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Abstract 51 

Determining the diversity of past floras helps with interpreting both the history and 52 

predicting the future of vegetation change. For global-scale and regional-scale diversity 53 

studies especially, secondary data are often used but local-scale studies tend to be based on 54 

survey data that require rigorous sampling. The correct sampling strategies depend on the 55 

types of fossils being investigated, including their physical size, and whether the aim is to 56 

determine taxonomic richness or relative abundance. Describing and comparing diversities 57 

can use a range of different metrics, depending on whether binary presence / absence or 58 
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abundance data are available. Each metric provides a different insight into the diversities and 59 

the choice of which to use depends on the research question being investigated. Various 60 

numerical approaches are available for identifying spatial and stratigraphical diversity 61 

patterns, mainly classificatory techniques (e.g., cluster and parsimony analyses) and 62 

ordination (e.g., Detrended Correspondence Analysis, Nonmetric Dimensional Scaling). The 63 

choice of technique again depends on the research question, but often it has proved useful to 64 

run both types of analysis in tandem. This article is illustrated by past biodiversity case 65 

studies from throughout the fossil record, dealing with floras ranging in age from the 66 

Devonian to the last few centuries. 67 

Keywords:  Palaeobotany: Palynology: Taxonomy: Taphonomy: Ordination: Classificatory 68 

analysis69 
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1 Introduction 70 

A major agenda-item in palaeobotany and palynology is determining how plant diversity 71 

has developed over geological time to produce the vegetation that we see today. This was the 72 

subject of a workshop entitled Tracking changes in plant diversity over the last 400 million 73 

years, held in Cardiff in 2014. In a previous paper that arose from this meeting, we looked at 74 

exactly what is meant by plant diversity and the extent to which we can investigate it using 75 

the plant fossil record (Cleal et al. 2021). This second paper from the meeting will review the 76 

background to some of the methods that are used to collect and analyse the diversity data 77 

from the plant fossil record. It is not intended as a methodological “cookbook”; relevant 78 

guides are published elsewhere (e.g., Magurran 2004; Palmer 2004; Hammer and Harper 79 

2006). Rather, it aims to look at some of the methods that have been used, to see how they 80 

affect the interpretation of diversity data and to note representative case studies. The 81 

numerical techniques that we mention are all available in software packages such as PAST 82 

(Hammer et al. 2001), TWINSPAN (Hill 1979), MVSP (Kovach 1999) and various R-83 

language routines such as VEGAN (Dixon 2003). 84 

2 Sampling strategies 85 

Even with living vegetation, accurately measuring species diversity can be challenging 86 

because of sampling issues (Gotelli and Colwell 2001), but detailed and systematic sampling 87 

of plant fossils will indisputably improve the understanding of past vegetation (Hicks et al. 88 

2004; DiMichele and Gastaldo 2008). Choosing the appropriate sampling strategy will be 89 

influenced by the type of plant fossils being investigated, in particular their size.  90 

2.1 Microfossils and Mesofossils 91 

Microfossils are the smallest plant fossils up to 500 µm in size (e.g., pollen, microspores, 92 

phytoliths, micro-charcoal) that are best studied under a high-powered microscope, whilst 93 

mesofossils are plant remains 0.5‒1.0 mm in size (e.g., megaspores, small seeds, cuticle 94 

fragments, fusainised flowers) that can be seen with the naked eye but are usually studied 95 

using a low-powered dissecting microscope or a Scanning Electron Microscope (SEM). 96 

Quaternary palynologists often include the latter within macrofossils (Birks 2007; Mauquoy 97 

et al. 2010) but, as they are usually studied using microscopes, they will be referred to here as 98 

mesofossils (Wellman et al. 2003; Crepet et al. 2004; Friis et al. 2019). 99 
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Large samples of microfossils and mesofossils can potentially be obtained from a 100 

relatively small amount of material (less than a kg, usually a few g), and so the problem in 101 

diversity studies tends to be when to stop counting a particular sample to avoid unproductive 102 

work. There have been attempts to analyse numerically the errors in mineral point counts in 103 

petrological slides (e.g., Howarth 1998) and a similar approach was used to determine a 104 

reasonable sample size for palynological counts (Maher 1972; Dimitrova et al. 2005; Keen et 105 

al. 2014). The sample size will be at least partly influenced by the number of taxa present and 106 

must be enough to ensure consistency of results (Birks and Birks 1980, p. 165); most 107 

Cenozoic palynologists use counts between 300 and 1000 per sample (e.g., Fig. 2), although 108 

pre-Cenozoic palynology studies sometimes have to use smaller samples because of limited 109 

availability of material. 110 

Rarefaction analysis can be used to adjust diversity measurements in different sample 111 

sizes (Birks and Line 1992; Wing and Harrington 2001; Seppä and Bennett 2003; Barreda et 112 

al. 2012; Matthias et al. 2015; Giesecke et al. 2019). This is where a graph is plotted of how 113 

many new taxa are found as progressively more specimens are examined. It is then possible 114 

to determine the taxonomic richness in each sample at a pre-determined sample size. It has 115 

also been suggested that pollen taxonomic richness should be standardised for a set area and 116 

time of sediment accumulation (van der Knaap 2009), but this requires accurate estimates of 117 

sediment accumulation, which can be difficult to determine. None of these methods solve the 118 

problem of differential pollen productivity and dispersal in different plant groups that can 119 

hinder the translation of palynological data into vegetation diversity (Odgaard 1999, 2001, 120 

2013; Seppä and Bennett 2003; Weng et al. 2006; Cleal et al. 2021).  121 

It can be effective to exclude tree pollen, especially in open situations where long-distance 122 

pollen dominates, but this inevitably reduces the pollen sum and requires higher counts to 123 

give statistically reliable results. It can, moreover, be difficult to be certain from 124 

palynological data whether or not past vegetation was open and that the tree pollen should be 125 

excluded (Magri and Parra 2002; Pardoe 2014). The local presence of a particular taxon is 126 

often identified by its pollen reaching a threshold percentage (e.g., > 0.5%) but this value 127 

may vary between taxa (Lisitsyana et al. 2011). Macrofossil evidence can also be used as an 128 

indicator of local presence, especially of trees, since seeds and other remains are heavier than 129 

pollen and less easily dispersed.  130 

It is also often routine in Quaternary studies to exclude obligate aquatics from the 131 

calculation of percentages since (1) they are frequently over-represented, especially in lake 132 
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sediments, and (2) the aim is often to reconstruct terrestrial (rather than aquatic) vegetation. 133 

Samples can also be contaminated by pollen reworked from older sediments, especially in 134 

extreme environments with high rates of catchment erosion such as occurred in the late 135 

glacial. In many cases however these unusual and often ‘older’ looking corroded exotic 136 

grains can be identified and excluded. 137 

Pre-Quaternary studies have usually analysed the entire sample, although Dimitrova et al. 138 

(2011) selectively analysed “exotic” pollen and spores from a set of late Carboniferous 139 

palynofloras to try and determine patterns of extra-basinal vegetation. By comparing time-140 

equivalent Permian strata and their palynoflora, Stolle (2010, 2011) discovered 141 

exotic Gondwana elements and "European" pollen, but in biogeographically atypical regions. 142 

The sampling and investigations were based on selected areas with different miospore 143 

diversity spectra. Other investigations in lake settings separated well-preserved pollen grains 144 

(most likely air-borne just prior to deposition) to obtain the seasonal signal from reworked 145 

pollen grains (mostly water-transported) which have been around a longer time before 146 

deposition (López-Merino et al. 2016). This approach often required counting more than 147 

1500 pollen grains per sample. 148 

Inconsistencies in pollen identifications can be partly overcome by using translation tables 149 

that transform modern plant species into known distinguishable pollen or spore types ‒ so-150 

called pollen equivalents (Felde et al. 2014; Birks et al. 2016; Giesecke et al. 2019). Other 151 

problems include poorly preserved pollen (e.g., Tsuga pollen that has been preferentially 152 

oxidised in outcrop but is preserved in cored sequence; Brugal et al. 1990; Leroy and Seret 153 

1992), large numbers of reworked elements (Hoyle et al. 2018), or gritty samples. Preparation 154 

techniques can also cause problems, such as when unusually large pollen (e.g., Palaeozoic 155 

medullosalean Schopfipollenites) gets lost through sieving (Dimitrova et al. 2010) or where 156 

delicate palynomorphs are lost during maceration (Mertens et al. 2012).  157 

Where exotic spikes such as Lycopodium tablets are used to calculate absolute pollen 158 

values, the number of Lycopodium tablets added could make a significant difference (Hicks et 159 

al. 1999). The statistical confidence with which pollen concentration (per unit of weight or 160 

volume) and influx (per unit of time) can be calculated increases with the number of 161 

Lycopodium spores counted; so, the more tablets that are added to the sample, the more 162 

statistically accurate the pollen calculations will be. The number of tablets required depends 163 

on the pollen concentration, with the aim of reaching a Lycopodium count of more than 100 164 
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per sample; once 500 Lycopodium spores have been counted there are only very small 165 

increases in the reliability of the count (Maher 1972).  166 

2.2 Macrofossils  167 

These are the type of hand specimens that dominate most museum collections, including 168 

adpressions, casts, moulds and anatomically-preserved petrifactions. They may be anything 169 

above 2 mm in size, but in practice are typically between 1 cm and 1 m. An assemblage of 170 

such fossils is known as a macroflora. 171 

Sampling macrofloras in taxonomic diversity studies is usually by an individual-based 172 

protocol: specimens are sequentially taken and each new taxon is recorded until a 173 

representative sample size is achieved. What constitutes a representative sample size can be 174 

estimated using rarefaction analysis (Fig. 1): a graph is plotted of how many new taxa are 175 

found as progressively more specimens are examined and a representative sample size has 176 

been reached when the graph flattens-off (e.g., Burnham 1994; Cleal et al. 2012; Opluštil et 177 

al. 2014).  178 

The relative abundance of taxa is determined using a sample-based protocol, where every 179 

individual is counted within a particular sample. Sufficiently large samples can avoid some 180 

inherent sampling problems; for instance, Davies (1929) recorded every macrofossil found in 181 

several tonnes of roof shales above upper Carboniferous coals, resulting in individual 182 

macrofloras of up to 30,000 specimens (Thomas, 1986; Cleal 2007; Cleal et al. 2012; King et 183 

al. 2012). But such large samples are exceptions and more usually the relative abundance of 184 

taxa has to be standardised according to the sample size, using similar approaches to those 185 

adopted in plant microfossils (Section 2.1) such as rarefaction analysis (e.g., McElwain et al. 186 

