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Introduction
To mitigate data storage and analytical challenges surfaced by 
the development of omics technologies, over the recent years, 
numerous novel big data innovations and scalable cloud-based 
solutions have been proposed and developed. Advanced big 
data analytics frameworks accelerate the storage and analysis of 
big omics data by facilitating the provision of scalable analytic 
infrastructures, such as the Hadoop Distributed File System 
(HDFS) for storage and the Spark Machine Learning libraries 
(MLlib) for analysis.1 So as to cater advanced bio-data analyt-
ics, big data and cloud computing technologies need to be 
tightly integrated and applied in a uniform fashion. Cloud 
computing has been demonstrated to be reliably scalable for 
the analysis of genomic data over single machines, as well as 
clusters and public cloud infrastructures. The limitations of 
current data workflows, geared toward high-throughput exper-
iments analytics (called multi-omics data), include security, 
confidentiality, and limited cloud management technologies. 
By using multi-omics data available on the cloud, users are able 
to apply advanced pipelines or workflows, which facilitate their 
transformation and analysis, reduce the upload and download 
time while taking advantage of cost-effective computing 
resources. For example, the Cancer Genome Atlas (TCGA)2 

project, one of the largest and most complete cancer genomics 
data sets available, is now making its data available, via an 
Application Programming Interface (API), on a number of 
public and private cloud repositories. These efforts provide 
viable replacements for redundant and costly local infrastruc-
ture settings and enable a secure, effective, and reproducible 
analysis of shared data sets and results. Scalable, cloud-based 
platforms, such as the National Cancer Institute (NCI) Cloud 
Pilots program FireCloud, can then be developed that dimin-
ish the need for ad hoc, in-house high-performance computing 
architectures and expensive data transfer.3,4 Figure 1 illustrates 
the use of big data and cloud computing technologies within 
bioinformatics pipelines, including data collection, data inte-
gration, data analysis, and modeling.

Our literature review was carried out across 5 stages (Figure 
2), namely, (1) identification and retrieval of relevant publica-
tions, listed within the MEDLINE, Google Scholar and 
Scopus databases, as well as online book search such as Google 
Books and BookFinder, based on set of specific terms, namely, 
cloud computing OR bioinformatics OR molecular medicine 
OR genomics OR multi-omics OR integration OR big data 
OR cloud computing tools OR big data tools; (2) primary rel-
evance screening (determination of an article meets the 
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Figure 1.  An overview of typical bioinformatics omics analysis framework using cloud computing and big data technologies. CNV indicates copy number 

variation; DaaS, Data as a Service; IaaS, Infrastructure as a Service; PaaS, Platform as a Service; SaaS, Software as a Service; SNP, single nucleotide 

polymorphism.

Figure 2.  Adopted literature search workflow where “n” indicates the number of articles considered in each of the box resulting in the inclusion of a total 

number of 97 articles.
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inclusion criteria) by selecting the “best matches” option from 
PubMed based on publication date; (3) review of the relevant 
papers; (4) summarizing their content; and (5) manual refer-
ence screening, to exclude redundant content. Five papers were 
excluded from our review due to identical title redundancy.

Within this review, we considered the concepts of multi-
omics data integration, storage, and analysis frameworks within 
the context of publications related to the adaption of cloud 
computing and big data analytics within the molecular medi-
cine and genomics research areas (Table 1).

Our review is organized around 2 primary objectives.

1.	 To review the main bioinformatics concepts, standards, 
terminologies, and paradigms related to biomedical big 
data integration, analysis, storage, and cloud computing.

2.	 To provide an account of the main characteristics, advan-
tages, disadvantages, and differences across multiple 
cloud-based tools.

Cloud Computing in Bioinformatics
Biomedical and multi-omics data: introduction

The exponential growth of biomedical data sets over the 
recent years has resulted in the identification of a wealth of 
molecular signatures vital for the realization of the personal-
ized diagnosis and treatment era.5 Bioinformatics researchers 
typically use multiple data from different platforms, such as 
genomics, proteomics, transcriptome, epigenomics, metabo-
lomics, and imaging, in conjunction with clinical data derived 
across different modalities, from structured to semi-struc-
tured and unstructured. As a result, large-scale and complex 
data sets are increasingly being considered resulting in several 

challenges. For example, existing next-generation sequencers 
produce over 100 GB of raw sequence reads per genome. 
Together with various clinical and phenotypic features, these 
data can greatly improve our knowledge of complex diseases 
but present storage and bioinformatic analysis challenges. 
Appropriate storage infrastructures capable of hosting such 
biomedical data can then be exploited to cater applications 
that exploit their features so as to formulate novel hypotheses 
related to disease prevention and treatment. Undeniably, nev-
ertheless, big biomedical data tools and technologies cur-
rently have a limited translational impact in clinical care. 
Biomedical big data offer the tantalizing possibility of aiding 
the identification of novel and key molecules and disentan-
gling their biological and physiological roles and functions. 
Moreover, their effective use can potentially aid clinical deci-
sions, effective disease treatment, and so on, ultimately 
improving health care.

Multi-omics data sets derived by the 4 major omics tech-
nologies, namely, genomics, transcriptomics, proteomics, 
and metabolomics, ultimately represent in-depth characteri-
zations of interactions between genes, proteins, and metabo-
lites. There is a need for integrating different omics data for 
a systematic, in-depth characterization and understanding 
of the biological processes, eg, those related to adverse out-
comes and typical multi-omics studies pertain to the inte-
gration of different omics types in an effort to gain a better 
understanding of the overall complex underlying biological 
mechanisms.6-11 Various platforms are available to profile 
whole genomes using many samples, enabling a better 
understanding of complex diseases, like cancer, and complex 
phenotypic traits. Some of the molecular experimental 
omics technologies are based on high-throughput mass 

Table 1.  Literature search process using specific keyword.

Search database used Keyword used No. of 
documents 
found

No. of 
documents 
included

PubMed Cloud computing in bioinformatics 460 33

Multi-omics data integration 329 24

Big data analytics in bioinformatics 138 20

Big multi-omics data analysis 38 07

Cloud computing with multi-omics data 5 03

Big data analytics tools in multi-omics data analysis 02 02

Cloud computing tools in multi-omics data analysis 02 02

Cloud computing and big data tools in multi-omics 
data analysis

01 01

Included articles available from the 
MEDLINE, Scopus Google scholar 
databases as well as online book search 
such as Google Books and BookFinder

Additional references identified by other databases 20 5
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spectrometry, microarray, RNA sequencing, and DNA 
sequencing. The analysis of the resulting large-scale data 
necessitates advanced bioinformatics software or pipelines. 
Typically, the analysis of omics data involves the imputation 
of raw data, noise elimination, and identification of relevant 
features. Other examples of computational pipelines revolve 
around comparing DNA sequence fragments, or an entire 
chromosome, with a reference genome to identify variations. 
Table 2 provides some examples of the various data types 
that are used in multi-omics profiling.

Biomedical and multi-omics data sources

Implementing a large-scale data environment to analyze large-
scale genomics data in health care necessitates the effective 
combination and application of various technologies, such as 
artificial intelligence,19 parallel processing techniques, such as 
Hadoop MapReduce, and data mining tools. Several large data 
applications, such as the Apache Hadoop software library, are 
used in biomedical research to overcome scalability, accuracy, 
and computational complexity issues.20 Cloud computing helps 
data scientists by providing access to computing frameworks, 
such as the Microsoft Windows Azure platform (https://azure.
microsoft.com/en-in/), and to cloud services that can be used 
to develop particular tools or applications. Adopting and effi-
ciently implementing public cloud repositories to store genomic 
and patient health information involves critical privacy and 
security issues. The majority of such public cloud repositories 
are the result of community-based efforts typically suffering 
from data curation quality, privacy, and security issues and pre-
sent complexity and sustainability challenges.

