UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

Cloud computing enabled big multi-omics data
analytics

Koppad, Saraswati; B, Annappa; Gkoutos, Georgios V; Acharjee, Animesh

DOI:
10.1177/11779322211035921

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Koppad, S, B, A, Gkoutos, GV & Acharjee, A 2021, 'Cloud computing enabled big multi-omics data analytics',
Bioinformatics and Biology Insights, vol. 15, pp. 1-16. https://doi.org/10.1177/11779322211035921

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024


https://doi.org/10.1177/11779322211035921
https://doi.org/10.1177/11779322211035921
https://birmingham.elsevierpure.com/en/publications/1b1f86f8-09da-4f55-a4b9-251a12317c3c

1) Check for updates

Cloud Computing Enabled Big Multi-Omics Data

Analytics

Saraswati Koppad', Annappa B', Georgios V Gkoutos?345.6.7

and Animesh Acharjee234

Bioinformatics and Biology Insights
Volume 15: 1-16

© The Author(s) 2021

DOI: 10.1177/11779322211035921

®SAGE

Department of Computer Science and Engineering, National Institute of Technology
Karnataka, Surathkal, India. 2Institute of Cancer and Genomic Sciences and Centre for
Computational Biology, College of Medical and Dental Sciences, University of Birmingham,
Birmingham, UK. 3Institute of Translational Medicine, University Hospitals Birmingham NHS
Foundation Trust, Birmingham, UK. 4NIHR Surgical Reconstruction and Microbiology
Research Centre, University Hospitals Birmingham, Birmingham, UK. 8SMRC Health Data
Research UK (HDR UK), London, UK. 8NIHR Experimental Cancer Medicine Centre,
Birmingham, UK. ’NIHR Biomedical Research Centre, University Hospitals Birmingham,

Birmingham, UK.

ABSTRACT: High-throughput experiments enable researchers to explore complex multifactorial diseases through large-scale analysis of omics
data. Challenges for such high-dimensional data sets include storage, analyses, and sharing. Recent innovations in computational technolo-
gies and approaches, especially in cloud computing, offer a promising, low-cost, and highly flexible solution in the bioinformatics domain.
Cloud computing is rapidly proving increasingly useful in molecular modeling, omics data analytics (eg, RNA sequencing, metabolomics, or
proteomics data sets), and for the integration, analysis, and interpretation of phenotypic data. We review the adoption of advanced cloud-based
and big data technologies for processing and analyzing omics data and provide insights into state-of-the-art cloud bioinformatics applications.
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Introduction

To mitigate data storage and analytical challenges surfaced by
the development of omics technologies, over the recent years,
numerous novel big data innovations and scalable cloud-based
solutions have been proposed and developed. Advanced big
data analytics frameworks accelerate the storage and analysis of
big omics data by facilitating the provision of scalable analytic
infrastructures, such as the Hadoop Distributed File System
(HDFS) for storage and the Spark Machine Learning libraries
(MLIib) for analysis.! So as to cater advanced bio-data analyt-
ics, big data and cloud computing technologies need to be
tightly integrated and applied in a uniform fashion. Cloud
computing has been demonstrated to be reliably scalable for
the analysis of genomic data over single machines, as well as
clusters and public cloud infrastructures. The limitations of
current data workflows, geared toward high-throughput exper-
iments analytics (called multi-omics data), include security,
confidentiality, and limited cloud management technologies.
By using multi-omics data available on the cloud, users are able
to apply advanced pipelines or workflows, which facilitate their
transformation and analysis, reduce the upload and download
time while taking advantage of cost-effective computing
resources. For example, the Cancer Genome Atlas (TCGA)?

project, one of the largest and most complete cancer genomics
data sets available, is now making its data available, via an
Application Programming Interface (API), on a number of
public and private cloud repositories. These efforts provide
viable replacements for redundant and costly local infrastruc-
ture settings and enable a secure, effective, and reproducible
analysis of shared data sets and results. Scalable, cloud-based
platforms, such as the National Cancer Institute (NCI) Cloud
Pilots program FireCloud, can then be developed that dimin-
ish the need for ad hoc, in-house high-performance computing
architectures and expensive data transfer.3* Figure 1 illustrates
the use of big data and cloud computing technologies within
bioinformatics pipelines, including data collection, data inte-
gration, data analysis, and modeling.