2007; Uhl and Lausberg, 2008; Currano et al. 2011; DiMichele et al. 2021). Alternatively, 187 

standard-size samples are measured, such as using botanical survey quadrats (Scott, 1978), or 188 

pseudo-quadrats created by exposing rectangular areas of bedding plane (Gastaldo et al. 189 

2004a) or bringing together specimens until a quadrat-sized area is filled (Iwaniw 1985; 190 

Bashforth et al. 2010, 2011). Alternatively, proxy quadrats have been based on “normal size” 191 

hand-specimens (Pfefferkorn et al. 1975; Wing and DiMichele 1995; Uhl and Lausberg, 192 

2008; Barbacka 2011, 2016; DiMichele et al. 2016, 2021; Cleal et al. 2012; Bashforth and 193 

Nelson 2015; DiMichele et al. 2019a,b; Koll and DiMichele 2021) or borehole cores of a set 194 

diameter (DiMichele et al. 2000). Various counting strategies have been used, with either all 195 

specimens in a quadrat being counted (Drägert 1964; Oshurkova 1967; DiMichele et al. 2007; 196 
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Stiles et al. 2020), the specimen numbers per quadrat being weighted according to the size of 197 

each fragment (Spicer and Hill 1979; Pryor and Gastaldo 2000), or a randomly selected 198 

number of specimens per quadrat being counted (Scott 1978, 1979, 1984).  199 

Whilst such quadrat and quadrat-like techniques appear to give numerical rigour to the 200 

analyses, and have particular benefits with floras dominated by compound foliage that has 201 

undergone various levels of fragmentation (Wing and DiMichele 1995), distortions may be 202 

introduced according to the technique used (Lamboy and Lesnikowska 1988). For instance, 203 

quadrat methods appear to lead to more even species distributions (DiMichele et al. 1991) 204 

and quadrat size can have a marked effect on taxonomic richness (Wing and DiMichele 205 

1995). Nevertheless, provided there is a consistency in the methods used, quadrats and allied 206 

techniques offer one of the best means of comparing relative abundances of fossil taxa 207 

between floras. 208 

Another method used in botanical habitat work, especially with groundcover of 209 

herbaceous plants, is line-intercept survey (Floyd and Anderson 1987; Etchberger and 210 

Krausman 1997). A frame bearing regularly-spaced strings that are marked-off at regular 211 

intervals (e.g., 20 mm) is placed on the ground and each increment along each string is scored 212 

according to the plant species it crosses. A similar approach has been used in palaeobotanical 213 

surveys (e.g., Wing et al. 2012).  214 

The relative taxonomic abundances and biomass in anatomically-preserved macrofossils 215 

can be measured by point counting across the slide at set increments (e.g., Slater et al. 2015) 216 

using a microscope with a calibrated stage, where the slide holder can be moved either 217 

manually or by motor. Alternatively, the thin section or polished surface can be examined 218 

beneath a clear plastic or glass sheet marked with a 1-cm grid, and the plant remains present 219 

in each quadrat recorded (e.g., DiMichele and Phillips 1988; Willard 1993; Willard et al. 220 

2007).  221 

However, because macrofloras usually occur in allochthonous plant beds, they have been 222 

subjected to varying levels of sorting, differential preservation and time averaging (Gastaldo 223 

1988; Gastaldo et al. 1995; Behrensmeyer et al. 2000; Spicer 2017; Thomas et al. 2019a; 224 

Cleal et al. 2021). Consequently, no matter how systematically the macroflora is sampled, it 225 

can usually only provide a distorted glimpse of the parent vegetation (Burnham 1993). 226 

Choosing the appropriate sampling strategy and size must depend on the research question 227 

being investigated (DiMichele and Gastaldo 2008). This can be even more problematic with 228 
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(older) museum collections where the sampling strategy has not been recorded (e.g., Uhl and 229 

Lausberg 2008). 230 

2.3 Megafossils 231 

Megafossils are the largest plant fossils, such as the tree trunks found in in-situ fossil 232 

forests (e.g., Becker 1993; DiMichele and Falcon-Lang 2011; Macdonald 2013) or as logjams 233 

in fluvial systems (Falcon-Lang and Bashforth 2005; Kędzior and Popa 2013; Gastaldo and 234 

Degges 2007). Because of their physical size and weight, such fossils tend to be studied in 235 

situ, although there can be exceptions (e.g., Thomas and Seyfullah 2015; Roberts et al. 2016). 236 

Where the area of exposure is sufficiently large, local-scale tree density can be measured 237 

directly (e.g., Gastaldo 1986a; Hinz et al. 2010; Thomas 2014; Opluštil et al. 2020). 238 

Alternatively, it can be measured as trees become progressively exposed by advancing 239 

working faces in active quarries and mines (e.g., Gastaldo 1986b; DiMichele and Demaris 240 

1987; Mosbrugger et al. 1994; DiMichele et al. 2007; Gastaldo et al. 2004b) or in eroding 241 

cliffs (e.g., Francis 1984; Calder et al. 2006; Falcon-Lang 2006; Grey and Finkel 2011). 242 

There are also late Quaternary submerged forests exposed in coastal areas by storms 243 

(Hayworth 1985, 1986, Nayling et al. 2007, Sherlock 2019; Bailey et al. 2020), along rivers 244 

by erosion (Vassio et al. 2008) or in freshwater lakes (Kaiser et al. 2018).  245 

Tree density and distribution are measured either through traditional surveying methods 246 

(DiMichele et al. 1996a; Thomas 2013; Berry and Marshall 2015) or photogrammetry 247 

(Fernández-Lozano and Gutiérrez-Alonso 2017). There is the potential for future use of 248 

satellite technology such as Landsat or Sentinel-2 data, although the pixel resolution 249 

generally available is too coarse to see individual fossils (e.g., Landsat 32 x 32 m, pan-250 

sharpened to 16x16 m; Sentinel 10 x10 m); aerial photography and high-resolution satellite 251 

data such as Google Earth have greater possibilities. Determining taxonomic diversity from 252 

fossil forests can be more problematic as the characters necessary for species or genus 253 

identification are often not preserved; the groundcover and understory vegetation has also 254 

usually been removed by the flooding event that entombed the trunks. In unstable 255 

depositional environments it is, moreover, necessary to ensure that the trunks are 256 

autochthonous and have not been deposited in an upright position by mudflows or lahars 257 

(Fritz 1980). 258 
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3 Databases 259 

Although most local-scale and landscape-scale diversity studies use survey data, regional 260 

and global-scale studies require larger samples extracted from secondary datasets. The 261 

potential problem with such studies is quality control and this is becoming an increased 262 

danger with on-line access to many databases; it has become too easy simply to download 263 

and analyse large quantities of data without checking the reliability of the identifications and 264 

the provenance of the fossils, and what plant parts and/or preservation states are being 265 

recorded. Without detailed checks on the robustness of the records, any diversity analysis 266 

using such data is likely to be worthless. 267 

3.1 Palynology 268 

Late Quaternary vegetation studies have been transformed over the last 30 years through 269 

the development of large databases covering broad geographical areas and temporal ranges, 270 

such as the European Pollen Database (EPD), the European Modern Pollen Database 271 

(EMPD), the Eurasian Modern Pollen Database (EMPD) and the North American Pollen 272 

Database (NAPD) (Fyfe et al. 2009; Davis et al. 2013, 2020; Giesecke et al. 2014a; Grimm et 273 

al. 2013). These are being incorporated into the Neotoma palaeoecological database 274 

(Williams et al. 2018). Although the taxon names are standardised as each new regional 275 

database is added to Neotoma, because the records are from disparate sources their reliability 276 

and consistency can be difficult to assess; there are also some issues with uneven spatial and 277 

temporal coverage. Nevertheless, combined with improved radiocarbon dating and age ‒ 278 

depth modelling (e.g., BACON; Blaauw and Christen 2011), these databases are allowing 279 

pollen records to be integrated from widely separated areas using a common age scale (e.g., 280 

Grimm et al. 2013; Giesecke et al. 2014b; Blarquez et al. 2014) and so significantly 281 

improving the modelling of vegetation dynamics (e.g., Davis et al. 2013; Walsh et al. 2019), 282 

which in turn can be compared with climate data (Fig. 3). 283 

The most notable attempt to collate pre-Quaternary palynological data was the “Catalog of 284 

fossil spores and pollen”, initiated in 1957 by Gerhard Kremp and which continued up until 285 

the mid-1980s (Traverse et al. 1970; Riding et al. 2016). The DOS-based “Taxon.exe” 286 

database was also a valuable source on older records, but has not been updated lately and 287 

seems now to be unavailable. In more recent years, online research via PALYNODATA 288 

(https://paleobotany.ru/palynodata), a bibliographic database that was continued at least until 289 