Typically, multi-omics frameworks rely on traditional sta-
tistical techniques for data retrieval, integration, and analysis. 
Such traditional approaches suffer from scalability, time, 

computational efficiency, and accuracy limitations.21 At pre-
sent, sequence alignment and mapping of high-throughput 
sequencing data sets remains time-consuming. The numerous 
de novo assemblers that have been developed, some of which 
based on message passing interface (MPI) (eg, Ray,22 
ABySS,23 and SWAP-Assembler24), exhibit limited scalabil-
ity, accuracy, and computational efficiency. In addition, DNA 
analysis pipelines designed to address scalability, such as 
Halvade,25 are characterized by several limitations, including 
accuracy, and computational efficiency. Similar limitations are 
aberrant within the single-cell RNA sequencing domain.

The advantages of parallel computation frameworks 
include high availability and parallel processing, with data 
being processed by multiple machines, significantly reducing 
processing times. By bringing computation to data (data local-
ity), the cost of moving processing units to data resources is 
removed, and processing times are reduced because all cluster 
nodes can work in parallel and simultaneously. Large data 
frameworks, encompassing parallel processing and in-memory 
processing, achieve higher memory efficiency.26 As a result, 
data scientists commonly use big data analytics tools, such as 
Hadoop to store data, MapReduce for data analysis, and use 
tools such as Pig (https://pig.apache.org/) and Hive (https://
hive.apache.org/) for data retrieval. Such tools are frequently 
used in conjunction with several open-source tools, eg, R, 
Python, and scalable machine learning tools, and commer-
cially available tools, eg, MS SQL, Tableau, and Oracle Rdb.27 
Table 3 lists some examples of different tools along with their 
advantages and limitations.

There are numerous publicly available data sources that 
cater the storage, indexing, and provision of omics data sets, 
offering a variety of analysis and visualization tools. For exam-
ple, in 2005, the Cancer Genome Atlas (TCGA) and 2008 
International Cancer Genome Consortium (ICGC) projects 

Table 2.  The platforms available to provide global multi-omics profiling information in the cloud framework.

Omics type Platform Size of each data type can 
accommodate (approximately)

Cost of analyzing omics data in 
cloud (approximately)

Genome12,13 DNA sequencing >100 GB (BAM and VCF files) Per GB storage and transfer rate 
ranges from $40/test to $66/test

DNA methylation (array based)

SNP based

Transcriptome14

(Total RNA)
RNA-seq >2000 samples US$1.30 per sample

microRNA sequencing (miRNA)

Proteome15 Protein mass spectrometry Standard mix proteomic data set Cost of database search using 
virtual system over cloud is >US$1

RPPA

Metabolite16 Metabolite mass spectrometry ~1 GB Resources to process ~1GB of 
13 C-MFA data are $11

Microbiome17,18 Ribosome RNA (rRNA) gene 
sequencing and shotgun MGS

>90 GB (FASTQ data) Library preparation ~$400 
sequencing costs ~$8 per GB

Abbreviations: BAM, Binary Alignment/Map; MFA, Metabolic Flux Analysis; MGS, metagenomics sequencing; RPPA, Reverse Phase Protein Array; rRNA, ribosome RNA; 
SNP, single nucleotide polymorphism.

https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://pig.apache.org/
https://hive.apache.org/
https://hive.apache.org/
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released comprehensive cancer genomics profiles using new 
analysis technologies and made them freely available within a 
number of repositories (see Supplementary Table S1 for more 
recent examples of omics data sources).

Cloud computing terminologies

The National Institute of Standards and Technology (NIST) 
characterizes cloud computing as a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of 
configurable computing resources (eg, networks, servers, stor-
age, applications, and services) that can be rapidly provisioned 
and released with minimal management, effort, or service pro-
vider interaction.48 The cloud computing model is composed of 
5 key features: (1) resource pooling, (2) on-demand service, (3) 
broad network access, (4) rapid elasticity, and (5) measured ser-
vices. In addition, cloud computing also comprised 3 service 
models, namely, Software as a Service (SaaS), Platform as a 
Service (PaaS), and Infrastructure as a Service (IaaS), plus 4 
deployment models: private, public, hybrid, and community 
clouds. The main essential characteristics of Cloud computing 
are scalability, redundancy, reliability of hardware, cost-effec-
tiveness, robustness, flexibility for data, and applications.48 

Within the bioinformatics domain, cloud-based services adopt 
the above categorization and are typically grouped as Data as a 
Service (DaaS), SaaS, PaaS, and IaaS49 (Figure 3).

Data as a Service.  Data as a Service is a cloud strategy used to 
provide and distribute on-demand access to biological data 
over a network for analysis and knowledge discovery. The 
objective of DaaS is to overcome data access limitations the 
current state-of-the-art approaches face by enabling the user to 
store and access data from any location for sharing and pro-
cessing. Stephens et al50 compared big genomics data with 
other sources of big data generation, such as business, social 
network, and the Internet of things and found that genomics 
data will become much more extensive concerning creation, 
storing, processing, analyzing, and transmitting by 2025. Bio-
logical data acquisition is distributed and heterogeneous, which 
reaches 1 zetta-bases. Biological data distribution extends from 
a few base comparisons, or many small transfers of gene 
sequences (10 MB/s), to fewer large multiples of terabyte 
(10 TB/s) bulk transfer/downloads from central repositories. 
Due to its ability to overcome access limitations, DaaS is the 
most important biological study service that provision big data. 
For example, Amazon Web Service (AWS) is a cloud-based 

Figure 3.  Bioinformatics cloud computing models DaaS, SaaS, PaaS, and IaaS and their distribution services. DaaS provides bioinformatics data sets as 

services in dynamic virtual space over a network (cloud), end-user can use VM and hypervisors for cost-effective storage and large-scale data analysis. 

Apps and tools represent cloud-based data exploration, visualization, and analysis tools used in different layers of bioinformatics analysis pipelines 

(SaaS). Frameworks represent the collection of deployment and management tools required for different bioinformatics tasks (PaaS). IaaS includes 

computing infrastructure in terms of virtual servers and bioinformatics applications for storage and analysis. DaaS indicates Data as a Service; IaaS, 

Infrastructure as a Service; PaaS, Platform as a Service; SaaS, Software as a Service; VM, virtual machine.
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application that provides data as a service, which gives dynamic 
access to public data sets to users on demand. AWS includes 
publicly available data sets from multiple sources, including 
large biological resources, such as Ensembl51 and GenBank.52

Software as a Service.  Software as a Service is a cloud comput-
ing facility where users can dynamically access applications 
online. As bioinformatics studies typically encompass multiple 
data types, it is important to access up-to-date applications on 
demand to process them through user-friendly interfaces such 
as Microsoft 365 (https://www.ncitech.co.uk/business/cloud-
computing/microsoft-office-365). Some examples for cloud-
based SaaS solutions for genome resequencing include rainbow, 
short-read aligner CloudBurst, variant annotation VAT, and 
RNA-seq Myrna.53 These tools have several advantages and 
limitations (Table 4).

Platform as a Service.  Platform as a Service is a cloud comput-
ing model that provides software tools and hardware to users 
on demand. It is useful for processing large biological data by 
dynamically requesting software and hardware environments. 
The main beneficial characteristic of PaaS is scalability. PaaS 
improves scalability by providing a working environment over 
the Internet as and when users demand, allowing users to ana-
lyze data sets with many samples by using available resources 
automatically. PaaS allows batch processing of high-through-
put sequencing data. Bioinformatics uses 2 PaaS platform ser-
vices, Eoulsan and Galaxy, for analysis of large-scale 
high-throughput sequencing data.

