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Abstract: Caspases, a family of cysteine-aspartic proteases, have an established role as critical
components in the activation and initiation of apoptosis. Alongside this a variety of non-apoptotic
caspase functions in proliferation, differentiation, cellular plasticity and cell migration have been
reported. The activity level and context are important factors in determining caspase function. As a
consequence of their critical role in apoptosis and beyond, caspases are uniquely situated to have
pathological roles, including in cancer. Altered caspase function is a common trait in a variety of
cancers, with apoptotic evasion defined as a “hallmark of cancer”. However, the role that caspases
play in cancer is much more complex, acting both to prevent and to promote tumourigenesis. This
review focuses on the major findings in Drosophila on the dual role of caspases in tumourigenesis. This
has major implications for cancer treatments, including chemotherapy and radiotherapy, with the
activation of apoptosis being the end goal. However, such treatments may inadvertently have adverse
effects on promoting tumour progression and acerbating the cancer. A comprehensive understanding
of the dual role of caspases will aid in the development of successful cancer therapeutic approaches.

Keywords: caspase; cancer; tumourigenesis; Drosophila; apoptosis; non-apoptotic function

1. Introduction

Cancer was responsible for the death of an estimated 10 million people worldwide in
2020, making it one of the top leading causes of death in over half of countries globally [1].
Further, the cancer incidence and mortality are increasing year on year, which is, in part, a
consequence of growing population ages, prevalence of risk factors and changing socio-
economic conditions around the world [1]. Therefore, the impact cancer has on patients,
families and communities is phenomenal and will only increase. The great need for more
efficient diagnoses, better prognoses, treatment options and survival rates has fuelled
cancer research for over a century.

Cancer arises in consequence of an imbalance between cell proliferation and cell
death, which is frequently driven by innate biological pathways malfunctioning. This
allows healthy cells to transform into malignant tumour cells and take up residency within
the body. With the advancement of technologies and model systems there has been a
rapid increase in knowledge and understanding of all aspects of tumourigenesis. Each
stage of tumourigenesis relies on fundamental biological mechanisms and pathways from
the initiation, transformation, invasion, extravasation, to the metastasis of tumour cells.
Hanahan and Weinberg highlighted “The Hallmarks of Cancer”, referring to the key
biological processes that must occur for a cell to become tumourigenic, including apoptotic
evasion, sustained proliferative signalling, transformation, induction of angiogenesis,
evasion of growth suppressors, activation of invasion and metastasis, abnormal metabolic
pathways, and evasion of the immune system [2,3]. Dysregulation of numerous protein
families has been linked to these “hallmarks”, including the dysregulation of cysteine-
aspartic proteases, also known as caspases [4].

Apoptosis, the main form of programmed cell death (PCD), is triggered by activa-
tion of the caspase family [5–7]. Tumour cells frequently evade apoptosis to promote cell
growth and to prevent the removal of genomically unstable tumour cells. It is therefore
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unsurprising that many cancers present with altered apoptotic responses. In addition to
their apoptotic role, caspases have been linked to various other aspects of tumourigene-
sis, including (1) increased proliferation; (2) metastasis; (3) promotion of inflammation;
and (4) the avoidance of immune destruction. Caspase function, outside apoptosis, is a
newly developing body of research which has great implications for how we perceive the
origins of caspases and the role they hold within organisms. This review focuses on the
exciting recent research conducted in Drosophila, a model organism with advantages of
genetic manipulation, and discusses the dual nature of caspase function in tumourigenesis,
highlighting both the anti-tumourigenic and pro-tumourigenic roles they play.

2. Caspases as Drivers of Apoptosis and Beyond

Caspases are a family of highly specialized cysteine proteases which specifically
cleave their substrates after an aspartate residue [8,9]. There are two classes of caspases,
inflammation caspases and apoptotic caspases. Apoptotic caspases can be further bro-
ken into two groups, initiator (or apical) caspases and executioner (or effector) caspases,
each with different structures and functions. Initiator caspases have a long N-terminal
domain containing a death-effector domain (DEC) or caspase-recruitment domain (CARD)
motif, followed by one large (p20) and one small (p10) subunit. In contrast, executioner
caspases have a short or even no N-terminal prodomain in addition to the p20 and p10
subunits. Caspases were first identified in the nematode C. elegans in the 1980s when
it was uncovered that mutations in the ced-3 and ced-4 genes prevented the majority of
developmental cell death [10,11]. It was later shown that Ced-3 is a cysteine protease
responsible for the cell death execution and Ced-4 is an adaptor protein required for the
activation of Ced-3 [12–14]. Due to the fundamental role caspases play in the induction of
apoptosis, it is unsurprising that they are well conserved across the metazoan including
in C. elegans, Drosophila, and mammals [5,11,12]. There are at least fourteen caspases in
humans and seven in Drosophila, three initiator caspases (Dronc, Dredd, Dream/Strica) and
four executioner caspases (DrICE, Dcp-1, Decay, Damm) (Table 1).

Table 1. Caspases and conserved components of the apoptosis pathway.in humans and Drosophila.

Protein Human Drosophila

Apoptotic Caspases
Initiator Caspases Caspase-2, -8, -9, -10 [15,16] Dronc, Dredd, Dream/Strica [17]

Executioner Caspases Caspase-3, -6, -7
[15,16] DrICE, Dcp-1, Decay, Damm [17]

Other Conserved
Apoptosis Pathway

Components

Adaptor (Scaffold)
Protein in the
Apoptosome

Apoptotic protease activating
factor-1 (Apaf-1) [18]

Drosophila Apaf-1-related
killer (Dark) [19]

Inhibitor of Apoptosis
Proteins (IAPs)

XIAP, Ts-IAP, cIAP1, cIAP2, ML-IAP,
Neuronal Apoptosis Inhibitory Protein

(NAIP), Survivin, BRUCE [20]
DIAP1, DIAP2 [21]

IAP Antagonists Omi/HtrA2, Smac/DIABLO, ARTS [22] Reaper, Hid, Grim, Sickle [22]

B-cell lymphoma 2
(BCL-2) family

25 reported members including
anti-apoptotic BCL-2, BCL-xL, BCL-w,
Myeloid cell leukemia 1 (MCL-1) and

pro-apoptotic BCL-2
antagonist killer 1 (BAK),

BCL-2-associated x protein (BAX),
BCL-2-related ovarian killer (BOK) [23,24]

Buffy, Debcl [25–28]

