
 
 

University of Birmingham

Engel elements in branch groups
Fernandez-Alcober, Gustavo; Noce, Marialaura; Tracey, Gareth

Citation for published version (Harvard):
Fernandez-Alcober, G, Noce, M & Tracey, G 2020, 'Engel elements in branch groups', Journal of Algebra, vol.
554, pp. 54-77.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://birmingham.elsevierpure.com/en/publications/49245e8f-0a18-4266-9614-816c6836fcab


ENGEL ELEMENTS IN WEAKLY BRANCH GROUPS

GUSTAVO A. FERNÁNDEZ-ALCOBER, MARIALAURA NOCE,
AND GARETH M. TRACEY

Abstract. We study properties of Engel elements in weakly branch groups,
lying in the group of automorphisms of a spherically homogeneous rooted
tree. More precisely, we prove that the set of bounded left Engel elements
is always trivial in weakly branch groups. In the case of branch groups,
the existence of non-trivial left Engel elements implies that these are all p-
elements and that the group is virtually a p-group (and so periodic) for some
prime p. We also show that the set of right Engel elements of a weakly branch
group is trivial under a relatively mild condition. Also, we apply these results
to well-known families of weakly branch groups, like the multi-GGS groups.

1. Introduction

A rapidly developing area of group theory studies the properties of branch
groups, a special kind of groups acting on spherically homogeneous rooted trees.
These groups, which were first defined by Grigorchuk at the Groups St An-
drews conference in Bath in 1997, are generalizations of the famous p-groups
constructed by Grigorchuk himself [9], and by Gupta and Sidki [13]. Despite
their relatively recent introduction, branch groups have appeared in the liter-
ature in the past, without being explicitly defined. For instance, the class of
branch groups contains one of the three classes of groups in John Wilson’s fa-
mous characterisation of just infinite groups [18]. This is one of the primary
reasons for their study. Another important motivation for studying branch
groups comes from the remarkable properties that some of these groups can
possess, like intermediate growth, amenability, the congruence subgroup prop-
erty, or providing a negative answer to the General Burnside Problem. In this
setting, one can also consider the larger family of weakly branch groups, which
preserve many of the most interesting features enjoyed by branch groups. We
refer the reader to Section 2 for a quick introduction to these classes of groups.

With this motivation in mind, the purpose of this paper is to investigate Engel
elements in weakly branch groups. Given two elements g and x in a group G,
we define [g,n x] for all n ∈ N ∪ {0} by means of [g,0 x] = g and, for n ≥ 1,

[g,n x] = [[g,n−1 x], x] = [[. . . [[g, x], x], . . .], x], (where x appears n times).
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2 G.A. FERNÁNDEZ-ALCOBER, M. NOCE, AND G.M. TRACEY

Engel conditions in group theory have to do with the triviality of these iterated
left normed commutators. If [g,n x] = 1 for some n ∈ N, we say that x is Engel
on g, and the smallest such n is the Engel degree of x on g. If x is Engel on
all elements g ∈ G, we say that x is a left Engel element of G. Observe that
the Engel degree of x can vary as g runs over G, and in principle could be
unbounded. If there is a bound for the Engel degrees of x, i.e. if there exists
n ∈ N such that [g,n x] = 1 for all g ∈ G, we say that x is a bounded left Engel
element of G. We denote by L(G) and L(G) the sets of left Engel elements and
bounded left Engel elements of G, respectively. On the other hand, if g ∈ G
is such that every x ∈ G is Engel on g, we say that g is a right Engel element
of G. Bounded right Engel elements are defined in an obvious way. We write
R(G) and R(G) for the sets of right Engel elements and bounded right Engel
elements of G. Observe that R(G) ⊆ L(G)−1 [17, 12.3.1], and that obviously
L(G) ⊆ L(G) and R(G) ⊆ R(G). In particular, if L(G) = 1 then all four Engel
sets are trivial.

We say that G is an Engel group if L(G) = G (or equivalently R(G) = G).
On the other hand, if the identity [g, x, n. . ., x] = 1 holds for all g, x ∈ G, i.e.
if every x ∈ G is a bounded left Engel element with a common bound for all
g ∈ G (or equivalently with the right Engel condition), then G is said to be an
n-Engel group.

In every group G, the sets L(G), L(G), R(G), and R(G) contain some dis-
tinguished subgroups, namely the Hirsch-Plotkin radical, the Baer radical, the
hypercenter and the ω-center, respectively. In his book A Course in the Theory
of Groups, D.J.S. Robinson considers it one of the major goals of Engel theory
to find conditions which will guarantee that these four sets of Engel elements
coincide with the corresponding subgroups [17, Section 12.3]. For example, Baer
proved that this is the case if G satisfies the maximal condition (see [3, Satz L′]
or [17, 12.3.7]); in particular, L(G) coincides with the Fitting subgroup if G is
finite. However, these equalities do not hold in general. It is then natural to ask
whether L(G), L(G), R(G), and R(G) are always subgroups of G, and it was
not until recently that the first counterexamples were found. It is here where
branch groups come into play in Engel theory.

Let G be the first Grigorchuk group. This is a branch group acting on the
binary tree, introduced by Grigorchuk [9] in 1980. In 2006 Bludov announced
[6] that the wreath product G oD8, with the natural action of D8 on 4 points,
can be generated by Engel elements but is not an Engel group. In particular,
L(G) is not a subgroup. This example was never published, but ten years later,
Bartholdi [4] showed that

L(G) = {x ∈ G | x2 = 1}
and, as a consequence, that L(G) is not a subgroup. To date, it is still an open
question whether L(G), R(G) and R(G) are always subgroups.

The other major question in Engel theory is whether Engel groups are locally
nilpotent. The answer is negative in general, the main example being the so-
called Golod-Shafarevich groups. These groups also provide a negative answer
to the General Burnside Problem (GBP), which can be equivalently formulated
as the question of whether periodic groups are locally finite. This resemblance
between Engel and Burnside problems, together with the fact that many groups



ENGEL ELEMENTS IN WEAKLY BRANCH GROUPS 3

answering GBP in the negative are branch groups, and Bartholdi’s result on left
Engel elements of the Grigorchuk group, makes it natural to study the behaviour
of the Engel sets L(G), L(G), R(G) and R(G) in (weakly) branch groups. This
is the specific goal that we are addressing in this paper.

Before proceeding to state our main theorems, let us mention some results in
the literature regarding Engel elements in groups of automorphisms of spher-
ically homogeneous rooted trees. In the aforementioned paper, Bartholdi also
proved that, if G is the Gupta-Sidki 3-group, then L(G) = 1. On the other hand,
in [7], Garreta and the first two authors proved that again L(G) = 1 if G is any
fractal subgroup of a Sylow pro-p subgroup of the group of automorphisms of
the p-adic tree satisfying the condition |G′ : stG(1)′| =∞, and in particular if G
is non-abelian and has torsion-free abelianization. Also, Tortora and the second
author showed in [16] that L(G) = R(G) = 1 for the Grigorchuk group G. As
we next see, the situation in these classes of groups generalises to a great extent
to weakly branch groups, which have a tendency to have trivial Engel sets.

Our first main result reads as follows.

