitly, they are simplified as transitions between coarse-grained states,170

so the demand on data is reduced.171

Robson (2014) observed that “ecological models only provide management-relevant predictions of172

the behaviour of real systems when there are strong physical (as opposed to chemical or ecological)173

drivers.” Such a statement reflects the fact that planning frequently serves the goal of controlling a174

system by engineered structures and processes. Hydrology is one example of a strong physical driver175

in freshwater systems. An example is the massive Everglades restoration project, where highly176

detailed and validated hydrological models and physical structures are used to predict and regulate177

water flow, water depth, and other aspects. Management impact on biological populations is178

then evaluated according to habitat suitability models, which are, in their simplest form, statistical179

correlation models based on natural history (Beerens et al., 2015). Linking hydrology to population180

dynamic models has been rarer, but an apple snail population model by Darby et al. (2015) is181

currently officially accepted and implemented by the U.S. Army Corps of Engineers who oversee182

the project. Models such as these, that combine physical and ecological components, sometimes183

referred to as ‘hard science–soft science’ models (Ziman, 2002), could be an avenue for mechanistic184

ecosystem models to gain importance in planning and management as in Darby et al. (2015).185

Similarly, river flow regulation and water extraction permits are typically based on instream186

flow needs, which, in turn, use habitat suitability models for fish and stream invertebrates (Gibbins187

et al., 2007). Phosphorous is considered the main driver for phytoplankton dynamics in lakes,188

and the control of algal blooms is typically based on restrictions for nutrient loading in tributary189

rivers. In all these cases, there exist mechanistic models for populations and communities for190

some of the species involved, and such models provide interesting insights into their sometimes191

complex dynamic behavior, but they are rarely included in official management plans and practice192

(Anderson et al., 2006a). More recently, predictions of how populations respond to climate change193

are based on climate envelope models that couple the physical drivers (e.g., temperature) with194

habitat suitability correlations (Elith and Leathwick, 2009). More mechanistic models exist that195

reveal dynamics other than those predicted by climate envelope models (Harsch et al., 2017) but196

we are unaware of management applications.197

We can say then that a great deal of advice has been provided on methodology for developing198

modeling relevant to environmental decision making. But actual applications to such decision199

making have been limited to relatively simple, largely non-mechanistic, modeling approaches. It200

is clear that, ultimately, precision, feasibility, and principles of engineering need to be matched201

with mechanisms and complexity of ecosystems for successful sustainable management. In the next202

section, we present our approach to identifying features of mechanistic models that had impact on203
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management decisions and explain some of their characteristics.204

3 Analysis of success stories205

An early success story of the influence of mechanistic ecological models in legislation was the206

regulation of dichloro-diphenyl-trichloroethane (DDT). During the 1950s, growing concern about207

the effects of DDT on thinning bird eggshells and its possible carcinogenicity culminated in Rachel208

Carson’s book “Silent Spring” in 1962. The concerns voiced in the book eventually led to a ban209

on the use of DDT in the United States by the U.S. Environmental Protection Agency in 1972210

(Peterle, 1991). Before that, court actions had been initiated in Wisconsin to classify DDT as a211

pollutant. In these court proceedings during 1968-69, charts and equations were presented that212

described the bioaccumulation of DDT in and through the trophic levels of an ecosystem (Loucks,213

1972; Harrison et al., 1970). Although there was some later criticism of the lack of verification of214

the model, the result of the court proceedings was that the Examiner of the Wisconsin Department215

of Natural Resources ruled that DDT and its analogs were environmental pollutants (Henkin et al.,216

1971). Unfortunately, not many such success stories are documented in the literature.217

We authors wondered why such success stories are rare and tried to find more examples while218

we all participated in a workshop entitled “New Mathematical Methods for Complex Systems in219

Ecology” at the Banff International Research Station for Mathematical Innovation and Discovery220

(BIRS)2. We were curious about what makes a modelling paper influential in management decisions,221

so we asked the workshop participants for suggestions of papers with such success stories. For each222

of the suggested papers, we compiled a number of factors that we expected could be relevant for223

work that has impact in management of ecosystems. We could determine each paper’s performance224

with respect to several of these factors by consulting the published record, mostly standard metrics225

such as number of citations or the impact factor of the journal, and objective characteristics such226

as the type of model used or whether data was considered in the study. Other aspects that have227

been deemed crucial for success, such as clear communication and model presentation (see previous228

section), are somewhat subjective and more difficult to evaluate. Even more difficult to evaluate229

is the impact that a given publication has had. Rarely is this impact documented in the actual230

publication; at best it can sometimes be found in subsequent publications by the same author(s).231

When there was no clear documentation of impact, we contacted the authors directly and asked232

them about the impact of their work, the involvement of stakeholders and their contribution to233

success. Most authors replied to our requests and explained how management impact arose from234

their work. Table 1 lists the papers that we chose to highlight, together with some characteristics235

and metrics.236

A first observation is that it is not easy to find modeling work in ecology that has explicit impact237

in ecosystem management. Few examples were provided by the workshop participants, and even238

for those, the nature of the impact was often not clear and rarely documented. In our opinion,239

this difficulty of finding examples and their documented impact reflects the fact that academic240

modellers and ecosystem managers/decision makers largely operate separately from one another241

and prevents each side from learning about the other’s work and potentially collaborating where242

overlap exists. Perception of the necessity to bridge this gap was our main motivation for this243

study.244

Our second observation, partly related to the first, is that the typical academic metrics used to245

judge a paper’s value do not also indicate whether or not an ecological model has had management246

impact. This dichotomy is true for official metrics such as citation count, as well as for informal247