Death Receptors
TNF receptor superfamily with 29

reported members including TNFR1,
TNFR2, Fas, TRAIL-R1 and TRAIL-R2 [29]

Grindelwald [30], Wengen [31]

Death Receptor Ligands
TNF ligand superfamily with 19 reported

members including TNFα, TNFβ, FasL
and TRAIL [29]

Eiger [32,33]
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In the absence of apoptotic stimuli, caspases exist as catalytically inactive pro-caspases
(zymogens) within the cell. The core components including caspases in the apoptosis
pathway are evolutionarily conserved (Table 1). Activation of the intrinsic apoptosis
pathway, in response to DNA damage, intracellular stress (e.g., oxidative stress), or the
extrinsic apoptosis pathway by death receptor ligand binding (e.g., Tumour Necrosis Factor
(TNF)) causes pro-caspase activation via scaffold protein association (e.g., the mammalian
Ced-4 ortholog, Apaf-1) or cleavage by upstream proteases [34,35] (Figure 1). In the intrinsic
apoptosis pathway, upon apoptotic stimuli the expression of pro-apoptotic genes occurs,
including the pro-apoptotic members of the BCL-2 protein family in mammals and the
pro-apoptotic genes, such as head involution defective (hid), reaper (rpr) and grim in Drosophila.
BCL-2 family members cause perturbation of the mitochondrial outer membrane and the
release of cytochrome c and other small pro-apoptotic proteins, such as Smac/DIABLO
and Omi/HtrA2, into the cytoplasm. These pro-apoptotic proteins bind to inhibitor of
apoptosis proteins (IAPs), including mammalian X-linked IAP (XIAP) and Drosophila
DIAP1, and act as IAP antagonists which allows the release of pro-caspases from IAP
inhibition [36]. Cytochrome c associates with Apaf-1 and binds to pro-caspase-9 through
its CARD-binding motifs, forming a multi-subunit apoptosome complex [37–39]. Similarly,
the Drosophila caspase-2/-9 ortholog Dronc, released from DIAP1-mediated inhibition,
associates with Dark, the Drosophila Apaf-1 ortholog, through N-terminal CARD motif
binding forming an apoptosome-like structure [37]. Apoptosome formation facilitates
initiator caspase (e.g., caspase-9 and Dronc) autocatalysis and activation. The executioner
caspases (e.g., mammalian caspase-3 and caspase-7, Drosophila DrICE and Dcp-1) are
cleaved by the active initiator caspases [17]. Conversely to the intrinsic apoptosis pathway,
the extrinsic apoptosis pathway, which exists in both mammals and Drosophila, initiates
outside the cell [40]. In mammals, extracellular ligands, e.g., TNF or FasL, bind to death
receptors, e.g., TNFR or Fas, on the cell surface causing receptor clustering and recruitment
of adaptor proteins to the receptor [41,42]. Adaptor proteins, for example Fas-associated
death domain-containing protein (FADD), bind and activate caspase-8 via the formation
of the death-inducing signalling complex (DISC). The executioner caspases, caspase-3
and caspase-7, are cleaved and activated by active caspase-8. In Drosophila, Eiger (Egr),
the sole Drosophila TNF ortholog, binds to its receptors Grindelwald (Grnd) or Wengen
(Wgn), resulting in activation of the c-Jun N-terminal Kinase (JNK) pathway [30–33]. Active
JNK induces expression of the pro-apoptotic proteins, Hid and Reaper, and subsequent
caspase activation. Irrespective of activation mechanism, activated executioner caspases
are responsible for the regulation of numerous biological pathways to bring about the
distinct morphological changes observed during apoptosis and subsequent cell death, via
the proteolytical cleavage of downstream proteins.

Intriguingly, for proteins with such a lethal nature, caspases are abundant within
the cell. Therefore, their activation needs to be extremely tightly controlled to prevent
rampant unwanted apoptosis with devastating consequences. Post-translation modification
(PTM), proteolytic cleavage, IAP held inhibition and adaptor proteins act as defence
mechanisms against this rampant caspase activation [43]. In doing so, caspase PTM
creates an “all-or-nothing” activation mechanism by which apoptosis can only occur if
an activation threshold is reached [44]. Given the fundamental role caspases play in
maintaining tissue homeostasis and ensuring organism integrity through apoptosis, via
the removal of damaged or dangerous cells, it is unsurprising that they are well conserved
across the metazoan.