Theorem A. Let G be a weakly branch group. Then the following hold:

(i) L(G) = 1.
(ii) If the set of finite order elements of L(G) is non-trivial then it is a p-set

for some prime p, and the rigid stabilizer rstG(n) is a p-group for some
n ≥ 1.

Thus even if weakly branch groups provide examples in which L(G) is not a
subgroup, they cannot be used to obtain similar examples for L(G). This result
can be interpreted in a similar vein to the fact that weakly branch groups, being
residually finite, cannot provide examples of finitely generated infinite groups
of finite exponent: the “problem” in both cases is boundedness. On the other
hand, part (ii) of Theorem A raises the following question.

Question 1. Can a weakly branch group G contain left Engel elements of infinite
order? If the answer is negative, then L(G) consists entirely of p-elements for
some prime p.

If instead of weakly branch the group is actually branch, then we have the
following stronger version of Theorem A.

Theorem B. Let G be a branch group. If L(G) 6= 1 then G is periodic and
there exists a prime p such that:

(i) L(G) consists of p-elements.
(ii) G is virtually a p-group.

Compare the results in Theorem B with the situation in the Grigorchuk group.
In that case, L(G) consists of all elements of order 2 in G, and G is a 2-group.
On the other hand, the prime p can be arbitrary in (i) and (ii): if Fp is the
group of p-finitary automorphisms of a p-adic tree then it is easy to see that
L(Fp) = Fp, and this is a p-group. Observe however that, contrary to G, the
group Fp is not finitely generated.

Question 2. Are there any finitely generated (weakly) branch groups for which
the set L(G) is non-trivial and consists of p-elements for an odd prime p?
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In the following theorem we consider right Engel elements in weakly branch
groups under a relatively mild condition.

Theorem C. Let G be a weakly branch group. If the rigid stabilizer rstG(n) is
not an Engel group for any n ∈ N, then R(G) = 1.

Question 3. Is R(G) = 1 for every finitely generated (weakly) branch group?
By Theorem C, this seems closely linked to this other question: can a finitely
generated (weakly) branch group be Engel?

Again, without finite generation, the group Fp shows that the answer is neg-
ative in both cases. Regarding the last question, observe that weakly branch
groups cannot satisfy a law (see [1, Corollary 1.4] or [14]) and so cannot be
n-Engel for a fixed n. Thus we are asking whether finite generation makes it
impossible for them to be Engel as well.

As an application of Theorems A, B, and C, we get the following corollary,
which provides information about Engel elements in some specific families of
weakly branch groups. The definition of these families is given either in Section
2 or right before the proof of the corresponding result.

Corollary D. Let T be a spherically homogeneous rooted tree. Then the fol-
lowing hold:

(i) If G is an infinitely iterated wreath product of finite transitive permu-
tation groups of degree at least 2, then L(G) = 1. This applies in
particular to the whole group of automorphisms of T , and also to its
Sylow pro-p subgroups if T is a p-adic tree, where p is a prime.

(ii) If F is the group of finitary automorphisms of T , and there are infinitely
many levels in which the number of descendants is greater than 2, then
L(F) = 1. If T is a p-adic tree and Fp is the group of p-finitary

automorphisms of T , then L(Fp) = 1.
(iii) If H is the Hanoi Tower group then L(H) = 1.
(iv) If G is a multi-GGS groups then R(G) = 1, and if G is furthermore

non-periodic then L(G) = 1.

We conclude this introduction by indicating how the paper is organised. In
Section 2 we first give some generalities about groups of automorphisms of spher-
ically homogeneous rooted trees, with special emphasis on weakly branch groups.
Then we provide several results regarding orbits of such automorphisms that will
be essential later on. Our approach to the study of Engel elements in weakly
branch groups is through the reduction to wreath products. Section 3 is de-
voted to a careful analysis of the scenarios that will arise when we apply this
kind of reduction. Finally, in Section 4 we prove Theorems A and B, regarding
left Engel elements in weakly branch groups, and then in Section 5 we obtain
Theorem C about right Engel elements. The proof of the applications given in
Corollary D is split between these two sections.

Notation and terminology. If f : X → Y and g : Y → Z are two maps, we write
fg for their composition instead of g ◦ f . As usual, Sn stands for the symmetric
group on n letters. We denote the direct product of groups G1, . . . , Gn by∏n
i=1 Gi. Given a group G, an element g ∈ G is a p-element, where p is a prime,
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if its order is a power of p, and a subset X of G is a p-set if every element of X
is a p-element. Also, if G is finite, F (G) denotes the Fitting subgroup of G.

2. Automorphisms of spherically homogeneous rooted trees

In this section, we first give some notation and general facts about groups of
automorphisms of a spherically homogeneous rooted tree, and more specifically,
about (weakly) branch groups. For further information on the topic one can
see, for example, [5] or [10]. Then we provide some results regarding orbits of
automorphisms of such trees that will be needed in the following sections.

Let d = {dn}∞n=1 be an infinite sequence of integers greater than 1, and
let d = d1. We write Td to denote the spherically homogeneous rooted tree

corresponding to d. This is a rooted tree where all vertices at level n (i.e. at
distance n from the root) have the same number dn+1 of immediate descendants.
If d takes the constant value d, we write Td for Td, and we call it the d-adic
tree. In order to ease notation, and unless it is strictly necessary to make the
sequence d explicit, all throughout the paper we will simply write T to denote
an arbitrary spherically homogeneous rooted tree. Also we will write V (T ) for
the set of vertices of T and, for every n ∈ N, we let Ln be the set of all vertices
on the nth level of T .

d1

d2
d2

d2

d3

∅

...
...

...
...

...
...

...
...

. . .

. . . . . . . . .. . .

. . .. . . . . .

Figure 1. A spherically homogeneous rooted tree

Let Aut T be the group of automorphisms of T (i.e. bijective maps from
V (T ) to itself that preserve the root and incidence) under the operation of
composition. Every f ∈ Aut T can be described by providing, at every vertex
v of the tree, the permutation f(v) that indicates how f sends the descendants
of v onto the descendants of f(v). This permutation is called the label of f at
v, and if v lies at level n then f(v) ∈ Sdn+1 . The collection of all labels of f
constitutes the portrait of f , and there is a one-to-one correspondence between
automorphisms of T and portraits. An automorphism of T is called finitary if
it has finitely many non-trivial labels in its portrait. Finitary automorphisms
form a locally finite subgroup F of Aut T . If T is a p-adic tree for a prime
p and we fix a p-cycle σ in Sp, the group Fp of finitary automorphisms whose
labels are all powers of σ constitute a subgroup of F . We call this the group
of p-finitary automorphisms of T . (We give no reference to σ, since different
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choices of the p-cycle give rise to isomorphic groups.) Observe that Fp is locally
a finite p-group.

We write st(v) for the stabilizer of v ∈ V (T ) in Aut T and st(n) for the
pointwise stabilizer of Ln, i.e.

st(n) = ∩v∈Ln st(v).

