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SUMMARY

Efficient stop codon recognition and peptidyl-tRNA
hydrolysis are essential in order to terminate transla-
tional elongation andmaintainprotein sequencefidel-
ity. Eukaryotic translational termination is mediated
by a release factor complex that includes eukaryotic
release factor 1 (eRF1) and eRF3. The N terminus
of eRF1 contains highly conserved sequence motifs
that couple stop codon recognition at the ribosomal
A site to peptidyl-tRNA hydrolysis. We reveal that Ju-
monji domain-containing 4 (Jmjd4), a 2-oxoglutarate-
and Fe(II)-dependent oxygenase, catalyzes carbon
4 (C4) lysyl hydroxylation of eRF1. This posttransla-
tional modification takes place at an invariant lysine
within the eRF1NIKSmotif and is required for optimal
translational termination efficiency. These findings
further highlight the role of 2-oxoglutarate/Fe(II)
oxygenases in fundamental cellular processes and
provide additional evidence that ensuring fidelity of
protein translation is a major role of hydroxylation.

INTRODUCTION

Hydroxylation was historically considered a rare posttransla-

tional modification largely restricted to proteins involved in extra-

cellular matrix formation (Walsh, 2005). The discovery of protein

hydroxylases that regulate hypoxia signaling (Kaelin and Rat-

cliffe, 2008), together with widespread ankyrin repeat hy-

droxylation (Coleman and Ratcliffe, 2009), suggested that this

posttranslational modification may in fact be common but rela-

tively poorly characterized.

Many protein hydroxylases belong to the family of 2-oxogluta-

rate (2OG)- and Fe(II)-dependent oxygenases (2OG oxygenases)
Mole
that oxidizes diverse substrates, including lipid, nucleic acid, and

small molecules (Kaelin and Ratcliffe, 2008; Klose et al., 2006;

Loenarz and Schofield, 2011). Since these enzymes also require

molecular oxygen for activity, they have the potential to act as

oxygen sensors. A family of prolyl hydroxylases (PHD1–PHD3)

that targets hypoxia-inducible transcription factor (HIF-a) for

proteasomal degradation is inactivated by hypoxia (Kaelin and

Ratcliffe, 2008; Loenarz and Schofield, 2008). In addition to their

role in hypoxia signaling, 2OG oxygenases are involved in a

variety of other fundamental cellular processes, such as chro-

matin remodeling. A subfamily of 2OG oxygenases with a com-

mon JmjC catalytic domain catalyzes histone demethylation

via a hydroxylation reaction (Klose et al., 2006; Loenarz and

Schofield, 2008).

The role of 2OG oxygenases in regulating HIF-a transcrip-

tional activity and histone demethylation is consistent with the

emerging role for these enzymes in regulating gene expression.

Jmjd6 is aJmjC2OGoxygenase that catalyzes carbon5 (C5) lysyl

hydroxylation of arginine/serine-rich (RS) domain splicing factors

and histones (Unoki et al., 2013; Webby et al., 2009). Recent re-

ports suggest that 2OG oxygenases may also regulate gene

expression at the level of protein synthesis. AlkbH8 hydroxylates

5-methoxycarbonylmethyluridine at the wobble position of tRNA

anticodons (Fu et al., 2010; van den Born et al., 2011). Similarly,

TYW5 catalyzes the hydroxylation of a hypermodified guanosine

in the phenylalanine tRNA anticodon (Noma et al., 2010). Further-

more, two related JmjC 2OG oxygenases, MINA53 and NO66,

hydroxylate ribosomal proteins Rpl27a and Rpl8, respectively,

at specific histidyl residues proximal to the peptidyl transferase

center (Ge et al., 2012). Whether other 2OG oxygenases also

regulate protein synthesis is unknown but would be of consider-

able interest considering the importance of protein translation in

gene expression regulation and disease.

In this study, we identify an uncharacterized JmjC 2OG oxy-

genase, Jmjd4, as a regulator of translational termination—a

fundamental cellular process required for decoding stop codons

and maintaining protein sequence fidelity. We show that Jmjd4
cular Cell 53, 645–654, February 20, 2014 ª2014 Elsevier Inc. 645
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optimizes translational termination via lysyl hydroxylation of the

stop codon recognition domain of an essential release factor

termed eRF1. Jmjd4 regulates translational termination via hy-

droxylation of K63 at the C4 position of the side chain. C4 lysyl

hydroxylation represents a posttranslational modification not

previously widely described in animals.