2006, also based on Gerhard Kremp's initial research, and compiled since 1974 by Palynodata 290 
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Inc. (J.M. White), has been established. There is also available the CIMP slide collection, an 291 

archive of 382 images of holotypes of Palaeozoic miospore species scanned by M. Streel (see 292 

more details on the websites of the Laboratory of Palaeobotany, Moscow, Russia). More 293 

recently, a collaborative database PalyWeb has been created for Palaeozoic palynological 294 

records (Steemans and Breuer 2007) and is an on-going project. 295 

3.2 Macrofloras 296 

The only comprehensive data resource on macrofloral species distributions now available 297 

is the Plantae part of the Fossilium Catalogus. Initiated in 1913 by Wilhelmius Jongmans, this 298 

has attempted to document every published macrofloral record including remarks on their 299 

occurrences, as well as relevant taxonomic and nomenclatural issues (Wagner and van 300 

Amerom 1995). The project has continued up to today under the editorships of S. Dijkstra, 301 

and then H. van Amerom and J. van der Burgh, and currently (as of 2021) runs to 115 302 

volumes (“pars”). Some of the volumes are now available on-line via the Biodiversity 303 

Heritage Library and/or Google Books.  304 

Some macroflora records have been included in the Paleobiology Database (PBDB; Alroy 305 

2003) and this has been used in some palaeobotanical biodiversity studies (e.g., Raymond et 306 

al. 2006; Silvestro et al. 2015), but the palaeobotanical coverage remains very patchy in terms 307 

of completeness and rigour and consistency of identifications. The Geobiodiversity database 308 

(GBDB; Xu et al. 2020) has been available since 2007 and includes detailed accounts of 309 

fossil plant occurrences, primarily from within China. Unlike the PBDB, the GBDB records 310 

are tied to geological sections, allowing stratigraphy-based diversity comparison to be made 311 

within formations and between geological sections. Most recently, a planned Integrative 312 

Paleobotany Portal (PBot) aims to provide a means of recording palaeobotanical data but at 313 

the time of writing its exact remit and how it relates to the PBDB and GBDB remains 314 

unclear. 315 

Global compilations of fossil-species appear also to have been attempted by Niklas et al. 316 

(1980, 1983, 1985) and used in diversity analyses, but the data were never published. In 317 

contrast, Devonian and Carboniferous floristic studies by Mosseichik (2010, 2012, 2014, 318 

2019) gave detailed metadata, allowing the records to be verified. Data on global records of 319 

fossil-species near the Permian – Triassic boundary are given as supplementary data 320 

accompanying Nowak et al. (2019) and are available for download from the journal web site. 321 

Global compilations of fossil-genera were published for particular Palaeozoic time-intervals 322 
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by Raymond (1985), Raymond et al. (1985a,b) and Rowley et al. (1985) and used in floristic 323 

analyses. Other diversity analyses of particular taxonomic groups and/or regional areas exist 324 

(e.g., Lidgard and Crane 1990; Martinetto and Vassio 2010; Barbacka et al. 2014) although, 325 

again, not all of the datasets have been published or updated. 326 

The stratigraphical distribution of plant families was documented in Harland (1967 – 327 

Fossil Record) and Benton (1993 – Fossil Record 2), and for the gymnosperms by Anderson 328 

et al. (2007). These record the first and last occurrences of each known family, with full 329 

bibliographic details allowing the evidence to be assessed and verified. The Benton (1993) 330 

dataset is now available on-line and, although it has not been updated since the original 331 

publications, a modified version of the palaeobotanical part was provided with the on-line 332 

version of Cascales-Miñana and Cleal (2014). 333 

Data-mining for diversity analyses can be facilitated by using reference managers such as 334 

Endnote, Mendeley or Zotero. Endnote is particularly flexible in configuring dedicated fields 335 

for recording taxa in references of any type (Popa 2011), while new versions enable detecting 336 

taxa directly from attached PDF files associated with reference records. Queries can therefore 337 

provide lists of references covering species, genera and families, as well as higher taxa. 338 

Online queries directly from dedicated reference managers also enable rapid and robust 339 

searches for diversity data; coupling Endnote with portals such as Web of Knowledge / Web 340 

of Science can produce rapid records and data conversions. 341 

4 Diversity metrics 342 

There are two aspects to understanding the vegetational taxonomic diversity: the diversity 343 

of individual floras and the comparison between floras. Each aspect has its own set of 344 

metrics. 345 

4.1 The diversity of a flora 346 

A range of metrics are available to express taxonomic diversity in both palaeobotany and 347 

palynology (Magurran 2004; Santini et al. 2017). The following discussion will mainly deal 348 

with local-scale diversity, often referred to as α-diversity (Cleal et al. 2021). 349 

The taxonomic diversity of a flora consists of its taxonomic richness and its taxonomic 350 

evenness (Simpson 1949). Taxonomic richness (the number of taxa present, also termed the 351 

standing diversity) is regarded as an important guide to ecological change in modern-day 352 

vegetation (Magurran 2004) and has also been used in palaeobotanical studies (summarised 353 
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by Cleal et al. 2021). The main problem tends to be of sampling: are enough specimens being 354 

examined to reveal both rare and the more abundant taxa (see Section 2)?  355 

Taxonomic evenness of a flora (whether there are numerous equally abundant taxa, or just 356 

a few dominant taxa) is ecologically important as it may affect how the vegetation will 357 

respond to environmental change (Maguran 2004). The level of evenness can be judged 358 

graphically by plotting a rank abundance distribution curve (or Whittaker Plot), which shows 359 

the relative abundance of each taxon ordered sequentially by increasing abundance, plotted 360 

against either a logarithmic (Magurran 2004) or linear (Koll and DiMichele 2021; DiMichele 361 

et al. 2021) scale. Such plots have been modelled mathematically using probability 362 

distributions for ranked data (e.g., broken stick and Zipf-Mandelbrot distributions) to 363 

understand how modern-day plant communities become established (Mouillot and Lepretre 364 

2000; Magurran 2004) and a similar approach was this was used with palaeobotanical data by 365 

McElwain et al. (2009).  366 

Various metrics combine taxonomic richness and evenness, referred to as taxonomic 367 

heterogeneity indices (Good 1953; Hill 1973a; Shi 1995; Magurran 2004; Colwell and 368 

Elsensohn 2014). Simpson’s Index is a widely used heterogeneity metric, which ranges from 369 

0 to 1 with increasing evenness, and is in essence the probability that any two samples drawn 370 

randomly from the flora will belong to the same taxon. This benefits from being conceptually 371 

straightforward and so easy to interpret, and has been used in palaeobotany and palynology 372 

(e.g., Wing and DiMichele 1995; Uhl and Lausberg, 2008; Pardoe 2021). The main problem 373 

is that the Simpson Index can be overly sensitive to the more abundant taxa in a flora, which 374 

could be a problem if the rarer species are of interest (Whittaker, 1965). The Simpson Index 375 

is sometimes converted to what is called a Diversity Index, either by subtracting its value 376 

from 1 (e.g., Whittaker, 1965) or using its reciprocal value (N2 of Hill, 1973a) and so 377 

increases with decreasing evenness; the former has been used in palaeobotany by Pryor and 378 

Gastaldo (2000).  379 

The Shannon heterogeneity metric not only takes into account the relative numbers of 380 

taxa, but also of individuals in the sample, and usually varies from 1.5 to 3.5 with increasing 381 

unevenness. However, this was not founded on ecological theory but uses information theory 382 

to try and estimate unevenness from the observations (Lande 1996). Although this is not a 383 

significant drawback with large samples (Peet 1974), it tends to be rather less sensitive to 384 

unevenness than the Simpson Index; it can often overemphasise the effect of the rarest taxa in 385 

a flora and so give greater emphasis to taxonomic richness (Nagendra 2002). There have been 386 
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attempts to overcome this issue (e.g., Pielou’s Index which is the Shannon metric divided by 387 

the log of the number of taxa; and N1 of Hill, 1973a, which is the exponential value of the 388 

Shannon metric), but there remain fundamental problems with the Shannon index and its 389 

derivatives (Lande 1996; Magurran 2004).  390 

Both Simpson and Shannon indices are affected by sample size and therefore by sampling 391 

effort, and so several non-parametric indices have been developed that only reflect the 392 

taxonomic evenness (Magurran 2004; Buzas and Hayek 2005; Chiarucci et al. 2011; Birks et 393 

al. 2016; Santini et al. 2017). The simplest are the Berger ‒ Parker Index (the ratio of the 394 

number of specimens of the dominant taxon to the total sample size) and the Chao Estimators 395 

(which take into account the proportion of singleton and doubleton taxa; Chao 1984, 1987); 396 

Chao estimators have been used in palaeobotanical studies by Wing and DiMichele (1995) 397 

and Mander et al. (2010).  398 

Each of these diversity metrics produce different insights into the taxonomic structure of 399 

the assemblage and so in their way are equally valid. However, each of the main metrics has 400 

a different mathematical structure and so it is difficult to combine them into a unified scheme. 401 

Hill (1973a) therefore proposed a unified system of Hill Numbers based on the main existing 402 

metrics but with more compatible mathematical structures: N0, which is the taxonomic 403 

richness; N1, which is the exponential of the Shannon metric; and N2, which is the reciprocal 404 

of the Simpson heterogeneity metric. Jost (2006) referred to N1 and N2 as the "effective 405 

number of species" in a community; they represent the number of equally-common species 406 

required to give a particular value of an index and so may be regarded as the true level of 407 

taxonomic diversity. 408 

Whilst it is relatively easily to measure taxonomic evenness in the plant fossil record, 409 

interpreting it in terms of vegetation evenness and its ecological impact is less 410 

straightforward. Even with living vegetation, taxonomic evenness can be difficult to interpret 411 

as the physical size and therefore biomass of each plant will affect its ecological impact (Hill, 412 