The latter is a normal subgroup of finite index of Aut T . The factor group
Aut T / st(n) is naturally isomorphic to the automorphism group of the finite
tree consisting of all levels of T up to (and including) the nth level. Then Aut T
is isomorphic to the inverse limit of these finite groups, and is so a profinite
group. Also, we have

Aut T ∼= · · · (Sdn o (· · · (Sd3 o (Sd2 o Sd1)) · · · )) · · · ,

where the iterated wreath product is permutational at every step. If we consider
the p-adic tree Tp, where p is a prime, and we consider a fixed p-cycle σ ∈ Sp,
then the set Γp of all automorphisms of T with labels in 〈σ〉 is a Sylow pro-
p subgroup of Aut Tp. We say that Γp is a standard Sylow pro-p subgroup of
Aut Tp. Observe that

Γp ∼= · · · (Cp o (· · · (Cp o (Cp o Cp)) · · · )) · · · .

Let Tv be the subtree hanging from the vertex v of the tree. We have Tu ∼= Tv
for any two vertices u, v on the same level, and we denote by T〈n〉 any tree
isomorphic to a subtree with root in Ln. If s denotes the shift operator that
erases the first term of a sequence, then T〈n〉 is isomorphic to the spherically

homogeneous tree defined by the sequence sn( d ).
Every f ∈ Aut T naturally induces a bijection between Tv and Tf(v) which,

under the identification of these trees with T〈n〉, defines an automorphism fv of
T〈n〉. This is called the section of f at v. Sections satisfy the following rules, for
all f, g ∈ Aut T and v ∈ V (T ):

(fg)v = fvgf(v)

and

(fg)g(v) = (gv)
−1fv gf(v).

As a consequence, if f ∈ st(v), we get

(2.1) (fg)g(v) = (fv)
gv .

If f fixes the vertex v, then the section fv is nothing but the restriction of f
to Tv. The assignment f 7→ fv induces a homomorphism ψv : st(v)→ Aut T〈n〉,
and the map

ψn : st(n) −→ Aut T〈n〉 ×
d1...dn· · · ×Aut T〈n〉

f 7−→ (fv)v∈Ln .

is an isomorphism. If n = 1 we simply write ψ for ψ1. In the case of a d-adic
tree, we get

st(n) ∼= Aut T × dn· · · ×Aut T .
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Observe also that Aut T splits over st(n) for every n ≥ 1. One can take as a
complement the subgroup

Hn = {f ∈ Aut T | fv = 1 for all v ∈ Ln}
= {f ∈ Aut T | f(v) = 1 for all v ∈ ∪i≥n Li}.

The automorphisms in H1 are called rooted automorphisms of T . They act on
T by permuting rigidly the subtrees hanging from the root according to some
permutation of Sd. Every automorphism f ∈ Aut T can be uniquely written
in the form gh, where g ∈ st(1) and h is rooted. If ψ(g) = (g1, . . . , gd) and h
corresponds to a permutation σ ∈ Sd, we use the following shorthand notation
to denote f :

f = (g1, . . . , gd)σ.

Now let G be a subgroup of Aut T . We set stG(n) = st(n) ∩G for all n ≥ 1.
If v is a vertex of T , the rigid stabilizer of v in G is defined as follows:

rstG(v) = {g ∈ G | g(u) = u for all u lying outside Tv}.
If V is a set of vertices, all lying on the same level of T , we set

rstG(V ) = 〈rstG(v) | v ∈ V 〉,
the rigid stabilizer of V in G. It turns out that

rstG(V ) =
∏
v∈V

rstG(v).

We write rstG(n) for the rigid stabilizer of Ln, and call it the nth rigid stabilizer
of G. It is the direct product of the rigid stabilizers of all vertices of Ln, and
it is the largest “geometrical” direct product inside stG(n), in the sense that a
subgroup H of stG(n) satisfies

ψn(H) =
∏
v∈Ln

Hv

with Hv ≤ Aut Tv if and only if H ≤ rstG(n). Obviously, if G is the whole
of Aut T then the nth rigid stabilizer coincides with the nth level stabilizer.
However, this is not usually the case for arbitrary subgroups of Aut T .

By (2.1), we have

(2.2) rstG(v)g = rstG(g(v))

for every v ∈ V (T ) and g ∈ G. Thus if G is spherically transitive, i.e. if G
acts transitively on every Ln, then each level rigid stabilizer rstG(n) is a direct
product of isomorphic subgroups for all n ∈ N. We are now ready to introduce
the class of groups that are the object of our study.

Definition 2.1. Let G be a spherically transitive subgroup of Aut T . Then:

(a) If |G : rstG(n)| <∞ for all n ∈ N, we say that G is a branch group.
(b) If rstG(n) 6= 1 for all n ∈ N, we say that G is a weakly branch group.

Notice that all rigid level stabilizers in a weakly branch group are infinite.
Also, since spherically transitive groups are infinite, branch groups are obviously
weakly branch.

After this quick introduction to groups of automorphisms of a spherically
homogeneous rooted tree, we start developing the tools that we will use in the
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proof of Theorems A, B, and C. A key ingredient in our approach to Engel
problems in weakly branch groups is the reduction of the action of an automor-
phism f from the whole tree to one or several “reduced trees” determined by
some special orbits of f on V (T ). For this reason, we start by describing some
properties of orbits of automorphisms of T .

Definition 2.2. If f ∈ Aut T and v ∈ V (T ), the f -orbit of v is the orbit of
v under the action of 〈f〉 on V (T ), i.e. the set {f i(v) | i ∈ Z}. The f -orbit is
trivial if it consists of only one vertex, that is, if f(v) = v.

In the statement of the following lemma, we consider the least common mul-
tiple of an unbounded family of positive integers to be infinity.

Lemma 2.3. Let f ∈ Aut T and, for every vertex v ∈ V (T ), let Ov be the
f -orbit of v. Then the following hold:

(i) If w is a descendant of v, then |Ov| divides |Ow|.
(ii) |f | = lcm(|Ov| | v ∈ V (T )).
(iii) If |f | is finite then there exists a finite subset V of V (T ) satisfying that

|f | = lcm(|Ov| | v ∈ V ) and that, whenever w is a descendant of a
vertex v ∈ V , we have |Ow| = |Ov|. Also if f is non-trivial then all the
orbits Ov with v ∈ V are non-trivial. Furthermore, V can be chosen to
lie in Ln for some n.

Proof. (i) This is obvious by the orbit-stabilizer theorem, since st(w) ⊆ st(v).
(ii) Set H = 〈f〉. Then |Ov| = |H/ stH(v)| for all v ∈ V (T ). The natural

map ϕ from H to the cartesian product of finite groups
∏
v∈V (T ) H/ stH(v) is

injective, since the intersection of all vertex stabilizers is trivial. Consequently

|f | = |ϕ(f)| = lcm(|f stH(v)| | v ∈ V (T )) = lcm(|H/ stH(v)| | v ∈ V (T )),

which proves the result.
(iii) Let L = {|Ov| | v ∈ V (T )}. If |f | is finite then, by (ii), it can be achieved

as the least common multiple of a finite subset of L. Let k be the minimum
cardinality of such a subset and let

S = {S ⊆ L | |S| = k and lcm(S) = |f |}.
Observe that S is a finite set.

