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Abstract: Lagrangian trajectories obtained through 3D Particle 

Tracking Velocimetry (3D-PTV) measurements have been used to 

visualize the flow field of Newtonian and non-Newtonian fluids in a 

flat-bottomed vessel. The vessel, of diameter 𝑇 = 180 mm, was 

equipped with a 6-blade Rushton turbine of diameter 𝐷 = 𝑇/3 and four 

baffles of width 𝑏 = 𝑇/10. The experiments were carried out in the 

transitional flow regime (73 ≤ 𝑅𝑒 ≤ 1,257). The velocities and 

Lagrangian accelerations in the flows have been calculated from the 

time-resolved tracer coordinates. Non-Newtonian fluids exhibited a 

smaller impeller flow number compared to Newtonian fluids. The 

distributions of shear rate have been obtained via interpolation of the 

Lagrangian velocity data in a 3D Eulerian grid. In the impeller region, 

the mean shear rate was, to a first approximation, proportional to the 

impeller rotational speed, although a more detailed analysis revealed 

influences of both rheology and Reynolds number. The mean 

Lagrangian acceleration scaled with the mean shear rate raised to the 

power of 1.8.  

 

Keywords: PTV, mixing, stirred tanks, trajectories, Lagrangian, non-

Newtonian, transitional. 



1. Introduction 

Mixing of liquids in mechanically agitated vessels is one of the most common and yet 

complex unit operations in the process industry. Such vessels have a key role in the production 

of many types of formulated products which possess both simple and complex rheology, such 

as foods, catalyst slurries and ink, paints, cosmetics and pharmaceuticals (Hemrajani and 

Tatterson, 2004). Control of the mixing performance, or the degree of segregation (Kukukova 

et al., 2011) is critical for successful product manufacture, ensuring batch to batch consistency 

and product quality. This is strongly influenced by both process and product parameters, 

primarily the mixer geometry and fluid rheology (Story et al., 2018). 

Parameters which need to be specified for the mixer geometry include impeller type, 

such as the benchmark Rushton disc turbine radial impeller, shape of vessel bottom and 

whether baffles are installed. Specific power consumption, mixing time, pumping capacity, 

shear rate distribution and flow patterns are the most used criteria for impeller selection (Ameur 

and Bouzit, 2012). Baffles are solid surfaces that can be arranged orthogonally to the tangential 

flow to limit solid-body rotation of the fluid and enhance axial recirculation. Other geometrical 

parameters which impact the mixing performance include the impeller-to-tank diameter ratio, 

submergence, eccentricity and tilting angle from the vertical axis. 

The rheology of complex high value added liquid products such as cosmetics, paints 

and foods are rarely Newtonian (Dickey, 2015), with the apparent viscosity, 𝜇௘, being a 

function of the local shear rate, 𝛾̇, and possibly time, if the fluid is time-dependent. A myriad 

of constitutive laws have been postulated to describe this function, two of the most common 

being Ostwald-de Waele (power law), for shear-thickening and shear thinning fluids and 

Bingham, for fluids which exhibit a yield stress (Barnes et al., 1989). Such fluids behave very 

differently from a Newtonian fluid in a stirred vessel because the wide range of shear rates 

experienced cause corresponding large changes in local apparent viscosity. Away from the 



impeller and near walls and baffles, shear forces are low, and the viscosity can be very high. 

These zones of the tank control the blending time (Grenville, 1992) and may remain unmixed 

because of inadequate fluid motion (Dickey, 2015). Yield stress liquids tend to form caverns 

of moving fluid around the impeller, while the fluid outside remains static. Viscous shear 

thinning liquids may form pseudo-caverns, outside of which the velocity is extremely low. 