2https://www.birs.ca/events/2019/5-day-workshops/19w5108
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Main paper & Topic Description Model type Data Geo. extent Citations
Harrison et al. (1970)∗

DDT transport
E Cont. time (S) Y Global 94 (1.88)

Vollenweider (1975)
Lake eutrophication

E Cont. time (S) Y Global 1250 (27.77)

Carpenter et al. (1985)∗†

Biocontrol of lakes
A Cont. time (S) Y Global 2990 (85.43)

Crouse et al. (1987)
Loggerhead sea turtles

E Disc. time (T) Y Global 1445 (42.52)

Lamberson et al. (1992)∗

Northern spotted owl
B Disc. time (T)

with stoch.
Y Local 303 (10.82)

Hastings and Botsford
(1999)∗† Marine reserves

E Disc. time (S) N Global 385 (18.33)

Matsuda et al. (1999)
Sika deer

E Disc. time (T)
with stoch.

Y Local 59 (2.81)

Watkinson et al. (2000)∗

Genetically modified crops
E Disc. time (S)

with stoch.
Y Global 321 (16.05)

Krkošek et al. (2005)∗†

Salmon sea lice
C Cont. time (T)

with stoch.
Y Global 330 (22)

Thomas et al. (2009)
Maculinea butterfly

D Disc. time (T)
statistical

Y Local 264 (24)

Rossberg (2012)∗

Large fish
D Cont. time (T) Y Global 44 (5.5)

Railsback et al. (2013)∗†

Salmon steam restoration
D IBM (T) Y Local 35 (5)

Becher et al. (2014)∗†

Bee colony health
D IBM (T) Y Local 154 (25.66)

Lampert et al. (2014)†

Invasives, Spartina
C Disc.-Cont. (T)

with stoch.
Y Local 94 (15.66)

Hudjetz et al. (2014)†

Grassland management
D IBM (T) Y Local 9 (1.5)

Darby et al. (2015)†

Apple snail
D Disc. time (T) Y Local 15 (3)

Table 1: In the first column, ∗ indicates that the paper is the first in a series, and † indicates that we
received direct input from the authors regarding the paper’s impact on management or policy. The letters
in column Description stand for: A Model not described mathematically, B Model in appendix without
analysis, C Model and analysis in appendix, D Model in main text and analysis in appendix, E Model and
analysis in main text. Model type indicates continuous or discrete time, strategic (S) or tactical (T) (see
Introduction), potentially including stochasticity, and individual-based models (IBM). The Data column
indicates whether the authors used (Y) or did not use (N) a specific data set in their work. Citation counts
were taken from Google Scholar on 18/01/2021. Parentheses indicate the average number of citations per
year since publication.
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metrics such as the perceived rating of (some of) the authors in the academic community. For248

example, Harrison et al. (1970) was hugely influential in legislating a ban on DDT, but has fewer249

than 100 citations to date. For other papers, management and academic impact both occur, as for250

example in the study by Crouse et al. (1987) on the benefits of turtle excluding devices in fisheries,251

which has over 1,400 citations (see Table 1).252

This dichotomy does not mean that these metrics are not important. When government repre-253

sentatives consult the academic literature, they may take such metrics as indicators for the scientific254

community’s evaluation of the work and therefore decide to use the paper’s results (Findlay, per-255

sonal communication). There are, of course, many scientists working in government laboratories256

who use mathematical models (in our sense) as part of their toolbox when researching any given257

topic. The results may influence decision makers, but often do not see the light as academic258

publications and are therefore largely hidden from the academic community.259

Some of the papers that were suggested to us are published in very high impact journals (e.g.,260

Science), but this academic prominence is not necessary for a paper to have management impact.261

For example, the Hokkaido Government in Japan adopted a management program for sika deer on262

the basis of Matsuda et al. (1999), published in Population Ecology. Even more surprising is the case263

of Vollenweider’s work on lake eutrophication through the use of a mass balance and export model264

that seems simplistic from today’s point of view but produces excellent predictions. According265

to the author’s own account (Vollenweider, 1987), the most influential of his works, Vollenweider266

et al. (1970), was not even published in a peer-reviewed journal because the funding agency did267

not give its consent. The later, peer-reviewed work is Vollenweider (1975), and the impact of268

both is widely documented (Carpenter et al., 1985; Lowe and Steward, 2011). In other cases, it269

is not clear whether publication in a high-impact journal aided the application in management270

or, vice versa, (potential) important applications in management aided publication in high-impact271

journals. While some authors reported that there was a significant lag between model publication272

and its management action (Krkošek et al., 2005), others report that management action preceded273

publication (Hudjetz et al., 2014). Another feature we considered, that is, the geographical extent274

of the ecological problem, does not seem to affect its use in management. Table 1 contains numerous275

examples of both.276

We were curious about model complexity and model realism in the studies that were suggested to277

us as success stories. There are, of course, many different types of (dynamic) mathematical models,278

such as differential equations, difference equations and in particular matrix models, individual- and279

agent-based models and others. We found influential examples from all different types, but there280

are differences, which we discuss now.281

Matrix models are widely used and understood for discretely structured population dynamics282

(Caswell, 2000). Crouse et al. (1987) studied the effect of various factors on turtle reproductive283

success. Their work was instrumental in mandating turtle excluding devices in the United States.284

Matrix models are considered highly accessible to non-modellers and do play a significant role in285

conservation decisions and government reports, e.g., the evaluation of the status of boreal caribou286

in Canada under the COSEWIC status assessment report (Berglund et al., 2014). In fact, there287

are large data bases of life cycle dynamics (i.e., parameterized matrix models) of various organisms288

that can be used by researchers (e.g., the Compadre data base for plant species3).289