We introduce a relation ≤d in S by letting S ≤d T if there exists a bijection
α : S → T such that s | α(s) for all s ∈ S. By (i), this models the situation when
we pass from the orbits of a set of vertices to the orbits of a set of descendants
of those vertices. We claim that ≤d is an order relation in S. Obviously, only
antisymmetry needs to be checked. Assume that α : S → T and β : T → S are
such that s | α(s) and t | β(t) for all s ∈ S and t ∈ T . Then s divides β(α(s))
and, if they are not equal, we get lcm(S r {s}) = |f |. This is contrary to the
minimality condition imposed on k. Thus β(α(s)) = s and, since s | α(s) and
α(s) | β(α(s)), we obtain that α(s) = s for all s ∈ S. We conclude that S = T ,
which proves antisymmetry of ≤d.

Now choose S in S that is maximal with respect to the order ≤d, and let
V = {v1, . . . , vk} ⊆ V (T ) be such that S = {|Ov1 |, . . . , |Ovk |}. Consider an
arbitrary set of vertices W = {w1, . . . , wk}, where each wi is a descendant of vi,
and let T = {|Ow1 |, . . . , |Owk |}. Then S ≤d T and, by the maximality of S, we
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have S = T . This implies that |Owi | = |Ovi | for all i = 1, . . . , k. Observe also
that the minimality of k implies that, if f is non-trivial, no orbit Ov with v ∈ V
is of length 1. Hence V satisfies the properties stated in (iii).

Finally, observe that also the set W satisfies the required properties. Thus
by considering, for a suitable n, a subset of Ln consisting of one descendant of
each vertex in V , we may assume that V ⊆ Ln. �

Vertices and orbits as in part (iii) of the previous lemma will play a fun-
damental role in the rest of the paper, and it is convenient to introduce some
terminology.

Definition 2.4. Let f ∈ Aut T and let O be an f -orbit. We say that O is
totally splitting if for every descendant w of a vertex v ∈ O, the length of the
f -orbit of w is equal to |O|.

Equivalently, an f -orbit O is totally splitting when the set of descendants of
the vertices in O at every level of the tree splits into the maximum possible
number of f -orbits.

Definition 2.5. Let f ∈ Aut T be an automorphism of finite order. If V is a
finite set of vertices satisfying the conditions in (iii) of Lemma 2.3, all of them
lying on the same level of T , we say that V is a fundamental system of vertices
for f .

Next we give a sufficient condition for two automorphisms of T to generate
a wreath product.

Lemma 2.6. Let f ∈ Aut T be an automorphism of finite order m, and assume
that the f -orbit of a vertex v ∈ V (T ) has length m. Then for every g ∈ rst(v),
the subgroup 〈g, f〉 of Aut T is isomorphic to the regular wreath product 〈g〉 o〈f〉.

Proof. Let O be the f -orbit of v. Since |O| = |f |, we have 〈f〉 ∩ st(v) = 1. As a
consequence, if v lies at level n of the tree, also 〈f〉 ∩ st(n) = 1 and

(2.3) 〈g, f〉 = 〈f〉 〈g, gf , . . . , gfm−1〉 = 〈f〉n 〈g, gf , . . . , gfm−1〉,

since g ∈ rst(v) implies that 〈g, gf , . . . , gfm−1〉 ⊆ st(n).
Now set vi = f i(v) for all i ∈ Z, so that O = {v0, v1, . . . , vm−1}. Since

g ∈ rstG(v), from (2.2) we get gf
i ∈ rstG(vi) for all i = 0, . . . ,m− 1, and then

〈gf i〉 ∩ 〈g, gf , . . . , gf i−1〉 ⊆ rstG(vi) ∩ rstG({v1, . . . , vi−1}) = 1.

Also [gf
i
, gf

j
] = 1 for every i, j ∈ {0, . . . ,m− 1}. It follows that

〈g, gf , . . . , gfm−1〉 = 〈g〉 × 〈gf 〉 × · · · × 〈gfm−1〉,
and since gf

m
= g, we conclude from (2.3) that 〈g, f〉 ∼= 〈g〉 o 〈f〉. �

The result in Lemma 2.6 raises the question of whether an automorphism
f ∈ Aut T of finite order m must have a regular orbit on V (T ), i.e. an orbit of
length m. This is clearly the case if m is a prime power, by (ii) of Lemma 2.3,
but it usually fails otherwise. Indeed, one can consider for example a rooted
automorphism corresponding to a permutation whose order is strictly bigger
than the lengths of its disjoint cycles. However, as we see in Lemma 2.9 below,
it is always possible to derive a collection of automorphisms fi from f , acting
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not on T but on some other rooted trees Ri obtained from T , and having the
property that every fi has a regular orbit on V (Ri). These automorphisms fi
will allow us to study Engel conditions regarding f by using Lemma 2.6.

As we will see, Lemma 2.9 is essentially a reformulation of (iii) of Lemma 2.3.
Before proceeding we need to introduce the concept of reduced tree. Note that
reduced trees are somehow related to the trees obtained by deletion of layers
defined by Grigorchuk and Wilson in [12].

Definition 2.7. Let V be a subset of vertices of T , all lying on the same level
n. We define the reduced tree of T at V , denoted by R(V ), as the rooted tree
consisting of the subtrees Tv for v ∈ V , all connected to a common root. In
other words, the set of vertices of R(V ) is

{∅} ∪ {vw | v ∈ V, w ∈ Tsn+1( d )},

where as before s denotes the shift operator on sequences.

For example, in the following figure, we consider the rooted automorphism f
of the ternary tree T3 corresponding to the permutation (1 2 3) and we show in
red the reduced tree at the orbit of the vertex 13:

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 2. An f -orbit and its corresponding reduced tree

Every f ∈ Aut T such that f(V ) = V induces by restriction an automorphism
fV ∈ AutR(V ). Clearly, the map ΦV : f 7−→ fV is a homomorphism of groups.
The effect of ΦV is to focus on the action of f only on the subtrees Tv with
v ∈ V , so to speak. We will use reduced trees mainly in the case where V is an
orbit of f .

Remark 2.8. If v is a vertex of the reduced tree R(V ) and f ∈ Aut T is such
that f(V ) = V , then the fV -orbit of v coincides with the f -orbit of v as a vertex
in V (T ). In particular, if O is a totally splitting f -orbit and we consider the
induced automorphism x = ΦO(f) of R(O), then (ii) of Lemma 2.3 implies that
|x| = |O|. In other words, O is a regular orbit of x in R(O).

Given a subgroup G of Aut T , we write GV for the image of the setwise
stabilizer of V in G under the homomorphism ΦV . In other words,

GV = {fV | f ∈ G and f(V ) = V }.
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Then GV is a subgroup of AutR(V ), and for every vertex v ∈ V we have
ΦV (rstG(v)) ⊆ rstGV (v) (the inclusion can be proper, since there can be auto-
morphisms in G whose action is trivial on Tw for every w 6= v with w ∈ V , but
non-trivial for some w 6∈ V ).