RESULTS

Jmjd4 Interacts with Translational Termination Factor
eRF1
Ribosomal hydroxylases, Jmjd6, and the asparaginyl hydroxy-

lase FIH (factor inhibiting HIF) belong to a subfamily of 2OG oxy-

genases that share a JmjC catalytic domain related to that in

2OG-dependent histone demethylases (Ge et al., 2012; Klose

et al., 2006) (Figure S1A available online). We hypothesized

that uncharacterized enzymes of this family would include regu-

lators of gene expression. Jmjd4 is a highly conserved putative

2OG oxygenase that contains residues required for enzymatic

activity and shares 34% sequence identity with that of the lysyl

hydroxylase Jmjd6 (Figures 1A, S1A, and S1B). To investigate

the function of Jmjd4, we screened for substrates by identifying

proteins that only interact with the wild-type active enzyme.

Affinity purification of FLAG-Jmjd4 and mass spectrometry

(MS) did not identify known Jmjd6 substrates (Unoki et al.,

2013; Webby et al., 2009), RS domain proteins, or histones

(data not shown). The most abundant activity-dependent

Jmjd4 interactors were eRF1 and eRF3a (Figure S1C), which

are nonredundant proteins required for stop codon recognition

and translational termination (Kisselev and Buckingham, 2000;

Nakamura and Ito, 2011). Immunoblot analysis confirmed that

the eRF1/eRF3a complex specifically interacts with wild-type

FLAG-Jmjd4 (Figure 1B), but not a Jmjd4 mutant predicted to

be inactive due to defective Fe(II) binding (H189A; see Figure 1A)

or FIH. The stoichiometry of binding indicated that eRF1, rather

than eRF3a, likely interacts directly with FLAG-Jmjd4 (Figures

1B and S1C). Consistent with their interaction, FLAG-Jmjd4

and endogenous eRF1 are cytoplasmically localized in human

embryonic kidney 293T (HEK293T) cells (Figure 1C). Further-

more, endogenous eRF1 specifically interacts with endogenous

Jmjd4, but not FIH or Jmjd6 (Figure 1D).

Jmjd4 Is a 2-Oxoglutarate/Fe(II)-Dependent Oxygenase
that Hydroxylates eRF1 at K63
To test whether Jmjd4 hydroxylates eRF1 and/or eRF3a, overex-

pression vectors were cotransfected into HEK293T cells: anti-V5

purification of the V5-eRF1/HA-eRF3a complex, followed by

proteolysis and MS analysis, identified a single hydroxylation

site in eRF1 at K63 (Figure S1D), with 20% hydroxylation in con-

trol cells and >95% in cells overexpressing FLAG-Jmjd4 (Fig-

ure 1E). These data indicate that exogenous FLAG-Jmjd4 can

promote lysyl hydroxylation of overexpressed eRF1 in cells. To

test whether Jmjd4 catalyzes eRF1 hydroxylation directly, we

incubated recombinant Jmjd4 and eRF1 in the presence of co-

factors in vitro; eRF1 K63 hydroxylation was efficiently catalyzed

by wild-type Jmjd4, but not the inactive H189A mutant (Fig-

ure 2A). In contrast to wild-type eRF1, K63A and K63R mutants

were not efficiently hydroxylated (Figure 2A), thus confirming the
646 Molecular Cell 53, 645–654, February 20, 2014 ª2014 Elsevier In
specificity of Jmjd4 and further assigning the position of eRF1

hydroxylation.

Previously characterized 2OG oxygenases depend on key nu-

trients andmetabolites for activity, including oxygen, Fe(II), 2OG,

and in some cases ascorbate (Loenarz and Schofield, 2008). To

explore the enzymatic activity of Jmjd4 in more detail, we per-

formed in vitro hydroxylation assays in the presence or absence

of known cofactors and inhibitors. Under these conditions eRF1

K63 hydroxylation was significantly impaired by a 2OG compet-

itive inhibitor (NOG, N-Oxalylglycine) or the absence of either

Fe(II) or 2OG (Figure 2B). These data confirm that Jmjd4 is a

bona fide 2OG- and Fe(II)-dependent oxygenase.