Differential or difference equation models with only a few equations are sometimes seen as too290

simple, yet can be very useful, even if, or particularly when, parameter values are not known in site-291

specific detail. Despite their apparent simplicity, these models can easily yield complex dynamics.292

The potential for abrupt changes in behavior (e.g., tipping points) poses the question of parameter293

3https://www.compadre-db.org
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estimation and accuracy. The double-edged sword of general simplicity versus site-specific details294

and complexity is always present, but both types can have significant impact in management. For295

example, Hastings and Botsford (1999) used a simplistic, single-variable discrete time model to show296

that fisheries yield is equivalent with quota restrictions or with marine reserve regulation. This297

paper contains no specific data, but with its general insights helped pave the way for the concept298

of marine protected areas to enter the scientific and political debate (Saarman et al., 2013). While299

this publication is the only example in our list that does not contain specific data, other examples300

do exist, particularly in areas where data are difficult to come by. In these situations, qualitative301

trends and rules of thumb provide valuable conservation guidelines, for example, in terms of spatial302

scales (Gaines et al., 2010). Mumby et al. (2007) studied the resilience of coral reefs using a similarly303

simplistic model, which, despite being based on parameter values gathered from expert knowledge304

rather than data, also became instrumental in management. A more complicated discrete model by305

Lamberson et al. (1992) explored the population dynamics of the northern spotted owl (including306

mating, reproduction, dispersal and environmental stochasticity) in the presence of logging and307

habitat fragmentation, and contributed to significant legislation for protection of the species. In308

some cases, a suite of models, ranging from generic to specific, can be highly successful. For example,309

a key question regarding the health and management of inland and coastal waters is eutrophication.310

Basic research (Janse et al., 2010) demonstrated broadly that critical transitions from submerged311

aquatic to phytoplankton could occur in shallow lake ecosystems. For more specific applications,312

Janssen et al. (2019) used a generic lake ecosystem model to show how such critical transitions could313

occur in different ways in different lake types. While this approach provided advice regarding best314

practices for reversing eutrophication in particular lake types, the model was still fairly theoretical.315

A highly site-specific spatio-temporal explicit model (with hydrology) was developed over decades316

to determine effects of nutrient loading for the Everglades wetland, and it is used in decision making317

(Flower et al., 2019). In fisheries management, Collie et al. (2016) acknowledged the success of318

models for single-species management but calls for more tactical ecosystem models that include the319

dynamics of ecological and environmental features.320

Individual-based models (IBMs) are often quite appealing to practitioners and non-scientists321

because these stochastic models are, or can be, formulated in terms of behavioural rules rather322

than mathematical equations. On the other hand, their detailed nature makes scientific repro-323

ducibility extremely difficult when small differences in implementation can lead to large differences324

in outcomes, which is why a protocol for their description was developed (Railsback and Grimm,325

2019). Parameterization of individual-based models requires large amounts of data, but this ef-326

fort can result in models that yield highly site-specific results and often allow visually appealing327

representation of those results. Examples of high-impact IBMs include the inSALMO model by328

Railsback et al. (2013), which is one of a series of papers on an individual-based model of the life329

cycle and behaviour of salmonids in rivers with the goal to allocate restoration efforts. This model330

was developed in a partnership between government research labs, academia, and industry in the331

United States and has been adopted by one laboratory of the National Marine Fisheries Service332

for management research in California (Dudley, 2018). The BEEHAVE model (Becher et al., 2014)333

was developed by an academic-industry partnership in the UK for use in pollinator risk assessment334

by industry and regulatory agencies. The European Food Safety Authority (EFSA) has evaluated335

BEEHAVE and found its design suitable for the development of a new model on its own and has336

decided to use BEEHAVE to define a reference “healthy” honeybee colony (EFSA, 2015). Yet337

another successful IBM, examining grassland dynamics in a German national park, was also devel-338

oped in close collaboration with all stakeholders and its recommendations informed management339

actions before the corresponding article was published (Hudjetz et al., 2014).340

We observe that there is not one and only one way to conduct research on dynamic ecosystem341

9



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific phenomenon (system, species) in the need of management 

Observations,  
data collection 

Strategic models 

Tactical models 

Decision-making 

Management’s  
perception 

Empirical models  

Figure 1: Different paths of the information flow resulting in decision-making supported by use of mathe-
matical models. The blue, yellow and red paths (visualised by the corresponding chain of arrows) correspond
to the use of models of increasing complexity as required by the complexity of the given natural system.
Along the blue path, the approaches from a standard ecologist’s toolbox are predominantly used. Use of
less standard and/or more advanced mathematical techniques along the yellow and red paths introduces the
crucial stage of manager perception where the modelling results should be linked to the real world using
manager’s terms (that often differ from the modeller’s terms, see Sections 4.1 and 4.2 for a discussion of
‘different cultures’).

modelling and to disseminate its results in such a way that it is useful to ecosystem management.342

This could be seen as bad news in that we cannot offer one ‘blue print’ to follow for models to have343

impact on management. We consider it good news in that there are many different approaches344

that promise visibility and impact as long as some basic insights are respected. We distinguish345

three different ‘pathways to success’ that may be taken depending on the nature of the problem346

and the type of the modelling approach used, illustrated in Figure 1. The blue path may arise347

in the cases of relatively simple, low-dimensional dynamics, especially when predominantly linear348

predictor variables are used that can be deduced from the analysis of field data using statisti-349

cal tools (Dietze, 2017), sometimes as simple as the linear regression (Vollenweider, 1975). No350

well-established ecological theory or mechanistic models are involved in this case; the predictors351

are usually (but not always) chosen based on biological knowledge. The yellow path arises in the352

cases of higher-dimensional ecological dynamics of intermediate complexity, where the predictor353

variables and their interactions are not deducible directly from data, but relevant ecological theory354

supplemented with conceptual, schematic models work well in describing the system’s properties355

and suggesting a sustainable management practice (Hastings and Botsford, 1999; Lamberson et al.,356