Obur literature review was carried out across 5 stages (Figure
2), namely, (1) identification and retrieval of relevant publica-
tions, listed within the MEDLINE, Google Scholar and
Scopus databases, as well as online book search such as Google
Books and BookFinder, based on set of specific terms, namely,
cloud computing OR bioinformatics OR molecular medicine
OR genomics OR multi-omics OR integration OR big data
OR cloud computing tools OR big data tools; (2) primary rel-
evance screening (determination of an article meets the
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RNA/DNA Sample

..

Databases Clinical data

Data collection and integration Multi omics data Data analytics and
modeling
Figure 1. An overview of typical bioinformatics omics analysis framework using cloud computing and big data technologies. CNV indicates copy number
variation; DaaS, Data as a Service; laaS, Infrastructure as a Service; PaaS, Platform as a Service; SaaS, Software as a Service; SNP, single nucleotide
polymorphism.

PubMed[n=975]

v

Citations screened after duplicate
removal[n=973]

A

Citation screened on basis of best
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A4
Full text review for potential
exclusion[n=92]
Articles included from MEDLINE,
€ Scopus database, Google scholar and online
v book search[n=5]
Total article included[n=97]

Figure 2. Adopted literature search workflow where “n” indicates the number of articles considered in each of the box resulting in the inclusion of a total
number of 97 articles.
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Table 1. Literature search process using specific keyword.

SEARCH DATABASE USED KEYWORD USED NO. OF NO. OF
DOCUMENTS DOCUMENTS
FOUND INCLUDED
PubMed Cloud computing in bioinformatics 460 33
Multi-omics data integration 329 24
Big data analytics in bioinformatics 138 20
Big multi-omics data analysis 38 07
Cloud computing with multi-omics data 5 03
Big data analytics tools in multi-omics data analysis 02 02
Cloud computing tools in multi-omics data analysis 02 02
Cloud computing and big data tools in multi-omics 01 01

data analysis

Included articles available from the
MEDLINE, Scopus Google scholar
databases as well as online book search
such as Google Books and BookFinder

inclusion criteria) by selecting the “best matches” option from
PubMed based on publication date; (3) review of the relevant
papers; (4) summarizing their content; and (5) manual refer-
ence screening, to exclude redundant content. Five papers were
excluded from our review due to identical title redundancy.

Within this review, we considered the concepts of multi-
omics data integration, storage, and analysis frameworks within
the context of publications related to the adaption of cloud
computing and big data analytics within the molecular medi-
cine and genomics research areas (Table 1).

Our review is organized around 2 primary objectives.

1. To review the main bioinformatics concepts, standards,
terminologies, and paradigms related to biomedical big
data integration, analysis, storage, and cloud computing.

2. To provide an account of the main characteristics, advan-
tages, disadvantages, and differences across multiple
cloud-based tools.

Cloud Computing in Bioinformatics

Biomedical and multi-omics data: introduction

The exponential growth of biomedical data sets over the
recent years has resulted in the identification of a wealth of
molecular signatures vital for the realization of the personal-
ized diagnosis and treatment era.” Bioinformatics researchers
typically use multiple data from different platforms, such as
genomics, proteomics, transcriptome, epigenomics, metabo-
lomics, and imaging, in conjunction with clinical data derived
across different modalities, from structured to semi-struc-
tured and unstructured. As a result, large-scale and complex
data sets are increasingly being considered resulting in several

Additional references identified by other databases 20 5

challenges. For example, existing next-generation sequencers
produce over 100GB of raw sequence reads per genome.
Together with various clinical and phenotypic features, these
data can greatly improve our knowledge of complex diseases
but present storage and bioinformatic analysis challenges.
Appropriate storage infrastructures capable of hosting such
biomedical data can then be exploited to cater applications
that exploit their features so as to formulate novel hypotheses
related to disease prevention and treatment. Undeniably, nev-
ertheless, big biomedical data tools and technologies cur-
rently have a limited translational impact in clinical care.
Biomedical big data offer the tantalizing possibility of aiding
the identification of novel and key molecules and disentan-
gling their biological and physiological roles and functions.
Moreover, their effective use can potentially aid clinical deci-
sions, effective disease treatment, and so on, ultimately
improving health care.