The evolutionary conserved roles of caspases have established the traditional view
that caspases act predominantly as executors of cell death. A conserved role for caspases
in inflammation is also well-established. Inflammatory caspases (e.g., caspase-1, caspase-
4, caspase-11) play key roles in the innate immune response by inducing pyroptosis, to
prevent pathogen replication, or by binding directly to microbial components in the cases
of caspase-4, -5 and -11 [45]. The first report of inflammatory caspases was mammalian
interleukin-1 β-converting enzyme (ICE), now termed caspase-1, which processes precursor
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interleukin-1 β into mature interleukin-1 β and shares 28% sequence homology with Ced-
3 [13,46–48]. Although there is no Drosophila caspase-1 ortholog, caspases do play a role in
the immune response within Drosophila. For example, Dredd, the Drosophila ortholog of the
initiator caspase-8, activates Relish, a NF-kB transcription factor, in the immune deficiency
(Imd) pathway [49].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. The core apoptosis pathway in mammals and Drosophila. During activation of the intrinsic apoptosis pathway in 
mammalian cells, apoptotic stimuli cause expression of pro-apoptotic BCL-2 family members resulting in the perturbation 
of the mitochondrial outer membrane and release of small molecules including cytochrome c, Omi/HtrA2 and Smac/DI-
ABLO. Cytochrome c binds to Apaf-1 forming the apoptosome which recruits the pro-caspase-9 leading to its activation. 
Meanwhile, Omi/HtrA2 and Smac/DIABLO act as IAP antagonists to free caspases from the inhibition of apoptotic pro-
teins such as XIAP. Active caspase-9 cleaves and activates caspase-3 and -7, allowing execution of apoptosis. The mam-
malian extrinsic apoptosis pathway is activated upon ligand binding to death receptor, e.g., Fas. Adaptor protein FADD 
recruitment to Fas forms the death-inducing signalling complex (DISC) which binds and activates caspase-8. Active 
caspase-8 cleaves and activates caspase-3 and caspase-7, allowing execution of apoptosis. In the intrinsic apoptosis path-
way in Drosophila, apoptotic stimuli activate expression of pro-apoptotic proteins such as Reaper, Hid and Grim which 
need to localise to the mitochondria to become fully activated. These pro-apoptotic proteins release caspases from DIAP1 
held inhibition. The initiator caspase Dronc then associates with the scaffold protein Dark to form an apoptosome-like 
complex. Active Dronc cleaves executioner caspases, DrICE and Dcp-1, which bring about apoptosis. The Drosophila ex-
trinsic apoptosis pathway is activated by binding of Eiger to the death receptors Wengen or Grindelwald, resulting in 
activation of the JNK signalling pathway. Active JNK signalling induces expression of pro-apoptotic proteins, Hid and 
Reaper. The evolutionarily conserved core components in the apoptosis pathway are highlighted with the dashed line 
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Figure 1. The core apoptosis pathway in mammals and Drosophila. During activation of the intrinsic apoptosis pathway in
mammalian cells, apoptotic stimuli cause expression of pro-apoptotic BCL-2 family members resulting in the perturbation of
the mitochondrial outer membrane and release of small molecules including cytochrome c, Omi/HtrA2 and Smac/DIABLO.
Cytochrome c binds to Apaf-1 forming the apoptosome which recruits the pro-caspase-9 leading to its activation. Meanwhile,
Omi/HtrA2 and Smac/DIABLO act as IAP antagonists to free caspases from the inhibition of apoptotic proteins such as
XIAP. Active caspase-9 cleaves and activates caspase-3 and -7, allowing execution of apoptosis. The mammalian extrinsic
apoptosis pathway is activated upon ligand binding to death receptor, e.g., Fas. Adaptor protein FADD recruitment to
Fas forms the death-inducing signalling complex (DISC) which binds and activates caspase-8. Active caspase-8 cleaves
and activates caspase-3 and caspase-7, allowing execution of apoptosis. In the intrinsic apoptosis pathway in Drosophila,
apoptotic stimuli activate expression of pro-apoptotic proteins such as Reaper, Hid and Grim which need to localise to
the mitochondria to become fully activated. These pro-apoptotic proteins release caspases from DIAP1 held inhibition.
The initiator caspase Dronc then associates with the scaffold protein Dark to form an apoptosome-like complex. Active
Dronc cleaves executioner caspases, DrICE and Dcp-1, which bring about apoptosis. The Drosophila extrinsic apoptosis
pathway is activated by binding of Eiger to the death receptors Wengen or Grindelwald, resulting in activation of the JNK
signalling pathway. Active JNK signalling induces expression of pro-apoptotic proteins, Hid and Reaper. The evolutionarily
conserved core components in the apoptosis pathway are highlighted with the dashed line boxes.

Recent research paints a complex picture of caspase activity, outside their established
apoptotic and inflammatory roles, with caspase activity being involved in a wide range of
other fundamental cellular processes, including development, aging, proliferation, differen-
tiation, and neuronal plasticity [50–56]. The collection of non-apoptotic caspase functions
have been termed caspase-dependent non-lethal cellular processes (CDPs) [44]. To date
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more than 50 CDPs have been found [44]. One of the common features of CDPs is the in-
volvement of cytoskeletal remodelling and cellular reshaping, as seen in dendritic pruning
of Drosophila sensory organs and Drosophila spermatid terminal differentiation [57]. The
exact roles of caspases in CDPs are largely unclear, and different CDPs might utilize cas-
pases in distinct functional manners. Caspase involvement in CDPs is frequently regulated
in a spatiotemporal manner to maintain sublethal caspase activity levels, preventing acti-
vation of the full-blown apoptotic cascade [58]. This highlights the importance of caspase
regulation and activation thresholds. Interestingly, recent studies have reported roles for
CDPs in almost every aspect of tumourigenesis, including cell proliferation, differentiation,
migration and invasion [2–4], raising the question of what the primary function of caspases
is. With a more complex picture of caspases in mind, it is easy to understand how they
play intriguing and sometimes paradoxical roles in various diseases including in cancer.
Further, due to their involvement in key cellular processes, caspases are uniquely situated
to play a dual role in cancer, acting both as anti-tumourigenic and pro-tumourigenic agents.
In this review, we discuss the recent findings from Drosophila studies which highlighted
various apoptotic and non-apoptotic caspase roles that have increased our understanding
of the dual role caspases play in tumourigenesis.

3. The Anti-Tumourigenic Roles of Caspases

The most prevalent anti-tumourigenic function of caspases is their ability to induce
apoptosis. This functions as an intrinsic tumour suppressor, working as a defence mecha-
nism by activating cell suicide to prevent harm from the genomically unstable cells, which
harbour tumourigenic potential. It is unsurprising that circumventing this effective tumour
suppressive mechanism is a defining trait of cancer [2,3]. Considering that every stage
of tumourigenesis has the potential to activate the apoptosis pathway, the necessity for
apoptotic evasion is obvious. Concomitantly, mutations resulting in the impairment of the
apoptotic machinery are widely found in numerous forms of cancer, including follicular
lymphoma, diffuse large B-cell lymphoma (DLBCL), acute myeloid leukaemia (AML),
colorectal carcinomas and head and neck squamous cell carcinomas (HNSCC) [54,59–62].
In addition to the suppression of the apoptotic machinery, allowing tumour development,
apoptosis can be blocked to facilitate specific oncogenic stages. For instance, during the
epithelial-mesenchymal transition (EMT) cancer cells suppress anoikis, a specialized form
of apoptosis which occurs during cell shedding when cells lose extracellular matrix contact,
to promote metastasis [63]. In addition to these well-established anti-tumourigenic caspase
functions, new studies using Drosophila model systems highlight a wider potential for
caspases in the prevention of tumour formation, acting not only as regulators of cell death
but also as regulators of cell fate [56,64].