1992; Matsuda et al., 1999). Following this path, the model sometimes can be formulated entirely357

qualitatively, using causal loop or stock-and-flow diagrams, without using any equations, cf. Car-358

penter et al. (1985). Arguably, even if only a trend can be predicted correctly, such models can still359
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provide useful information to advise decision makers, for example for conservation purposes. The360

models arising in the yellow path would often be accessible to analytical investigation, although361

not necessarily be explicitly solvable. The red path arises in the cases of a high-dimensional system362

of high complexity, where conceptual theory and models are not capable of providing a meaningful363

description of the system’s properties. Such models are usually investigated through extensive nu-364

merical simulations, e.g. Thomas et al. (2009); the corresponding field of research and methodology365

is known as computational ecology (Pascual, 2005; Petrovskii and Petrovskaya, 2012). We mention366

that the difference between ‘strategic’ models (yellow path) and ‘tactical’ models (red path) is367

often conditional rather than absolute and may even depend on the preferences and experience of368

the researchers. We also mention that the three colored paths are typical but not exclusive and369

some other, ad hoc or case-specific links and paths may be possible (not shown in the figure for370

the sake of clarity). For instance, observations and filed data may suggest, through management’s371

perception, a straighforward approach to tackle the problem without any need for modelling. Con-372

versely, use of non-standard empirical models may require the stage of management’s perception373

and appreciation. Else, sometimes the red path may include the stage where strategic models are374

attempted before moving on to the use more detailed tactical models, in case the former are found375

to be too schematic.376

In addition, the following points outline further responses that we obtained from the authors of377

the papers selected for the analysis.378

1. The scientific question should be currently relevant to managers and decision makers, ideally379

the question would come directly from them. Sometimes theoretical models can have impact380

if the topic is currently highly debated in the community, e.g., Hastings and Botsford (1999).381

2. The work should include all relevant aspects, which sometimes results in a series of papers382

that build our understanding of a given system, e.g., Krkošek et al. (2005); Railsback et al.383

(2013). Sometimes, however, a single paper is sufficient to influence policy strongly, e.g.,384

Crouse et al. (1987).385

3. Ideally, stakeholders are involved from the beginning of the modelling process; e.g., Becher386

et al. (2014); Railsback et al. (2013). However, this is, again, not necessary if the authors are387

highly familiar with the pressing issue, as in Hastings and Botsford (1999).388

4. The use of data can be key to successful management outcomes. In models regarding the389

management of specific species or locations, data is essential for the analysis and parametriza-390

tion, as in the turtle management arising from Crouse et al. (1987). Using Markov decision391

processes with data from the U.S. Fish and Wildlife Service, Johnson et al. (2016) explained392

the framework used to manage mallards in the United States and Canada.393

Even if all of these recommendations and suggestions are followed, there is no guarantee that394

any particular research activity will have the desired influence on management and policy, or that it395

will have any impact at all. Policy and management decisions are made in the context of a societal396

environment, so that even excellent scientific work will not influence policy unless the goals and397

results of the research are aligned with this larger context. The discussion below includes some398

observations about this issue.399
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4 Discussion400

4.1 Two communities, two cultures: managers’ perception of modelling studies401

Despite the long history of ecological models as heuristic tools in understanding ecological systems,402

there is disagreement over the impact of their applications to management and decision making.403

On the one hand, models have been said to “have played key roles in informing public debate and404

informing management decisions” (Harris et al., 2004). For example, the model by Epanchin-Niell405

et al. (2012) gave advice on allocating expenditures between surveillance and eradication of inva-406

sive species. Models have also shown the effectiveness of sterile insects techniques in invasives with407

specific features (Liebhold et al., 2016). The adaptive management modeling approach of Donovan408

et al. (2019) in collaboration with the Grand Canyon research staff gave recommendations on an en-409

dangered species, the humpback chub. On the other hand, models have also been criticized for their410

lack of predictive power and that “problems that ecology should solve are not being solved,” e.g.,411

Peters (1991). Such contradictory views might be explained by distinguishing two types of poten-412

tial uses of models for environmental issues, namely ‘exploratory/planning’ and ‘regulatory/legal’,413

as defined by Harmel et al. (2014). The former type of model provides qualitative information414

that can be used to plan relevant research and influence opinion. Most ecological modeling that is415

termed ‘applied’ is of the exploratory/planning type, and the insights it provides often support the416

former point of view. However, models that directly guide important environmental decisions and417

are incorporated into management, that is, the regulatory/legal type, are much rarer, which tends418

to support Peters’s negative opinion. That reflects the difficulty of ecological models to attain high419

predictive power, and therefore leads to continued reports of skepticism about the use of ecological420

models in decision-making, e.g., Clark and Schmitz (2001) and Lester (2019). Part of the problem421

is that contributing to regulatory/legal decisions is a multi-step process, and there is frequently a422

lack of funding for work that moves from exploratory or proof-of-concept studies to a point where423

the findings are relevant to regulators.424

Arguably, one factor that hinders more efficient communication between ecological modellers425

and ecosystem managers are the ‘cultural’ differences between the corresponding communities.426