On the other hand, if f ∈ G stabilizes the set V and x = ΦV (f) is the induced
automorphism of R(V ), then f ∈ L(G) or f ∈ L(G) imply that x ∈ L(H) or
x ∈ L(H), respectively. In particular, by choosing V to be an f -orbit, this
will allow us to transfer the analysis of a given Engel element in a subgroup of
Aut T to a more restricted situation where, for example, the Engel element acts
transitively on the first level of the tree.

Actually the most convenient strategy is to reduce the tree to non-trivial
totally splitting f -orbits, since the induced automorphisms will then have regular
orbits. More precisely, we will rely on the following lemma, which is basically a
rephrasing of part of Lemma 2.3 in the language of reduced trees.

Lemma 2.9. Let f ∈ Aut T be an automorphism of finite order m > 1 and let
{v1, . . . , vk} be a fundamental system of vertices for f . For every i = 1, . . . , k,
let Oi be the f -orbit of vi, set Ri = R(Oi), and let fi be the automorphism of
Ri induced by f . Then the following hold:

(i) lcm(|O1|, . . . , |Ok|) = m.
(ii) Oi is a non-trivial totally splitting f -orbit for every i = 1, . . . , k.

(iii) |fi| = |Oi| for every i = 1, . . . , k.

Proof. The first two items follow from (iii) of Lemma 2.3, and (iii) from Re-
mark 2.8. �

3. Some properties of Engel elements in wreath products

In this section we prove several results regarding Engel elements in wreath
products. These will provide the basis for the proof of the main theorems in
this paper, which will be addressed in Sections 4 and 5.

We start by studying left Engel elements lying outside the base group of a
regular wreath product of two cyclic groups. To this purpose, we rely on the
paper [15] by Liebeck.

Lemma 3.1. Let X = 〈x〉 and Y = 〈y〉 be two non-trivial cyclic groups, where
X is finite, and let W = Y oX be the corresponding regular wreath product. If
x ∈ L(W ) then X and Y are finite p-groups for some prime p. Furthermore,
the Engel degree of x on g = (y, 1, . . . , 1) is equal to

|x|+ 1

p
(logp |y| − 1)(p− 1)|x|.

Proof. Let m be the order of x, and let p be an arbitrary prime divisor of m.
Also, write d for the Engel degree of x on g = (y, 1, . . . , 1).

First of all, suppose that Y is finite. Then W is finite and, by Baer’s theorem
mentioned in the introduction, x lies in the Fitting subgroup F (W ). We claim
that Y is then a p-group. To this purpose, assume that |Y | is divisible by a
prime q 6= p, and let Z = 〈z〉 6= 1 be the subgroup of Y of order q. Consider the
direct product ZX inside the base group of W . Since ZX is abelian and normal
in W , it lies in F (W ). Now ZX is a q-group and xp = xm/p is a p-element, and
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both lie in the nilpotent group F (W ). It follows that xp centralizes ZX , which
is clearly a contradiction, since xp does not commute with (z, 1, . . . , 1). This
proves the claim, and since this property holds for every prime divisor of m, it
also follows that X is a p-group. Observe that, since both X and Y are finite
p-groups, the proof of Theorem 5.1 of [15] yields that

(3.1) d = m+
1

p
(logp |y| − 1)(p− 1)m

in this case.
Now it is easy to see that Y cannot be infinite. For a contradiction, suppose

that Y is infinite and consider a prime q different from p. Then the wreath
product Wq = (Y/Y q) oX can be seen as a factor group of W , and so x is a left
Engel element in Wq. Since |Y/Y q| = q and p divides |X|, we get a contradiction
with the previous paragraph. �

Now we digress from Engel elements for a moment, but still working with
wreath products of cyclic groups, in order to prove that rigid stabilizers of weakly
branch groups are not only infinite, but have infinite exponent (Proposition 3.3
below).

Lemma 3.2. Let X = 〈x〉 and Y = 〈y〉 be two finite cyclic groups, where Y is
non-trivial, and let W = Y oX be the corresponding regular wreath product. If
g = (y, 1, . . . , 1) then |xg| > |x|.

Proof. Set m = |x| and let n ∈ {1, . . . ,m} be arbitrary. Then

(xg)n = xngn1 g
(n2)
2 . . . g

( n
n−1)
n−1 gn,

where g1 = g and gi = [g, x, i−1. . ., x] for every i = 2, . . . , n. Now observe that each
gi is of the form

gi = (∗, . . . , ∗, y, 1, . . . , 1),

where we use ∗ to denote unspecified powers of y, and y occupies the ith position.
It follows that

(xg)n = xn(∗, . . . , ∗, y, 1, . . . , 1),

where y appears at the nth position. In particular, (xg)n 6= 1 for 1 ≤ n ≤ m,
and consequently |xg| > m, as desired. �

Proposition 3.3. Let G be a weakly branch group. Then the exponent of rstG(n)
is infinite for every n ∈ N.

Proof. By way of contradiction, assume that rstG(n) has finite exponent. Thus
rstG(n) is periodic and there is a bound for the orders of its elements. For every
k ≥ n, let πk be the (finite) set of prime divisors of the orders of the elements
of rstG(k). Then {πk}k≥n is a decreasing sequence of non-empty finite sets and
consequently their intersection is also non-empty. Let p be a prime in ∩k≥n πk.

Consider a p-element f ∈ rstG(n) of maximum order, say m. Since the order
of f is the least common multiple of the orders of the components of ψn(f), we
may assume without loss of generality that f ∈ rstG(u) for some vertex u of
the nth level. By (ii) of Lemma 2.3, there is a vertex v in the tree T such that
the f -orbit of v has length m. Of course, v must be a descendant of u. Now
the choice of p allows us to consider a non-trivial p-element g in rstG(v). Set
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H = 〈g, f〉. By Lemma 2.6, we have H ∼= 〈g〉 o 〈f〉. In particular, H is a finite
p-group. On the other hand, by Lemma 3.2, H contains an element of order
greater than m. This contradicts the choice of m, since H ⊆ rstG(n). �

Now we continue with our analysis of Engel elements in some wreath products.
Before proceeding, we introduce some further notation. If G is a group and
S ⊆ G, we write LG(S) to denote the set of all x ∈ G that are left Engel
elements on every element of S, that is, such that for all s ∈ S there exists
n = n(s, x) such that [s,n x] = 1. We define the set LG(S) in the obvious way,
and if x ∈ LG(S) then the Engel degree of x on S is the maximum of the Engel
degrees of x on the elements of S.

Lemma 3.4. Let W = Y o X be a regular wreath product of two non-trivial
groups, where X is finite cyclic of order n, and let π : W → X be the natural
projection. Assume that D = D1 × · · · ×Dn 6= 1 is a subgroup of the base group
of W , and that w ∈W is such that π(w) is a generator of X. Then the following
hold:

(i) If w ∈ LW (D) has Engel degree d on D then d ≥ n.
(ii) If w ∈ LW (D) then CD(w) is periodic.

Proof. Write w = (y1, . . . , yn)x, where yi ∈ Y and x generates X. We may
assume that x permutes the components of the base group according to the
cycle (1 2 . . . n).

(i) Without loss of generality, we may assume that D1 6= 1. Choose a non-
trivial element g = (y, 1, . . . , 1) ∈ D and let 1 ≤ i ≤ n− 1. One can easily check
by induction on i that

[g,iw] = (y(−1)i , . . . , yy1...yi , 1, . . . , 1),

where the last non-trivial component is in position i+1. It follows that [g,n−1w] 6=
1 and d ≥ n.