The flow regime in stirred vessels may be determined via the modified impeller 

Reynolds number, 𝑅𝑒 =
ఘே஽మ

ఓ
, where 𝜌 is the fluid density, 𝐷 is the impeller diameter and 𝑁 is 

the impeller frequency. Its relationship to the power drawn, 𝑃, is a long-established function 

of the power number, 𝑃𝑜 =
௉

ఘேయ஽ఱ
. For a non-Newtonian fluid, 𝜇 is replaced by 𝜇௘ . 𝑃𝑜 is 

inversely proportional to 𝑅𝑒 in the laminar regime, i.e. 𝑃𝑜 = 𝐾௉𝑅𝑒ିଵ, and constant in the 

turbulent regime, i.e. 𝑃𝑜 = 𝑃𝑜். For a given geometry, the power number data of any 

Newtonian fluid will lie on the same curve. These plots are commonly used to select the 

impeller for a certain application and to predict the power consumption. The power curves of 

common geometries and the extension of flow regimes have been measured by many authors. 

For instance, in the case of the Rushton turbine, 𝐾௉ ≈ 68 for 𝑅𝑒 ≤ 10 (Cabaret et al., 2008) 

and 𝑃𝑜் ≈ 5 (Distelhoff et al., 1995). In the literature, 𝑅𝑒 ≥ 2  10ସ is commonly considered 

enough to sustain a fully turbulent flow in the vessel (Machado et al., 2013). However, since 

most of the energy provided by the impeller is dissipated in the impeller discharge stream (Zhou 

and Kresta, 1996), it is not guaranteed that the whole flow is fully turbulent. Additional 

requirements are the scaling of the mean velocity and of energy dissipation. Machado et al. 

(2013) applied Laser Doppler Anemometry (LDA) to measure the fluid velocity in vessels of 

different scales and configurations. They found that only a portion of the tank was fully 

turbulent at 𝑅𝑒 = 2  10ସ. Interestingly, Newtonian fluids of different viscosity mixed at 



identical values of Reynolds number could present different flow regimes at the same location 

in the tank. 

The situation becomes even more complex with non-Newtonian fluids. The Metzner-

Otto model (Metzner and Otto, 1957) has become the most widely used method for estimating 

the power requirements of non-Newtonian fluids (Márquez-Baños et al., 2019) and is 

commonly recommended as a standard procedure in mixing text books (Doraiswamy et al., 

1994). It assumes that, in laminar flows, the fluid motion in the impeller region is characterized 

by an effective shear rate, which is proportional to the impeller speed: 

𝛾̇௘ = 𝑘௦𝑁. (1) 

The apparent (also indicated as effective) viscosity, 𝜇௘, is calculated at that value of 

shear rate, according to the fluid rheological model. The value of 𝑘௦ is fitted so that the power 

number curve of any non-Newtonian fluid matches the curve for Newtonian fluids. The 

Metzner-Otto equation (1) was originally developed for flat-blade turbines operated at 2 ≤

𝑅𝑒 ≤ 270, and the authors reported a value of 𝑘௦ = 13, which appeared to be independent of 

the fluid rheology, the impeller-to-tank diameter ratio, 𝐷/𝑇, and the presence of baffles. 

However, the authors did not exclude an effect of the flow index, which was not varied widely 

in their work. They also suggested that, with close-clearance impellers such as ribbons or 

anchors, the effective shear rate could become dependent o𝑛 𝐷/𝑇. Subsequent works have tried 

to determine the dependence of 𝑘௦ on the fluid rheology and geometrical ratios, with significant 

discrepancies reported (e.g. Calderbank and Moo-Young, 1961; Nagata et al., 1971; Beckner 

and Smith, 1996). 

Bertrand et al. (1996) extended the Metzner-Otto concept to yield stress fluids agitated 

with anchor impellers. They found that 𝑘௦ was independent of 𝐵𝑖 for 𝐵𝑖 ≤ 7500, where, 𝐵𝑖 =

ఛబ

௄ே೙
, is the Bingham number, 𝜏଴ is the yield stress 𝐾 is the consistency index and 𝑛 is the power 

law exponent (this definition assumes 𝛾̇௘ = 𝑁). However, Anne-Archard et al. (2006) 



simulated yield stress fluid flows induced by helical and anchor agitators and observed that 𝑘௦ 

changed with 𝐵𝑖 in the range 60 ≤ 𝐵𝑖 ≤ 12,000. 