The set of indicators that managers routinely use to gauge the value of a model is considerably427

different from those of an academic; see Findlay (2019); Harris et al. (2004); Schuwirth et al.428

(2019); Swannack et al. (2012). For example, two factors that are often regarded by applied429

mathematicians as important in order to maintain their respect and ranking in the community430

of applied mathematicians are the journal where the paper is published and the ‘elegance’ of the431

model, e.g. whether it is investigated analytically. However, these issues matter little if at all432

for ecological managers. This narrow view of ‘important’ work in applied mathematics should be433

broadened to recognize more positively the value of collaborative research with multiple authors434

with a variety of viewpoints (possibly including managers).435

4.2 Social Context436

What matters for decision-makers in general is (i) whether the evidence provided by the model437

speaks directly to the issue/problem (all else being equal, indirect evidence is something that438

managers tend to down-weight) (Sutherland et al., 2012) and (ii) what the ‘costs’ are (economic,439

political due to public opinion and media coverage, etc.) of taking a decision based on the evidence440

provided by the model (Lortie and Owen, 2020). In Figure 2, we illustrate three key information441

streams that are considered in the development of policy, and discuss these elements below.442

Since ecological research often points to management actions that are of benefit to humans in443

the long term, but look detrimental to profits or jobs in the short term (Hoffmann and Paulsen,444
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Figure 2: Three information streams that are key components of policy development. These three streams
are important in determining whether or not research results will be used to inform policy. Decision makers
must integrate information from government agency priorities (centre stream), costs (blue box), and public
opinion (red box). Research (university, government, etc. – green box) informs all three streams. Public
opinion is often rooted in media attention to grassroots issues (purple box). If there is sufficient public
support of management actions recommended by research, and the costs (monetary costs and/or political
costs of action and/or inaction) are favorable, the research can lead to policy action (gray box). There is
a bidirectional relationship between research and activist organizations because the latter are not simply
recipients of research knowledge, but can also be contributors by funding or co-funding, or—more recently—
through citizen science.

2020; Caplan, 2016; Hyde and Vachon, 2019; Leonard, 2019; Scanlan, 2017), governments will be445

more likely to implement the recommendations of ecological research if public opinion supports446

such activity (Burstein, 2003). The required groundswell of public opinion is often created when447

grassroots organisations are able to obtain media attention and gain sufficient momentum to shape448

public opinion. This process can occur quickly, but can also involve decades of hard work (Bullard449

and Johnson, 2000; Fields, 2018; Bullard and Johnson, 2000), and the level of success is context-450

dependent (Foweraker, 2001). This activism is informed by research, some of it funded through the451

basic research programs of individual researchers, some co-funded by activist organisations.452

Finally, decision makers also need to consider the associated costs of the management action453

(Lortie and Owen, 2020): costs of implementation, costs of doing nothing, the likelihood that the454

recommendation might be in error, and the consequences if the recommendation is in error. For455

illustration, consider two extremes: At one extreme are (a) inexpensive recommendations that are456

sure to lead a good outcome easily observed by the public, and at the other extreme are (b) very457

costly recommendations that may lead to a marginally better outcome or a good outcome that isn’t458

apparent until many years have passed. Recommendations of type (a) are easy for policy-makers459

to adopt, while recommendations of type (b) are unlikely to be adopted. Recommended actions to460

reduce reliance on fossil fuels are definitely of type (b), and government appetite to implement such461

actions has only begun to develop momentum as the consequences of doing nothing become more462

obvious to industry and the public (Diringer and Perciasepe, 2020). Modelling work that includes463

an in-depth study of uncertainty (ideally going beyond the imprecision of parameter estimates,464

which is generally a relatively small source of uncertainty compared to other sources), and that can465

nonetheless demonstrate a high level of confidence in the predictions, will be more likely to inform466

management decisions (Cooke et al., 2020). Management of invasive species provides a superb467
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illustration of many of the issues raised here. Monitoring can often prevent species from being468

introduced, but the cost may be high. Proper management for species that have been introduced469

depends on appropriate knowledge of the cost of damage by the invasive species (which can be very470

difficult to assess) (Epanchin-Niell and Hastings, 2010).471

Several of our success story examples are caught between conservation goals and economic472

interests, e.g., the question of turtle-excluding devices (Crouse et al., 1987), the protection of the473

northern spotted owl (Lamberson et al., 1992), and the effect of fish farms on sea lice among474

wild salmon (Krkošek et al., 2005). Since such potential conflicts often garner media attention,475

modellers may find themselves in the spotlight and might require training for communicating with476

media outlets. Parrott (2017) considers such communication skills as one of many nonscientific477

skills that are as important as scientific skills for researchers aiming to help solve difficult ecological478

problems with substantial socio-economic implications in interdisciplinary teams.479

4.3 Government research480

As the use of science is important in the decision-making process, many if not most government481

bodies not only fund research but also operate their own research institutes. Hence, there is a482

lot of research done by government scientists, many of whom use complex models and support483

management decisions, but publish only in government reports. As academic researchers we could484

be more active about searching the gray literature in order to tie in with and contribute to this485

research activity. In this section, we showcase some selected opportunities for academics to connect486

with government research. Our aim is to illustrate the variability of different forms of government487

research and which role it can play. Along the way, we touch on modeling standards of in-house488

work of government authorities.489

In the United States, the Environmental Protection Agency (EPA) is the main environmental490

regulatory agency and responsible for policy and regulatory decisions. Environmental models “[...]491

are becoming a key component of science that is used not only within the EPA but throughout492

federal agencies” (Borg, 2009). An example of a model used by EPA is the AQUATOX model,493

developed by a private company, which simulates an aquatic environment, tracking the fate and494

transport of pollutants and predicting the effects they will have on an ecosystem (Park et al.,495