Infrastructure as a Service.  Infrastructure as a Service is a cloud 
paradigm that facilitates virtual infrastructure, such as computing, 
storage, and networking, over the Internet. IaaS now provides 
databases, messaging queues, and other services on top of the vir-
tualization layer. Examples of IaaS are the Microsoft Azure, the 
Amazon cloud, the Google computing engine, and the Joyent.54,55 
To store, compute, and exchange such large data, cloud comput-
ing provides PaaS virtual resources over the Internet. There are 2 
primary publicly available PaaS virtual machine services for bio-
informatics: Cloud Virtual Resource (CloVR) (http://clovr.org) 
and CloudBioLinux (http://cloudbiolinux.org/). These are port-
able virtual machines for automated sequence analysis and pro-
vide on-demand high-performance environments.

Other key emerging cloud technologies and platforms
DNAnexus.  DNAnexus (DNAnexus, Inc, Mountain View, 

CA, USA) provides an API-based platform for sharing and 
managing genomic data and tools to accelerate genomic research 
benefiting from transparency and reproducibility. DNAnexus 
has scaled to over 56 000 concurrent computing cores, numerous 
petabytes of storage, and tens of millions of core hours of analysis 
using Amazon Web Services. Users can upload raw DNA data 
straight from sequencing machines to the cloud using both a 

graphical user interface (GUI) and a command-line tool, avoid-
ing the need for costly, on-premise, processing and storage infra-
structures (https://www.dnanexus.com/).

DNAstack.  DNAstack is a cloud-based platform for stor-
ing, managing, and analyzing genomes and other patient data. 
DNAstack is based on DNA sequencing technology, which has 
allowed individual genomes to be read, potentially improving 
diagnoses and treatment. It is part of a Canadian-led program 
to speed up genomic data exchange worldwide, claiming to be 
the world’s largest genetic mutation search engine.56

Terra.  Bio platform.
Terra is a cloud-native platform that allows biomedical 
researchers to interact, access data, and execute analysis tools 
with security being prominent. It provides a scalable architec-
ture connecting cloud data repositories and enabling research-
ers to conduct integrative analysis over big data sets in a 
reproducible manner. Researchers are also provided can with 
the option of federating various data sets and perform integra-
tive studies (https://app.terra.bio/).

Illumina BaseSpace.  Illumina has the flexibility to accom-
modate its users’ need for on-demand research by operating 
BaseSpace Sequence Hub on AWS. Illumina offers to spin up 
2000 instances in just a few hours using AWS, eliminating the 
need to load a data center with hardware. Workloads can be 
executed in parallel, without incurring a substantial initial cost. 
Users can set up runs and assess the quality of instrument runs 
and computational resources without having to invest through 
infrastructure. In addition, ease of accessibility to a multitude 
of genomic analysis software boosts organizational efficiency 
(https://sapac.illumina.com/products/by-type/informatics-
products/basespace-sequence-hub.html).

NVIDIA GPU.  Genomic data can be analyzed faster, 
more precisely and at larger scales over GPU-accelerated 
platforms. Nvidia’s CUDA (Compute Unified Device 
Architecture) is the most widely used library for develop-
ing GPU-based tools in bioinformatics, systems biology, 
and computational biology. Although CUDA can only be 
deployed over Nvidia GPUs, there are other options, includ-
ing Microsoft DirectCompute catering its use in conjunc-
tion with Microsoft’s Windows operating system as well as 
deployment over the platform-independent library OpenCL 
(which can use AMD/ATI GPUs).57

Databricks Genomics Platform.  The Databricks Genom-
ics Platform offers preconfigured GATK processes, hosted on 
AWS and Azure, to enable quicker genomic data preparation 
and processing. Data can be processed 15 times faster when 
workflows are optimized to operate in parallel and prepack-
aged genomic analytics, and machine learning frameworks 
can be used for it interactive evaluation. With autoscaling on 
AWS and Azure, users can analyze hundreds of thousands of 
genomes while lowering expenses. Connect processed genetic 
data to downstream analytics in real time for faster outcomes 
(https://databricks.com/product/genomics).

https://www.ncitech.co.uk/business/cloud-computing/microsoft-office-365
https://www.ncitech.co.uk/business/cloud-computing/microsoft-office-365
http://clovr.org
http://cloudbiolinux.org/
https://www.dnanexus.com/
https://app.terra.bio/
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub.html
https://sapac.illumina.com/products/by-type/informatics-products/basespace-sequence-hub.html
https://databricks.com/product/genomics


Koppad et al	 9

Ta
b

le
 4

. 
S

um
m

ar
y 

of
 c

lo
ud

-b
as

ed
 b

io
in

fo
rm

at
ic

s 
to

ol
s 

fo
r 

ge
no

ty
pe

 a
nd

 o
th

er
 o

m
ic

s 
an

al
ys

is
.

To
o

ls
D

escripti








o
n

A
dvantages











Limitati





o

ns


D
aa

S

 
A

W
S

 P
ub

lic
 D

at
a 

S
et

s7
0

A
cc

es
s 

to
 c

on
tr

ol
le

d 
re

po
si

to
ri

es
 a

nd
 p

ub
lic

 d
at

a 
se

ts
 s

uc
h 

as
 T

C
G

A
, d

bG
aP

E
ffi

ci
en

t d
at

a 
st

or
ag

e,
 a

cc
es

s,
 a

nd
 c

om
pu

ta
tio

n.
 

S
ca

la
bl

e 
so

lu
tio

ns
 fo

r 
ge

no
m

ic
 a

na
ly

si
s 

ac
ce

le
ra

tio
n

Li
m

ite
d 

se
cu

ri
ty

 fe
at

ur
es

S
aa

S

 
M

yr
na

71
-7

3
A

 to
ol

 to
 c

al
cu

la
te

 d
iff

er
en

ce
s 

of
 g

en
e 

ex
pr

es
si

on
 

da
ta

 fr
om

 R
N

A
-s

eq
 d

at
a 

se
ts

. C
an

 b
e 

co
m

bi
ne

d 
w

ith
 

el
as

tic
 M

ap
R

ed
uc

e 
on

 lo
ca

l H
ad

oo
p 

or
 s

in
gl

e 
co

m
pu

te
r

R
ap

id
ly

 te
st

s 
m

ul
tip

le
 m

od
el

s 
fo

r 
pu

bl
ic

ly
 a

va
ila

bl
e 

R
N

A
-s

eq
 d

at
a 

se
ts

. B
ow

tie
 is

 u
se

d 
fo

r 
sh

or
t-

re
ad

 
al

ig
nm

en
t

D
oe

s 
no

t a
tt

em
pt

 to
 a

lig
n 

re
ad

s 
ac

ro
ss

 
ju

nc
tio

ns
, a

ss
em

bl
e 

is
of

or
m

s

 
C

lo
ud

B
ur

st
74

P
ar

al
le

l r
ea

d 
ge

no
m

e 
m

ap
pi

ng
 a

lg
or

ith
m

 w
ith

 
M

ap
R

ed
uc

e
F

ac
ili

ta
te

s 
sc

al
ab

ili
ty

, a
ut

om
at

ic
 m

on
ito

ri
ng

, 
re

du
nd

an
cy

 a
nd

 h
ig

h-
pe

rf
or

m
an

ce
 d

is
tr

ib
ut

ed
 fi

le
 

ac
ce

ss
. F

as
te

r 
an

d 
m

or
e 

ef
fic

ie
nt

 w
ith

 s
ho

rt
-r

ea
d 

m
ap

pi
ng

Lo
w

er
 a

cc
ur

ac
y 

as
 m

is
m

at
ch

 m
ap

pi
ng

 n
ot

 
im

pl
em

en
te

d.
 P

ro
ve

d 
to

 b
e 

sl
ow

 w
ith

 r
es

pe
ct

 
to

 p
ro

ce
ss

in
g 

tim
e.