Multi-omics data sets derived by the 4 major omics tech-
nologies, namely, genomics, transcriptomics, proteomics,
and metabolomics, ultimately represent in-depth characteri-
zations of interactions between genes, proteins, and metabo-
lites. There is a need for integrating different omics data for
a systematic, in-depth characterization and understanding
of the biological processes, eg, those related to adverse out-
comes and typical multi-omics studies pertain to the inte-
gration of different omics types in an effort to gain a better
understanding of the overall complex underlying biological
mechanisms.®11 Various platforms are available to profile
whole genomes using many samples, enabling a better
understanding of complex diseases, like cancer, and complex
phenotypic traits. Some of the molecular experimental
omics technologies are based on high-throughput mass
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Table 2. The platforms available to provide global multi-omics profiling information in the cloud framework.

OMICS TYPE PLATFORM

SIZE OF EACH DATA TYPE CAN

COST OF ANALYZING OMICS DATA IN

ACCOMMODATE (APPROXIMATELY)

Genome'213 DNA sequencing

DNA methylation (array based)

SNP based
Transcriptome' RNA-seq
(Total RNA)
microRNA sequencing (miRNA)
Proteome?'® Protein mass spectrometry
RPPA
Metabolite'® Metabolite mass spectrometry ~1GB

Microbiome'”.18 Ribosome RNA (rRNA) gene

sequencing and shotgun MGS

>100GB (BAM and VCF files)

>2000 samples

Standard mix proteomic data set

>90GB (FASTQ data)

CLOUD (APPROXIMATELY)

Per GB storage and transfer rate
ranges from $40/test to $66/test

US$1.30 per sample

Cost of database search using
virtual system over cloud is >US$1

Resources to process ~1GB of
13C-MFA data are $11

Library preparation ~$400
sequencing costs ~$8 per GB

Abbreviations: BAM, Binary Alignment/Map; MFA, Metabolic Flux Analysis; MGS, metagenomics sequencing; RPPA, Reverse Phase Protein Array; rRNA, ribosome RNA;

SNP, single nucleotide polymorphism.

spectrometry, microarray, RNA sequencing, and DNA
sequencing. The analysis of the resulting large-scale data
necessitates advanced bioinformatics software or pipelines.
Typically, the analysis of omics data involves the imputation
of raw data, noise elimination, and identification of relevant
features. Other examples of computational pipelines revolve
around comparing DNA sequence fragments, or an entire
chromosome, with a reference genome to identify variations.
Table 2 provides some examples of the various data types
that are used in multi-omics profiling.

Biomedical and multi-omics data sources

Implementing a large-scale data environment to analyze large-
scale genomics data in health care necessitates the effective
combination and application of various technologies, such as
artificial intelligence,!® parallel processing techniques, such as
Hadoop MapReduce, and data mining tools. Several large data
applications, such as the Apache Hadoop software library, are
used in biomedical research to overcome scalability, accuracy,
and computational complexity issues.?’ Cloud computing helps
data scientists by providing access to computing frameworks,
such as the Microsoft Windows Azure platform (https://azure.
microsoft.com/en-in/), and to cloud services that can be used
to develop particular tools or applications. Adopting and effi-
ciently implementing public cloud repositories to store genomic
and patient health information involves critical privacy and
security issues. The majority of such public cloud repositories
are the result of community-based efforts typically suffering
from data curation quality, privacy, and security issues and pre-
sent complexity and sustainability challenges.

Typically, multi-omics frameworks rely on traditional sta-
tistical techniques for data retrieval, integration, and analysis.
Such traditional approaches suffer from scalability, time,

computational efficiency, and accuracy limitations.?! At pre-
sent, sequence alignment and mapping of high-throughput
sequencing data sets remains time-consuming. The numerous
de novo assemblers that have been developed, some of which
based on message passing interface (MPI) (eg, Ray?
ABySS,? and SWAP-Assembler?#), exhibit limited scalabil-
ity, accuracy, and computational efficiency. In addition, DNA
analysis pipelines designed to address scalability, such as
Halvade,? are characterized by several limitations, including
accuracy, and computational efficiency. Similar limitations are
aberrant within the single-cell RNA sequencing domain.