2008; Galic et al., 2019; Forbes et al., 2017). Although AQUATOX is a complex model, it has496

been well enough peer reviewed and tested to meet the three issues of importance to regulatory497

decision-making: uncertainty, transparency, and consistency (Borg, 2009; Galic et al., 2019). The498

work by Springborn et al. (2016) was partially funded by USDA-APHIS and resulted in changes499

in inspection procedures at US ports. A list of all funding opportunities from federal agencies500

can be found on grants.gov, and are generally available to universities and private companies.501

The Cooperative Extension System provides funding to Land-Grant universities, in order to bring502

science directly to the regional and country level.503

In Canada, mathematical models form an important part of agency decision making, especially504

in forestry and fisheries, which are two economically essential industries in Canada with signifi-505

cant conservation challenges. For example, the Department of Fisheries and Oceans employs the506

Habitat Ecosystem Assessment Tool to assess net change of habitat productivity, using habitat507

suitability as a surrogate. The Canadian Forest Service developed and continues to use several508

large-scale simulation models for forest management, fire regimes, or carbon cycling. The listing of509

species by the Committee of the Status of Endangered Wildlife in Canada uses a range of math-510

ematical models, including matrix models for caribou (Berglund et al., 2014). There are funding511

opportunities by government agencies that are available to academic researchers (e.g., the Early512

Intervention Strategy program for spruce budworm), and there are government-academic research513
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networks (e.g., FLUXNET).514

In the European Union, the Joint Research Centre provides scientific advice to the European515

Commission and to EU member states. Notably, the Competence Center on Modelling was launched516

in 2017 to promote a responsible use of models in EU policy making. Among its key objectives are517

to increase the transparency, consistency, and quality of model use. There is an increasing trend in518

models being used in the Commission’s Impact Assessments4 from 2003–2018, reaching around 25–519

30% from 2015 onward (Acs et al., 2019). The policy areas with the highest number of model use520

are environment (including climate), internal market, transport, and energy. Descriptions of the521

models previously or currently used by the Commission are contained in the Modelling Inventory522

and Knowledge Management System (MIDAS), which is open to the public since December 2020.523

In the United Kingdom, environment-concerned government institutions such as The Depart-524

ment for Environment, Food and Rural Affairs provide relatively little funding for academic re-525

search. Their interaction with academia seems occasional rather than regular and, as it stands,526

neither to inspire university researchers to make their results useful for managing environmental527

problems nor to provide a framework for that. Instead, environmental and ecological research in the528

UK, including that involving mathematical modeling, is usually done in a few government-funded529

research institutes such as Rothamsted Research and the Centre for Ecology and Hydrology. In530

spite of the apparent absence of any comprehensive system facilitating the interaction between531

academia and decision-makers, UK academics are in fact encouraged to explain how their research532

has “impact” upon the economy, society, public policy, culture, and the quality of life through the533

Research Excellence Framework.534

In Germany, due to its federal political system, a host of federal ministries or state authorities535

grant research contracts, primarily to the government’s own but also to other research institutions.536

For example, as wolves are re-invading and establishing in Germany, the Federal Agency for Na-537

ture Conservation ordered a study that developed habitat models to assess the potential number538

of wolf territories (Kramer-Schadt et al., 2020). A number of non-university research institutes539

have working groups on or using ecological modeling. The largest one may be the Department of540

Ecological Modelling at the Helmholtz Centre for Environmental Research, which has played a key541

role in individual-based models of ecological systems. The framework of joint appointments serves542

to strengthen connections between these non-university research institutes and universities.543

In Russia, most ecological research is funded by the state, and research outcomes are often544

multidisciplinary. The Russian Academy of Sciences (RAS) is influential in making decisions on545

environmental policy and statutory regulation. For example, mathematical models have been546

developed for the sustainable management of Lake Ladoga and Lake Onego (L. Rukhovets and547

Filatov, 2010) or, in collaboration with nature reserves, of the European beaver (Petrosyan et al.,548

2016). An example of universities cooperating with the RAS is the EFIMOD model that is used549

for sustainable forest management (Komarov et al., 2003).550

In Spain, central and regional authorities, sometimes with the support of EU funds, grant551

research contracts, whose outcomes help to make political decisions. One of the most intense552

conservation programs in the last decades has been the conservation of free-ranging Iberian lynx553

populations in the south of Spain and Portugal. Mathematical models have been used to infer and554

forecast population growth and the possible results of the management measures adopted (Heredia,555

2008). In particular, metapopulation models have been used to understand the effect of habitat556

fragmentation and to design ecological corridors for the species (Gaona et al., 1998).557

These examples are not aimed at providing a comprehensive overview of government research558

activities around the globe. Yet, they demonstrate a wide spectrum of agencies, authorities and559

4Impact Assessments refer to the process of gathering and analyzing evidence to support policymaking.
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programs with which academics could connect. While a thorough comparison of government fund-560

ing opportunities around the globe and their uptake in the academic community could be of interest561

to academics and governments alike, it is beyond the scope of this work and would only increase562

the variability of research opportunities.563

4.4 Modeling software and tools564

For models to be used by practitioners like conservation biologists or agency staff members, an565

important tenet is the availability of user-friendly software. This can come, for example, in the566

form of R packages or off-the-shelf computer programs. They make models easily accessible to567

practitioners and save them from having to code models from scratch. Graphical user interfaces,568

tools for sensitivity or uncertainty analysis, and compatibility with geographic information systems569