 D
es

ig
ne

d 
to

 w
or

k 
w

ith
 

sm
al

l r
ea

ds
 s

o 
un

ab
le

 to
 m

an
ag

e 
lo

ng
 r

ea
ds

 
B

la
st

R
ed

uc
e7

4
A

n 
op

tim
iz

ed
 s

ho
rt

-r
ea

d 
m

ap
pi

ng
 a

lg
or

ith
m

 fo
r 

ef
fic

ie
nt

ly
 id

en
tif

yi
ng

 a
lig

nm
en

ts
 w

ith
 s

m
al

l 
di

ff
er

en
ce

s.
 H

ad
oo

p 
M

ap
R

ed
uc

e 
im

pl
em

en
ta

tio
n 

fo
r 

pa
ra

lle
liz

in
g 

ex
ec

ut
io

n 
ov

er
 m

ul
tip

le
 c

om
pu

te
 n

od
es

Id
en

tifi
ca

tio
n 

of
 s

eq
ue

nc
es

 fo
r 

pe
na

liz
ed

 g
en

om
ic

s,
 

S
N

P
 d

is
co

ve
ry

 a
nd

 g
en

ot
yp

in
g

H
an

dl
es

 s
ho

rt
-r

ea
d 

da
ta

. H
ad

oo
p 

ha
s 

lim
ita

tio
ns

 o
f h

ig
h 

I/O
 ti

m
e 

du
ri

ng
 d

iff
er

en
t 

ite
ra

tio
ns

. N
ee

d 
fo

r 
ro

bu
st

 h
ar

dw
ar

e 
an

d 
so

ft
w

ar
e 

to
ol

s 
fo

r 
be

tt
er

 ti
m

e 
op

tim
iz

at
io

n

 
R

ai
nb

ow
75

A
na

ly
si

s 
of

 g
en

om
ic

 s
eq

ue
nc

in
g 

da
ta

 fr
om

 a
 la

rg
e 

nu
m

be
r 

of
 s

ub
je

ct
s 

(>
50

0)
 in

 th
e 

A
m

az
on

 c
lo

ud
P

ro
vi

de
s 

lo
ad

 b
al

an
ci

ng
 a

nd
 a

ut
om

at
io

n 
of

 W
G

S
 

da
ta

 a
na

ly
se

s.
 A

bl
e 

to
 h

an
dl

e 
bo

th
 B

A
M

 a
nd

 F
A

S
T

Q
 

in
pu

t fi
le

s.
 A

bl
e 

to
 s

ca
le

 u
p 

an
d 

do
w

n 
re

lia
bl

y,
 

en
ab

lin
g 

sh
or

te
r 

an
al

ys
is

 ti
m

e 
re

ga
rd

le
ss

 o
f s

am
pl

e 
si

ze

N
ot

 c
os

t-
ef

fe
ct

iv
e 

as
 it

 u
se

s 
A

m
a

zo
n 

cl
ou

d 
se

rv
ic

e 
(~

U
S

$1
20

 to
 a

na
ly

ze
 e

ac
h 

sa
m

pl
e)

. 
D

iffi
cu

lt 
to

 h
an

dl
e 

ne
tw

or
k 

co
ng

es
tio

n 
an

d 
tr

af
fic

 d
ur

in
g 

la
rg

e 
da

ta
 tr

an
sm

is
si

on

 
eC

E
O

 

 
F

X
 

 
R

S
D

 

 
V

A
T

76
P

ro
vi

de
s 

no
ve

l v
is

ua
liz

at
io

n 
of

 fu
nc

tio
na

l a
nn

ot
at

io
n 

va
ri

an
ts

 a
cr

os
s 

di
ff

er
en

t g
en

om
es

 a
t t

he
 tr

an
sc

ri
pt

 
le

ve
l; 

ob
ta

in
s 

st
at

is
tic

al
 s

um
m

ar
ie

s 
ac

ro
ss

 g
en

es
 

an
d 

in
di

vi
du

al
s

A
bl

e 
to

 a
nn

ot
at

e 
M

N
P

s 
an

d 
of

fe
rs

 u
nl

im
ite

d 
st

or
ag

e 
ca

pa
ci

ty
L

ac
k 

of
 s

up
po

rt
 fo

r 
de

te
rm

in
in

g 
va

ri
an

t e
ff

ec
ts

 
us

in
g 

en
se

m
bl

e 
ge

ne
 m

od
el

s.
 V

ar
ia

nt
 lo

ca
tio

n 
de

sc
ri

pt
io

n 
bu

t l
ac

k 
of

 b
io

lo
gi

ca
l i

nt
er

pr
et

at
io

n

 
S

E
A

L7
7

A
 to

ol
 s

ui
te

 p
ro

du
ci

ng
 s

ho
rt

-r
ea

d 
pa

ir 
m

ap
pi

ng
s 

th
at

 
ar

e 
co

ns
is

te
nt

 w
ith

 B
W

A
 m

ap
pi

ng
s

U
se

s 
P

ic
ar

d 
M

ar
k 

D
up

lic
at

es
 c

ri
te

ri
a 

fo
r 

re
m

ov
in

g 
sh

or
t-

re
ad

 p
ai

rs
 d

up
lic

at
es

S
up

po
rt

s 
fo

r 
sh

or
t-

re
ad

 m
ap

pi
ng

 o
nl

y

 
C

lo
ud

B
ru

sh
78

A
 d

e 
no

vo
 d

is
tr

ib
ut

ed
 g

en
om

e 
as

se
m

bl
er

 b
as

ed
 o

n 
st

ri
ng

 g
ra

ph
s 

w
ith

 n
ov

el
 e

dg
e

-a
dj

us
tm

en
t a

lg
or

ith
m

 
an

d 
M

ap
R

ed
uc

e

E
dg

e
-a

dj
us

tm
en

t a
lg

or
ith

m
 h

el
ps

 in
 fi

nd
in

g 
st

ru
ct

ur
al

 
de

fe
ct

s 
(s

eq
ue

nc
in

g 
er

ro
r)

 a
nd

 r
eg

ul
at

es
 th

e 
ed

ge
 o

f 
th

e 
st

ri
ng

 g
ra

ph

O
nl

y 
su

pp
or

ts
 b

at
ch

-b
as

ed
 d

at
a.

 S
m

al
l d

at
a 

se
ts

 w
er

e 
us

ed
 fo

r 
ev

al
ua

tio
ns

. D
ue

 to
 

H
ad

oo
p’

s 
di

sk
-b

as
ed

 c
om

pu
tin

g 
(ie

, m
as

si
ve

 
di

sk
 I/

O
),

 it
s 

pe
rf

or
m

an
ce

 d
eg

ra
de

s 
w

he
n 

de
al

in
g 

w
ith

 e
xt

re
m

el
y 

la
rg

e 
da

ta
 s

et
s  (
C

on
tin

ue
d

)



10	 Bioinformatics and Biology Insights ﻿

To
o

ls
D

escripti








o
n

A
dvantages











Limitati





o

ns


 
C

lo
ud

ge
ne

79
A

 M
ap

R
ed

uc
e

-b
as

ed
 G

U
I f

ra
m

ew
or

k 
fo

r 
la

rg
e

-s
ca

le
 

da
ta

 p
ro

ce
ss

in
g 

on
 a

 c
lu

st
er

 (
pu

bl
ic

 c
lo

ud
) 

an
d 

w
or

kfl
ow

 r
ep

ro
du

ci
bi

lit
y 

ov
er

 p
ri

va
te

 c
lo

ud
s

C
lo

ud
ge

ne
 c

an
 b

e 
ru

n 
on

 p
ri

va
te

 c
lu

st
er

s,
 a

llo
w

in
g 

fo
r 

th
e 

pr
ot

ec
tio

n 
of

 s
en

si
tiv

e 
da

ta
 s

et
s,

 r
ed

uc
in

g 
da

ta
 tr

an
sf

er
 ti

m
es

D
ur

in
g 

jo
b 

co
nc

at
en

at
io

n,
 it

 is
 n

ot
 p

os
si

bl
e 

to
 

ex
ec

ut
e 

sp
ec

ifi
ed

 p
ip

el
in

e 
st

ep
s 

au
to

m
at

ic
al

ly
. 