3.1. Caspase-Regulated Necrosis Inhibits Tumourigenesis

Necrosis, a form of premature cell death, is characterised by cell swelling and rapid
permeabilization and rupture of the cell membrane [65]. This leads to spillage of the
cellular contents, including damage-associated molecular patterns (DAMPs) which can
trigger an inflammatory response [66]. Usually, necrosis is initiated by extracellular factors,
including cytokines, physical temperature, cell trauma, or pathogens. Recent studies have
revealed that some types of necrosis are regulated therefore can be potentially managed
therapeutically. One of the best studied regulated necrosis is necroptosis, which is induced
by the receptor binding of TNF in mammals via a molecular mechanism distinct from
apoptosis [67,68]. Active caspase-8 cleaves mammalian serine/threonine-protein kinases
(RIPKs), preventing the formation of the necrosome, a complex of RIPK1, RIPK3, and
MLKL, a Mixed Lineage Kinase Domain Like Pseudokinase, leading to membrane rupture
once activated [69,70]. When caspase-8 is deficient or inhibited, necrosome formation
occurs, resulting in the morphological changes observed during necrosis and ultimately
cell death. Intriguingly, TNF can induce apoptosis or necroptosis in a context-dependent
fashion, hinting at a complex interplay between these two distinct forms of programmed
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cell death. Open questions remain as to the factors that influence the decision between
different cell death pathways and how this occurs in an intact organism in vivo.

A recent study in Drosophila has shed light on the roles of caspases in connecting
apoptosis and necrosis [64]. In the Drosophila eye, expression of Egr, the Drosophila TNF,
induces Hid-dependent apoptosis via activation of the c-Jun N-terminal Kinase (JNK)
stress-response pathway. However, in the absence of the executioner caspases DrICE and
Dcp-1 or expression of P35, an inhibitor of DrICE and Dcp-1, non-apoptotic cell death is
induced in a Dronc-dependent manner. This cell death has been characterised to be necrosis.
Additionally, it was found that loss-of-function of Basket (Bsk), the Drosophila JNK ortholog,
or Tak1, an upstream kinase of JNK, was sufficient to block Egr-induced necrosis. For this
Dronc-dependent necrosis to occur, both executioner caspase inhibition and JNK signal
activation must occur. Therefore, Egr and JNK signalling have both pro-apoptotic and
pro-necrotic functions and caspases play critical roles in governing the decision between
these two pathways.

Drosophila has been widely used to model and study cancer, which has been reviewed
elsewhere [71–74]. Intriguingly, the Egr/JNK-mediated necrosis pathway has tumour
suppressive functions. Scribble mutant (scrib-/-) epithelial cells lose the apical-basal cell
polarity and are commonly used as an oncogenic model in Drosophila studies [75–77].
Under normal conditions, scrib-/- cells in a wild-type background are removed via Egr/JNK-
mediated apoptosis to prevent rampant cell proliferation and tissue overgrowth. In scrib-/-

cells in which apoptosis is blocked, e.g., by expression of P35, overgrowth is not seen due to
compensatory activation of necrosis which functions as an apoptosis fail-safe mechanism
(Figure 2). The cooperation observed between apoptosis and necrosis in this oncogenic
model highlights a key two-layered defence mechanism to prevent tumourigenesis [64].
Notably, key components downstream of Dronc and JNK activity are still unknown. What
effects caspases (e.g., Dronc, DrICE, Dcp-1) have on the decision factors that influence
the apoptosis versus necrosis switch remain elusive. The idea that caspases can activate
cell death, via necrosis, within tumour cells that have evaded apoptosis is intriguing and
requires further investigation.
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Figure 2. Necrosis functions as an apoptosis fail-safe mechanism in preventing tumour development.
Scrib mutant (scrib-/-) cells are removed from the epithelial tissue via Egr/JNK-induced apoptosis
to prevent tumourigenesis. When apoptosis is defective or blocked, e.g., via expression of the
executioner caspase inhibitor P35, scrib-/- cells instead undergo Dronc-mediated necrosis. How Dronc
activates necrosis is not yet known, indicated by the question mark.

Interestingly, although Egr/JNK-mediated necrosis requires catalytically active Dronc,
non-catalytic activities of Dronc have also been linked to necrosis [64,78]. For example,
Dronc is required for p53-dependent necrosis, independent of its catalytic activity, dur-



Int. J. Mol. Sci. 2021, 22, 8927 7 of 21

ing Drosophila spermatogenesis [78]. In this context necrotic inhibition leads to tissue
hyperplasia. Notably, tumour necrosis is a common feature of many solid tumours. It
is associated with hypoxia, inflammatory responses and angiogenesis and carries a poor
patient prognosis [79]. Greater understanding and exploration of the mechanisms and
consequences of necrosis in cancer will help provide answers and aid in the development
of new therapeutic interventions.

3.2. Caspase-Dependent Elimination of Pre-Malignant Cells by Cell Competition

Cell competition is used by organisms as a surveillance method to maintain tissue
homeostasis and ensure organism integrity by monitoring cell fitness [80–83]. During this
process, suboptimal but still viable cells (termed “losers”) are outcompeted by their “win-
ner” neighbouring cells and subsequently eliminated by caspase-dependent apoptosis. The
cell “loser” status is determined by differences from surrounding cells. For example, “loser”
status can be determined by differential cell proteotoxic stress, therefore it is proposed that
cells can use proteostasis as a protection mechanism against competitive cell death [84,85].
Genetic studies in Drosophila pioneered the field of cell competition and have uncovered
both tumour suppressive and promoting roles of cell competition (Figure 3).
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(B) Tumour cells gain “supercompetitor” status through mutations, enabling the tumour cell (blue) to outcompete the
healthy cells (orange). The healthy cells are removed by apoptosis allowing expansion of the tumour cell population and
tumour progression.

Research into cell competition has highlighted various mechanisms leading to differen-
tial cell fitness, dependent on the genetic backgrounds of the mixed cell populations [86,87].
Cell competition was initially observed when epithelial cells heterozygous for the Drosophila
ribosomal protein (Rp) genes, Rp+/- or Minute (M+/-), were mixed with wild-type cells
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(Rp+/+) [88]. Although Rp+/- animals are viable, they develop more slowly compared to
wild-type animals. The suboptimal Rp+/- cells are removed from mosaic epithelial tissue
at interfaces with surrounding wild-type cells. Therefore, cell competition requires a het-
erogeneous background as differences between cells are crucial for distinction between
“winners” and “losers”. Elimination of Rp+/- cells within a wild-type background occurs
by JNK-dependent apoptosis [89]. In such a situation, cell competition is a mechanism of
cell surveillance, to ensure tissue integrity. A recent study in Drosophila further showed
that aneuploidy cells with chromosomal anomalies are frequently outcompeted during
development because they have an altered number of ribosome genes [90]. Therefore,
ribosome protein levels can act as readouts of aneuploidy cells leading to their removal by
cell competition to prevent potentially disastrous consequences such as cancer.