(GIS) often come as added features. For example, the wide use of individual-based models may570

be fairly attributed to user-friendly modeling frameworks, making available code libraries and571

simplified programming language (e.g., NetLogo, Repast).572

Process-based models play a prominent role in population viability analysis (PVA), which pro-573

vides a broad suite of modeling and data-fitting methods that are well recognized as supporting574

decision-making especially in habitat conservation and recovery plans for threatened species (Na-575

tional Research Council, 1995). PVA programs differ in the model type they use. For instance, the576

commercial RAMAS packages use matrix population models, whereas the freely available VORTEX577

relies on individual-based simulations. For modeling marine and aquatic ecosystems, AQUATOX578

and EcoPath with EcoSim are commonly used tools, yet, the latter cannot completely handle age579

structure, and its use in tactical applications like setting regulations is scarce. For a review paper580

on integrating lake ecosystems modeling approaches, see Milton et al. (2010). While mentioning581

these software products as examples, we stress that there are many other options available, some582

of which are reviewed in Pastorok et al. (2001). Users should exercise caution in applying these583

tools (e.g. Ellner et al., 2002), yet they are recommended as valuable conservation tools by Brook584

et al. (2002). Certainly, users ought to be aware about the underlying assumptions of the models585

‘hidden’ behind graphical interfaces. To this end, the book by Morris and Doak (2002) is aimed at586

training field biologists at using modeling in decision-making.587

There exist many other tools and software packages, often in the area of statistics and optimiza-588

tion to support data collection, threat assessment, or the ranking of management options. Arguably589

one of the most influential and relatively recent mathematical developments is Marxan, which has590

been described in a number of papers as summarized in Watts et al. (2009). Marxan is a software591

program that implements an approximate mathematical solution to the optimization problem of592

siting reserves to maximize the number of species included. Although the problem is easy to state,593

exact solutions are not practical as the number of sites and species grows, so that the approximate594

solution to what is essentially a very high dimensional combinatorial problem is appropriate. It is595

easy to understand why this work has been so influential. The problem is easy to state and is one596

that decision makers are both familiar with and need to deal with. There is freely downloadable597

and easy to use software that allows end users to implement the methods with relatively little need598

to deal with the underlying mathematics. It is also informative to note what this work does not599

try to do. The real novelty lies in the application, and not in the mathematical development. The600

underlying modeling makes a number of assumptions leading to a problem of a form that arises in601

a large number of cases.602

16



4.5 Epidemiological models603

From a modeling perspective, epidemiology and ecology are two very close fields: the models as604

well as the tools for their analysis are very similar, and many academic researchers who work in605

one field also have keen interest in the other. Just like in ecosystems models, there are many more606

academic publications on epidemiological models than are used in decision making, and just as607

with ecosystems models, there is discussion on how to raise the visibility and use of models in608

policymaking (Woolhouse, 2011). Unlike ecosystems models, however, epidemiological modeling609

has long been instrumental in public health management, for example to control HIV (Anderson,610

1988), malaria (Mandal et al., 2011), and the 2002–03 SARS epidemic (Anderson et al., 2006b;611

Brauer and Wu, 2009).612

Before high-performance computing was widely available, results from mathematical models613

often lagged behind the rapid timeline for implementing public health measures during an epidemic.614

In the current SARS-CoV-2 pandemic, however, mathematical models are being updated daily and615

are highly influential in the development of policies aimed at controlling spread. Similar close616

integration of research and policy occurred during the 2001 outbreak of foot and mouth disease617

(FMD) in Britain; mathematical models and simulations provided invaluable guidance to decision618

makers about control efforts (Dafoe, 2003). Despite the many similarities, there are, of course, a619

number of significant differences between epidemiology and ecosystems science: public interest is620

much more easily roused by human health than by ecosystem health, and consequently much more621

funding is available for the former than for the latter. Data quality is usually also much better for622

public health questions, where, for example, influenza data can yield important insights even 100623

years after an outbreak (He et al., 2013).624

5 Conclusions625

Ecological systems and processes are inherently complex, and ongoing global change only increases626

this complexity. In addition, management often needs to balance multiple stakeholder goals, for627

example in large-scale projects such as the restoration of the Everglades or the San Francisco Bay-628

Delta (Van Eeten and Roe, 2002). We believe that sustainable ecosystem management should629

therefore be based on rigorous ecological theory and verified by relevant mathematical models630

before being put into practice.631

Despite the numerous examples where models of ecological dynamics have been used with great632

success to help ecosystem managers in the decision-making process, many theoretical ecologists633

and ecological modellers feel that their science has a much stronger potential to support evidence-634

based decision making than is currently being used. The question becomes how to facilitate a635

tighter integration of ecological modelling into decision-making processes. Our contribution to this636

question is to analyze several success stories and to reveal features that often lead to success. It637

is worth pointing out that there are common features of many of the success stories presented in638

Table 1. The papers listed deal with either a specific problem (e.g., spotted owl or DDT) or class of639

problems (e.g., eutrophication or overfishing), though of course the issues are often more general.640

Like essentially all good science, each of the contributions we highlight do answer a question.641

We could also summarize these successes as cases where the contribution is more to explain how the642

problem can be solved rather than why it occurs. The latter is often a question that is pursued for643

academic reasons, and answering the how question does depend on answering first the why question.644

The example of the turtle exclusion devices illustrates this clearly where the why question of decline645

in turtle numbers was a basic one of demography while the issue how to achieve the desired result646

led to the proposed solution. Viewed this way, it is clear that the likelihood of impact can be647
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enhanced by making use of ideas from social sciences and including appropriate costs.648