In the original Metzner-Otto approach, the shape and size of the impeller region were 

not specified and thus 𝑘௦ was intended as a global parameter that could be determined through 

power measurements. More generally, the ratio between a volume-averaged shear rate and the 

impeller speed, i.e. 𝑘௦
∗(Ω) = 〈𝛾̇〉ஐ/𝑁, is a function of the volumetric domain, Ω, and can be 

evaluated from local velocity data obtained either by experiment or by simulation using 

Computational Fluid Dynamics (CFD). For example, Jahangiri et al. (2001) investigated the 

flow of four viscoelastic polyacrylamide solutions within a vessel stirred with a Rushton 

turbine under transitional conditions and evaluated, by means of LDA, the shear rate from the 

velocity data at different radial positions. At the impeller tip, 𝑘௦
∗ varied between 10.22 and 

10.50. Ramírez-Muñoz et al. (2017) used CFD to simulate the flow induced by a Rushton 

turbine and divided the impeller region into many control volumes. In each volume, 𝑘௦
∗ was 

calculated from the volume-averaged shear rate and a value of 𝑘௦
∗ = 11.8 was obtained in the 

volume swept by the impeller blades. This is very close to the value of 𝑘௦ = 11.1 fitted directly 

from power measurements and to the typical value of 𝑘௦ = 11.5 reported in the literature. 

Márquez-Baños et al. (2019) carried out a similar analysis for a pitched-blade turbine, though 

in that case, a larger volume than that swept by the impeller blades had to be considered to 

match the volume-based 𝑘௦
∗ with the power-based 𝑘௦. 

As the Reynolds number increases, the characteristic shear rate diverges from the 

Metzner-Otto model (1) and becomes proportional to 𝑁ଷ/ଶ (Sánchez Pérez et al., 2006) due to 

the turbulence contribution to shear generation. Nonetheless, due to its simplicity, the Metzner-

Otto model is commonly applied outside of laminar flow conditions (Böhme and Stenger, 

1988). Kelly and Gigas (2003) simulated the flow of Newtonian and power-law liquids (0.4 ≤

𝑛 ≤ 0.8) near axial flow impellers operating in the transitional regime. They found that the 



shear rate around the impeller surface could be approximated as a linear function of the impeller 

frequency, but upon closer inspection it also depended on the flow index. This was because the 

impeller discharge angle changed dramatically with both 𝑅𝑒 and 𝑛. Using Newtonian data from 

Kelly and Gigas (2003), Sánchez Pérez et al. (2006) observed that a power-law fitting of the 

impeller shear with 𝑁ଵ.ସ provided a higher coefficient of determination than the linear fitting 

(𝑅ଶ = 0.99 instead of 𝑅ଶ = 0.95). However, given the small number of data points, the 4% 

increase in 𝑅ଶ is not enough to demonstrate a better fitting. More likely, this was just an effect 

of the additional degree of freedom introduced by the power law model. 

The flow number, 𝐹𝑙 =
ொ

ே஽య
, normalizes the flow rate of fluid circulated by the impeller, 

𝑄. In the case of a Rushton turbine, which pumps the fluid radially, 𝑄 can be obtained from 

velocity data as the flux across a control surface parallel to the impeller blade height (Dyster et 

al., 1993): 

𝑄(𝑠) = 2𝜋 ൬
𝐷

2
+ 𝑠൰ න 𝑈௥

തതത 𝑑𝑦
௖ା௪/ଶ

௖ି௪/ଶ

. (2) 

In (2), 𝑈௥
തതത is the azimuthally averaged radial component of the velocity at a radial coordinate 

𝑟 = 𝐷/2 + 𝑠, where 𝑠 is an arbitrary distance from the impeller tip, 𝑐 is the vertical coordinate 

of the impeller plane and 𝑤 is the vertical size of the impeller blade. Norwood and Metzner 

(1960) measured the flow rates of Newtonian fluids with Rushton turbines. In the range of 𝑅𝑒 

between 36 and 1.7 × 10ସ, the flow rates were 

𝑄 ∝ 𝑁𝐷ଶ𝑤 ൬𝐷଴.ସ
𝜌

𝜇
൰

଴.ହ

(1 − 𝑞ଶ)଴.ହ. (3) 

The term 𝑞, representing the difference between the impeller velocity and the fluid velocity at 

the blade tip, was found to be negligible. In the laminar and transitional regimes, the flow 

number depends on the Reynolds number, then it becomes constant under turbulent conditions. 