The advantages of parallel computation frameworks
include high availability and parallel processing, with data
being processed by multiple machines, significantly reducing
processing times. By bringing computation to data (data local-
ity), the cost of moving processing units to data resources is
removed, and processing times are reduced because all cluster
nodes can work in parallel and simultaneously. Large data
frameworks, encompassing parallel processing and in-memory
processing, achieve higher memory efficiency.?® As a result,
data scientists commonly use big data analytics tools, such as
Hadoop to store data, MapReduce for data analysis, and use
tools such as Pig (https://pig.apache.org/) and Hive (https://
hive.apache.org/) for data retrieval. Such tools are frequently
used in conjunction with several open-source tools, eg, R,
Python, and scalable machine learning tools, and commer-
cially available tools, eg, MS SQL, Tableau, and Oracle Rdb.?
Table 3 lists some examples of different tools along with their
advantages and limitations.

There are numerous publicly available data sources that
cater the storage, indexing, and provision of omics data sets,
offering a variety of analysis and visualization tools. For exam-
ple, in 2005, the Cancer Genome Atlas (TCGA) and 2008

International Cancer Genome Consortium (ICGC) projects
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Figure 3. Bioinformatics cloud computing models DaaS, SaaS, PaaS, and laaS and their distribution services. DaaS provides bioinformatics data sets as
services in dynamic virtual space over a network (cloud), end-user can use VM and hypervisors for cost-effective storage and large-scale data analysis.
Apps and tools represent cloud-based data exploration, visualization, and analysis tools used in different layers of bioinformatics analysis pipelines
(SaaS). Frameworks represent the collection of deployment and management tools required for different bioinformatics tasks (PaaS). laaS includes
computing infrastructure in terms of virtual servers and bioinformatics applications for storage and analysis. DaasS indicates Data as a Service; laaS,
Infrastructure as a Service; PaaS, Platform as a Service; SaaS, Software as a Service; VM, virtual machine.

released comprehensive cancer genomics profiles using new
analysis technologies and made them freely available within a
number of repositories (see Supplementary Table S1 for more
recent examples of omics data sources).

Cloud computing terminologies

The National Institute of Standards and Technology (NIST)
characterizes cloud computing as a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of
configurable computing resources (eg, networks, servers, stor-
age, applications, and services) that can be rapidly provisioned
and released with minimal management, effort, or service pro-
vider interaction.* The cloud computing model is composed of
5 key features: (1) resource pooling, (2) on-demand service, (3)
broad network access, (4) rapid elasticity, and (5) measured ser-
vices. In addition, cloud computing also comprised 3 service
models, namely, Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS), plus 4
deployment models: private, public, hybrid, and community
clouds. The main essential characteristics of Cloud computing
are scalability, redundancy, reliability of hardware, cost-effec-

tiveness, robustness, flexibility for data, and applications.*®

Within the bioinformatics domain, cloud-based services adopt

the above categorization and are typically grouped as Data as a
Service (DaaS), SaaS, Paa$, and 1aaS* (Figure 3).

Data as a Service. Data as a Service is a cloud strategy used to
provide and distribute on-demand access to biological data
over a network for analysis and knowledge discovery. The
objective of Daa$ is to overcome data access limitations the
current state-of-the-art approaches face by enabling the user to
store and access data from any location for sharing and pro-
cessing. Stephens et al®® compared big genomics data with
other sources of big data generation, such as business, social
network, and the Internet of things and found that genomics
data will become much more extensive concerning creation,
storing, processing, analyzing, and transmitting by 2025. Bio-
logical data acquisition is distributed and heterogeneous, which
reaches 1 zetta-bases. Biological data distribution extends from
a few base comparisons, or many small transfers of gene
sequences (10MB/s), to fewer large multiples of terabyte
(10TB/s) bulk transfer/downloads from central repositories.
Due to its ability to overcome access limitations, Daa$ is the
most important biological study service that provision big data.
For example, Amazon Web Service (AWS) is a cloud-based
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application that provides data as a service, which gives dynamic
access to public data sets to users on demand. AWS includes
publicly available data sets from multiple sources, including
large biological resources, such as Ensembl’! and GenBank.>?