(ii) By contradiction, assume that h = (z1, . . . , zn) ∈ CD(w) is of infinite
order. For notational convenience, set z0 = zn and y0 = yn. Then from the
condition h = hw we get zi = z

yi−1

i−1 for all i = 1, . . . , n. Hence all components of
h are conjugate and they are all of infinite order.

Now let g = (z1, 1, . . . , 1) ∈ D. For every k ≥ 0, let us write [g,k w] =
(zk,1, . . . , zk,n) and, as before, set zk,0 = zk,n. We claim that the following hold
for every k ≥ 0:

(a) zk,i ∈ 〈zi〉 for every i = 1, . . . , n.

(b) If we write zk,i = z
mk,i
i , then there exists i ∈ {1, . . . , n} such that

mk,i 6= mk,i−1.

We argue by induction on k. The result is obvious for k = 0, so assume k ≥ 1 and
that the claim is true for values less than k. Since [g,k w] = [g,k−1w]−1[g,k−1w]w,
it follows that

zk,i = z−1
k−1,i z

yi−1

k−1,i−1 = z
−mk−1,i

i (z
yi−1

i−1 )mk−1,i−1 = z
mk−1,i−1−mk−1,i

i

for all i = 1, . . . , n. This proves (a) and, if (b) does not hold, then

mk−1,1−mk−1,2 = mk−1,2−mk−1,3 = · · · = mk−1,n−1−mk−1,n = mk−1,n−mk−1,1.
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Now the sum of the n − 1 first terms in this chain of equalities is the same as
n− 1 times the last one, i.e.

mk−1,1 −mk−1,n = (n− 1)(mk−1,n −mk−1,1).

From this, it readily follows that

mk−1,1 = mk−1,2 = mk−1,3 = · · · = mk−1,n,

which is contrary to the induction hypothesis.
Finally, observe that (b) above implies that mk,i and mk,i−1 cannot both

be zero. Since zi and zi−1 are of infinite order, we conclude that [g,k w] 6= 1
for all k ≥ 1 and consequently w 6∈ LW (D). This contradiction completes the
proof. �

4. Left Engel elements in weakly branch groups

At this point, we can start combining all the machinery developed in Sections
2 and 3 in order to prove the main results of this paper. In this section we con-
sider left Engel elements. The following is an expanded version of Theorem A.

Theorem 4.1. Let G be a subgroup of Aut T in which all rigid vertex stabilizers
are non-trivial. Then:

(i) If f is a non-trivial left Engel element of finite order, and O is a non-
trivial totally splitting f -orbit, then for some prime number p the length
of O is a p-power and rstG(O) is a p-subgroup.

If G is furthermore weakly branch, then:

(ii) If the set of finite order elements of L(G) is non-trivial then it is a p-set
for some prime p, and rstG(n) is a p-group for some n ≥ 1.

(iii) L(G) = 1.

Proof. (i) Denote the reduced tree R(O) by R, and set x = ΦO(f) and H = GO.
We observe that |x| = |O| by Remark 2.8. Consider now a vertex v in O and an
arbitrary element g ∈ rstG(v), and set y = ψv(g) (here v is considered as a vertex
in T ). Then h = ΦO(g) lies in rstH(v) and ψv(h) = y (here v is considered as
a vertex in R). By Lemma 2.6, we have 〈h, x〉 ∼= 〈h〉 o 〈x〉. Since x ∈ L(H),
Lemma 3.1 implies that both |y| and |x| are p-powers for some prime p. Thus
|g| and |O| are p-powers. Since g ∈ rstG(v) was arbitrary and f acts transitively
on O, we conclude that rstG(O) is a p-group.

(ii) Let again f ∈ L(G) be a non-trivial element of finite order. By applying
Lemma 2.9 to f , we obtain non-trivial totally splitting f -orbits O1, . . . ,Ok, all
lying on the same level n of the tree, such that |f | = lcm(|O1|, . . . , |Ok|). Let
us fix i ∈ {1, . . . , k}. By (i), there exists a prime p (in principle, depending on
i) such that |Oi| is a p-power and rstG(Oi) is a p-group. Since G acts now level
transitively on T , all rigid vertex stabilizers are isomorphic by (2.2). It follows
that p is the same for all i and consequently rstG(n) is a p-group. Also the
length of all orbits O1, . . . ,Ok is a power of p and f is a p-element.

(iii) By contradiction, assume that f ∈ L(G), f 6= 1. Let d be the Engel
degree of f .
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Assume first that f is of finite order. Let O be a non-trivial totally splitting
f -orbit. Define x and y as in the proof of (i), and recall that these are p-elements.
By Lemma 3.1,

d ≥ |x|+ 1

p
(logp |y| − 1)(p− 1)|x|.

On the other hand, since the exponent of rstG(n) is not finite by Proposition 3.3,
the order of y is unbounded. This is a contradiction.

Assume now that the order of f is infinite. By Lemma 2.3, there exists an
f -orbit O of length ` > d. Let once again R be the reduced tree R(O), and set
h = ΦO(f) and H = GO. Then h ∈ S〈x〉, where S is the first level stabilizer in
AutR (i.e. the stabilizer of O) and x is a rooted automorphism corresponding
to a cycle of length `. Observe that S〈x〉 is isomorphic to a regular wreath
product W = Y oX, where Y is the stabilizer in R of a vertex in O and X = 〈x〉
is cyclic of order `. Under this isomorphism, h corresponds to an element w
with π(w) = x. Also h lies in LH(D) with Engel degree at most d, where
D = ΦO(rstG(O)) corresponds to a non-trivial direct product inside the base
group of W . Now, by applying (i) of Lemma 3.4, we get d ≥ `, which is a
contradiction. This completes the proof of (iii). �

Now we proceed to prove Theorem B.

Theorem 4.2. Let G be a branch group. If L(G) 6= 1 then G is periodic and
there exists a prime p such that:

(i) L(G) consists of p-elements.
(ii) G is virtually a p-group.

Proof. It suffices to show that L(G) does not contain any elements of infinite
order. Indeed, since L(G) 6= 1, the theorem then follows immediately from (ii)
of Theorem 4.1, by taking into account that |G : rstG(n)| is always finite if G is
a branch group.

Let us assume then that f ∈ L(G) is of infinite order. Consider an f -orbit
O in V (T ) of length ` ≥ 2, and let n be the level of T containing O. Set
R = R(O), h = ΦO(f) and H = GO. Then for every vertex v 6= ∅ of R we
have ΦO(rstG(v)) ⊆ rstH(v), and consequently all rigid vertex stabilizers of H
are non-trivial. Also h ∈ L(H).

If h has finite order, then by (i) of Theorem 4.1, the rigid stabilizer in H of
some vertex v 6= ∅ of R is periodic. Consequently rstG(v) is periodic, and by
level transitivity of G, also rstG(n) is periodic. Since |G : rstG(n)| is finite, it
follows that G itself is periodic, which is a contradiction.