Dyster et al. (1993) measured 𝐹𝑙 of the Rushton turbine in a range of 𝑅𝑒 between 5 and 5 ∙ 10ସ 



with Newtonian fluids, based on the mean velocity profiles. They found that 𝐹𝑙 was 

proportional to 𝑅𝑒଴.ହ till 𝑅𝑒 ≤ 500, and it approached a constant value of ~0.78 for 𝑅𝑒 > 500. 

The profiles of the root mean square (rms) values of the radial velocity, normalized by the 

impeller tip speed, were also independent of 𝑅𝑒 for 𝑅𝑒 > 500. Koutsakos and Nienow (1990) 

conducted a similar analysis with shear thinning liquids (0.37 ≤ 𝑛 ≤ 0.58). The value of flow 

number of shear thinning fluids was always smaller than that for Newtonian fluids at the same 

Reynolds number. In particular, 𝐹𝑙 was proportional to 𝑅𝑒 for 𝑅𝑒 ≤ 60 and to 𝑅𝑒଴.ଶ for 𝑅𝑒 >

60, till eventually it reached the constant value of ~0.78. Venneker et al. (2010) measured the 

velocity profiles of ten liquids (0.56 ≤ 𝑛 ≤ 1) agitated with a Rushton turbine. The Reynolds 

number of the experiments varied from the transitional (𝑅𝑒 ~10ଷ) to the turbulent regime 

(𝑅𝑒 ~10ହ). The flow index was found to have a different impact on the various velocity 

components (both mean and rms). The shear thinning rheology had a widening effect on the 

discharge profiles of the radial and tangential velocities, resulting in lower flow numbers 

compared to the Newtonian liquids. However, the differences were not as pronounced as in 

Koutsakos and Nienow (1990). 

In industry, mixing operations in stirred vessels are frequently carried out under 

transitional flow conditions. However, most experimental and numerical studies reported in the 

literature focus on fully laminar or fully turbulent flows (Mendoza et al., 2018). Therefore, the 

transitional regime is still not well characterised (Machado et al., 2013), particularly when non-

Newtonian rheology is involved. Furthermore, most experimental studies in agitated vessels 

have been carried out by means of Eulerian techniques, including PIV, LDA and Planar Laser 

Induced Fluorescence (PLIF). Lagrangian investigations of fluid mixing in stirred tanks have 

been rather limited. Some examples include the works by Rammohan et al. (2001, 2003) with 

Computer Automated Radioactive Particle Tracking (CARPT) and Chiti et al. (2011) using 

Positron Emission Particle Tracking (PEPT). Alberini et al. (2017) have applied PTV to 



transitional flows of non-Newtonian fluids in agitated vessels, but their analysis was limited to 

a comparison of the interpolated Eulerian velocity against PIV data. This paper presents a novel 

investigation of the agitation of Newtonian and non-Newtonian fluids in a lab-scale vessel 

equipped with a Rushton turbine under transitional flow conditions using 3D-PTV. The effects 

of the fluid rheology on the flow dynamics have been assessed in terms of mean flow patterns, 

impeller flow numbers and distributions of shear rate and Lagrangian acceleration. A study of 

the volume-averaged shear rate in the impeller region has been carried out to test the validity 

of Metzner-Otto’s assumption in the low and mid transitional flow regime. To the best of the 

authors’ knowledge, this is the first time that PTV has been applied to fluid mixing in agitated 

vessels in a wide range of experimental conditions. 

2. Materials and methods 

2.1.Flow systems and experimental conditions 

The flows investigated in this work were obtained by agitating different fluids in a 

transparent flat-bottomed cylindrical vessel of diameter 𝑇 = 180 mm and height 𝐻 = 𝑇. The 

tank was equipped with four baffles, of width 𝑏 = 𝑇/10, and a 6-blade Rushton disc turbine, 

of diameter 𝐷 = 𝑇/3 and placed at a clearance 𝑐 = 𝑇/3 from the bottom. The impeller blades 

had width 𝐷/4, height 𝐷/5 and thickness of 2 mm. The geometry of the flow system is pictured 

in Fig. 1. The main vessel was immersed a larger transparent square tank, filled with the same 

liquid, in order to minimize refractive distortion at the curved wall. 