Software as a Service. Software as a Service is a cloud comput-
ing facility where users can dynamically access applications
online. As bioinformatics studies typically encompass multiple
data types, it is important to access up-to-date applications on
demand to process them through user-friendly interfaces such
as Microsoft 365 (https://www.ncitech.co.uk/business/cloud-
computing/microsoft-office-365). Some examples for cloud-
based SaaS solutions for genome resequencing include rainbow,
short-read aligner CloudBurst, variant annotation VAT, and
RNA-seq Myrna.>® These tools have several advantages and
limitations (Table 4).

Platform as a Service. Platform as a Service is a cloud comput-
ing model that provides software tools and hardware to users
on demand. It is useful for processing large biological data by
dynamically requesting software and hardware environments.
The main beneficial characteristic of PaaS is scalability. PaaS
improves scalability by providing a working environment over
the Internet as and when users demand, allowing users to ana-
lyze data sets with many samples by using available resources
automatically. PaaS allows batch processing of high-through-
put sequencing data. Bioinformatics uses 2 PaaS platform ser-
vices, Eoulsan and Galaxy, for analysis of large-scale

high-throughput sequencing data.

Infrastructure as a Service. Infrastructure as a Service is a cloud
paradigm that facilitates virtual infrastructure, such as computing,
storage, and networking, over the Internet. IaaS now provides
databases, messaging queues, and other services on top of the vir-
tualization layer. Examples of Iaa$ are the Microsoft Azure, the
Amazon cloud, the Google computing engine, and the Joyent.*>
To store, compute, and exchange such large data, cloud comput-
ing provides PaaS virtual resources over the Internet. There are 2
primary publicly available PaaS virtual machine services for bio-
informatics: Cloud Virtual Resource (CloVR) (http://clovr.org)
and CloudBioLinux (http://cloudbiolinux.org/). These are port-
able virtual machines for automated sequence analysis and pro-
vide on-demand high-performance environments.

Other key emerging cloud technologies and platforms

DNAnexus. DNAnexus (DNAnexus, Inc, Mountain View,
CA, USA) provides an API-based platform for sharing and
managing genomic data and tools to accelerate genomic research
benefiting from transparency and reproducibility. DNAnexus
has scaled to over 56 000 concurrent computing cores, numerous
petabytes of storage, and tens of millions of core hours of analysis
using Amazon Web Services. Users can upload raw DNA data
straight from sequencing machines to the cloud using both a

graphical user interface (GUI) and a command-line tool, avoid-
ing the need for costly, on-premise, processing and storage infra-
structures (https://www.dnanexus.com/).

DNAstack. DNAstack is a cloud-based platform for stor-
ing, managing, and analyzing genomes and other patient data.
DNAstack is based on DNA sequencing technology, which has
allowed individual genomes to be read, potentially improving
diagnoses and treatment. It is part of a Canadian-led program
to speed up genomic data exchange worldwide, claiming to be
the world’s largest genetic mutation search engine.*®

Terra. Bio platform.

Terra is a cloud-native platform that allows biomedical
researchers to interact, access data, and execute analysis tools
with security being prominent. It provides a scalable architec-
ture connecting cloud data repositories and enabling research-
ers to conduct integrative analysis over big data sets in a
reproducible manner. Researchers are also provided can with
the option of federating various data sets and perform integra-
tive studies (https://app.terra.bio/).

Lllumina BaseSpace. Illumina has the flexibility to accom-
modate its users’ need for on-demand research by operating
BaseSpace Sequence Hub on AWS. Illumina offers to spin up
2000 instances in just a few hours using AWS, eliminating the
need to load a data center with hardware. Workloads can be
executed in parallel, without incurring a substantial initial cost.
Users can set up runs and assess the quality of instrument runs
and computational resources without having to invest through
infrastructure. In addition, ease of accessibility to a multitude
of genomic analysis software boosts organizational efficiency
(https://sapac.illumina.com/products/by-type/informatics-
products/basespace-sequence-hub.html).