T
he

 c
lu

st
er

 a
rc

hi
te

ct
ur

e 
is

 s
ta

tic
 a

nd
 c

an
no

t b
e 

al
te

re
d 

du
ri

ng
 o

pe
ra

tio
n

 
C

um
ul

us
8

0
C

um
ul

us
 is

 a
 c

lo
ud

-b
as

ed
 fr

am
ew

or
k 

fo
r 

an
al

yz
in

g 
si

ng
le

-c
el

l a
nd

 s
in

gl
e

-n
uc

le
us

 R
N

A
-s

eq
 d

at
a

S
ca

la
bl

e,
 c

os
t-

ef
fe

ct
iv

e,
 a

bl
e 

to
 p

ro
ce

ss
 m

ul
tip

le
 

da
ta

 t
yp

es
O

nl
y 

D
oc

ke
rs

 a
nd

 W
D

L 
ar

e 
us

ed
 o

n 
th

e 
Te

rr
a 

pl
at

fo
rm

 a
nd

 G
oo

gl
e 

C
lo

ud
 P

la
tf

or
m

P
aa

S

 
E

ou
ls

an
 p

ac
ka

ge
81

H
ig

h-
th

ro
ug

hp
ut

 s
eq

ue
nc

in
g 

da
ta

 a
na

ly
si

s 
to

ol
 o

n 
cl

ou
d 

co
m

pu
tin

g 
se

rv
ic

es
 fo

r 
ba

tc
h 

an
al

ys
is

A
ut

om
at

ic
 a

nd
 u

ni
qu

e 
an

al
ys

is
 s

ol
ut

io
n 

fo
r 

se
ve

ra
l 

sa
m

pl
es

S
pe

ci
fic

al
ly

 ta
rg

et
s 

R
N

A
-s

eq
 d

at
a 

an
al

ys
is

. 
N

ot
 e

m
ph

as
iz

in
g 

on
 g

ra
ph

ic
al

 jo
b 

ex
ec

ut
io

n 
on

 
pu

bl
ic

 a
nd

 p
ri

va
te

 c
lu

st
er

s

 
G

al
a

xy
 C

lo
ud

8
2-

8
4

A
 c

lo
ud

-b
as

ed
 fr

am
ew

or
k 

fo
r 

ge
no

m
ic

s 
re

se
ar

ch
 

en
su

ri
ng

 th
e 

re
pr

od
uc

ib
ili

ty
 o

f l
ar

ge
-s

ca
le

 a
na

ly
se

s
P

ro
vi

de
s 

fr
ee

 a
nd

 o
pe

n 
so

lu
tio

ns
 fo

r 
re

pr
od

uc
ib

ili
ty

, 
di

ss
em

in
at

io
n,

 a
nd

 g
en

er
al

iz
ed

 r
eu

se
 p

ro
bl

em
s 

by
 

ca
pt

ur
in

g 
ex

ec
ut

io
n 

in
fo

rm
at

io
n 

to
 u

nd
er

st
an

d 
co

m
pl

ex
 c

om
pu

ta
tio

na
l a

na
ly

si
s

P
ro

vi
de

s 
in

te
gr

at
ed

 to
ol

s 
fo

r 
a 

va
ri

et
y 

of
 b

io
m

ed
ic

al
 

st
ud

ie
s

D
iffi

cu
lt 

to
 a

do
pt

 s
pe

ci
fic

 a
na

ly
si

s 
to

ol
s.

 
M

ov
in

g 
la

rg
e 

am
ou

nt
 o

f d
at

a 
re

lia
bl

y 
an

d 
ef

fic
ie

nt
ly

 is
 c

ha
lle

ng
in

g

 
S

pa
rk

S
eq

8
5

S
ca

la
bl

e 
an

d 
fa

st
 to

ol
 fo

r 
in

te
ra

ct
iv

e 
ne

xt
-g

en
er

at
io

n 
da

ta
 q

ue
ry

in
g 

w
ith

 n
uc

le
ot

id
e 

pr
ec

is
io

n 
us

in
g 

A
pa

ch
e 

S
pa

rk
 a

nd
 M

ap
R

ed
uc

e

In
te

ra
ct

iv
e,

 p
ar

al
le

l, 
in

-m
em

or
y 

ad
 h

oc
 d

at
a 

ex
pl

or
at

io
n 

op
tio

n.
 U

se
rs

 c
an

 s
pe

ed
 u

p 
an

d 
op

tim
iz

e 
la

rg
er

 d
at

a 
an

al
ys

is
 b

y 
ru

nn
in

g 
an

d 
tu

ni
ng

 
pa

ra
m

et
er

s 
se

ve
ra

l t
im

es
 (

w
he

n 
m

ul
tip

le
 s

am
pl

es
 

ar
e 

pr
es

en
t)

L
ac

k 
of

 a
lig

nm
en

t o
pt

io
ns

 a
nd

 o
f b

at
ch

 
N

G
S

-d
at

a 
pr

oc
es

si
ng

. L
ac

k 
of

 C
R

A
M

 a
nd

 
A

D
A

M
 fi

le
 fo

rm
at

s 
su

pp
or

t

Ia
aS

 
C

lo
V

R
8

6
S

in
gl

e 
po

rt
ab

le
 V

M
 s

eq
ue

nc
e 

an
al

ys
is

 a
pp

lic
at

io
n 

pr
ov

id
es

 a
n 

au
to

m
at

ed
 s

eq
ue

nc
e 

an
al

ys
is

 p
ip

el
in

e
R

em
ot

e 
cl

ou
d 

co
m

pu
tin

g 
se

rv
ic

es
 o

pt
io

n
R

el
ie

s 
on

 B
L

A
S

T
 fo

r 
se

qu
en

ce
 m

at
ch

in
g 

an
d 

ta
xo

no
m

y 
as

si
gn

m
en

t

 
C

lo
ud

 B
io

Li
nu

x8
7

P
ub

lic
ly

 a
va

ila
bl

e 
cl

ou
d 

fr
am

ew
or

k 
fo

r 
de

ve
lo

pe
rs

 to
 

cr
ea

te
 a

nd
 s

ha
re

 c
us

to
m

iz
ed

 v
ir

tu
al

 m
ac

hi
ne

s 
fo

r 
hi

gh
-p

er
fo

rm
an

ce
 b

io
in

fo
rm

at
ic

s 
ap

pl
ic

at
io

ns

U
se

s 
V

M
s 

w
ho

le
 s

ys
te

m
 s

na
ps

ho
t e

xc
ha

ng
e 

fe
at

ur
e

C
om

pu
tin

g 
re

so
ur

ce
s,

 s
uc

h 
as

 O
S

, d
at

ab
as

es
, a

nd
 

ot
he

r 
so

ft
w

ar
e 

to
ol

s,
 a

re
 e

nc
ap

su
la

te
d 

in
to

 a
 s

in
gl

e 
im

ag
e 

fo
r 

la
te

r 
us

e

U
se

s 
a 

pu
bl

ic
ly

 a
va

ila
bl

e 
cl

ou
d 

fr
am

ew
or

k

 
B

P
D

C
8

8
O

pe
n-

so
ur

ce
 c

lo
ud

 p
la

tf
or

m
 b

as
ed

 o
n 

O
pe

nS
ta

ck
 

co
nt

ai
ns

 p
et

ab
yt

es
 o

f g
en

om
ic

s 
an

d 
ph

en
ot

yp
ic

 
da

ta
, t

oo
ls

, a
nd

 c
om

pu
tin

g 
re

so
ur

ce
s 

su
ch

 a
s 

vi
rt

ua
l 

m
ac

hi
ne

s

P
ro

vi
de

s 
a 

hi
gh

-p
er

fo
rm

an
ce

 c
lu

st
er

 fi
le

 s
ys

te
m

 
(G

lu
st

er
F

S
) 