Jmjd4 Is a C4 Lysyl Hydroxylase
Known lysyl hydroxylases (Jmjd6 and collagen hydroxylases)

catalyze hydroxylation at C5 of the amino acid side chain (Webby

et al., 2009). In order to investigate the target specificity of Jmjd4,

we first attempted to hydroxylate a 24-mer eRF1 peptide for

amino acid analyses. However, in contrast to full-length recom-

binant eRF1 (Figures 2A and 2B), quantitative MS provided little

evidence for hydroxylation (<5%), even when using stoichio-

metric Jmjd4 and saturating levels of cofactors. We postulated

that this was due to inappropriate conformational presentation

of the linear peptide at the Jmjd4 active site. Crystallographic

analyses reveal that K63 is at the apex of a tight turn between

two antiparallel a helices (Figure S2A) (Song et al., 2000). In an

effort to obtain a mimic of the structurally observed conforma-

tion, we analyzed the eRF1 crystal structure and proposed that

appropriately cyclized eRF1 peptide fragments may be more

efficient substrates (Figure S2B). We found that a thioether-

linked dimer (containing eRF1 residues 57–70 twice) supported

relatively efficient hydroxylation at both K63 sites by Jmjd4,

whereas Jmjd6 did not catalyze hydroxylation, demonstrating

different specificities of the two hydroxylases (Figure S2C). Com-

parison of chemically synthesized C3 and C4 hydroxylysine

standards (for NMR see Figures S2D and S2E, respectively) to

commercially available C5 hydroxylysine and the K63-hydroxyl-

ated eRF1 cyclic peptide indicated that in contrast to known

2OG-dependent lysyl hydroxylases, Jmjd4 is in fact a C4 lysyl

hydroxylase (Figures 2C, 2D, and S2F). These findings indicate

that Jmjd4 is a 2OG oxygenase that catalyzes a posttranslational

modification not widely described in animals previously.

Endogenous eRF1 K63 Hydroxylation Is Abundant,
Ubiquitous, and Dependent on Jmjd4 Enzyme Activity
Next, we aimed to characterize the hydroxylation of endogenous

eRF1. Immunopurification of endogenous eRF1 from HEK293T

cells followed by tandem mass spectrometry (MS/MS)

sequencing of tryptic (Figure 3A) or Arg-C (Figure S3A) protease

fragments confirmed that endogenous eRF1 is hydroxylated at

K63. Liquid chromatography (LC)-MS quantitation of the same

tryptic peptide showed that hydroxylation was essentially com-

plete, within the limits of detection (>95%; Figure 3B). Similar re-

sults were obtained with endogenous eRF1 purified from HeLa,

A549, and U2OS cells (Figures 3B and 3C). To determine

whether endogenous eRF1 K63 hydroxylation requires Jmjd4,

we suppressed the expression of the endogenous enzyme by

siRNA. Knockdown of Jmjd4 expression substantially inhibited
c.



Figure 1. Jmjd4 Interacts with the eRF1/eRF3a Translational Termination Complex in an Activity-Dependent Manner

(A) Protein sequences of human JmjC domains were aligned and shaded using Jalview. The Jmjd6 secondary structure, as defined by crystallographic analysis

(Mantri et al., 2010), is indicated with a helices (cylinders) and b strands (arrows). The conserved double-stranded b helix core is in cyan (arrows). Triangles

indicate residues binding Fe(II) (red) and 2OG (yellow). Mutation of the first Fe(II)-binding residue (His189 in Jmjd4) is predicted to inhibit activity.

(B) Anti-FLAG immunoprecipitates of cell extracts from the indicated HEK293T cell lines were immunoblotted for endogenous eRF1 and eRF3a. Input (5%) = cell

extract prior to immunoprecipitation (IP). eRF1 levels were quantified by densitometry analysis using NIH ImageJ.

(C) HEK293T cell lines were immunostained for eRF1 (green) and FLAG-Jmjd4 (red). Nuclei were visualized with DAPI (blue).

(D) Endogenous eRF1 and Jmjd4 interact. eRF1 was immunoprecipitated from HEK293T extracts prior to immunoblot for the indicated proteins.