NVIDIA GPU. Genomic data can be analyzed faster,
more precisely and at larger scales over GPU-accelerated
platforms. Nvidias CUDA (Compute Unified Device
Architecture) is the most widely used library for develop-
ing GPU-based tools in bioinformatics, systems biology,
and computational biology. Although CUDA can only be
deployed over Nvidia GPUs, there are other options, includ-
ing Microsoft DirectCompute catering its use in conjunc-
tion with Microsoft’s Windows operating system as well as
deployment over the platform-independent library OpenCL
(which can use AMD/ATI GPUs).57

Databricks Genomics Platform. The Databricks Genom-
ics Platform offers preconfigured GATK processes, hosted on
AWS and Azure, to enable quicker genomic data preparation
and processing. Data can be processed 15 times faster when
workflows are optimized to operate in parallel and prepack-
aged genomic analytics, and machine learning frameworks
can be used for it interactive evaluation. With autoscaling on
AWS and Azure, users can analyze hundreds of thousands of
genomes while lowering expenses. Connect processed genetic
data to downstream analytics in real time for faster outcomes
(https://databricks.com/product/genomics).


https://www.ncitech.co.uk/business/cloud-computing/microsoft-office-365
https://www.ncitech.co.uk/business/cloud-computing/microsoft-office-365
http://clovr.org
http://cloudbiolinux.org/
https://www.dnanexus.com/
https://app.terra.bio/
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub.html
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub.html
https://databricks.com/product/genomics
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Cromwel] workflow description languages. Cromwell is an
AWS Cloud-based workflow execution engine developed by
Broad Institute. It renders orchestrating computational opera-
tions for genomics analysis much easier, offering considerably
more flexibility in scaling genomics research by leveraging
cloud computing capabilities rather than competing for lim-
ited on-premise resources. Based on the volume and particu-
lar resource requirements of the batch jobs submitted, AWS
Batch, a fully managed batch computing solution on Amazon
Web Services, automatically provisioned the optimal quantity
and kind of compute resources (https://aws.amazon.com/gov-
ernment-education/cromwell-on-aws/).

The NCI Cloud Resources FireCloud, Institute for Systems
Biology (ISB), and the Seven Bridge Platform are part of the
National Cancer Institute’s Cancer Research Data Commons.
Data access via a Web-based user interface is available in all 3
NCI cloud resources and provides access to analytic tools and
workflows via a programmatic interface and the opportunity to
share results with collaborators. Each Cloud Resource con-
stantly adds new features to improve the user experience and
provide researchers with new tools. Each Cloud Resource has
built its infrastructure, along with a variety of tools for access-
ing, exploring, and analyzing molecular data. Other data types,
like medical imaging and proteomic data, Radiologic and
pathology images, are accessible through all 3 NCI Cloud
Resources. NCI FireCloud runs on the Google Cloud Platform
(GCP). Data uploading, cloning, and creating a new TCGA
workspace.’® ISB Cancer Genomics Cloud includes processed
data in BigQuery and provides cohort comparison and integra-
tion services.>® Seven Bridges Platform®® deployed on AWS
provides query system to find exact data and allows researchers
collaborative analysis.

Scope and implementation of cloud computing
technologies for multi-omics and for biomedical data
analytics

Bioinformatics experimental data continue to increase due to
technological growth and reduced cost of the experiments with
current resources extending from terabytes to petabytes. The
efficient computational analysis of such enormous data sets
requires approaches that facilitate their volume reduction. One
such an approach lies with the implementation of stringent
quality control using post-experimental processing. These
implementations, however, require scalable and robust comput-
ing solutions, such as the one offered by cloud computing.

Many big data frameworks, eg, Apache Hadoop (https://
hadoop.apache.org/), are now integrated with cloud computing
to improve system speed, agility, and time to maintain hard-
ware and software resources. The implementation of SaaS,
Paa$ and IaaS services allows cloud computing approaches to
provide dynamic scalable resources that cater different hosting
and analysis workloads as virtualization services that operate
across different levels of stacks.o!

Virtualization. Virtualization is the generation of an abstract
layer of hardware, software, storage, or network resources to
ensure maximum utilization of these computing components.
Virtualization ensures the reliable use of resources, such as
memory, disk storage, and Central Processing Units (CPU),
and limits redundancy by the abstraction of individual applica-
tions, eg, VMware ThinApp. Virtualization can also be
achieved by combining scalable and elastic solutions hosting
multiple Virtual Machines (VMs) on a single machine. VMs
allow operating systems (OSs) and other applications to run
across multiple VMs installed on a single machine. A hypervi-
sor is a virtualization management layer that controls resource
allocation. Dynamic (scaling up and scaling down), on-demand
resource management helps reduce both the cost and the time
required to build and maintain complex computational infra-
structure for multi-omics data analysis and storage.®> Amazon
EC2 provides various VM images, as well as bioinformatics
applications, to address data management issues typically
encountered by bioinformatics studies.3 Other examples of
publicly available VMs are the Cloud BioLinux and the CloVR.