al
lo

w
in

g 
us

er
s 

to
 a

cc
es

s 
la

rg
e 

ge
no

m
ic

s 
da

ta
 s

et
s 

to
 th

ei
r 

w
or

ki
ng

 s
pa

ce

U
se

 o
f u

ns
ec

ur
ed

 p
ub

lic
 o

r 
ex

te
rn

al
 d

ev
ic

es
 fo

r 
da

ta
 tr

an
sf

er

 
G

al
a

xy
 C

lo
ud

M
an

8
9

C
lo

ud
 r

es
ou

rc
e 

m
an

ag
em

en
t s

ys
te

m
. P

ro
vi

de
s 

so
lu

tio
ns

 fo
r 

co
nfi

gu
ri

ng
 c

om
pu

te
 c

lu
st

er
s 

on
 

A
m

az
on

’s
 E

C
2 

cl
ou

d 
in

fr
as

tr
uc

tu
re

 to
 p

er
fo

rm
 

bi
oi

nf
or

m
at

ic
s 

an
al

ys
is

 fo
r 

re
se

ar
ch

er
s

U
se

 o
f m

ul
tip

le
 c

lo
ud

 in
fr

as
tr

uc
tu

re
s,

 s
uc

h 
as

 A
W

S
, 

O
pe

nN
eb

ul
a 

an
d 

O
pe

ns
ta

ck
. A

llo
w

s 
cu

st
om

 
de

pl
oy

m
en

t o
f r

es
ou

rc
es

 li
ke

 a
rb

itr
ar

ily
 s

iz
ed

 
cl

us
te

rs
. P

ro
vi

de
s 

dy
na

m
ic

 s
ca

le
-u

p 
an

d 
sc

al
e

-d
ow

n 
re

so
ur

ce
 a

llo
ca

tio
n

N
ot

 c
os

t-
ef

fe
ct

iv
e.

 R
eq

ui
re

m
en

t t
o 

pa
y 

fo
r 

cl
ou

d 
re

so
ur

ce
s 

us
ed

. L
ac

k 
of

 d
ef

au
lt 

M
ap

R
ed

uc
e 

su
pp

or
t p

re
ve

nt
s 

gr
ap

hi
ca

l 
ex

ec
ut

io
ns

Ta
b

le
 4

. 
(C

on
tin

ue
d)

 (
C

on
tin

ue
d

)



Koppad et al	 11

To
o

ls
D

escripti








o
n

A
dvantages











Limitati





o

ns


 
C

lo
ud

A
lig

ne
r9

0
M

ap
R

ed
uc

e
-b

as
ed

 to
ol

 fo
r 

ge
no

m
e 

se
qu

en
ce

 
m

ap
pi

ng
 g

en
er

at
ed

 b
y 

ne
xt

-g
en

er
at

io
n 

se
qu

en
ci

ng
H

ig
h-

pe
rf

or
m

an
ce

 g
ai

n 
du

e 
to

 p
ar

al
le

l p
ro

ce
ss

in
g 

an
d 

pa
rt

iti
on

 o
f t

he
 la

rg
e 

re
fe

re
nc

e 
ge

no
m

e 
an

d 
lo

ng
 

re
ad

s 
(u

se
d 

se
ed

-a
nd

-e
xt

en
d 

al
go

ri
th

m
)

L
ac

k 
of

 s
tr

ea
m

 o
f r

ea
ds

 a
lig

nm
en

t

 
C

lo
ud

B
L

A
S

T
91

P
ar

al
le

liz
at

io
n 

an
d 

m
an

ag
em

en
t o

f b
io

in
fo

rm
at

ic
s 

ap
pl

ic
at

io
ns

 u
si

ng
 N

C
B

I B
L

A
S

T
 o

n 
W

A
N

-b
as

ed
 

cl
us

te
rs

, b
y 

in
te

gr
at

in
g 

H
ad

oo
p 

M
ap

R
ed

uc
e 

an
d 

vi
rt

ua
liz

at
io

n 
te

ch
no

lo
gi

es
 fo

r 
di

st
ri

bu
te

d 
co

m
pu

tin
g

S
up

po
rt

 fo
r 

cu
st

om
iz

at
io

n,
 in

te
gr

at
iv

e,
 a

nd
 fl

ex
ib

le
 

so
lu

tio
ns

 fo
r 

va
ri

et
y 

of
 p

ro
bl

em
s

R
el

at
iv

el
y 

lo
w

 w
ei

gh
t c

om
pu

ta
tio

n 
on

 la
rg

e 
da

ta
 s

et
s

 
N

ex
ts

tr
ai

n9
2

N
ex

ts
tr

ai
n 

is
 a

n 
op

en
-s

ou
rc

e 
pr

oj
ec

t c
on

si
st

in
g 

of
 a

 
da

ta
ba

se
 o

f v
ira

l g
en

om
es

, a
 b

io
in

fo
rm

at
ic

s 
pi

pe
lin

e 
an

d 
in

te
ra

ct
iv

e 
vi

su
al

iz
at

io
n 

pl
at

fo
rm

 fo
r 

ph
yl

od
yn

am
ic

s 
an

al
ys

is

A
dv

an
ce

d 
co

m
pu

tin
g 

en
vi

ro
nm

en
t A

W
S

 B
at

ch
, 

w
hi

ch
 a

llo
w

s 
us

er
s 

to
 la

un
ch

 a
nd

 m
on

ito
r 

m
or

e 
re

pr
od

uc
ib

le
 N

ex
ts

tr
ai

n 
bu

ild
 in

 c
lo

ud

P
ri

va
cy

 a
nd

 s
ec

ur
ity

 is
su

es
 w

ith
 v

is
ua

liz
in

g 
an

d 
sh

ar
in

g 
se

ns
iti

ve
 o

r 
pr

iv
at

e 
m

et
ad

at
a

 
B

ug
S

eq
9

3
A

 b
io

in
fo

rm
at

ic
s 

pl
at

fo
rm

 d
el

iv
er

s 
ra

pi
d,

 s
ca

la
bl

e,
 

an
d 

au
to

m
at

ed
 m

ic
ro

bi
ol

og
y 

se
qu

en
ci

ng
 a

na
ly

si
s

A
cc

ur
at

e 
an

d 
fa

st
 m

et
ag

en
om

ic
 a

na
ly

si
s 

fo
r 

na
no

po
re

 r
ea

ds
E

xe
cu

tio
n 

tim
e 

an
d 

hi
gh

 p
ro

ce
ss

in
g 

re
qu

ire
m

en
ts

 fo
r 

pe
rf

or
m

in
g 

fu
ll 

re
ad

 
al

ig
nm

en
ts

 a
ga

in
st

 a
ll 

of
 R

ef
S

eq

 
nf

-c
or

e9
4

A
 fr

am
ew

or
k 

fo
r 

th
e 

de
ve

lo
pm

en
t o

f c
ol

la
bo

ra
tiv

e 
an

al
ys

is
 p

ip
el

in
es

. n
f-

co
re

 g
en

om
ic

 p
ip

el
in

es
 a

re
 

w
ri

tt
en

 in
 N

ex
tfl

ow
. S

up
po

rt
 fo

r 
A

W
S

-i
G

en
om

es
, a

s 
w

el
l a

s 
fo

r 
co

nt
ai

ne
r 

te
ch

no
lo

gi
es

 s
uc

h 
as

 D
oc

ke
r 

an
d 

S
in

gu
la

ri
ty

S
up

po
rt

s 
ex

ec
ut

io
n 

of
 p

ip
el

in
es

 o
n 

m
os

t 
co

m
pu

ta
tio

na
l i

nf
ra

st
ru

ct
ur

es
S

im
pl

ifi
ed

 in
te

ra
ct

iv
e 

co
m

m
an

d 
lin

e 
an

d 
gr

ap
hi

ca
l u

se
r 

in
te

rf
ac

es
 w

ou
ld

 b
e 

be
ne

fic
ia

l. 
L

ac
k 

of
 in

fr
as

tr
uc

tu
re

s 
to

 p
er

fo
rm

 a
ut

om
at

ed
 

be
nc

hm
ar

ki
ng

, a
nd

 m
or

e 
ac

cu
ra

te
 c

os
t 

es
tim

at
in

g 
to

ol
s 

fo
r 

cl
ou

d 
co

m
pu

tin
g

A
bb

re
vi

at
io

ns
: A

D
A

M
, A

na
ly

si
s 

D
at

a 
M

od
el

; A
W

S
, A

m
az

on
 W

eb
 S

er
vi

ce
s;