(E) Overexpressed Jmjd4 promotes hydroxylation of overexpressed eRF1 at K63. Left: Coomassie gel showing 5% input following anti-V5 purification of the

V5-eRF1/HA-eRF3a complex from HEK293T cells overexpressing empty vector or FLAG-Jmjd4 (immunoblot bottom panel). The remainder of the sample (95%)

was digested with Arg-C in-solution prior to LC-MS analyses. The chromatograms indicate the elution time and relative abundance of extracted ion masses

corresponding to unhydroxylated (blue) and K63-hydroxylated (red) eRF148–65 ([M+H]3+; K63-H: m/z 646.68; K63-OH: m/z 652.00) in the absence (middle) and

presence (right) of FLAG-Jmjd4. See also Figure S1.
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Figure 2. Jmjd4 Catalyzes 2OG- and Fe(II)-Dependent C4 Lysyl Hydroxylation of eRF1
(A) K63 mutation prevents Jmjd4-dependent hydroxylation of eRF1. Left: Coomassie gel of partially purified recombinant eRF1 and mutants. Right: LC-MS

extracted ion chromatograms (EICs) show wild-type and mutant eRF1 reacted with either wild-type (top row) or mutant H189A (bottom row) Jmjd4. ([M+H]2+;

K63-H: m/z 698.842; K63-OH: m/z 706.840; K63R-H: m/z 712.846; K63R-OH: m/z 720.843; K63A-H: m/z 791.880; K63A-OH: m/z 799.878).

(B) Jmjd4 is a 2OG/Fe(II)-dependent oxygenase. In vitro assays were performed in the presence or absence of the indicated cofactors and inhibitors. 2OG

oxygenases are competitively inhibited by NOG, a nonhydrolysable form of 2OG. Data represent mean ± SEM. Statistical significance was evaluated by ANOVA

followed by Dunett’s post hoc test, comparing all treatments to the reaction complemented with all cofactors (n.s., not significant; **p < 0.01).

(C) Jmjd4 is a C4 lysyl hydroxylase. Bottom: a cyclic thioether-linked dimer of a 15-mer peptide containing eRF1 residues 57–70 was untreated (buffer, black) or

Jmjd4 hydroxylated (red) prior to hydrolysis and LC-MS. Top: chromatography peaks observed in biological samples were identified with C3, C4, and/or C5

hydroxylysine standards. Note that two peaks are observed because each standard is amixture of stereoisomers. See Figure S2 for NMR of standards and further

validation of the C4 assignment.

(D) Schematic of C4 lysyl hydroxylation catalyzed by Jmjd4. See also Figure S2.
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the hydroxylation of newly synthesized eRF1 (Figures 3C

and 3D), suggesting that other lysyl hydroxylases are unlikely

to contribute to its hydroxylation. To test whether these effects

were due to reduced Jmjd4 activity, we transfected Jmjd4

siRNA into cells that ectopically express Jmjd4 siRNA-resistant

mRNAs, which were either wild-type or inactive (Figures 3C

and 3D). Expression of hemagglutinin (HA)-Jmjd4 successfully

restored eRF1 hydroxylation, whereas HA-Jmjd4 H189A did

not. Taken together, these data indicate that the abundant and

ubiquitous hydroxylation of endogenous eRF1 in tissue culture

cell lines is dependent on Jmjd4 catalytic activity. To determine

whether eRF1 K63 hydroxylation is a physiologically relevant

modification, we next purified eRF1 from a variety of mammalian

tissues. Importantly, LC-MS analyses of eRF1 purified from

several mouse tissues and rabbit reticulocyte lysate indicated

that eRF1 hydroxylation is abundant (>90%) and conserved

(Figure 3E).

Endogenous eRF1 K63 Hydroxylation Is Dependent on
2-Oxoglutarate and Oxygen
Consistent with the requirement of eRF1 K63 hydroxylation for

Jmjd4 activity, treatment of HeLa, U2OS, and Hep3B cells with

a cell permeable form of the 2OG competitor NOG (dimethy-

loxalylglycine; DMOG) also reduced the hydroxylation of newly

synthesized eRF1 (Figure S3B and data not shown). 2OG

oxygenases also depend on molecular oxygen to create a

hydroxyl group in the prime substrate. To test the sensitivity of

eRF1 hydroxylation to oxygen availability, we incubated HeLa,

U2OS, and Hep3B cells in normoxia (21% O2), hypoxia (1%

and 0.1%O2), and anoxia (0%O2). MS analyses of eRF1 synthe-

sized under these conditions confirmed that K63 hydroxylation

was reduced by profound hypoxia (Figure S3C and data not

shown). However, Jmjd4 retains substantial activity even under

severe hypoxia (%1% O2), similar to some related 2OG oxy-

genases (Ge et al., 2012; Tian et al., 2011), suggesting that it

is unlikely to act as an oxygen sensor analogous to the HIF

hydroxylases (Kaelin and Ratcliffe, 2008).