Containerization is referred to as lightweight virtualization
and allows bioinformatics workflows to accelerate portability
and reproducibility and ensure scalability. Container technolo-
gies, such as Docker and Singularity, are a component of cloud
computing frameworks, with Kubernetes being used to manage
container orchestration. Docker is the most extensively used
framework allowing users to create, store, and manage Linux-
based environments deployed on almost any computer.®
Singularity, on the contrary, is a computing framework for pro-
viding computational mobility to users and HPC facilities,
allowing for the secure acquisition and distribution of software
and computing environments. It allows users to execute envi-
ronments from a range of resources (including Docker) with-
out requiring privileged access. By combining Singularity and
Docker, the user may be highly flexible in how, when, and
where to use their own and others’ computing environments.®

By containerizing applications, the reproducibility and port-
ability are ensured, allowing for sophisticated workflow man-
agement solutions, such as Nextflow, to accelerate the
generation of portable and scalable pipeline.

Time and cost reduction. Cloud computing systems are reliable,
scalable, and cost-effective information technology (IT) plat-
forms that are increasingly being adopted for large-scale bioin-
formatics analysis. They typically use distributed resource
management solutions, such as the SunGrid Engine (SGE)
and Load Sharing Facility (LSF),% that facilitate a number of
tasks, frequently necessitating concurrent execution of pro-
cesses, such as quality control, alignment, and genomic features
extraction. Such features render them ideal to address compu-
tational challenges, eg, complexity, and implementation
requirements, such as multimode scalability and typical
genomic data processing, pipelines face. Moreover, faster heu-
ristic solutions are increasingly becoming available, such as the
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ones developed for search and sequence alignment. For exam-
ple, GenBank uses a cloud-based tool, termed BLAST (Basic
Local Alignment Search Tool), to query sequences®’ and
reduce the time complexity while decreasing the sensitivity of
the resulting alignment.

Performance. Cloud computing offers a variety of both CPU
and Graphics Processing Unit (GPU) acceleration frameworks
for enhanced performance. GPU-based cloud computing is a
promising biological data analysis approach as the performance
to price (P/P) ratio is more favorable for GPU than for CPU.
GPU reduces the cost of hardware and accelerates data pro-
cessing by using parallel processing over several GPU cores.
However, GPU-based cloud applications suffer from the slow
data exchange between GPU and CPU due to slow input-out-
put (I/O) operations and the relatively small GPU memory
limiting input data storage (Table 4).6869

Discussion

Recent technological advances have led to the generation of
large biomedical data sets of various datatypes generated from
different platforms, necessitating interoperable integration
frameworks for their analysis. The adoption and use of cloud
computing are a promising and viable solution to overcome
these challenges due to its virtualization, advanced analytics,
storage optimization, and scalability properties. Furthermore,
cloud computing facilitates simultaneous multivariable pro-
cessing, and the development of efficient methods to reduce
computational time and memory utilization will be a crucial
step-change to systems biology research.

Bioinformatics big data challenges

Collecting, integrating, and systematically analyzing hetero-
geneous big data with distinct characteristics are a challeng-
ing task that may lead to data mismanagement, raising issues,
including privacy, security, and related ethical ones. Big data
analytics frameworks are useful in performing a series of tasks
in a distributed manner, reducing the hardware workload to
overcome scalability challenges, specifically supporting simul-
taneous high-performance genomics data processing, achiev-
ing scalability and reliability, and addressing redundancy
issues related to large genomics data processing. Big data
frameworks help overcome fault tolerance by replicating data
in a distributed manner sidestepping software or hardware
failures due to unreliable data replications. Distributed data
processing frameworks additional advantages include high
availability and distributed data replication for complex sys-
tems. Parallel processing, whereby multiple machines simul-
taneously process data, reduces processing time and presents
another advantage of distributed data processing frameworks.
Data locality reduces costs and single nodes’ burden.
Furthermore, parallel and in-memory processing ensures
higher memory efficiency.