 B
A

M
, B

in
ar

y 
A

lig
nm

en
t/M

ap
; B

LA
S

T,
 B

as
ic

 L
oc

al
 A

lig
nm

en
t S

ea
rc

h 
To

ol
; B

P
D

C
, B

io
ni

m
bu

s 
P

ro
te

ct
ed

 D
at

a 
C

lo
ud

; B
W

A
, B

ur
ro

w
s-

W
he

el
er

 A
lig

nm
en

t; 
C

lo
vR

, C
lo

ud
 V

ir
tu

al
 R

es
ou

rc
e;

 D
aa

S
, D

at
a 

as
 a

 S
er

vi
ce

; e
C

E
O

, C
lo

ud
-b

as
ed

 E
pi

st
as

is
 c

om
pu

tin
g;

 F
X

, u
se

r 
Fr

ie
nd

ly
 g

en
e 

eX
pr

es
si

on
; G

U
I, 

gr
ap

hi
ca

l u
se

r 
in

te
rf

ac
e;

 Ia
aS

, I
nf

ra
st

ru
ct

ur
e 

as
 a

 S
er

vi
ce

; I
/O

, i
np

ut
-o

ut
pu

t; 
M

N
P,

 
m

ul
tin

uc
le

ot
id

e 
po

ly
m

or
ph

is
m

s;
 N

C
B

I, 
N

at
io

na
l C

en
te

r 
fo

r 
B

io
te

ch
no

lo
gy

 In
fo

rm
at

io
n;

 N
G

S
, n

ex
t-

ge
ne

ra
tio

n 
se

qu
en

ci
ng

; O
S

, o
pe

ra
tin

g 
sy

st
em

s;
 P

aa
S

, P
la

tfo
rm

 a
s 

a 
S

er
vi

ce
; R

S
D

, R
ec

ip
ro

ca
l S

m
al

le
st

 D
is

ta
nc

e 
al

go
rit

hm
; 

S
aa

S
, S

of
tw

ar
e 

as
 a

 S
er

vi
ce

; S
N

P,
 s

in
gl

e 
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m
; T

C
G

A
, T

he
 C

an
ce

r 
G

en
om

e 
A

tla
s;

 V
AT

, V
ar

ia
nt

 A
nn

ot
at

io
n 

To
ol

; V
M

, v
ir

tu
al

 m
ac

hi
ne

s;
 W

D
L,

 w
or

kfl
ow

 d
es

cr
ip

tio
n 

la
ng

ua
ge

s;
 W

G
S

, w
ho

le
-g

en
om

e 
se

qu
en

ci
ng

.

Ta
b

le
 4

. 
(C

on
tin

ue
d)



12	 Bioinformatics and Biology Insights ﻿

Cromwell workflow description languages.  Cromwell is an 
AWS Cloud–based workflow execution engine developed by 
Broad Institute. It renders orchestrating computational opera-
tions for genomics analysis much easier, offering considerably 
more flexibility in scaling genomics research by leveraging 
cloud computing capabilities rather than competing for lim-
ited on-premise resources. Based on the volume and particu-
lar resource requirements of the batch jobs submitted, AWS 
Batch, a fully managed batch computing solution on Amazon 
Web Services, automatically provisioned the optimal quantity 
and kind of compute resources (https://aws.amazon.com/gov-
ernment-education/cromwell-on-aws/).

The NCI Cloud Resources FireCloud, Institute for Systems 
Biology (ISB), and the Seven Bridge Platform are part of the 
National Cancer Institute’s Cancer Research Data Commons. 
Data access via a Web-based user interface is available in all 3 
NCI cloud resources and provides access to analytic tools and 
workflows via a programmatic interface and the opportunity to 
share results with collaborators. Each Cloud Resource con-
stantly adds new features to improve the user experience and 
provide researchers with new tools. Each Cloud Resource has 
built its infrastructure, along with a variety of tools for access-
ing, exploring, and analyzing molecular data. Other data types, 
like medical imaging and proteomic data, Radiologic and 
pathology images, are accessible through all 3 NCI Cloud 
Resources. NCI FireCloud runs on the Google Cloud Platform 
(GCP). Data uploading, cloning, and creating a new TCGA 
workspace.58 ISB Cancer Genomics Cloud includes processed 
data in BigQuery and provides cohort comparison and integra-
tion services.59 Seven Bridges Platform60 deployed on AWS 
provides query system to find exact data and allows researchers 
collaborative analysis.

Scope and implementation of cloud computing 
technologies for multi-omics and for biomedical data 
analytics

Bioinformatics experimental data continue to increase due to 
technological growth and reduced cost of the experiments with 
current resources extending from terabytes to petabytes. The 
efficient computational analysis of such enormous data sets 
requires approaches that facilitate their volume reduction. One 
such an approach lies with the implementation of stringent 
quality control using post-experimental processing. These 
implementations, however, require scalable and robust comput-
ing solutions, such as the one offered by cloud computing.

Many big data frameworks, eg, Apache Hadoop (https://
hadoop.apache.org/), are now integrated with cloud computing 
to improve system speed, agility, and time to maintain hard-
ware and software resources. The implementation of SaaS, 
PaaS and IaaS services allows cloud computing approaches to 
provide dynamic scalable resources that cater different hosting 
and analysis workloads as virtualization services that operate 
across different levels of stacks.61

Virtualization.  Virtualization is the generation of an abstract 
layer of hardware, software, storage, or network resources to 
ensure maximum utilization of these computing components. 
Virtualization ensures the reliable use of resources, such as 
memory, disk storage, and Central Processing Units (CPU), 
and limits redundancy by the abstraction of individual applica-
tions, eg, VMware ThinApp. Virtualization can also be 
achieved by combining scalable and elastic solutions hosting 
multiple Virtual Machines (VMs) on a single machine. VMs 
allow operating systems (OSs) and other applications to run 
across multiple VMs installed on a single machine. A hypervi-
sor is a virtualization management layer that controls resource 
allocation. Dynamic (scaling up and scaling down), on-demand 
resource management helps reduce both the cost and the time 
required to build and maintain complex computational infra-
structure for multi-omics data analysis and storage.62 Amazon 
EC2 provides various VM images, as well as bioinformatics 
applications, to address data management issues typically 
encountered by bioinformatics studies.63 Other examples of 
publicly available VMs are the Cloud BioLinux and the CloVR.

Containerization is referred to as lightweight virtualization 
and allows bioinformatics workflows to accelerate portability 
and reproducibility and ensure scalability. Container technolo-
gies, such as Docker and Singularity, are a component of cloud 
computing frameworks, with Kubernetes being used to manage 
container orchestration. Docker is the most extensively used 
framework allowing users to create, store, and manage Linux-
based environments deployed on almost any computer.64 
Singularity, on the contrary, is a computing framework for pro-
viding computational mobility to users and HPC facilities, 
allowing for the secure acquisition and distribution of software 
and computing environments. It allows users to execute envi-
ronments from a range of resources (including Docker) with-
out requiring privileged access. By combining Singularity and 
Docker, the user may be highly flexible in how, when, and 
where to use their own and others’ computing environments.65

By containerizing applications, the reproducibility and port-
ability are ensured, allowing for sophisticated workflow man-
agement solutions, such as Nextflow, to accelerate the 
generation of portable and scalable pipeline.