Jmjd4 Activity Is Required for Translational Termination
Termination of eukaryotic protein translation is mediated by

eRF1, the guanosine triphosphatase (GTPase) eRF3, and the

ATPase ABCE1 (Kisselev et al., 2003; Shoemaker and Green,

2011). eRF1 consists of three functional domains: domain 1 de-

codes stop codons, domain 2 facilitates peptidyl-tRNA hydroly-

sis, and domain 3 recruits eRF3 (Figure 4A) (Nakamura and Ito,

2011). Consistent with a role in stop codon recognition, a cryoe-

lectron microscopy (cryo-EM) structure of the ribosomal preter-

mination complex places domain 1 deep within the decoding

center of the 40S subunit (Taylor et al., 2012). Functional studies

have implicated highly conserved motifs in domain 1 (e.g., GTX,

YXCXXXF, and NIKS) (Figure 4A) in stop codon recognition and

its coupling to peptidyl-tRNA hydrolysis (Bertram et al., 2000;

Conard et al., 2012; Fan-Minogue et al., 2008; Frolova et al.,

2002; Song et al., 2000). Crosslinking experiments suggest that

under some conditions the lysine within the NIKS motif contacts

the uridine nucleotide in the first position of a stop codon (Cha-

vatte et al., 2002). Although the precise molecular function of

the NIKS motif is under debate, it is known to play an important
Mole
role in translational termination (Bertram et al., 2000; Conard

et al., 2012; Frolova et al., 2002; Kisselev et al., 2003; Nakamura

and Ito, 2011; Song et al., 2000). Critically, the lysine within this

motif (K63; Figure 4A) is the residue hydroxylated by Jmjd4

to >90% in the steady state. Therefore, we hypothesized that

K63 hydroxylationmay promote eRF1 function and that its inhibi-

tion could cause stop codon readthrough. To test this, we used

established stop codon readthrough reporters consisting of tan-

dem in-frame Renilla and firefly luciferase cDNAs separated by

each stop codon (Renilla:stop:firefly) (Figure 4B) (Grentzmann

et al., 1998). Stop codon readthrough is indicated by an increase

in firefly relative to Renilla luciferase activities. Importantly,

knockdown of Jmjd4 or eRF1 in HeLa, U2OS, or Hep3B cells

induced readthrough of all three stop codons embedded within

a ‘‘leaky’’ termination sequence (Figures 4C, S4A, and S4B).

These effects were apparently specific to termination and trans-

lation, as they were not observed with sequences lacking a stop

codon (Renilla:CAG:firefly) (Figures 4C, S4A, and S4B) and were

not associated with aberrant transcript splicing or changes in

abundance of firefly relative to Renilla luciferase mRNAs (Figures

S4C–S4E) (Holcik et al., 2005; Lemp et al., 2012). Furthermore,

these effects were specific to Jmjd4 (at least among closely

related hydroxylases), since siRNA knockdown of FIH, MINA53,

and Jmjd6 did not induce stop codon readthrough (Figure S4F).

To further explore the specificity and generality of these

results, we tested an independent stop codon reporter (Fig-

ure S4G) in an additional cell type: Jmjd4 or eRF1 siRNA in

A549 cells also increased readthrough of a stop codon within a

leaky termination sequence when using a b-galactosidase:stop:

firefly reporter (Figures S4H and S4I, respectively). Importantly,

similar results were also obtained using the same reporter with

a stop codon embedded in a ‘‘strong’’ termination sequence

(Figure S4J). Taken together, the results presented here suggest

that Jmjd4 may have a widespread role in translational termina-

tion, perhaps consistent with ubiquitous and abundant eRF1 K63

hydroxylation (Figure 3).