Cloud-based omics challenges

Although cloud computing offers considerable advantages,
there are some challenges and limitations. Some of the chal-
lenges are related to data privacy and security and can be con-
sidered the biggest threat to cloud computing in the health care
data analytics domain.”” Authentication, authorization, and
access control within the cloud’s virtualized network are essen-
tial and several data security concerns, including data leakage
and loss issues related ones, still need to be addressed.”® Some
other significant challenges to cloud-based omics relate to
infrastructure requirements for systematic analysis and advanced
query frameworks of big data sets, which are particularly appli-
cable to large-scale, integrated, heterogeneous bioinformatics
data sets that are increasingly becoming available.”” Different
omics repositories need to be incorporated to provide reliable
and practical solutions, and standardized approaches are needed
to eliminate their inherent variability. Cloud applications are
required to perform tasks alongside distributed data, necessitat-
ing interoperability and portability which present a further
challenge. Other challenges include the lack of homogeneity,
including qualitative and quantitative variables measured at dif-
ferent scales, to characterize a phenotype or trait.

Crucially, while cloud computing is inexpensive, the plat-
form adaption to meet the demands of the users can be costly.
In addition, the cost of transferring data to public clouds can be
expensive. Cloud computing downtime, which is typically
listed alongside system failure, human error, network failures, a
lack of resources, and the provision of multicloud environment
management and multicloud strategies for building hybrid
clouds that combine public and private cloud resources, is criti-
cal. Finally, law and regulation compliance, in particular for
health-related data sets, is crucial.

Nevertheless, cloud computing allows cost-effective distrib-
uted storage and analysis of such large data sets, and it operates on
self-deployment models with pay-per-use, on-demand, scalabil-
ity, and elasticity features. Big data approaches exploit previously
ignored data sets, providing valuable insights gained by their abil-
ity to exploit data sets that traditional methods cannot interro-
gate. Cloud computing enables software versatility and speed to
streamline such tasks. Big data approaches typically adopt a strat-
egy of splitting large data sets into manageable chunks and dis-
tributing them across the various computer systems, helping to
parallelize computation over large data sets. Cloud computing
allows for storage and analysis on remote physical servers man-
aged and operated by service providers, accessed by the user
through the network. So as to deal with performance and scala-
bility for big genomic data, parallel programming models in a
distributed environment, such as MapReduce (https://aws.ama-
zon.com/emt/), are increasingly being adopted.

Sequencing technologies continue to decrease costs while the
amount of data produced increases. New data processing and
storage platforms are becoming more and more essential, and the
scaling behavior of these emerging technologies directly impacts
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biomedical research. It is challenging for data scientists to design
and develop practical algorithms in working applications for
secure outsourcing of encrypted biomedical data. Moreover,
developing standard approaches to enable secure coordination of
data integration across multiple sources can be very demanding.
The establishment of secure computation frameworks can ensure
the efficient analysis of such data sets. Cloud computing practice
could solve the big data analysis problem of efficiency in time,
memory usage, and storage, albeit it is still at quite an early stage
in its development and its subsequent adoption in real-world
applications and environments.

We reviewed big data technologies within the context of bio-
medical research and the adoption of cloud-based architecture
by processes geared for big omics data analytics. The advent of
cloud technologies capable of handling big data offers the
opportunity for efficient, scalable, and secure biomedical data
analysis. While reviewing the current omics data processing and
analysis landscape, we noted significant challenges related to the
need to perform systematic scalable large-scale multi-omics
integrative analytics encompassing data handling and storage
demands. Currently, the available cloud infrastructures face sig-
nificant challenges related to providing the necessary resources
to handle the rapidly increasing, heterogeneous, and large-scale
omics data. These challenges directly affect our ability to harness
available resources to understand disease pathobiology and
pathophysiology Dbetter, ultimately identifying multifactorial
genetic disease—related biomarkers for advanced personalized
and targeted health care solutions. Undeniably, therefore, there is
a need to develop novel standardized approaches that will cater
efficient multimodal multi-omics integrative analytics that are
exploiting cloud computing infrastructures that are increasingly
edging us closer to the tantalizing potential of a sustainable,
secure, scalable, and cost-effective technology that can address

this challenge.
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