In addition to its function in preserving tissue integrity and health, cell competition
acts directly as a tumour suppressive mechanism to remove pre-malignant cells. This
tumour suppressive role was initially observed when scrib-/- mutant cells were found to
be outcompeted by their surrounding wild-type cells (Figure 2) [81,91]. scrib-/- cells have
oncogenic potential as hyperplasia is seen in Drosophila epithelial tissues which contain
only scrib-/- cells. However, in mosaic tissues containing scrib-/- clones, the oncogenic scrib-/-

cells are kept in check by their wild-type neighbours, through cell competition [81,91].
Similarly, cell competition removes cells with other aberrant tumour suppressor genes in
Drosophila, including other components regulating cell polarity, e.g., lethal giant larvae (Lgl)
and discs large (Dlg), components of the endosomal sorting complex ESCRT-II subunit,
e.g., Vps25, and key regulators of endocytosis, e.g., Rab5 [87,92,93].

Another well-studied mechanism leading to cell competition depends on the protein
level of Myc, a family of transcription factors responsible for growth regulation, riboso-
mal biogenesis, cell proliferation and organism size, which are prominent oncogenes [94].
The role of Myc in cell competition was first reported in Drosophila [95]. Expression of
dMyc, the Drosophila ortholog of mammalian c-Myc, in clones causes the competitive
elimination of surrounding wild-type cells by apoptosis. Interestingly, JNK signalling
only plays a minor role in this process. Therefore, upregulation of Myc generates “super-
competitor” cells which outcompete their neighbours [96]. This can be pro-tumourigenic,
causing clonal expansion of oncogenic cells, while ensuring the elimination of the healthy
surrounding tissue.

Caspase-dependent apoptosis mediates cell competition. In Drosophila, expression
of P35 or DIAP1, inhibitors of caspases, or the removal of pro-apoptotic genes, hid, grim
and reaper, protects the Rp+/- cells from competitive cell elimination. However, unlike
the uncompetitive apoptosis, elimination of Rp+/- cells is not blocked by loss of the major
initiator caspase Dronc. Instead, such competitive cell death can be activated redundantly
by several initiator caspases including Dronc and Dream/Strica, as only co-expression of
dronc and dream/strica RNAi constructs is sufficient to prevent competitive cell death [89].

Notably, recent studies have revealed that the tumour suppressive role of cell compe-
tition extends across vertebrates and bares likeness to the epithelial defence against cancer
(EDAC) witnessed at the initial stages of tumourigenesis in mammalian cells [97]. Addi-
tionally, cell competition acts as a tumour suppressor in the thymus to protect the T-cell
progenitor population and prevent T-cell acute lymphoblastic leukemia (T-ALL) [98]. Here,
cell competition facilitates the replacement of thymus resident progenitors by the younger
bone-marrow derived progenitors. The exact roles of various initiator and effector caspases
remain to be seen in various cell competition processes in mammals. Nevertheless, cell
competition highlights another example of an inherently tumour suppressive mechanism
that can be exploited by tumours with caspases lying as regulators of the final stages of
this process.

3.3. Caspases Regulate Stem Cells Preventing Tumourigenesis

Stem cells have self-renewal capabilities and can acquire multiple cell fates. There
are multiple forms of stem cells, namely embryonic stem cells (ESCs), with unlimited dif-
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ferentiation potential (totipotent or pluripotent), and somatic stem cells, which have self-
renewal capabilities but with restricted differentiation potential dependent on their cell
derivative [55]. Interestingly, caspases exhibit non-apoptotic roles regulating multiple as-
pects of stem cell properties including proliferation, maintenance and differentiation [55,99].
The underlying mechanisms of these caspase functions await to be further explored in
order to understand their physiological and pathological relevance. Recent studies using
the adult Drosophila midgut, functionally equivalent to the mammalian small intestine,
have led to some interesting insights [50,56].

The Drosophila midgut contains intestinal stem cells (ISCs) which are responsible for
the continual renewal of the gut epithelium [100,101]. The ISC undergoes asymmetric cell
division with self-renewal and producing an enteroblast (EB), an intermediate progenitor
cell. The EB then differentiates into either an absorptive enterocyte (EC) or, much less
frequently, a hormone-producing enteroendocrine cells (EE) [102]. A recently developed
genetic reporter of the initiator caspase Dronc revealed that it activates in both ISC and EB
cells in the midgut [103]. Subsequent studies further showed that conditional knockout
of Dronc in both ISCs and EBs or RNAi knockdown of Dronc specifically in EBs causes
increased cell proliferation leading to hyperplasia as well as promotes differentiation of EBs
into ECs and EEs [50,56]. Moreover, the catalytic function of Dronc, but not the apoptotic
cascade, is required in these processes. Therefore, the non-apoptotic Dronc activity is
required to prevent aberrant proliferation and differentiation of intestinal progenitor cells
including both ISCs and EBs. Notably, deficiency of the mammalian ortholog of Dronc,
caspase-9, in intestinal precursor cells results in increased proliferation and abnormal
differentiation [104]. Thus, caspases can regulate cell fate and act as a line of defence from
aberrant proliferation and poor differentiation by keeping cells under check. Similarly,
caspases can act anti-tumourigenically by causing cells to differentiate, thus removing
their proliferative potential, and preventing rapid tumour growth [104]. Further studies
using the Drosophila midgut model system may help identify key molecules and signalling
pathways that mediate the tumour suppressive roles of caspase in intestinal progenitor cells.