Assume now that the order of h is infinite. As in the proof of (iii) of Theo-
rem 4.1, h lies in S〈x〉, where S is the first level stabilizer of AutR, and x is
a rooted automorphism corresponding to a cycle of length `. We can identify
S〈x〉 with the regular wreath product W = Y o X, where X = 〈x〉 is cyclic of
order ` and h maps onto x. Then h ∈ LW (D), where

D = ΦO(rstG(O)) = ΦO(rstG(n))

corresponds to a non-trivial direct product inside the base group of W . By (ii) of
Lemma 3.4, CD(h) is periodic. However, since G is branch we have fk ∈ rstG(n)
for some k ≥ 1 and then hk = ΦO(fk) ∈ D. It follows that hk ∈ CD(h) is an
element of infinite order, which is a contradiction. �
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Now we can apply Theorems A and B to some distinguished subgroups of
Aut T , and obtain the part of Corollary D regarding left Engel elements. Before
proceeding, we will introduce some of the groups that appear in the following
result.

First of all, the Hanoi Tower group H is the subgroup of Aut T3 generated by
the three automorphisms a, b and c given by the following recursive formulas:

a = (1, 1, a)(1 2),

b = (1, b, 1)(1 3),

c = (c, 1, 1)(2 3).

This group models the popular Hanoi Tower puzzle on 3 pegs.
On the other hand, given an odd prime p and a non-trivial subspace E of

Fp−1
p , we define the multi-GGS group (GGS standing for Grigorchuk, Gupta,

and Sidki) GE as the following subgroup of Aut Tp. The group GE is generated
by the rooted automorphism a of order p corresponding to the p-cycle (1 2 . . . p),
and by the elementary abelian p-subgroup B consisting of all automorphisms
be, with e = (e1, . . . , ep−1) ∈ E, defined recursively via

(4.1) be = (ae1 , . . . , aep−1 , be).

If dim E = 1 then GE is simply called a GGS group. Multi-GGS groups are
usually presented by giving a basis (e1, . . . , er) of E and defining bi ∈ B from
ei as in (4.1) for each i = 1, . . . , r, so that GE = 〈a, b1, . . . , br〉. We refer the
reader to the paper [2] by Alexoudas, Klopsch, and Thillaisundaram for general
facts about multi-GGS groups. Multi-GGS groups are infinite and provide a
wealth of examples giving a negative answer to the General Burnside Problem.
For instance, the famous Gupta-Sidki p-group is the GGS group 〈a, b〉 with b
corresponding to the vector e = (1,−1, 0, . . . , 0). In general, a multi-GGS group

is periodic if and only if E is contained in the hyperplane of Fp−1
p given by the

equation e1 + · · · + ep−1 = 0 [2, Theorem 3.2]. On the other hand, multi-GGS
groups are known to be branch unless E = 〈(1, . . . , 1)〉 consists of constant
vectors, in which case it is weakly branch [2, Proposition 3.7].

Corollary 4.3. In all the following groups, the only left Engel element is the
identity:

(i) Every infinitely iterated wreath product of finite transitive permutation
groups of degree at least 2. In particular, Aut T and Γp, for p a prime.

(ii) The group F of all finitary automorphisms of T , provided that the se-
quence d defining T contains infinitely many terms greater than 2.

(iii) All non-periodic multi-GGS groups GE, i.e. those with at least one vec-
tor e ∈ E having non-zero sum in Fp.

(iv) The Hanoi Tower group H.

Proof. (i) For every n ∈ N, let Kn be a finite transitive permutation group of
degree dn ≥ 2, and let W be the iterated wreath product of all these groups.
Let T be the spherically homogeneous rooted tree corresponding to the sequence
d = {dn}n∈N. Then W is isomorphic to the subgroup K of Aut T consisting of
all automorphisms whose labels at level n are elements of Kn+1. Observe that K
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is a branch group, since every Kn is transitive and obviously rstK(n) = stK(n)
in this case.

According to Theorem B, we only need to construct an element of infinite
order in K to conclude that L(W ) = 1. To this purpose, we choose an infinite
sequence {kn}n∈N of non-trivial permutations kn ∈ Kn, and an infinite sequence
{vn}n∈N∪{0} of vertices, where vn ∈ Ln and kn(vn) 6= vn. Also, let On denote
the orbit of vn under 〈kn〉 and set `n = |On|.

Now we define f to be the automorphism of T having label kn+1 at vertex
vn for all n ∈ N ∪ {0}. We claim that the length of the f -orbit of vn is `1 . . . `n
for all n ∈ N. Since `i ≥ 2 for every i, we conclude that f is of infinite order by
using (ii) of Lemma 2.3.

We prove the claim by induction on n. The result is obvious for n = 1, since
f behaves as k1 on the first level of T . Then f `1 fixes all vertices in the orbit
O1, and a simple calculation shows that on all those vertices the section of f `1

coincides with the section of f at v1, let us call it g. Since vn lies at level n− 1
for g, by induction the length of the g-orbit of vn is `2 . . . `n. From this one can
readily see that the f -orbit of v1 has length `1 . . . `n, as desired.

(ii) Obviously, F is spherically transitive and rstF (n) = stF (n) for all n ∈ N.
Thus F is a branch group. In this case, all elements of F are of finite order, but
we still get L(F) = 1 from Theorem B, because there is no prime p for which F
is virtually a p-group. Indeed, assume for a contradiction that N is a normal p-
subgroup of F of finite index m. Under this assumption, if H is a q-subgroup of
F for a prime q 6= p, the order of H cannot exceed m. However, as we see in the
next paragraph, the condition on the sequence d implies that F has 2-subgroups
and 3-subgroups of arbitrarily high order, and we get a contradiction.

Consider the following subset of N:

S = {n ∈ N | dn ≥ 3}.

By hypothesis, S is infinite. For every n ∈ S, let Hn be the subgroup of F
consisting of all automorphisms with labels lying in 〈(1 2)〉 for all vertices in
Ln and trivial labels elsewhere. Then the order of Hn is 2 d1...dn , which tends
to infinity as n → ∞. We can define similarly a subgroup Jn of order 3d1...dn

for every n ∈ S, by using the 3-cycle (1 2 3). Thus we get 2-subgroups and
3-subgroups of F of arbitrarily high order, as desired.

(iii) If E = 〈(1, . . . , 1)〉 then L(GE) = 1 by [7, Theorem 7]. Otherwise GE is
a branch group, and the result follows immediately from Theorem B and from
the characterisation of periodic multi-GGS groups given above.

(iv) The Hanoi Tower group is known to be a branch group [11, Theorem 5.1].
Let us see that the element ab = (b, 1, a)(1 2 3) is of infinite order. Assume, for
a contradiction, that |ab| = k is finite. Observe that k = 3` for some `, since ab
has order 3 modulo the first level stabilizer. But then

(ab)3` = ((ba)`, (ab)`, (ab)`)

implies that (ab)` = 1, which is a contradiction. �

Corollary 4.4. Let p be a prime and let Fp be the group of p-finitary automor-
phisms of Aut Tp. Then the following hold:

(i) L(Fp) = Fp.
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(ii) L(Fp) = 1.