Time and cost reduction.  Cloud computing systems are reliable, 
scalable, and cost-effective information technology (IT) plat-
forms that are increasingly being adopted for large-scale bioin-
formatics analysis. They typically use distributed resource 
management solutions, such as the SunGrid Engine (SGE) 
and Load Sharing Facility (LSF),66 that facilitate a number of 
tasks, frequently necessitating concurrent execution of pro-
cesses, such as quality control, alignment, and genomic features 
extraction. Such features render them ideal to address compu-
tational challenges, eg, complexity, and implementation 
requirements, such as multimode scalability and typical 
genomic data processing, pipelines face. Moreover, faster heu-
ristic solutions are increasingly becoming available, such as the 
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ones developed for search and sequence alignment. For exam-
ple, GenBank uses a cloud-based tool, termed BLAST (Basic 
Local Alignment Search Tool), to query sequences67 and 
reduce the time complexity while decreasing the sensitivity of 
the resulting alignment.

Performance.  Cloud computing offers a variety of both CPU 
and Graphics Processing Unit (GPU) acceleration frameworks 
for enhanced performance. GPU-based cloud computing is a 
promising biological data analysis approach as the performance 
to price (P/P) ratio is more favorable for GPU than for CPU. 
GPU reduces the cost of hardware and accelerates data pro-
cessing by using parallel processing over several GPU cores. 
However, GPU-based cloud applications suffer from the slow 
data exchange between GPU and CPU due to slow input-out-
put (I/O) operations and the relatively small GPU memory 
limiting input data storage (Table 4).68,69

Discussion
Recent technological advances have led to the generation of 
large biomedical data sets of various datatypes generated from 
different platforms, necessitating interoperable integration 
frameworks for their analysis. The adoption and use of cloud 
computing are a promising and viable solution to overcome 
these challenges due to its virtualization, advanced analytics, 
storage optimization, and scalability properties. Furthermore, 
cloud computing facilitates simultaneous multivariable pro-
cessing, and the development of efficient methods to reduce 
computational time and memory utilization will be a crucial 
step-change to systems biology research.

Bioinformatics big data challenges

Collecting, integrating, and systematically analyzing hetero-
geneous big data with distinct characteristics are a challeng-
ing task that may lead to data mismanagement, raising issues, 
including privacy, security, and related ethical ones. Big data 
analytics frameworks are useful in performing a series of tasks 
in a distributed manner, reducing the hardware workload to 
overcome scalability challenges, specifically supporting simul-
taneous high-performance genomics data processing, achiev-
ing scalability and reliability, and addressing redundancy 
issues related to large genomics data processing. Big data 
frameworks help overcome fault tolerance by replicating data 
in a distributed manner sidestepping software or hardware 
failures due to unreliable data replications. Distributed data 
processing frameworks additional advantages include high 
availability and distributed data replication for complex sys-
tems. Parallel processing, whereby multiple machines simul-
taneously process data, reduces processing time and presents 
another advantage of distributed data processing frameworks. 
Data locality reduces costs and single nodes’ burden. 
Furthermore, parallel and in-memory processing ensures 
higher memory efficiency.

Cloud-based omics challenges

Although cloud computing offers considerable advantages, 
there are some challenges and limitations. Some of the chal-
lenges are related to data privacy and security and can be con-
sidered the biggest threat to cloud computing in the health care 
data analytics domain.95 Authentication, authorization, and 
access control within the cloud’s virtualized network are essen-
tial and several data security concerns, including data leakage 
and loss issues related ones, still need to be addressed.96 Some 
other significant challenges to cloud-based omics relate to 
infrastructure requirements for systematic analysis and advanced 
query frameworks of big data sets, which are particularly appli-
cable to large-scale, integrated, heterogeneous bioinformatics 
data sets that are increasingly becoming available.97 Different 
omics repositories need to be incorporated to provide reliable 
and practical solutions, and standardized approaches are needed 
to eliminate their inherent variability. Cloud applications are 
required to perform tasks alongside distributed data, necessitat-
ing interoperability and portability which present a further 
challenge. Other challenges include the lack of homogeneity, 
including qualitative and quantitative variables measured at dif-
ferent scales, to characterize a phenotype or trait.

Crucially, while cloud computing is inexpensive, the plat-
form adaption to meet the demands of the users can be costly. 
In addition, the cost of transferring data to public clouds can be 
expensive. Cloud computing downtime, which is typically 
listed alongside system failure, human error, network failures, a 
lack of resources, and the provision of multicloud environment 
management and multicloud strategies for building hybrid 
clouds that combine public and private cloud resources, is criti-
cal. Finally, law and regulation compliance, in particular for 
health-related data sets, is crucial.

Nevertheless, cloud computing allows cost-effective distrib-
uted storage and analysis of such large data sets, and it operates on 
self-deployment models with pay-per-use, on-demand, scalabil-
ity, and elasticity features. Big data approaches exploit previously 
ignored data sets, providing valuable insights gained by their abil-
ity to exploit data sets that traditional methods cannot interro-
gate. Cloud computing enables software versatility and speed to 
streamline such tasks. Big data approaches typically adopt a strat-
egy of splitting large data sets into manageable chunks and dis-
tributing them across the various computer systems, helping to 
parallelize computation over large data sets. Cloud computing 
allows for storage and analysis on remote physical servers man-
aged and operated by service providers, accessed by the user 
through the network. So as to deal with performance and scala-
bility for big genomic data, parallel programming models in a 
distributed environment, such as MapReduce (https://aws.ama-
zon.com/emr/), are increasingly being adopted.

Sequencing technologies continue to decrease costs while the 
amount of data produced increases. New data processing and 
storage platforms are becoming more and more essential, and the 
scaling behavior of these emerging technologies directly impacts 

https://aws.amazon.com/emr/
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14	 Bioinformatics and Biology Insights ﻿

biomedical research. It is challenging for data scientists to design 
and develop practical algorithms in working applications for 
secure outsourcing of encrypted biomedical data. Moreover, 
developing standard approaches to enable secure coordination of 
data integration across multiple sources can be very demanding. 
The establishment of secure computation frameworks can ensure 
the efficient analysis of such data sets. Cloud computing practice 
could solve the big data analysis problem of efficiency in time, 
memory usage, and storage, albeit it is still at quite an early stage 
in its development and its subsequent adoption in real-world 
applications and environments.

We reviewed big data technologies within the context of bio-
medical research and the adoption of cloud-based architecture 
by processes geared for big omics data analytics. The advent of 
cloud technologies capable of handling big data offers the 
opportunity for efficient, scalable, and secure biomedical data 
analysis. While reviewing the current omics data processing and 
analysis landscape, we noted significant challenges related to the 
need to perform systematic scalable large-scale multi-omics 
integrative analytics encompassing data handling and storage 
demands. Currently, the available cloud infrastructures face sig-
nificant challenges related to providing the necessary resources 
to handle the rapidly increasing, heterogeneous, and large-scale 
omics data. These challenges directly affect our ability to harness 
available resources to understand disease pathobiology and 
pathophysiology better, ultimately identifying multifactorial 
genetic disease–related biomarkers for advanced personalized 
and targeted health care solutions. Undeniably, therefore, there is 
a need to develop novel standardized approaches that will cater 
efficient multimodal multi-omics integrative analytics that are 
exploiting cloud computing infrastructures that are increasingly 
edging us closer to the tantalizing potential of a sustainable, 
secure, scalable, and cost-effective technology that can address 
this challenge.
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