3.4. Caspase Inhibition of Irradiation-Induced Cell Migration (ICM)

Metastatic cancer is extremely aggressive, with patients having worse prognosis and
lower overall survival rates [105]. Tumour cells which gain the ability to migrate from
their primary site, invade new tissues and set up residency are responsible for cancer
metastasis. Recent research using Drosophila has identified a novel anti-tumourigenic role
for low levels of caspase activation in protection against unwanted invasion and cell migra-
tion [106]. Irradiation-induced DNA damage activates the p53-dependent apoptotic path-
way and mass apoptosis in developing Drosophila larval epithelial tissue. The executioner
caspase DrICE is crucial for irradiation-induced apoptosis within this setting. Intrigu-
ingly, DrICE and Dcp-1 null mutant cells (drice-/- dcp-1-/-), cells with compromised caspase
function, do not undergo apoptosis post-irradiation, instead they gain migratory ability
and invasive potential, in a process termed “irradiation-induced cell migration” (ICM)
(Figure 4). Importantly, drice-/- dcp-1-/- cells delaminate basally and migrate out of their
native tissue in a self-driven manner which is indispensable of other cellular process such
as phagocytosis. However, compromised caspase function is required in the invaded tissue
to allow the invasion of caspase deficient cells post-irradiation, indicating a potential role
of caspase-mediated cell non-autonomous signals to ensure invasive receptivity. Also, not
all drice-/- dcp-1-/- cells migrate therefore pro-migratory factors other than compromised
caspases must be involved. Although the caspase substrates mediating ICM have not been
identified yet, a main contributor to this is the remodelling of the cytoskeleton. The Rho
GTPases, a family of small G-proteins, are heavily involved in actin dynamics, cytoskeletal
remodelling, and cell motility. Indeed, knockdown or inactivation of the small GTPases
such as Rho1, Rac1, Rac2 and Cdc42 reduces the number of observed migratory cells.
Additionally, components of the extracellular matrix are important for cell movement and
accumulation of matrix metalloproteinase 1 (MMP1), which breaks down the extracellular
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matrix, is observed in some but not all drice-/- dcp-1-/- cells. This may suggest a transient
requirement of MMP1 and highlight remodelling of the extracellular matrix as an important
factor of ICM.
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Figure 4. Irradiation-induced cell migration (ICM). (A) In wild-type cells, irradiation activates the apoptotic pathway in
response to DNA damage. (B) In caspase-compromised, e.g., drice-/- dcp1-/- cells, irradiation induces ICM. (C) In cells with
sublethal levels of DrICE and Dcp1, the ICM is suppressed. (D) DNA damage, in the form of double-strand break (DSB) or
single-strand break (SSB), is induced by radiation. DSBs and SSBs activate p53-dependent cell cycle arrest or, if the damage
cannot be repaired, apoptosis, which is mediated by the kinase ATM or ATR. The kinase ATR, but not ATM, is required for
ICM. Activation of executioner caspases, DrICE and Dcp-1, to a sublethal level inhibits ICM.

Intriguingly, the process of ICM bares many similarities to the EMT, which occurs
during normal development and in the metastatic expansion of tumours [106]. Specifically,
there are significant morphological similarities (e.g., basal delamination of cells), as well as
behavioural and molecular features. Therefore, sublethal levels of executioner caspases,
DrICE and Dcp-1, can act as protectors against unwanted cell migration and inhibit ICM.
Additionally, distinct DNA damage response signalling molecules appear to mediate and
distinguish the cellular responses of apoptosis versus ICM (Figure 4) [106]. For example,
Ataxia Telangiectasia and Rad3-related (ATR), the single-strand DNA break (SSB)-activated
kinase, is required for ICM. In contrast, Ataxia Telangiectasia Mutated (ATM), the kinase
activated by the double-strand DNA break (DSB), and p53 are required for apoptosis but
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not ICM. These suggest that different types of DNA damage may determine the cellular
migratory potential, which needs to be further investigated. Notably, spontaneous cell
migration without irradiation also occurs in caspase mutant cells, hinting at the role of
ICM within cancer as many tumour cells have compromised caspase function. It has been
proposed that the sublethal roles of caspases, including such an anti-tumourigenic and
pro-survival mechanism, are the house-keeping functions of caspases [44]. More research
is required to better understand these.

4. The Pro-Tumourigenic Roles of Caspases

In addition to their anti-tumourigenic roles, caspases can also act to promote tu-
mourigenesis within pre-malignant and malignant cells. Intrinsic tumour suppressor
mechanisms can be exploited during tumourigenesis to facilitate oncogenic transformation.
For example, the role necrosis plays in tumourigenesis is not straightforward. In addition
to acting as a defence mechanism, patients with large necrotic regions within their tumours
(i.e., known as necrotic cores) have a much worse outcome and lower survival rate. This
occurs due to necrosis-induced acute and chronic inflammation resulting from the necrotic
release of DAMPs that promote inflammation, release tumour-promoting cytokines and,
ultimately, promoting tumour progression [107,108]. However, the role caspases play in
pro-tumourigenic necrosis needs to be further explored.

Similarly, cell competition can also be highjacked by cancer cells for a pro-tumourigenic
gain [83]. During cell competition in mosaic tissue, loser cells are initially eliminated from
the borders of clonal patches leaving the central cells intact. In tumours this can result in
rampant apoptosis and JNK signalling at the tumour edges causing rampant proliferative
signalling and rapid tumour expansion [80,83]. Moreover, as introduced above (Figure 3), a
model of tumour “supercompetitiors” has been proposed [96]. Tumour cells gain the ability
to outcompete their neighbouring normal cells resulting in the rapid removal of healthy
tissue. One way this occurs is by cells gaining the ability to escape proteotoxic-induced
cell competition [84]. The tumour competitive growth advantage has the potential to make
tumours more aggressive, with worse outcomes. A study using Drosophila midgut showed
that cells with mutations in the Adenomatous polyposis coli (APC), a tumour suppressor gene,
eliminate adjacent wild-type cells via cell competition leading to hyperplasia and tumour
formation [109]. This tumour growth can be prevented by caspase inhibitors (DIAP1 or P35
expression) indicating that caspase-dependent apoptosis is solely responsible for healthy
cell removal.

Furthermore, a fine balance between cell proliferation, cell death and cell differentia-
tion needs to be achieved to maintain homeostasis within the tissue. Deregulation of this
balance can have pathological consequences. In addition to the inhibitory role of caspases
in stem cell proliferation as described above (see Section 3.3), dysregulation of caspases can
also promote deregulation of stem cell properties and lead to tumour formation and pro-
gression by forming subpopulations of proliferative cells in tissues, that cannot differentiate
normally [55].

To survive, tumour cells rely on utilising endogenous proteins and signalling pathways
to fuel their growth. As crucial proteases driving cell death, caspases are often disrupted or
hijacked within tumour cells to facilitate their over-proliferation, migration, tissue invasion
and metastasis. Recent work in Drosophila has revealed some insightful examples for these.