The six working fluids used were aqueous solutions of glycerol (75% and 80% wt. 

concentration), carboxymethylcellulose (CMC, 0.5% and 1.0% wt.) and polyacrylic acid 

(Carbopol 940, 0.1% wt. at pH 5.5 and 0.15% wt. at pH 5.0) at room temperature. The materials 

were purchased from Sigma-Aldrich, US. The two glycerol solutions exhibited Newtonian 



rheology, as expected. The power-law model (4) and the Herschel-Bulkley model (5) were 

used to describe the rheology of the CMC and Carbopol solutions, respectively.  

𝜇௉௅ = 𝐾 𝛾̇௡ିଵ; (4) 

𝜇ு஻ = 𝐾 𝛾̇௡ିଵ + 𝜏଴𝛾̇ିଵ. (5) 

Note that for 𝑛 = 1 and 𝜏଴ = 0 the two models reduce to a Newtonian fluid with constant 

viscosity. The rheological parameters of the fluids (Table 1) were measured with a rheometer 

(Discovery HR-1 by TA Instruments) equipped with a 40 mm flat plate geometry. 𝐾 and 𝑛 

have been obtained through fitting of the flow sweep curves, while 𝜏଴ has been determined at 

the crossover point of the loss and storage moduli, through amplitude sweep measurements at 

a frequency of 10 Hz. 

 

Figure 1: Schematic of the agitated vessel. 

Table 1: Rheological parameters of the working fluids. 

Label Composition (in water) 𝐾 [𝑃𝑎 𝑠௡]  𝑛 [−]  𝜏଴ [𝑃𝑎]  



NW1 Glycerol 75% wt. 0.046 1 0 

NW2 Glycerol 80% wt. 0.17 1 0 

PL1 CMC 0.5% wt. 0.20 0.7 0 

PL2 CMC 1.0% wt. 0.70 0.7 0 

HB1 Carbopol 0.10% wt. (pH 5.5) 1.1 0.5 4.2 

HB2 Carbopol 0.15% wt. (pH 5.0) 4.4 0.5 43 

 

Each liquid was mixed at various impeller speeds to obtain observations at different Reynolds 

numbers (Table 2). Although the flow regime was transitional, the Metzner-Otto model (𝑘௦ =

11.5) was used to estimate the apparent viscosity and Reynolds number of non-Newtonian 

fluids. 

Table 2: Experimental conditions. 

Experiment Fluid 
Impeller 

speed (rpm) 

Camera 

frame rate 

(s-1) 

𝜇௘ (Pa s) 𝑅𝑒 (-) 

NW1a 

NW1 

400 250 

4.60 10-2 

629 

NW1b 600 500 943 

NW1c 800 500 1,257 

NW2a NW2 200 125 1.70 10-1 86 



NW2b 600 250 258 

PL1a 

PL1 

100 60 8.25 10-2 73 

PL1b 200 125 6.70 10-2 179 

PL1c 400 250 5.44 10-2 441 

PL1d 800 500 4.42 10-2 1,086 

PL2a 

PL2 

400 125 1.90 10-1 126 

PL2b 800 250 1.55 10-1 310 

HB1a 

HB1 

400 125 1.80 10-1 133 

HB1b 600 250 1.39 10-1 259 

HB1c 800 250 1.16 10-1 413 

HB1d 1,000 500 1.01 10-1 592 

HB2a 

HB2 

1,200 500 4.77 10-1 151 

HB2b 1,500 1,000 4.09 10-1 220 

2.2. 3D-PTV measurements 

3D-PTV is based on individual tracking of many flow tracers in 3D space and time. The 

principles of the technique are thoroughly discussed in Maas et al. (1993) and Malik et al. 

(1993). In summary, a 3D-PTV experiment consists of the following steps: 

1) Acquisition of a stereoscopic sequence of synchronous images. 

2) Detection of the tracers and determination their image coordinates. 