1973a): a small number of trees will have a much greater effect on a habitat than the same 413 

number of herbaceous plants. Furthermore, the ecological impact of biomass varies according 414 

to the plant-part: the same biomass of leaves, reproductive structures and woody stems will 415 

have significantly different ecological impacts on a habitat. Although some attempts have 416 

been made to portion out biomass taxonomically in macrofloras with the aim of improving 417 

diversity analyses (Baker and DiMichele 1997; Niklas 2006), in practice it is very difficult, if 418 
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only because our understanding of the full growth form of most of those fossil plants tends to 419 

be incomplete. 420 

Interpreting taxonomic evenness in palynofloras is also difficult because of the large 421 

variations between plant groups in pollen (and spore) productivity and dispersal (Matthias et 422 

al. 2015). Where a large pollen producer (e.g., Betula) is replaced by a plant with low pollen 423 

production (e.g., Tilia), the evenness of the vegetation may not change but the evenness of 424 

the resulting pollen sample will be noticeably different. Correction factors (Davis 1963; 425 

Andersen 1970) or models of pollen dispersal with relative productivity estimates (Broström 426 

et al. 2008; Gaillard et al. 2008) can reduce this problem (Matthias et al. 2015; Felde et al. 427 

2016) and have been used in Holocene (Marquer et al. 2014) and Palaeozoic (Willard 1993) 428 

studies, but is difficult with extinct groups where the relative or absolute pollen productivities 429 

are unknown.  430 

4.2 Comparing the diversities of two floras 431 

Diversity metrics are only really meaningful if they can be compared between different 432 

floras. Pair-wise comparisons of taxonomic richness are simple, provided the sample sizes are 433 

sufficient to be representative or have been standardised (see Section 2), but this provides 434 

only limited insight into the difference between the floras.  435 

Usually it is more instructive to compare the taxonomic composition of two floras, for 436 

which at least 39 similarity indices are available, each placing different emphasis on the 437 

comparison (Shi 1993a,b; Harper 1999). For binary (presence / absence) data, the 438 

conceptually simplest is the Jaccard coefficient, which is the ratio of the number of taxa that 439 

are shared by two floras to the total number of taxa in the two floras combined, and was 440 

regarded by Shi (1993b) as the most robust for palaeoecological studies. Alternatively, 441 

DiMichele and Phillips (1988) and McElwain et al. (2007) used the Dice-Sørensen 442 

coefficient that gives greater emphasis to co-occurrences of taxa than mismatches. For 443 

taxonomic abundance data, several indices are available (reviewed by Hammer and Harper 444 

2006) but each tends to give a relatively different emphasis to sample size and so can produce 445 

rather different results; for instance, the Euclidean distance can be strongly influenced by 446 

large differences between rare taxa, the Bray-Curtis tends to be very sensitive to abundant 447 

taxa (e.g., DiMichele et al. 2021) and the squared chord distance gives more weight to the 448 

overall composition of the samples (e.g., Pardoe et al. 2010). As with many of these 449 
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numerical techniques, when interpreting similarity indices, it is essential to understand 450 

exactly what the selected index is emphasising. 451 

In themselves, these indices provide no measure of statistical significance; could the 452 

observed difference be explained merely through chance? If Shannon information metrics 453 

have been used to characterise the diversities, there is a t-test available that will provide a 454 

probability of significance of the comparison (Hutcheson 1970). With other metrics, 455 

bootstrapping can be used where the comparison is repeatedly done on randomly selected 456 

subsets of the data, from which a confidence interval can be calculated (Harper 1999).  457 

For floras documented using rank abundance plots (Section 4.1), the curves can be 458 

compared statistically using the χ2 test (e.g., Gastaldo et al. 2004a; Willard and Phillips 459 

1993). However, this approach assumes data must be counts not percentages, that the 460 

categories are independent, and that the sample sizes are sufficiently large. Alternatively, the 461 

non-parametric Kolmogorov-Smirnov test that will compare univariate distribution curves 462 

and is free of these assumptions (Magurran 2004) as was done by DiMichele et al. (2021).  463 

5 Spatial diversity patterns 464 

Although comparing the diversity of two floras can provide valuable information, 465 

comparing floras from different places and habitats can reveal patterns that may be of wider 466 

ecological and floristic interest 467 

5.1 Local-scale spatial diversity  468 

Comparing the taxonomic diversities of fossil floras at local scale is usually aimed at 469 

identifying the past plant communities in the landscape, but this can be difficult as most fossil 470 

floras are fragmented and allochthonous. Nevertheless, by integrating evidence of the relative 471 

spatial distribution of the fossils with their sedimentological context, consistent ecogroups of 472 

fossil-taxa may be recognisable (Abbink et al 2004; Barbacka 2011; Barbacka et al. 2016; 473 

Franz et al. 2019). By relating such ecogroups to the habitat preferences of the component 474 

taxa determined from autochthonous floras and / or anatomical details, conceptual models of 475 

vegetation communities can be developed. Ecogroups can sometimes be identified in ex-situ 476 

spoil tip material (e.g., Procter 1994) or museum collections (e.g., Opluštil et al. 2007; 477 

Costamagna et al. 2018; Strullu-Derrien et al. 2021) but the best results are normally obtained 478 

from plant beds that can be directly sampled (see Section 2). 479 
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Spatial patterns in taxonomic diversity can be identified non-metrically by simply 480 

tabulating the diversity for each plant bed (e.g., Opluštil et al. 2007, 2009a,b, 2020; 481 

DiMichele et al. 2017a; Thomas et al. 2019a) or localities (e.g., Dix 1934; Kerp and Fichter 482 

1985). How much of the landscape-scale diversity is accounted for by the differences in 483 

local-scale diversity of the individual localities is traditionally referred to as β-diversity. At 484 

its simplest, β-diversity can be represented by the Whittaker Index, which is the ratio of the 485 

landscape-scale diversity to the average local-scale diversity (Whittaker 1960), but a range of 486 

other metrics have since been developed (Koleff et al. 2003). However, diversity patterns 487 

across a landscape are best revealed by numerical analysis, particularly ordination (Section 488 

5.3.1). 489 

5.2 Floristics 490 

Identifying regional- or global-scale floristic (phytogeographical) patterns in the Cenozoic 491 

can be guided by the distribution and ecological tolerances of nearest living relatives (e.g., 492 

the Coexistence Approach of Mosbrugger and Utescher 1997; see also Manchester and 493 

Tiffney 2001; Tiffney and Manchester 2001; Liang et al. 2003). A derived approach, widely 494 

used in modern ecological modelling, is the identification of Plant Functional Types (PFT) 495 

based on traits and physiological capacities of nearest living relatives, and this has been used 496 

to reconstruct Cenozoic vegetation patterns (e.g., Utescher & Mosbrugger 2007; François et 497 

al. 2011; Popova et al. 2013; Utescher et al. 2017, 2021). However, this becomes increasingly 498 

difficult with geologically older floras and floristic patterns have to be determined from 499 

intrinsic distributional data obtained directly from the fossil record.  500 

Traditionally, floristic patterns were recognised non-metrically, based mainly on the 501 

experience of palaeobotanists who had studied a large number of floras (e.g., Gothan 1925, 502 

1954; Vakhrameev et al. 1978; Meyen 1987; Mai 1995; Vakhrameev 2006). In essence their 503 

approach was to recognise nested sets of floristic units (phytochoria) similar to those used 504 

with living floras, in descending order of rank kingdom (or realm), area, province and district 505 

(terms anglicised as in Meyen 1987): examples of such studies were by Chaloner and Lacey 506 

(1973), Chaloner and Meyen (1973), Meyen (1987), Wnuk (1994), Iannuzzi and Rösler 507 

(2000), Mosseichik (2010) and Christiano-de-Souza et al. (2014). As pointed out by 508 

Raymond et al. (1985b), however, palaeobotanical phytochoria are conceptually different 509 

from those defined on today’s vegetation because of the incompleteness of the fossil record. 510 

Consequently, Cleal and Thomas (in Cleal 1991, p. 26) suggested that Meyen’s (1987) terms 511 

for the fossil phytochoria should be modified by adding the prefix “palaeo-”. In this modified 512 
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sense, a palaeokingdom is not just an ancient floristic kingdom, but is a phytochorion defined 513 

exclusively on the composition of the fossil floras. These palaeofloristic units should bear 514 

some similarity to the floristic structure of the original vegetation, but this relationship is 515 

hypothetical and cannot be tested directly. Deciding on the rank of a fossil phytochorion is 516 

subjective, but Cleal and Thomas (2019) suggested that, if it is distinguished largely by 517 

supra-generic taxa it is a palaeokingdom; if by fossil-genera it is a palaeoarea; if by fossil-518 

species it is a palaeoprovince; and if by just a few fossil-species it is a palaeodistrict.  519 

Biomes (or biome formations) are more complex concepts than phytochoria as they are 520 

defined by the distribution of the faunas, floras, and various environmental factors such as 521 

climate, elevation and substrate conditions (e.g., Whittaker 1962). It has sometimes been 522 

possible to recognise modern-day biomes in the Cenozoic record (e.g., Neumann and 523 

Bamford 2015). There have also been attempts to recognise biomes in the fossil record (e.g., 524 

Rees and Ziegler 1996; Rees et al. 2000; Rees 2002; DiMichele et al. 2008; Nowak et al. 525 

2020), but the fossil record is usually too incomplete for any rigorous delineation of biomes 526 

in the sense that they are used with today’s biotas. 527 

5.3 Numerical analysis of spatial data 528 

Because of the complexity of the data, most modern palaeofloristic studies tend to use 529 

numerical analysis. The data are usually given in a matrix with rows of floras and columns of 530 

taxa (either presence / absence or abundances). It is possible simply to calculate a series of 531 

similarity coefficients (Section 4.2) between the floras (e.g., Czier 2002, 2016); but the 532 

underlying structure of the data is usually shown better using multivariate numerical 533 

methods. There are two broad classes of numerical method: ordination that tries to identify 534 

linear trends within the data, and classificatory analyses that attempt to identify clusters. 535 