Our findings refute the idea that success of a project as measured by academic criteria (e.g.,649

citation metrics) is required for or leads to success in informing management decisions. Similarly,650

there is no unique way to develop a model and approach a problem that would guarantee its ap-651

plication in decision making. Instead, there are multiple pathways to success: the model need652

not necessarily be simple (conceptual) or complicated (realistic). However, the way in which it is653

presented to decision makers is indeed important. In fact, involving decision makers and ecosystem654

managers from the early stages of academic research increases the potential of the research to make655

impact. In that respect, we are encouraged by calls for increased training in theoretical foundations656

and aspects of ecology (Rossberg et al., 2019) as well as by the creation of numerous academic pro-657

grams that provide multi-disciplinary training in sustainability and biological conservation. These658

programs include scientific, socio-economic, policy and legal perspectives. Graduates from these659

programs will know the value, advantages and limitations of such models. They will be able to660

moderate multi-stakeholder communication throughout the planning and research process.661

A paradigmatic example for the involvement of managers and politicians is given by the campaign662

that resulted in banning DDT: “Before the show at Madison, Wisconsin was over, 32 persons663

ranging in occupation from politician, lawyer, and arborist, to bureaucrat, medical doctor and664

businessman had appeared to testify about DDT. Their knowledge—or lack of it—makes up the665

hearing transcript, a document that records some 2,500 pages of direct and cross-examination with666

a few thousand more pages of scientific, unscientific, and pictorial exhibits thrown in for good667

measure” (Henkin et al., 1971).668

Yet, even in this respect, there is not only one way to have an impact, so that the above obser-669

vation should not discourage theoretical ecologists and ecological modellers who are not directly670

involved with managers or politicians from aspiring to make an impact on decision making. It is671

one of our important findings that even the work done by an individual or a small group can affect672

decision making if a scientifically sound model is used to address an important ecological problem673

and the model and results are presented in a way accessible to decision makers.674

Ecological modeling and theory are not static but constantly evolving and improving. Here we675

have showcased some success stories in a variety of areas. Other areas for future modeling work676

will arise like in ecotoxicology, as suggested by EFSA (2018). One of the reasons why ecological677

modeling has not been used as much as might be expected in environmental decision making is that678

models are often judged to have too much uncertainty. To increase the influence of their work in679

decision-making, mathematical ecologists should continue to improve theory and models, including680

testing them against the increasing stream of data (Dietze, 2017).681

We considered the question of how science can be more helpful for decision making from the682

point of view of a mathematical modeller, while similar questions are being asked in other com-683

munities involved with sustainability and ecosystem health. Most come to the same conclusions684

that communication is key in the process: listening closely to stakeholders’ needs and explaining in685

simple terms the scientific tools involved, their powers and their limitations (Parrott, 2017; Cooke686

et al., 2020; Will et al., in review). Many share with us the conviction that evidence-based decision687

making can make this world a better place for all.688
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B. W. Brook, M. A. Burgman, H. R. Akçakaya, J. J. O’Grady, and R. Frankham. Critiques of734

PVA ask the wrong questions: Throwing the heuristic baby out with the numerical bath water.735

Conservation Biology, 16(1):262–263, 2002.736

R. D. Bullard and G. S. Johnson. Environmental justice: Grassroots activism and its impact on737

public policy decision making. Journal of Social Issues, 56(3):555–578, 2000.738

F. L. Bunnell. Alchemy and uncertainty: what good are models? US Department of Agriculture,739

Forest Service, Pacific Northwest Research Station, 1989.740

J. Buongiorno and J. K. Gilless. Forest management and economics. MacMillan Pub. Co., New741

York, NY, 1987.742

P. Burstein. The impact of public opinion on public policy: A review and an agenda. Political743

Research Quartely, 56(1):29–40, 2003.744

P. Caplan. Sustainable Development? Controversies over Prawn Farming on Mafia Island, Tanza-745

nia. Conservation & Society, 14(4):330–344, 2016.746

S. R. Carpenter, J. F. Kitchell, and J. R. Hodgson. Cascading trophic interactions and lake747

productivity. BioScience, 35(10):634–639, 1985.748

S. J. Cartwright, K. M. Bowgen, C. Collop, K. Hyder, J. Nabe-Nielsen, R. Stafford, R. A. Stillman,749

R. B. Thorpe, and R. M. Sibly. Communicating complex ecological models to non-scientist end750

users. Ecological Modelling, 338:51–59, 2016.751

H. Caswell. Theory and models in ecology: a different perspective. Ecological Modelling, 43(1–2):752

33–44, 1988.753

H. Caswell. Matrix population models. Sinauer Sunderland, MA, USA, 2000.754

G. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. Garćıa, R. M. Pringle, and T. M. Palmer. Accelerated755
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nical report, Ministerio de Medio Ambiente, Medio Rural y Marino, 2008. URL884

https://www.miteco.gob.es/es/biodiversidad/publicaciones/pbl-fauna-flora-estrategias-lince.aspx.885

M. Hoffmann and R. Paulsen. Resolving the ‘jobs-environment-dilemma’? The case for critiques886

of work in sustainability research. Environmental Sociology, 6(4):343–354, 2020.887

C. S. Holling. The strategy of building models of complex ecological systems. In K. E. F. Watt,888

editor, Systems Analysis in Ecology, pages 195–214. Academic Press, 1966.889

23



S. D. Howison, F. P. Kelly, and P. Wilmott. Mathematical models in finance. Chapman & Hall,890

London, 1995.891
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