Proof. Since Fp is locally a finite p-group, (i) is clear. On the other hand, since
Fp is spherically transitive and rstFp(n) = stFp(n) for all n, (ii) follows directly
from Theorem A. �

5. Right Engel elements in weakly branch groups

In this final section, we prove Theorem C, regarding right Engel elements in
weakly branch groups, and then we apply it to show that R(G) = 1 whenever
G is a GGS group. Before proceeding, we need a straightforward lemma.

Lemma 5.1. Suppose that T has d vertices in the first level, and consider
x, y ∈ Aut T such that:

(i) y = az, where a is the rooted automorphism corresponding to the cycle
(1 2 . . . d) and z ∈ st(1) is given by ψ(z) = (z1, . . . , zd).

(ii) x ∈ st(1) is given by ψ(x) = (x1, . . . , xd).

Then, for all k ≥ 2, we have

ψ([y,k x]) = ([(x−1
d )z1 ,k−1 x1]x1 , . . . , [(x−1

d−1)zd ,k−1 xd]
xd).

Proof. We have

ψ([y, x]) = ψ((x−1)yx) = ψ((x−1)a)ψ(z)ψ(x)

= ((x−1
d )z1x1, (x

−1
1 )z2x2, . . . , (x

−1
d−1)zdxd).

Now the result follows immediately by observing that taking subsequent com-
mutators with x is performed componentwise. �

Now we are ready to prove Theorem C.

Theorem 5.2. Let G be a weakly branch group. If rstG(n) is not an Engel
group for all n ∈ N, then R(G) = 1.

Proof. Let f ∈ G, f 6= 1, and assume by way of contradiction that f ∈ R(G).
Choose a non-trivial f -orbit O = {v1, . . . , vd}, and assume that f permutes
cyclically the vertices vi. Let R = RO, H = GO and y = ΦO(f) ∈ R(H).
Then we can write y = az, where a is rooted in R corresponding to the cycle
(1 2 . . . d) and z is in the first level stabilizer. Write ψ(z) = (z1, . . . , zd).

Let n be the level of T where O lies. Since ΦO(rstG(n)) ⊆ rstH(1) and rstG(n)
is not Engel by hypothesis, it follows that rstH(1) is not an Engel group. If L
is the first component of the direct product ψ(rstH(1)) then L is not an Engel
group either, and we can choose a, b ∈ L such that [b,k a] 6= 1 for all k ≥ 1. Now
consider r1, r2 ∈ rstH(1) such that

ψ(r1) = (a, 1, . . . , 1) and ψ(r2) = (b, 1, . . . , 1),

and define x = r1(r−1
2 )y

−1
, so that

ψ(x) = (a, 1, . . . , 1, (b−1)z
−1
1 ).

By applying the formula in Lemma 5.1, we get

ψ([y,k x]) = ([b,k−1 a]a, ∗, . . . , ∗)
and consequently [y,k x] 6= 1 for all k ≥ 2. This is a contradiction, since y ∈
R(H) and x ∈ H. �
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Theorem C can be applied to show that GGS groups have no non-trivial right
Engel elements. We first need to prove the weaker result that they are not Engel
groups.

Lemma 5.3. Let G be a GGS group. Then G is not an Engel group.

Proof. We show that there is a power of b that is not a left Engel element of
G. Let e be the defining vector of b. Consider any index i ∈ {1, . . . , p− 1} such
that ep−i 6= 0 in Fp, and choose λ ∈ F×p such that λep−i = −i. Then we have

(5.1) ψ((b−λ)a
i
) = (∗, . . . , ∗, ai),

where we use ∗ to denote unspecified elements of G.

Since (b−λ)a
i

= [ai, bλ]b−λ, it follows that, for every k ≥ 2,

[(b−λ)a
i
, bλ, k−1. . . , bλ] = [[ai, bλ]b−λ, bλ, k−1. . . , bλ]

= [[ai, bλ, bλ]b
−λ
, bλ, k−2. . . , bλ]

= [ai, bλ, k. . ., bλ]b
−λ
.

By using (5.1), it follows that
(5.2)

ψ([ai, bλ, k. . ., bλ]b
−λ

) = ψ([(b−λ)a
i
, bλ, k−1. . . , bλ]) = (∗, . . . , ∗, [ai, bλ, k−1. . . , bλ]).

Now if bλ is a left Engel element of G, choose the minimum k ≥ 1 such that
[ai, bλ, k. . ., bλ] = 1. Since ai and bλ do not commute, we have k ≥ 2 and so

[ai, bλ, k−1. . . , bλ] 6= 1. According to (5.2), this is a contradiction. �

Corollary 5.4. Let G be a GGS group. Then R(G) = 1.

Proof. If the defining vector e is constant, then L(G) = 1 by Theorem 7 of [7],
and consequently also R(G) = 1. Thus in the remainder we assume that e is not
constant. By Lemmas 3.2 and 3.4 of [8], we know that G is regular branch over
K, where K = γ3(G) if e is symmetric and K = G′ otherwise. Since rstG(n)

contains a copy of K ×
pn

· · · ×K for every n ∈ N, if we prove that K is not Engel
then Theorem C applies to conclude that R(G) = 1.

In order to show that K is not Engel, we are going to find a vertex v of the
first level of the tree such that ψv(K) = G. Since G is not Engel by Lemma 5.3,
it follows that K is not Engel either, as desired.

We consider separately the cases when e is symmetric and non-symmetric.
Assume first that e is non-symmetric, so that K = G′. We have

ψ([b, a]) = (a−e1b, ae1−e2 , ae2−e3 , . . . , aep−2−ep−1 , b−1aep−1).

Since e is not constant, there exists i ∈ {1, . . . , p− 2} such that ei 6= ei+1 in Fp.
If v is the vertex i+ 1 on the first level of the tree, then

ψv([b, a]) = aei−ei+1 and ψv([b, a]a
i
) = a−e1b.

Since the subgroup 〈aei−ei+1 , a−e1b〉 coincides with G, we get the desired equality
ψv(G

′) = G.
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Now let e be symmetric, i.e. such that ei = ep−i for all i = 1, . . . , p− 1. Since
e is not constant, this implies that p ≥ 5. We have

ψ([b, a, a]) = ψ([b, a]−1)ψ([b, a]a)

= (b−1ae1b−1aep−1 , a−2e1+e2b, ae1−2e2+e3 , . . . ,

aep−3−2ep−2+ep−1 , a−ep−1baep−2−ep−1).

If ei − 2ei+1 + ei+2 6= 0 for some i ∈ {1, . . . , p− 3}, we have a non-trivial power
of a in one of the components of ψ([b, a, a]) and we can argue as above to prove
that ψv(γ3(G)) = G for a vertex v in the first level. On the other hand, if
ei − 2ei+1 + ei+2 = 0 for all i = 1, . . . , p− 3, then

e3 = 2e2 − e1,

e4 = 2e3 − e2 = 3e2 − 2e1,

...

ep−1 = 2ep−2 − ep−3 = (p− 2)e2 − (p− 3)e1.

Since ep−1 = e1, the last equation implies that e1 = e2, and then using all other
equations, we get that all components ei are equal to e1. Thus the vector e is
constant, which is a contradiction. �
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