Neither is better than the other; they are just providing different insights into the structure of 536 

data and Shi (1993b) has recommended that it is often best to use both ordination and 537 

classificatory analyses in parallel (e.g., Fig. 4). 538 

5.3.1 Ordination 539 

Ordination aims to find linear trends within a multivariate dataset and can be a particularly 540 

powerful tool for palaeoecological and floristic studies. Several ordination methods are 541 

available (Gauch 1982; Shi 1993b, 1995; Davis 2002; Palmer 2004; Hammer and Harper 542 

2006). One of the simplest is unconstrained seriation analysis that takes a presence / absence 543 

matrix and rearranges the columns and rows so that the presences tend to occur in a broadly 544 
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diagonal arrangement (Brower and Kile 1988); it is in effect a one-dimensional ordination 545 

(Fig. 5). More usually, however, ordination tries to arrange the data in a multidimensional 546 

geometric space. 547 

One of the first multidimensional ordination methods to be developed was Principal 548 

Components Analysis (PCA; Pearson 1901). The original data can be seen as floras plotted in 549 

a multidimensional geometrical space where each axis represents a taxon. PCA uses a 550 

mathematical procedure (eigenanalysis) to rotate the multidimensional space so the new 551 

orthogonal axes (eigenvectors) more efficiently reflect the structure of the data. Rather than 552 

each axis representing a single taxon as in the original matrix, each of the eigenvectors now 553 

represents several taxa; how much each taxon is represented on an eigenvector is called its 554 

loading. It should now be possible to understand the relationships between the floras by how 555 

they plot on much fewer axes (the eigenvectors) compared with the original matrix, making 556 

the floristic or ecological structure easier to interpret. PCA has been used in plant 557 

palaeoecological studies (e.g., Spicer and Hill 1979; Spicer 1981; Birks and Gordon 1985; 558 

DiMichele et al. 2002; Barbacka 2014). However, PCA assumes that there is a continuous 559 

linear transition in the floras along each eigenvector, which rarely happens in nature (Palmer 560 

2004). It is more usual for the floras to show a unimodal distribution, forming clear peaks 561 

along the eigenvectors, and will result in a significant curvature in the ordination plots known 562 

as the horseshoe-effect (Gauch 1982).  563 

Conceptually simpler is Correspondence Analysis (CA) that in its original form uses 564 

reciprocal averaging to generate the new geometrical space (Hill 1973b; ter Braak in 565 

Jongman et al. 1995; Rees and Ziegler 1999). The sample rows in the data matrix are sorted 566 

according to the weighted average of its taxon scores, and then the taxon columns are sorted 567 

according to the weighted average of the sample scores. This reciprocal re-scoring and re-568 

sorting of the taxon columns and of the sample rows is repeated until the arrangements of 569 

rows and columns stabilise. The resulting taxon and sample scores are then both plotted along 570 

what becomes the first axis of the ordination. CA then repeats the re-scoring / re-sorting on 571 

the variance not explained by the first axis to establish the second and subsequent, mutually 572 

orthogonal axes. As with PCA, most CA studies only use the first few axes, each of which 573 

often seems to reflect a significant ecological or floristic gradient. Although this is the 574 

conceptually easiest way to calculate and think about CA, the same result can be more 575 

efficiently obtained by an eigenanalysis of a matrix of the χ2 distances between the floras 576 

(Greenacre 2010). This is now used in most CA software.  577 
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CA has the benefit of being relatively free of distributional assumptions: it can deal with 578 

binary (presence / absence), abundance and categorical data, does not require data normality 579 

or equivalence of variance between samples, and is tolerant of incomplete data (Shi 1995). 580 

Unlike PCA, moreover, it assumes that each taxon will show a unimodal rather than linear 581 

distribution along the eigenvectors (De’ath 1999), which is what normally occurs in nature. 582 

But perhaps of greatest benefit is that CA shows which taxa are responsible for the 583 

arrangement of the floras along the eigenvectors, which most other ordination methods do 584 

not.  585 

Although CA has been used in palaeobotanical studies (Rees et al. 2000, 2002; Coiffard et 586 

al. 2008), the ordinations can be difficult to interpret because the technique tends to 587 

compresses the data towards either end of each eigenvector and the data are plotted in an 588 

arched configuration (albeit less extreme than the horseshoe effect seen in PCA). To 589 

overcome this, Hill and Gauch (1980) introduced Detrended Correspondence Analysis 590 

(DCA), which flattens-out the CA plot and decompresses the data at the ends of the 591 

eigenvectors (e.g., Fig. 6). This detrending has been criticised as it is imposing linear gradient 592 

structures on the data that may not be reflecting reality, and the underlying structure may be 593 

better shown in un-detrended CA ordinations in higher-dimensional spaces (T. Olszewski, 594 

pers. comm. 2021). Furthermore, DCA may distort the ecological distances between the 595 

floras along the eigenvectors (Minchin 1987) although their relative rank-order remains the 596 

same. The initial arrangement of the data matrix can also affect DCA ordinations (Oxanen 597 

and Minchin 1997) but this can be overcome by standardising the arrangement of the rows in 598 

the data matrix using unconstrained seriation analysis before running the ordination (Cleal 599 

2008b,c). Uneven abundance data can also sometimes cause problems but Burnham (1994) 600 

found that this can be mitigated by using log transformations. The many advantages of DCA 601 

generally outweigh these drawbacks, and it has been used in many palynological (Caseldine 602 

and Pardoe 1994; Pardoe 1996, 2006; Dimitrova et al. 2007, 2011), macrofloral (DiMichele 603 

and Phillips 1988, 1996; Burnham 1994; Gemmill and Johnson 1997; DiMichele et al. 1996b; 604 

Willard et al. 2007; Barbacka 2011; Looy & Hotton 2014; Saxena et al. 2019; Strullu-Derrien 605 

2021), and floristic studies (Thomas 2007; Cleal 2008b,c; Thomas et al. 2019b).  606 

Canonical Correspondence Analysis (CCA) is another modification of CA where each 607 

flora is assigned one or more known environmental variables. The ordination is then done on 608 

axes that are linear combinations of the environmental variables. This approach has been used 609 

to relate palynological data to variables such as precipitation or altitude of a site (Gaillard et 610 
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al., 1994; Hjelle, 1999; Court-Picon, 2004; Finsinger 2007). More recently, CCA has been 611 

used to relate clusters of pollen taxa to specific plant communities (Pardoe 1996, 2006, 612 

2014). 613 

Non-Metric Multidimensional Scaling (NMDS) is an alternative to DCA that uses a matrix 614 

of distance indices between the floras rather than of taxon occurrences /abundances in the 615 

floras (Kruskal 1964). Firstly, it must be decided how many axes and what distance index are 616 

to be used. The floras are then arranged in the geometrical space, either randomly or in a 617 

configuration pre-determined using another ordination method (e.g., DCA). The rank-order of 618 

the geometrical distances between the floras in this configuration is compared with the rank-619 

order in the original distance matrix, and the level of mismatch is given by a metric referred 620 

to as stress. The positions of the data in the geometrical space are then adjusted to try to 621 

reduce the mismatch between the rank-orders, and the stress re-calculated. This process is 622 

repeated until the stress has been minimised. 623 

NMDS is numerically straightforward and will reveal gradations in the data in a low-624 

dimensional space, but will not reveal the detailed structure of the data as well as DCA, 625 

especially if the latter is interpreted using more than two dimensions (Ruokolainen and Salo 626 

2006). A more significant drawback is that NMDS is based on a matrix of distance indices 627 

rather than of taxon occurrences or abundances, and so it does not reveal which taxa are 628 

producing the structure resolved by the ordination. It is also not so robust as DCA with noisy 629 

data, and the results can vary in different runs and depending on how many dimensions are 630 

being used (Shi 1993b). Some of these problems can be resolved (e.g., by making repeated 631 

analyses and using the ordination with the lowest stress value). Some authors now use NMDS 632 

where DCA may previously have been used in palaeoecological (Willard 1993; DiMichele et 633 

al., 1991, 2007, 2017b; Pryor 1996; Bashforth et al. 2011; Barreda et al. 2012; Sala-Pérez et 634 

al. 2020) and floristic studies (Cúneo 1996; Barbacka et al. 2014). However, when DCA and 635 

NMDS have been compared, they have produced broadly similar ordinations (e.g., DiMichele 636 

et al. 1991) and so, given the advantages of DCA (notably that it shows which taxa are 637 

exerting the greatest influence on the ordination) it would seem to be preferable. 638 

Other ordination methods have occasionally been used with macrofloral studies. Polar 639 

Ordination (PO) produces a series of orthogonal eigenvectors from a distance matrix on 640 

which the floras can be plotted, and was used by Raymond et al. (1985a,b), Rowley et al. 641 

(1985), Raymond (1987) and DiMichele and Phillips (1988). However, defining the PO axes 642 

can be subjective (Shi 1993b) and the method has fallen out of fashion in palaeobotany. 643 
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Principle Coordinates Ordination (PCO) as used by Stiles et al. (2020) is similar to NMDS (it 644 

is sometimes referred to as Metric Dimensional Scaling) but uses the absolute values rather 645 

than rank-order of the floras in a distance matrix, and suffers from the same drawbacks as 646 

NMDS. 647 

5.3.2 Classificatory analysis 648 

The most widely used classificatory technique, especially in floristic studies, is R-mode 649 

cluster analysis, which shows the relationships between floras using a one-dimensional 650 

dendrogram (Fig, 6). Various cluster strategies are available (Shi 1993b) but the most 651 

commonly used is the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA; 652 

Sokal and Michener 1958). Similarity coefficients for all pairs of floras are calculated and the 653 

most similar two floras are combined. The mean distance between this pair and all the other 654 

floras is then compared, and the most similar flora joins the first pair to form a second cluster. 655 