To determine whether the role of Jmjd4 in translational termi-

nation depends on its hydroxylase activity, we repeated knock-

downs in cells expressing siRNA-resistant wild-type or inactive

Jmjd4 mRNAs. Jmjd4 siRNA induced stop codon readthrough

in inactive HA-Jmjd4 cells (Renilla:stop:firefly reporter), whereas

cells expressing wild-type HA-Jmjd4 retained normal transla-

tional termination (Figure 4D) consistent with restored eRF1

hydroxylation (Figure 3C). As expected, eRF1 siRNA was still

sufficient for stop codon readthrough in cells expressing

siRNA-resistant Jmjd4 mRNA, but not in those expressing

siRNA-resistant eRF1 (Figure 4D). Similar results demonstrating

a requirement for Jmjd4 activity were obtained with the b-galac-

tosidase:stop:firefly reporter using either the leaky or strong

termination sequence (Figures S4K–S4M). Together, these

data indicate that Jmjd4 catalysis promotes translational termi-

nation efficiency.

K63 Hydroxylation Promotes the Translational
Termination Efficiency of eRF1 In Vitro
Next, we sought to determine whether the role of Jmjd4 activity

in translational termination in cells is a direct consequence

of eRF1 K63 hydroxylation. To this end, we used a fully
cular Cell 53, 645–654, February 20, 2014 ª2014 Elsevier Inc. 649
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reconstituted in vitro translation system where eRF1 activity is

measured by the release of translated peptides from stalled

pretermination complexes (Alkalaeva et al., 2006). Consistent

with previous reports (Alkalaeva et al., 2006; Kryuchkova

et al., 2013), unhydroxylated recombinant eRF1 exhibited sub-

stantial catalytic efficiency in this assay (1 � 2 Kcat/KM 3 104

[M�1s�1]). Importantly, however, partial K63 hydroxylation

(�60%; data not shown) further increased eRF1 termination

efficiency at all three stop codons (Figures 4E, 4F, and S4N).

In contrast, an eRF1 K63R mutant failed to show any increase

in activity following incubation with Jmjd4, thereby assigning

the effect of Jmjd4 on translation termination to hydroxylation

of K63.

DISCUSSION

The work presented here describes the regulatory modification

of a highly conserved region of eRF1 known to play an important

role in translational termination (Bertram et al., 2000; Conard

et al., 2012; Fan-Minogue et al., 2008; Frolova et al., 2002;

Song et al., 2000). We have shown that hydroxylation of the

eRF1NIKSmotif promotes polypeptide release frompretermina-

tion ribosomal complexes in vitro and that reduced Jmjd4 activ-

ity causes stop codon readthrough in vivo (Figure 4). Previously

known posttranslational modifications of eRF1 are limited to

phosphorylation of domain 3 (Kallmeyer et al., 2006) and N5-

glutamine methylation of a GGQ motif within domain 2 required

for peptidyl-tRNA hydrolysis (Graille et al., 2012). In contrast to

the consistent effects of Jmjd4-dependent NIKS hydroxylation

(Figure 4), the effect of these modifications on eukaryotic trans-

lational termination is unclear.

A general role for K63 hydroxylation during a fundamental

step in translational termination may be consistent with the

abundance and ubiquity of eRF1 hydroxylation (Figure 3), and

the requirement for Jmjd4 activity observed across multiple

experimental models, cell types and stop codon contexts (Fig-

ures 4 and S4). Hydroxylation can modulate protein function

via intra- or intermolecular hydrogen-bonds or electronic effects

(Coleman et al., 2007; Hon et al., 2002; Loenarz and Schofield,

2011). Recent studies suggest that the loop containing the

NIKS motif and the helical extension surrounding it have some

inherent plasticity (Polshakov et al., 2012). An interaction be-

tween hydroxylated-K63 and a neighboring eRF1 residue could

modulate this flexibility and optimize the conformation of this
Figure 3. Endogenous eRF1 K63 Hydroxylation Is Abundant, Ubiquitou

(A) HEK293T eRF1 was trypsinized prior to MS/MS. Spectra show a +16 Da mas

(unhydroxylated) and lower (hydroxylated) panels. In contrast, the masses of det

indicating K63 hydroxylation. This was confirmed with Arg-C proteolysis (Figure

(B) LC-MS analyses of trypsinized eRF1 indicate abundant K63 hydroxylation inm

K63 hydroxylated (red) eRF151–63 ([M+H]2+; K63-H: m/z 698.842; K63-OH: m/z 7

(C) EICs demonstrate that eRF1 hydroxylation is dependent on Jmjd4 activity ([

relative to (B) due to SILAC (stable isotope labeling by/with amino acids in cell