3) Establishment of the stereoscopic correspondences and determination of the tracer 3D 

coordinates. 

4) Establishment of the temporal links across subsequent frames. 

5) Determination of the velocity. 

PTV has been used successfully in a variety of practical applications, using small 

observation volumes (e.g. Monica et al., 2009; Kinzel et al., 2011; Gülan et al., 2012; Krug et 

al., 2012; Gallo et al. 2014; Krug et al., 2014; Oliveira et al., 2015; Aguirre-Pablo et al., 2019) 

and for the study of turbulence statistics at small scales (e.g. Lüthi et al., 2005; Holzner et al., 

2008; Liberzon et al., 2012). Romano et al. (2021) assessed the capability of 3D-PTV to 

measure the flow dynamics in lab scale stirred vessels, under proper choice of the operational 

variables. 

2.2.1. Tracer particles 

Polyethylene microspheres (Cospheric, US) have been used as tracer particles. Their 

size was 750 – 820 µm. The tracers utilized with the CMC and Carbopol solutions had a density 

of 1.0 × 10ଷ kg m-3. For the glycerol solutions, the tracer density was 1.1 × 10ଷ kg m-3. 

Buoyancy effects were negligible. The Stokes number is the ratio between the relaxation time 

of a tracer, 𝑡௉, and a characteristic time scale of the flow, 𝑡ி. Small values indicate that the 

tracer can rapidly and faithfully respond to the variations of the flow, down to length scales 

comparable to the tracer size. The Stokes number is therefore widely used as a measure of the 

fidelity of a particle tracking experiment. In the Stokesian regime, the particle time is 

conventionally calculated applying the Stokes drag law to a particle moving in the fluid: 

𝑆𝑡௅ =

𝜌௉𝑑௉
ଶ

18 𝜇

𝑡ி
, (6)

 



where 𝜌௉ is the particle density, 𝑑௉ is the particle size and 𝜇 is the fluid viscosity. In this paper, 

the characteristic flow macroscopic time scale was expressed as 𝑡ி = 1 6𝑁⁄ , that is the time 

between two consecutive impeller blade passages. For a conservative estimate, the viscosity of 

the non-Newtonian fluids was calculated at a shear rate equal to 10 𝛾̇௘ = 115 𝑁. The Stokes 

law underestimates the drag force on the particle when the flow is non-Stokesian and 

overpredicts the relaxation time. Israel and Rosner (1982) generalized the Stokes number in 

non-Stokesian flow regimes introducing a correction factor 𝜓 < 1: 

𝑆𝑡 = 𝜓𝑆𝑡௅ . (7) 

Wessel and Righi (1988) provided an analytical correlation for 𝜓 for particle Reynolds number 

𝑅𝑒௣ = 𝜌𝑈௥௘௟𝑑௣/𝜇 < 10ଷ: 

𝜓 =
3൫√𝑐𝑅𝑒௣

ଵ/ଷ − atan൫√𝑐𝑅𝑒௣
ଵ/ଷ൯൯

𝑐ଷ/ଶ𝑅𝑒௣
, (8) 

with 𝑐 = 0.158. The relative velocity was estimated as 𝑈௥௘௟~1% 𝑈௧௜௣. The corrected Stokes 

numbers ranged from 2.4  10ିଷ (experiment PL1a, 𝜓 = 0.998) to 1.1  10ିଵ (experiment 

PL2b, 𝜓 = 0.92). These estimates are highly conservative, as it will be shown that the 

maximum shear rate observed in the impeller region was <40 𝑁 (Figure 7a), thus fluid viscosity 

was higher. Also, the flow would lose memory of the blade passage away from the impeller, 

hence the flow time scales were larger. Romano et al. (2021) showed that at 𝑅𝑒 = 12,000 the 

time scales obtained from the Lagrangian velocity autocorrelation were in the order of the 

impeller period, i.e. 1/𝑁. When 𝑆𝑡 < ~10ିଵ, the errors in flow tracing are negligible (McKeon 

et al., 2007). Chiti et al. (2011) validated their PEPT measurements of a turbulent stirred tank 

flow against the literature, despite 𝑆𝑡~0.6. Appreciable errors in the velocities were only 

present very close to the impeller tip. Given that the turbulence scales were not investigated in 

this paper, it was concluded that the tracers could adequately resolve the mean flow features 



down to a scale of ~820 µm. The effects of Magnus force, Basset force and Saffman force were 

negligible. 