The process is repeated until all of the floras are combined into a single cluster. Particularly 656 

for presence / absence data, Shi (1993a,b) recommended Jaccard’s similarity coefficient and 657 

this was used by Cleal and Shute (1995) with Pennsylvanian-age medullosaleans. Raymond 658 

(1987) instead used Dice-Sørensen coefficients to analyse Devonian floras (based on traits 659 

rather than strict taxonomy) as these tend to give greater emphasis to co-occurrences of taxa. 660 

Various other similarity metrics are available (Shi 1983a,b) but these often have difficulties 661 

handling uneven sample sizes (Hammer and Harper 2006). The least sensitive to uneven 662 

sample sizes are Raup-Crick Coefficients, which show how often a comparable level of 663 

similarity occurs in randomly replicated (by “Monte-Carlo” simulation) samples of the same 664 

size (Raup and Crick, 1979; Hohn 2008); these have been used in palaeofloristic studies by 665 

Thomas (2007) and Cleal (2008b,c). 666 

Although a basic cluster analysis may reveal evidence of phytochoria, it does not show 667 

which taxa are characterising the floras. This can partly be revealed by performing a Q-mode 668 

analysis (i.e., clustering the taxa against the floras) and plotting the resulting dendrogram at 669 

right-angles to the R-mode analysis – a procedure known as two-way clustering. This has 670 

been used in a number of palaeozoological studies (e.g., Dominici et al. 2008; Danise and 671 

Holland 2017) 672 

An alternative classificatory approach is parsimony-based cladistic vicariance 673 

biogeography (Humphries and Parenti 1999). Although the results are shown as a cladogram 674 

that can superficially resemble a cluster analysis (Fig. 7), the dendrogram is generated in a 675 
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very different way: rather than looking at the overall similarity between floras, it tries to 676 

identify geographical areas with shared taxa. A drawback is that it assumes that a 677 

phytochorion develops through the progressive acquisition of taxa, which may not always be 678 

the case. On the other hand, the theoretical background to the parsimony algorithm is well 679 

established through its use in phylogenetics, and also has the benefit of giving at least some 680 

indication of the taxa that are producing the phytochoria. There have been a few attempts to 681 

use parsimony in palaeobotanical floristics (Drinnan and Crane 1990; Coiffard et al. 2008) 682 

but, where it has been compared with cluster analysis (Hilton and Cleal 2007), the results 683 

have not differed significantly. 684 

5.3.3 TWINSPAN 685 

This is in some ways a hybrid approach, sharing aspects of ordination and classificatory 686 

analysis. Hill (1979), who developed the technique, referred to it as “a dichotomized 687 

ordination analysis”. It is a DCA-like iterative approach but, instead of using reciprocal re-688 

scoring and re-ordering of the floras and taxa, it successively divides the floras into 689 

categories, and then divides the species into categories based on the flora classification. 690 

Unlike traditional classificatory techniques, therefore, it is a divisive rather than a clustering 691 

algorithm.  692 

Several palynological studies have used the method to ordinate vegetation and pollen data 693 

(Caseldine 1992; Pardoe, 1996, 2006, 2014; Hjelle 1999; Connor et al. 2004; Connor and 694 

Kvavadze 2009). For instance, Caseldine and Pardoe (1994) used it together with DCA to 695 

differentiate between groups of surface pollen samples from glacier foreland sequences in 696 

southern Norway. These groups were subsequently compared to Holocene pollen data from 697 

cores and soil profiles (which were treated as passive samples) to indicate Holocene 698 

vegetation and climatic changes. It was also used by Lenz et al. (2006) with high resolution 699 

palynological data from Messel, showing a clear succession of middle Eocene plant 700 

communities colonizing and invading the area, which had been devastated by the volcanic 701 

eruption forming the maar lake. 702 

5.3.4 Statistical significance 703 

Both ordination and classificatory methods are exploratory approaches aimed at revealing 704 

structure within the complex dataset; they do not in themselves provide a statistical measure 705 

of significance of any groupings that may be revealed. Cluster analysis results can be tested 706 

by bootstrapping where the analysis is repeatedly done on a subset of the data and will show 707 
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how many replicates are supporting each node on the dendrogram, but this is still not a 708 

measure of statistical significance. That significance can be explored using confirmatory or 709 

hypothesis-testing methods such as Discriminant Function Analysis, sometimes known as 710 

Multivariate Analysis of Variance ‒ MANOVA (e.g., DiMichele and Aronson 1992) but 711 

there are problems with this approach with ecological/palaeoecological studies as the data 712 

rarely fulfil the necessary underlying distributional assumptions (Anderson and Walsh 2013); 713 

preferable are non-parametric comparisons such as PerMANOVA (Anderson 2001; e.g., 714 

Cleal 2008b,c). But it must always be remembered that these methods are only revealing 715 

statistical significances – the observed differences and/or similarities could be simply the 716 

result of incomplete sampling; they do not show whether the differences are botanically 717 

meaningful. 718 

6 Analysing diversity stratigraphically  719 

6.1 Stratigraphical trends in diversity 720 

Plant biostratigraphy is often regarded merely as a tool for stratigraphical correlation 721 

(Cleal 1991, 1999, 2018; Traverse 2007; Opluštil et al. 2021) but it may also be seen as 722 

providing evidence of the dynamic changes in plant diversity. Biostratigraphy has much in 723 

common with biogeography in that both are seeking patterns in complex distributional data, 724 

but there is one fundamental difference: whereas biogeographical data have three-725 

dimensional relationships, biostratigraphical data series are unidirectional as the present 726 

cannot influence the past (Dornelas et al. 2013). 727 

At its simplest, biostratigraphical data are purely the presence or absence of taxa at 728 

different stratigraphical levels, and this may be all that is needed in local-scale diversity 729 

studies (Fig. 8). Especially with plant macrofossils, however, individual assemblages are 730 

unlikely to be fully representative of landscape-scale vegetation at any one time (Cleal et al. 731 

2010). In taxon richness studies, it is normal, therefore, to use range-through data 732 

(Boltovskoy 1988): in a stratigraphical sequence of floras A, B, C, if a species is found in A 733 

and C but not B, it is still recorded as present in B. The logic is that a particular taxon is 734 

unlikely to disappear and then reappear from a landscape at this temporal scale – although we 735 

may not see the species in a fossil flora, it was probably still present somewhere in the 736 

landscape and was not recorded there because of incomplete collecting, taphonomic factors 737 

affecting preservation or local ecological factors. Although this may result in some 738 
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smoothing of the observed taxonomic diversity curves, it has proved a useful way of 739 

investigating broad patterns in landscape-scale vegetation change (DiMichele et al. 1996; 740 

Cleal 2005, 2007, 2008a; Gastaldo et al. 2009; Uhl and Cleal 2010; Opluštil et al. 2017; 741 

Nowak et al. 2018). The degree to which the range-through method is distorting data can be 742 

represented by a Sample Completeness Metric (SCM; Benton 1987), which is simply the 743 

ratio of those taxa that are actually observed in a particular fossil assemblage to those taxa 744 

that “should” be present (e.g., Cleal et al. 2010; Xing et al. 2016). 745 

A related issue is the uncertainty as to the start (First Appearance Datum ‒ FAD) and end 746 

(Last Appearance Datum ‒ LAD) of the stratigraphical range of a taxon. If sampling is 747 

perfect and taphonomy is having little effect, the FAD and LAD of a taxon’s range should 748 

reflect the actual distribution of the taxon, but such criteria are rarely met. This 749 

incompleteness in the record will, for instance, explain the “edge-effect” seen in many 750 

stratigraphical sequences, where a clear reduction in taxonomic richness occurs towards the 751 

top of a stratigraphical sequence (for instance at the top of Fig. 9) or as a hiatus in the record 752 

is approached (e.g., Wilf and Johnson 2004). It has little to do with a decline in actual 753 

diversity but is simply because of incomplete sampling of the floras near to the stratigraphical 754 

break or change. There are numerical methods of assessing the confidence intervals for the 755 

FAD and LAD of a taxon (Straus and Sadler 1989; Marshall 1990, 1997) and this was used 756 

by Wilf and Johnson (2004) in a study of vegetation responses in Dakota (USA) to the end-757 

Cretaceous biotic crisis. 758 

With palynological data, samples are often at a high temporal resolution and so changes in 759 

the presence of rare taxa may not be caused by rapid environmental change but is simply a 760 

sampling effect. This can be overcome using a taxon-accumulation curve, where the numbers 761 

of taxa are summed over consecutive samples and plotted against the accumulated sample 762 

count representing sampling effort (Giesecke et al. 2012). These accumulation curves can be 763 

described with power functions and deviations from the theoretical relationships may be 764 

reflecting past environmental changes such as the onset of human land use (Giesecke et al. 765 

2014a). Where the focus of the investigation includes rare pollen types, it may be convenient 766 

to combine samples into larger units and even combining pollen diagrams to derive regional 767 

taxonomic pools (Giesecke et al. 2012). In the latter case it is crucial to work with pollen 768 

diagrams that are harmonized to the same taxonomic rank.  769 

Biostratigraphical distributional data are usually represented as range charts (Fig. 8). Early 770 

examples of such range charts show the temporal distribution of high-ranked taxa (e.g., 771 
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Bronn 1849) but their use with species in palaeobotany was pioneered by Dix (1934) and it is 772 

now a fairly standard way of recording stratigraphical distributions of taxa (e.g., Cleal 1978, 773 

1984, 2005, 2007, 2008a; Wagner et al. 1983; Willis and Niklas 2004; Bertini 2010). Such 774 

charts can be easily used to extract range-through taxonomic diversity data by simply 775 

counting how many range bars cross each stratigraphical level. This can then be documented 776 

as a graph plotted alongside the stratigraphical column. In principle, the significance of such 777 

changes in taxonomic diversity can be determined using standard statistical tests, but in many 778 

cases the datasets will fail the required conditions such as normality of distribution and so 779 

nonparametric bootstrap tests are usually preferable (Buckland et al. 2005). Also problematic 780 

are the uneven sedimentation rates, which make it difficult to use stratigraphical thickness as 781 

a time scale against which the diversity changes can be plotted and assessed. Wang et al. 782 