HA-Jmjd4 (middle), or siRNA-resistant HA-Jmjd4 H189A mRNAs (right) were tr

labeling and LC-MS quantitation of hydroxylation in newly synthesized eRF1. N

Jmjd4 siRNA, total eRF1 is �50% hydroxylated due to persisting eRF1 synthesi

(D) Cell extracts from (C) were immunoblotted for the indicated proteins. eRF1 le

(E) Similar analyses in rodent tissues indicate that eRF1 hydroxylation is physiolog

mouse tissues were diluted or homogenized in lysis buffer prior to eRF1 purifica

Mole
domain during stop codon recognition and/or subsequent steps

of termination. Alternatively, K63 hydroxylation could mediate an

interaction with the stop codon Uridine (Chavatte et al., 2002),

ribosome or other molecules involved in the termination process.

The exact molecular mechanism by which eRF1 K63 hydroxyl-

ation regulates translational termination is unclear, and will be

the subject of future investigation.

The completeness of K63 hydroxylation may argue against

a switch-like function in normal tissues. Rather, the fact that

Jmjd4 requires key nutrients for activity raises the possibility

that nutrient stress, pathological conditions or pharmacological

intervention could promote stop codon readthrough via inhibi-

tion of eRF1 hydroxylation. Regulated stop codon readthrough

may provide a means of controlling eukaryotic gene expression

(Steneberg et al., 1998; Yamaguchi et al., 2012). Furthermore,

pharmacological readthrough of premature termination codons

is attracting interest as a therapeutic approach for treating dis-

eases caused by nonsense mutations (Bidou et al., 2012). The

possibility that targeting Jmjd4 could promote the action of these

agents is of interest.

Finally, our study provides insights into the expanding biology

of 2OG oxygenases. Previous examples of lysyl-hydroxylation

are restricted to the C5 position. Our results demonstrate that

2OG oxygenases can also hydroxylate at C4 (Figure 2). This

raises the possibility that other forms of lysyl-hydroxylation

also exist, possibly catalyzed by related but as yet unassigned

Jmjd proteins. Together with recently identified hydroxylations

of ribosomal proteins (Ge et al., 2012) and tRNA anticodons

(Fu et al., 2010; Noma et al., 2010; van den Born et al., 2011)

the work also suggests that protein translation, and particularly

‘decoding’, may be a major target of 2OG oxygenases.
EXPERIMENTAL PROCEDURES

Plasmid construction and culture, transfection, and treatment of cells are

described in the Supplemental Experimental Procedures. Immunoblotting

was performed as previously described (Ge et al., 2012). Recombinant human

eRF1 was purified as described (Frolova et al., 2002). Human recombinant

Jmjd4 was purified from E. coli lysates using Ni-NTA resin (QIAGEN) following

standard procedures. For reporter assays, siRNA-treated cells were trans-

fected with reporter vectors for 48 hr before lysis in passive lysis buffer (Prom-

ega). Samples were freeze thawed before measuring luciferase activities using

the Dual-Luciferase System (Promega). For the b-galactosidase:stop:firefly

vector, luciferase was assayed using luciferin (Promega) and b-galactosidase

with the FluorAce Kit (Bio-Rad). All assays were performed on a Safire2
s, and Dependent on Jmjd4 Activity

s shift in all detected y ion fragments (y2–y12) (blue) when comparing the upper

ected b ion fragments (b2–b12) (red) are consistent with their predicted values,

S3A).

ultiple cell types. EICs show relative abundance of unhydroxylated (blue) versus

06.840).

M+H]2+; K63-H: m/z 701.852; K63-OH: m/z 709.850). The masses are +3 Da

culture) with K+6. HeLa cells expressing empty vector (left), siRNA-resistant

ansfected with control (top row) or Jmjd4 siRNA (bottom row) prior to SILAC

ote that although hydroxylation of newly synthesized eRF1 is <15% following

zed prior to siRNA (data not shown).

vels were quantified by densitometry analysis.

ically relevant and conserved. Rabbit reticulocyte lysate (RRL) and the indicated

tion, trypsinolysis, and MS analyses. See also Figure S3.
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Figure 4. eRF1 K63 Hydroxylation Promotes Translational Termination Efficiency

(A) Top: K63 is located at the apex of an a-helical extension within eRF1 domain 1 (Chimera and Protein Data Bank ID 1DT9) (Song et al., 2000). Bottom: alignment

of the eRF1 NIKS region, indicating complete conservation of K63 across diverse species (Jalview).