4.1. Apoptosis-Induced Proliferation

The most fundamental feature of cancer cells is their ability to deregulate tissue
homeostatic signalling and gain sustained proliferative potential [2,3]. They can do so
by either reproducing mitogenic signals themselves or by stimulating their surrounding
healthy cells to produce mitogenic signals on their behalf. The non-apoptotic roles of
caspases in proliferative signalling have been revealed. Current research is aiming to
answer how these roles are achieved and regulated.
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In 1970s, it was first reported that the Drosophila larval wing epithelial tissue can re-
cover from X-ray radiation-induced cell death with additional cell proliferation resulting in
the adult flies with normal wings [110]. It was later shown that the stress-induced apoptotic
cells can stimulate their neighbouring cells to proliferate to compensate for cell loss and
maintain tissue homeostasis [111–113]. This compensatory proliferation, later redefined
as apoptosis-induced proliferation (AiP), plays a key role in tissue recovery from damage
(Figure 5A). Similar phenomena have also been observed in other multi-cellular organisms
including Hydra, planarians, Xenopus, newt and mouse [114–117]. Under pathological
conditions when execution of apoptosis is compromised therefore the stressed cells are kept
alive or “undead”, the continuously activated AiP promotes tissue overgrowth (Figure 5A).
AiP is thus also a phenomenon relevant to cancer as cancer cells frequently evade apoptosis.
Indeed, AiP has been shown to promote cancer development, cell invasiveness and faster
tumour recurrence after radio- and chemo-therapies [118–121]. Therefore, understanding of
the molecular mechanisms regulating AiP will have implications on cancer treatment.

From the initial discovery of AiP, Drosophila has remained the focal point for AiP
research. Initial studies using Drosophila epithelial tissues were able to provide key insights
into the AiP pathway, which requires non-apoptotic caspase activity. Two distinct mecha-
nisms of AiP have been uncovered in epithelial tissues in Drosophila (Figure 5B,C). In the
proliferating tissue, the initiator caspase Dronc has a non-apoptotic role to activate JNK
leading to the release of mitogens including Wingless (Wg), the Drosophila Wnt, Decapen-
taplegic (Dpp), the Drosophila transforming growth factor-β (TGF-β), and Spitz (Spi), the
Drosophila EGF [111–113,122,123]. In contrast, in the differentiating eye tissue where cells
have exited the cell cycle, the executioner caspases DrICE and Dcp-1 activate the Hedgehog
(Hh) signalling in the photoreceptor neurons to drive cell cycle re-entry of the neighbouring
cell cycle-exited but unspecified cells [124]. These findings uncoupled the non-apoptotic
roles of caspases from their apoptotic functions. However, our understanding of the
mechanisms underlying these caspase functions are far from complete.

Activation of JNK signalling has been identified as a hallmark of Dronc-induced AiP
in the proliferating tissue (Figure 5B). It has recently been shown that active Dronc is
translocated from cytosol to the basal side of the plasma membrane, where it executes its
role in AiP [125]. Although how Dronc re-localisation occurs is not yet clear, Myo1D, an
unconventional myosin, is critical in this process and interacts directly with Dronc. At
the plasma membrane, Dronc associates with Duox, a NADPH oxidase, and stimulates
the production of reactive oxygen species (ROS), which promote AiP. Further studies
revealed that ROS cause damage to the basement membrane of the epithelial tissue, via
a matrix metalloproteinase MMP2, and attract hemocytes, the Drosophila macrophages,
to the site [126,127]. The accumulated macrophages secrete the TNF ligand Egr which
activates the JNK signalling pathway non-cell autonomously via its receptor Grindel-
wald (Grnd). Notably, ROS-mediated basement membrane disruption and macrophage
recruitment are required for tissue overgrowth in various Drosophila neoplastic tumour
models [127,128]. This suggests that non-cell autonomous activation of JNK is critical
for AiP-driven tumourigenesis. Intriguingly, cell autonomous activation of JNK has also
been implicated in AiP. For example, JNK is also required for the regulation of MMP2 and
basement membrane damage prior to macrophage recruitment. Moreover, JNK is activated
in damaged cells to trigger regeneration of epithelial tissues in response to apoptotic stress,
without a clear involvement of macrophages [54,129]. Therefore, activation of JNK may
occur at different stages of AiP and contribute distinctly to tumour development. Dronc,
as the key caspase acting upstream of JNK, may regulate cell autonomous and non-cell
autonomous activation of JNK via different mechanisms. Importantly, JNK signalling has
been widely implicated in cancer development and progression [130]. However, it has been
challenging to dissect its complex roles and identify therapeutic targets in cancer, partially
because three JNK genes exist in mammals. Further investigation of the regulation of JNK
in Drosophila tumour models will provide useful insights to address this.
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Figure 5. Apoptosis-induced Proliferation (AiP). (A) Roles of AiP in homeostatic maintenance and tumourigenesis.
(B) Mechanism of AiP in apoptosis-deficient proliferation cells leading to tissue overgrowth. The initiator caspase Dronc
coordinates apoptosis and AiP in response to apoptotic stress. P35 inhibits DrICE and Dcp-1, therefore execution of
apoptosis, but not Dronc. This allows continuous AiP resulting in tissue overgrowth. Myo1D interacts with Dronc
and facilitates its re-localisation to the basal plasma membrane, where Dronc regulates Duox to stimulate production
of ROS. ROS and JNK activate MMP2, which disrupts the basement membrane leading to recruitment of hemocytes
(macrophages). Macrophages in turn secret Eiger and activates JNK via the TNF receptor Grindelwald in epithelial cells
non-cell autonomously. Activated JNK drives hyperplastic tissue overgrowth and tumourigeneisis through activation of
mitogens including Wg/Wnt, Dpp/TGF-β and Spi/EGF. (C) Mechanism of AiP in the differentiating eye tissue. In response
to apoptotic stress, the executioner caspases DrICE and Dcp-1 in dying photoreceptor neurons activate the Hh growth
signals, which secrete to their neighbouring cell cycle-exited but unspecified cells and drive their cycle re-entry.
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Upstream of JNK, caspase-dependent ROS production and macrophage recruitment
observed in tumourigenesis in Drosophila also show striking similarities to the features of
the mammalian tumour microenvironment. For example, activation of tumour-associated
macrophages (TAMs) driven by apoptosis has been proposed to be a key element of the
“onco-regenerative niche” promoting malignant cancer [131]. Moreover, ROS are required
for the recruitment of TAMs [132]. However, it remains to be seen whether functions of
caspases in these cellular processes are similar to their fly counterparts.