(2005) suggested a partial metric to overcome uneven sedimentation rates in different 783 

sections, but a simple visual assessment of the stratigraphical trends will usually provide a 784 

reasonable indication of any changes in taxonomic diversity through a sequence. 785 

It can often be important to determine how the taxonomic balance of fossil floras changes 786 

through a sequence. For instance, palynological data are often expressed as a series of parallel 787 

diversity curves each representing a particular taxon or groups of interest (Fig. 10; e.g., 788 

Willard et al. 1995; Rull 2000; Schneebeli-Hermann et al. 2017). Alternatively, stacked 789 

graphs have been used to show the changing diversity of the major plant groups as well as of 790 

the flora as a whole (Fig. 8; e.g., Cleal 2005, 2007, 2008a; Opluštil et al. 2017). 791 

Biostratigraphical changes are often expressed in terms of biozones. There are several 792 

different types of zones (discussed by Cleal 1999 in a palaeobotanical context) but most tend 793 

to be assemblage range zones defined by taxa with overlapping stratigraphical ranges and 794 

usually delineated by discontinuities in the overall pattern of the stratigraphical ranges. 795 

Traditionally these discontinuities would be recognised by visual inspection of range charts, 796 

but this can be rather subjective (Gordon and Birks 1972; Bennett 1996). An alternative 797 

approach is to calculate the taxonomic similarity coefficients between adjacent floras through 798 

a stratigraphical sequence, where discontinuities will be marked by unusually low values; 799 

DiMichele and Phillips (1995) used Jaccard coefficients in this way. Discontinuities can also 800 

be recognised using constrained cluster analysis of the coefficients (CONISS), which is an R-801 

mode clustering algorithm (usually UPGMA) but with the order of samples kept in their 802 

original stratigraphical sequence (Fig. 11; Gordon and Birks 1972; Kovach 1993; Bennett 803 

1996; Leroy and Roiron 1996; Leroy et al. 2009; Cleal et al. 2012; Mander et al. 2013). 804 
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Jaccard and Sørensen-Dice coefficients have been used for presence / absence data (e.g., 805 

Gastaldo et al. 2009a,b), and Euclidean coefficients have been used with abundance data 806 

(e.g., Quattrocchio et al. 2013). Raup-Crick coefficients were used by Cleal et al. (2012) and 807 

Opluštil et al. (2017), which produced clearly demarcated biozones that largely coincided 808 

with the Wagner (1984) non-metric biostratigraphy. The level of taxonomic similarity within 809 

the cluster analysis that is used to separate zones is largely subjective, although bootstrapping 810 

can provide some evidence of the robustness of the different clusters. Bennett (1996) has also 811 

suggested numerical methods for determining how many zones will maximise the 812 

explanation of the variance of biostratigraphical data (see also Seppä and Bennett 2003). 813 

Another non-parametric way of seeking discontinuities in the plant fossil record, 814 

especially if caused by extrinsic factors, is pseudo-cohort analysis (Hoffman and Kitchell 815 

1984; Cascales-Miñana and Cleal 2011), a modification of cohort analysis of Raup (1975, 816 

1978). This is based on the idea that taxa (like individual organisms) have a mean life 817 

expectancy and that the taxa in an assemblage will stochastically become extinct with time 818 

(Van Valen 1963). A survivorship curve of all the taxa in a flora plotted through the 819 

succeeding stratigraphical interval should form a monotonic curve, as the taxa progressively 820 

disappear from the record (Fig. 12). If such curves are plotted for each successive flora, the 821 

result should be a series of more-or-less parallel lines; but, if there has been a significant 822 

environmental disruption, a marked deflection appears in the lines. Although there may be 823 

some questions about the underlying assumptions on which this is based, the technique has 824 

proved useful in revealing significant diversity changes both at the level of global extinctions 825 

(Cascales-Miñana 2011; Cascales-Miñana and Cleal 2011) and in the study of how specific 826 

floras responded to climate and landscape change (Cleal et al. 2012). 827 

Ordination has also been applied to identify significant trends in plant biostratigraphical 828 

data (Kovach 1993). For instance, DCA has been used to investigate macrofloral evidence of 829 

vegetation responses to climate change across the Triassic – Jurassic boundary (McElwain et 830 

al. 2007); also, in various Carboniferous (Dimitrova and Cleal 2007), Palaeogene (e.g., Wing 831 

and Harrington 2001; Wilf and Johnson 2004; Jaramillo et al. 2010), Neogene (Quattrocchio 832 

et al. 2013) and Quaternary (Pidek and Poska 2013; Leroy et al. 2009) palynological studies. 833 

As with spatial studies, some authors have now opted to use NMDS rather than DCA for 834 

biostratigraphy (e.g., DiMichele and Aronson 1992). Since the data rarely fulfil the 835 

underlying assumptions of linear distribution, PCA on its own has not been widely used for 836 

plant biostratigraphical studies. An exception has been the use of PCA on transposed datasets 837 
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(taxa in rows, floras in columns) to try to identify the main palynological assemblages of co-838 

existing taxa rather than groupings of the floras (Festi et al. 2015; López-Merino et al. 2016).  839 

Yet another numerical method for recognising biozones is Unitary Associations (Guex 840 

1977, 1991). This uses a matrix of taxon occurrences through several stratigraphical 841 

sequences and attempts to identify series of assemblage zones that maximise stratigraphical 842 

resolution whilst minimising conflicts in the ranges between sections. This has been 843 

occasionally applied to palynology (da Silva-Caminha et al. 2010; Kachniasz and da Silva-844 

Caminha 2017) but never with macrofloras. Another numerical method for identifying 845 

biozones in palaeozoology is Appearance Event Ordination, which is similar to CA but 846 

makes use of both species-associations and stratigraphical data instead of just taxonomic 847 

presence – absence data (Alroy 1996) but again has had little application in palynology or 848 

palaeobotany. 849 

6.2 Taxonomic origination and extinction 850 

Investigating long-range vegetation diversity dynamics, for instance in the search for 851 

responses to mass extinctions or global climatic changes, requires a different approach to 852 

traditional biostratigraphy. Because of the large number of floras involved, it is usual to 853 

analyse data that have been binned into stratigraphical intervals such as stages or series. 854 

However, this binning of the data can distort the detailed pattern of taxonomic originations 855 

and extinctions, which can in turn distort diversity patterns; extending species ranges to the 856 

boundaries of the stratigraphical units may cause artificially high origination and extinction 857 

rates at those boundaries (Raup 1972). In principle, this boundary effect can be minimised by 858 

using smaller time intervals, but small time-intervals will provide poorer samples of diversity 859 

and thus also, potentially, distort the diversity signal. Varying time intervals represented by 860 

each stratigraphical unit will also alter the observed taxonomic diversities in the bins (Raup 861 

1972; Raymond and Metz 1995; Cascales-Miñana and Diez 2012). The observed taxonomic 862 

diversity can be standardised against the duration of the stratigraphical bin (e.g., Xiong and 863 

Wang 2011) but until recently this has been difficult because the available radio-isotopic 864 

dating was not accurate enough. However, far better radio-isotopic dating is now available, 865 

which can be combined with Milankovitch-cycle sedimentary sequences to provide a 866 

temporal accuracy of up to 0.01% or better (Davydov et al. 2010; Waters and Condon 2012; 867 

Hoyle et al. 2020). This offers considerable potential for standardising diversity metrics by 868 

time. 869 
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Various metrics have been proposed to deal with data binning and other sampling issues 870 

(Hammer and Harper 2006; Cascales-Miñana et al. 2013), but these can themselves distort 871 

the extinction and origination metrics (Foote 1994, 2000). A comparative analysis has 872 

suggested that no ideal metrics are available for this type of study (Cascales-Miñana et al. 873 

2013) but the best results seem to be provided by range-through methods discounting 874 

singleton taxa (Van Valen 1984; Gilinsky 1991; Foote 1994, 2000). However, the omission 875 

from diversity studies of singleton taxa based on exceptionally preserved floras (e.g., from 876 

Rhynie Chert) can significantly distort taxonomic extinction and origination patterns. As with 877 

selecting biodiversity metrics, the choice of extinction / origination metrics should be made 878 

with an awareness of the strengths and weakness of each, and taking into account the 879 

underlying aims of the study.  880 

Estimating origination and extinction rates can alternatively use Bayesian methods, which 881 

take all fossil occurrences of taxa (including singletons) and uses these to model sampling 882 

heterogeneity within the sequence (Silvestro et al. 2014a). Such methods help compensate for 883 

uneven sampling and taphonomic distortions, and so are particularly useful when dealing 884 

with large-scale but incomplete databases such as the Paleobiology Database (e.g., Silvestro 885 

et al. 2014b, 2015). 886 

In addition to broad changes in taxonomic richness through geological time, models have 887 

been developed that suggest that large-scale groupings of higher-ranked taxa (usually 888 

families) can be recognised that form coherent faunal and floral communities, each with its 889 

characteristic diversity pattern. The idea was first developed by Sepkoski (1981) who used 890 

factor analysis on a database of Phanerozoic marine invertebrate families. Factor analysis is 891 

in some ways similar to PCA, but starts with the presumption that there is an underlying set 892 

of variables (called latent factors) that can be used to explain the correlations between the 893 

observed samples. Determining how many factors to use is often regarded as a contentious 894 

issue; in principle, it can be decided beforehand if a specific model is to be tested. However, 895 

more normally in an exploratory factor analysis (e.g., Sepkoski 1981) the decision is based on 896 

how much of the total variance is being explained (e.g., how many factors will explain, say 897 