(B) A bicistronic reporter for measuring stop codon readthrough (Grentzmann et al., 1998) with luciferase cDNAs separated by a stop or sense codon (CAG) within

a leaky termination sequence from tobacco mosaic virus.

(C) Jmjd4 knockdown promotes stop codon readthrough. Left: HeLa cells were transfected with the reporters in (B) prior to siRNA (si) and dual luciferase assay.

Note that K63 hydroxylation is �50% under similar knockdown conditions (see Figure 3 legend). Data represent mean ± SEM. Statistical significance was

evaluated by ANOVA followed byDunett’s post hoc test comparing Jmjd4 and eRF1 knockdown samples to control (**p < 0.01). Right: immunoblot of cell extracts

(n.s., nonspecific).

(D) Jmjd4 activity is required for efficient translational termination. Top: stop codon readthrough assays were performed as in (C) using HeLa cell lines expressing

empty vector, siRes-HA-Jmjd4, siRes-HA-Jmjd4 H189A, or siRes-HA-eRF1 mRNAs. Bottom: immunoblot of cell extracts. Data represent mean ± SEM.

Comparisons across cell lines were made by ANOVA followed by Bonferroni post hoc test (**p < 0.01).

(E) K63 hydroxylation increases the catalytic efficiency of eRF1 in vitro. Unhydroxylated (post-Jmjd4-H189A treatment; blue) or hydroxylated (post-Jmjd4

treatment; red; �60% hydroxylation) wild-type (left) or K63R (right) eRF1 were added to pretermination ribosomal complexes before quantifying released

(legend continued on next page)
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Microplate Reader (Tecan). Experimental procedures used for mouse tissue

analysis passed ethical review by theMedical Sciences divisional Local Ethical

Review panel (Oxford University) and were performed under UK Home Office

regulations (Animal [Scientific Procedures] Act 1986). Details of the remaining

methods are provided in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.molcel.2013.12.028.
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van den Born, E., Vågbø, C.B., Songe-Møller, L., Leihne, V., Lien, G.F.,

Leszczynska, G., Malkiewicz, A., Krokan, H.E., Kirpekar, F., Klungland, A.,

and Falnes, P.Ø. (2011). ALKBH8-mediated formation of a novel diastereo-

meric pair of wobble nucleosides in mammalian tRNA. Nat Commun 2, 172.

Walsh, C.T. (2005). Posttranslational Modification of Proteins: Expanding

Nature’s Inventory. (Greenwood Village: Roberts and Company Publishers).

Webby, C.J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B.,

Nielsen, M.L., Schmitz, C., Butler, D.S., Yates, J.R., 3rd., et al. (2009). Jmjd6

catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA

splicing. Science 325, 90–93.

Yamaguchi, Y., Hayashi, A., Campagnoni, C.W., Kimura, A., Inuzuka, T., and

Baba, H. (2012). L-MPZ, a novel isoform of myelin P0, is produced by stop

codon readthrough. J. Biol. Chem. 287, 17765–17776.
c.


	Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
	Introduction
	Results
	Jmjd4 Interacts with Translational Termination Factor eRF1
	Jmjd4 Is a 2-Oxoglutarate/Fe(II)-Dependent Oxygenase that Hydroxylates eRF1 at K63
	Jmjd4 Is a C4 Lysyl Hydroxylase
	Endogenous eRF1 K63 Hydroxylation Is Abundant, Ubiquitous, and Dependent on Jmjd4 Enzyme Activity
	Endogenous eRF1 K63 Hydroxylation Is Dependent on 2-Oxoglutarate and Oxygen
	Jmjd4 Activity Is Required for Translational Termination
	K63 Hydroxylation Promotes the Translational Termination Efficiency of eRF1 In Vitro

	Discussion
	Experimental Procedures
	Supplemental Information
	Acknowledgments
	References