4.2. Invasion and Metastasis

Metastasis poses the major challenge to the overall survival rate of cancer patients,
with most cancer-related deaths occurring as direct consequence of secondary sites metas-
tases [105]. Metastasis occurs when tumour cells disseminate from the primary tumour
site and colonize a secondary site elsewhere in the body [133,134]. This process is coordi-
nated through a complex series of biological processes, referred to as invasion-metastasis
cascade. Further, the activation of invasion and metastasis is one of the ‘Hallmarks of
Cancer’ [2,3]. During successful metastasis, tumour cells lose cell-cell adhesion and gain
increased invasive and migratory potential during the EMT, allowing the tumour cells to
invade surrounding tissue [135]. The tumour cells enter circulation either in the blood-
stream or lymphatic system. Only a fraction of circulating tumour cells forms successful
metastases after they successfully invade the endothelium, travel to a distinct site and
undergo mesenchymal-epithelial transition (MET) [133,134,136]. Governing metastasis is a
multitude of complex biological processes, a better understanding of why, how and when
these aggressive metastases occur would have phenomenal patient benefits.

High levels of effector caspase activity in cancer cell lines, patient tissue and clinical
data are correlated with increased invasiveness and aggression [120]. Using a Drosophila
invasion model system, sublethal caspase activity was found to cause cell invasion [137]. A
low level of caspase activity, due to expression of the inhibitor P35 or RNAi knockdown
of DrICE, causes cell detachment from the basal membrane and local migration in the
epithelial tissue. The migration occurs via activation of JNK signalling and expression of
MMP1, which degrades the extracellular membrane [137]. The effector caspase, DrICE,
is required to promote invasion. A complete loss-of-DrICE suppresses the cell invasion.
Further, the DrICE-dependent invasion is mediated by the upstream initiator caspase
Dronc and is apoptosis-independent because inducing cell death alone, e.g., without p35
expression, was not sufficient to cause cell migration. This suggests that, in the absence
of apoptosis, tumour cells may be more likely to migrate. Therefore, apoptotic evasion,
as one of the defining traits of cancers, might be intrinsically linked to cancer metastasis.
Similarly, suppression of vestigial (vg), a gene required for cell proliferation in the Drosophila
wing epithelia, induces cell migration dependent on the moderate levels of caspase activity
and JNK activation [138]. Moreover, sublethal caspase activity has also been reported to
trigger a developmental cell delamination process during Drosophila thorax fusion [139].
Therefore, caspases may possess a two-layered activity with the basal level to drive cell
migration rather than apoptosis. Notably, as described above, caspases inhibit ICM in
response to DNA damage (Figure 4). Hence, the roles of caspases in metastasis is complex,
which likely depend on the cellular context and the nature of the stress stimuli. This has
major implications for cancer therapies. Triggering cell death, through chemotherapy or
radiotherapy, remains one of the standard therapeutic approaches for cancer treatment.
Sublethal caspase activity or failed apoptosis can contribute to tumour recurrence and
metastasis, thus unsuccessful treatments might induce the metastatic process and acerbate
malignancy [137,140]. Therefore, understanding how caspase activity causes metastasis is
paramount for the delivery of successful long-term treatment regimens.

5. Conclusions

Research in the past four decades have revealed diverse and distinct roles of caspases
in normal biology. Caspase function, both apoptotically and non-apoptotically, frequently
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becomes deregulated during cancer formation and progression, allowing for pre-malignant
and malignant cells to thrive. The emerging field of non-apoptotic caspase function has a
multitude of unanswered questions, both for normal physiology and cancer. Why is caspase
activity context-dependent? And what governs this? How do cells detect and distinguish
the basal caspase activities versus lethal caspase levels therefore respond differently? Does
the homeostatic role of caspases represent their ancient housekeeping function?

The context-dependent dual roles of caspases as both pro- and anti-tumorigenic
factors, and the complex interplay between the two have serious implications for cancer
therapies. A common therapeutic route is to induce apoptosis in tumour cells, e.g., via
chemoradiotherapy. However, as our understanding of the dual roles that the apoptotic
machinery has in tumour formation and progression increases, this common therapeutic
route may need to be re-evaluated. For example, radiation can induce pro-tumourigenic
stem cell properties. Recent studies in Drosophila have shown this is caspase-dependent and
has serious implications for radiotherapy regimes [141]. Additionally, caspase inhibition
can induce TNF-mediated necrosis which might pose therapeutic complications when
giving anti-apoptotic agents [142].

Drosophila research has been at the forefront of our increased understanding of the
complex role of caspases. The use of Drosophila model systems allows efficient in vivo
genetic screens and effective drug screening [143]. This has considerable benefits for cancer
research. Importantly, many of the processes first uncovered in Drosophila, including
AiP and cell competition, are conserved and exist in mammals. Therefore, the works of
Drosophila have direct implications for understanding cancer and in the development of
novel cancer therapies.
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AiP Apoptosis-induced proliferation
Apaf-1 Apoptotic protease activating factor-1
ATM Ataxia Telangiectasia Mutated
ATR Ataxia Telangiectasia and Rad3-related
BCL-2 B-cell lymphoma 2
CDP Caspase-dependent non-lethal cellular processe
DAMPs Damage-associated molecular patterns
Dark Drosophila Apaf-1-related killer
Dcp-1 Drosophila caspase-1
DIABLO Direct Inhibitor of Apoptosis-Binding protein with LOw pI
DIAP1 Drosophila Inhibitor of Apoptosis Protein 1
Dpp Decapentaplegic
DrICE Death related ICE-like caspase
Dronc Drosophila Nedd2-like caspase
DSB Double-strand DNA break
Duox Dual oxidase
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EGF Epidermal growth factor
Egr Eiger
EMT Epithelial-mesenchymal transition
FADD Fas-associated death domain-containing protein
Grnd Grindelwald
Hh Hedgehog
Hid Head involution defective
HtrA2 High temperature requirement factor A2
IAP Inhibitor of Apoptosis Protein
ICE Interleukin-1β converting enzyme
ICM Irradiation-induced cell migration
JNK c-Jun N-terminal Kinase
MET Mesenchymal-epithelial transition
MMP Matrix metalloproteinase
Myo1D Myosin 1D
PCD Programmed cell death
ROS Reactive oxygen species
Rpr Reaper
Smac Second mitochondria-derived activator of caspase
Spi Spitz
SSB Single-strand DNA break
TAM Tumour-associated macrophage
TGF-β Transforming growth factor-β
TNF Tumour Necrosis Factor
TNFR TNF receptor
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
TRAIL-R TRAIL receptor
Wg Wingless
Wgn Wengen
Wnt Wingless-related integration site
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