80 % of the total variance in the data). The designated number factors are then extracted by 898 

identifying where there are maximal correlations between the floras. The factors are then 899 

rotated to “improve” the ordination. There are various rotation strategies, but the simplest 900 

(and arguably the most objective) is VARIMAX that aims to achieve “simple structure”, 901 

where a maximum number of floras have high loadings on only one factor, and a maximum 902 
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number of factors have high loadings for only a few floras (Pedhauzur and Schmelkin 1991). 903 

The loadings of the floras on each factor (i.e., how much of each flora is represented by the 904 

factor) are then adjusted by the amount of the variance unique to that factor.  905 

Although factor analysis is conceptually more complex than most other ordination 906 

methods, the combination of factor rotation and identifying the variance unique to each factor 907 

has proved particularly effective in revealing large-scale floristic and faunal patterns in time 908 

and space ‒ emphasising the associations of taxa whose mutual correlations support the floras 909 

/ faunas, whilst reducing the influence of the other groups of taxa. Using this method, 910 

Sepkoski (1981) identified three large-scale Evolutionary Faunas among marine 911 

invertebrates, which was subsequently modified by Rojas et al. (2019) into a four-factor 912 

model by incorporating spatial data. Cleal and Cascales-Miñana (2014) used the same 913 

approach on a global dataset of plant family distribution (modified from Benton 1993, and 914 

Anderson et al. 2007) and extracted five Evolutionary Floras, which were named the 915 

Eotracheophytic (formerly Rhyniophytic), Eophytic, Palaeophytic, Mesophytic and 916 

Cenophytic (the last three being related to concepts originally introduced by Gothan 1912). 917 

These Evolutionary Floras have proved useful in describing the broad trajectory of 918 

Phanerozoic vegetation history (Cleal and Thomas 2019; Cleal 2021). More recently, a 919 

similar analysis has been done on Silurian – Devonian genera and has revealed a more finely-920 

resolved Evolutionary Flora model for the early terrestrial vegetation (Capel et al. 2021). 921 

An issue with such studies on long-range diversity trends in the palaeobotanical and 922 

palynological records is that they require robust evidence of the relative ages of the fossil 923 

floras being studied. As pointed out by Cleal et al. (2021) this can be a problem with 924 

terrestrial stratigraphical sequences as the dating is sometimes based on palaeobotanical 925 

and/or palynological evidence; there is clearly the potential for circular argument when trying 926 

to document vegetation changes against a temporal framework that is itself established on 927 

data derived from vegetation changes. It is therefore essential that the stratigraphical 928 

relationships of the fossil floras are verified and, where possible, confirmed by independent 929 

data such as from radioisotopic dates and/or biostratigraphy of other organismal groups.  930 

7 Conclusions 931 

Modelling past vegetation diversity is not just an abstract, “ivory-tower” exercise; it has 932 

real implications for predicting the future response of today’s vegetation to major 933 
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environmental change, whether that be to fluctuating CO2 concentrations, climatic 934 

parameters, seasonality or plant disease. Improved understanding of fossil diversity will have 935 

an impact on how the present and future biodiversity changes are understood and forecasted. 936 

But the first step in any such endeavour must be the compilation of robust data on the 937 

diversity of plant fossils. This can be based on either data from reliable secondary sources, or 938 

data obtained from field surveys provided they are acquired using rigorous sampling 939 

strategies and with an understanding of the biases that taphonomy introduces.  940 

Fossil diversity can be expressed either as taxonomic richness (how many taxa are 941 

present), taxonomic composition (what taxa are present) or taxonomic abundance (how much 942 

of each taxon is present). Taxonomic richness is the easiest of these to measure and can 943 

provide some evidence of ecological and climatic significance, especially if the richness 944 

measures are broken down into taxonomic or ecologically-constrained groups. Taxonomic 945 

composition is also relatively easy to determine (provided the palaeobotanist is familiar with 946 

the taxonomy of the relevant floras) and has given valuable data for floristic and 947 

biostratigraphical diversity studies. Taxonomic abundance is the least easy to determine from 948 

the fossil record because of the way that plants fragment, and is often extremely difficult to 949 

interpret in terms of the original vegetation. Except for the very few available autochthonous 950 

macrofloras, it must be stressed that taxonomic abundance is often more informative of the 951 

taphonomy (especially biostratinomy) of the fossil assemblage than of the diversity of the 952 

original vegetation. 953 

Deciding the analytical approach to use to find patterns in the diversity data can be 954 

confusing as there is often no right or wrong method ‒ each will be showing a different and 955 

often legitimate insight into the structure of the data, and the choice of approach will depend 956 

on what the investigator is trying to show. At a basic level, the choice is between a 957 

classificatory approach which tries to find breaks and groupings with the data, and ordination 958 

which tries to find linear trends within the data. In most cases, however, both groupings and 959 

trends are being sought, and it often makes sense to run both types of analyses in tandem, 960 

provided it is kept in mind exactly what type of pattern each analysis is yielding. 961 

Numerical analyses of the record will be revealing diversity changes of the fossils and this 962 

will only partially reflect the diversity of the original vegetation There has, for instance, been 963 

clear evidence that some plant taxa flourished in habitats only rarely represented in the fossil 964 

record and whose ranges are therefore different from those of the plant fossils (e.g., Mamay 965 

and Bateman 1991; Zhou 1994; Hamad et al. 2008). Nevertheless, by integrating the data 966 
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with sedimentological and geochemical evidence, it is possible to start taking the first steps 967 

towards developing synecological models for past vegetation at local-, landscape-, regional- 968 

and global-scales (Spicer 1989; Krassilov 2003; DiMichele and Gastaldo 2008). 969 
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Captions 2017 

Fig. 1. Rarefaction analysis of macrofloras from above the Abergorky and Hafod coal seams 2018 

(Pennsylvanian-age, South Wales Coalfield, United Kingdom) giving an indication of the 2019 

number of specimens needed to represent the species richness of each flora. N = number of 2020 

specimens counted in each flora; dashed line represents 95% confidence intervals of species 2021 

richness values. Redrawn from Cleal et al. (2012). 2022 

Fig. 2. Example of pollen counting sheet. As the counting proceeds, new arrows are added 2023 

from the left to the right representing new transects on the microscope slide and taxon names 2024 

are added to the first column left. Each black tick represents an observation. The count is 2025 

deemed optimal when it reaches at least 300 terrestrial pollen (excluding unknown, reworked, 2026 

aquatics, spores), and when the counting effort does not add significant new taxa. The orange 2027 

line has been added to the counting sheet to underline the high number of new taxa at the 2028 

beginning of the count, and the absence of new taxa at the end of the count. Drawn by S. 2029 

Leroy. 2030 

Fig. 3. Distribution of modern pollen samples recorded in the Eurasian Modern Pollen 2031 

Database (part of the European Database) across different biomes in (A) geographical space 2032 

and (B) climate space.  Such databases, illustrating the relationship between modern pollen 2033 

assemblages and climatic variables, are invaluable to support studies of past climate, land 2034 

cover and land use based on Quaternary pollen records (see Davis et al. 2020). 2035 

Fig. 4. Asturian-age palaeofloristic model for Variscan Euramerica based on distribution of 2036 

medullosalean and lyginopterdalean species. The analyses, using a combination of Detrended 2037 

Correspondence Analysis and cluster analysis (Fig. 6) was described in Cleal (2008b,c). 2038 

Fig. 5. Example of unconstrained seriation analysis where the occurrences of species are 2039 

arranged in a diagonal across the matrix, indicating the main trend in the variance in the data. 2040 

Redrawn from Cleal (2008c). 2041 

Fig. 6. Floristic analysis of Medullosales from the upper Asturian (middle Pennsylvanian) of 2042 

Variscan Euramerica based on cluster analysis (upper) and Detrended Correspondence 2043 

Analysis. From Cleal (2008c). 2044 

Fig. 7. Vicariance biogeographical analysis of Carboniferous and Permian anatomically 2045 

preserved floras from Euramerica and China, with tree plotted against age, showing strict 2046 
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consensus of 15 most parsimonious 162 step trees. Number 1 ‒ 6 designate the sequence of 2047 

significant floral events as the wetland vegetation evolved. From Hilton and Cleal (2007). 2048 

Fig. 8. Part of a range chart showing the distribution of late Bashkirian (early Westphalian) 2049 

macrofloras through the sequence in the South Wales Coalfield (United Kingdom). The 2050 

range-through species diversity for any stratigraphical level can be determined by counting 2051 

across the number of range bars that cross that level; the absolute species diversity is 2052 

determined by counting the number of black circles. From Cleal (2007). 2053 

Fig. 9. Stacked diversity curve for the Pennsylvanian-age South Wales coalfield (United 2054 

Kingdom) showing changing species richness through the succession broken down into the 2055 

major plant groups. Redrawn from Cleal (2007). 2056 

Fig. 10. A percentage spore-pollen diagram showing changes in the representation of pollen 2057 

and spore taxa through a sediment core (AKAD 11-17) collected from the deep-water zone of 2058 

the western Black Sea, indicating the vegetation history over the last 20,000 years.  Redrawn 2059 

from Filipova-Marinova et al. (2021). 2060 

Fig. 11. Constrained cluster analysis used to distinguish macrofloral biozones in the 2061 

Pennsylvanian ‒ Cisuralian Intra-Sudetic Basin, Czech Republic. Grey intervals correspond 2062 

to red-beds.  The clustering used the UPGMA algorithm on Raup-Crick Coefficients 2063 

representing the taxonomic similarity of each air of floras. From Opluštil et al. (2017). 2064 

Fig. 12. Pseudo-cohort analysis of Pennsylvanian-aged macrofloras of the Ruhr Coalfield 2065 

(Germany) showing biostratigraphical events in the floras as a whole, and in the main plant 2066 

groups. From Cleal et al. (2012). 2067 
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