The tracer concentration was roughly 114 L-1, which corresponded to a blur image 

density of 0.002 px-2. With a particle image size between 3 and 4 px, the ratio of 

indistinguishably overlapping particles was between 0.7% and 1.2% (Cierpka et al., 2013). 

2.2.2. Image acquisition and processing 

The raw images of the flows were acquired through a high-speed camera (Fastcam SA4, 

Photron Ltd., JP) equipped with a macro lens (Sigma 24-70 mm f2.8 EX DG Macro, Nikon, 

JP). A system of mirrors (LINOS adjust.X, Qioptiq, UK) allowed the vessel to be imaged from 

two viewing orientations in a single image. LED lights (Marathon multiLED LT, GSVitec 

GmbH, DE) were used for the illumination. The raw images were encoded in a 8-bit greyscale 

(levels from 0 and 255) at 1024 × 1024 px2 resolution. Each experiment consisted of 5,400 

frames. The acquisition rate (Table 2) was selected depending on the impeller speed and an 

estimation of the experimental error, following the guidelines discussed in Romano et al. 

(2021). The distance travelled by the tracers between consecutive time steps was in the order 

of 1 – 10 mm, depending on their velocity. The exposure time was 1/2000 s for the two CMC 

solutions and 1/3600 s for all other fluids, so that tracers appeared spherical in the images. 

The images were processed as described in Romano et al. (2021). The output of this 

step consisted in a list containing the image coordinates of the detected tracers, in each half-

image and each time step. 

2.2.3. Image calibration 

The image calibration was conducted using a reference geometry with 147 control dots 

spanning a volume of 60 × 200 × 55 mm3 in 𝑥 (width), 𝑦 (height) and 𝑧 (depth). The calibration 

routine was conducted as described in Romano et al. (2021). In summary, the coordinate 



transformation matrix of each viewing orientation was determined based on 147 

correspondences between the image coordinates and the known world coordinates of the 

control dots. By knowing the two transformation matrices, any point in 3D space could be 

determined from the paired image coordinates through the method of epipolar lines. The 

mathematical aspects of stereoscopic imaging, calibration and 3D reconstruction can be found 

in Maas et al. (1993). 

In PTV experiments, the error in the reconstructed tracer coordinates is determined by 

the quality of the image calibration. This is influenced by the properties of the multi-media 

optical path, the fluid opaqueness in particular. The glycerol and Carbopol solutions were 

highly transparent, and the reference dots were reconstructed with an average error of ~60 µm. 

In the case of the CMC solutions, which were slightly opaque, the average reconstruction error 

was ~180 µm. These errors were reduced before the computation of velocity and acceleration 

by means of a Savitzky-Golay filter. 

2.2.4. Stereo-matching, 3D tracking, velocity and acceleration determination 

The stereoscopic correspondences were established with the method of epipolar lines. 

To limit the stereoscopic ambiguities and allow to work with only two viewing orientations, 

the algorithm developed by Willneff (2003) was used. Given the previous tracer positions, the 

correct link among many candidates at the following time step was determined by minimizing 

the change in Lagrangian acceleration. Trajectories longer than 21 time steps were kept to 

minimize the chance of wrong stereo and temporal links. In addition, only the data in the front 

half of the tank (𝑧 < 0) were used. This was because the coordinates at the back (𝑧 < 0) were 

determined with a larger uncertainty, due to perspective size reduction of the tracers and 

attenuation of the scattered light through the longer optical path. 

The velocity components along the individual trajectories were obtained by finite 

differentiation of the coordinates. To avoid amplification of the experimental error, a second 



order, 11-point Savitzky-Golay filter (Savitzky and Golay, 1964) was applied. This means that 

the local tracers dynamics was described as uniformly accelerated. This assumption has been 

confirmed by Malik et al. (1993) and Romano et al. (2021) and is consistent with the tracking 

criterion of minimizing the change in Lagrangian acceleration. The velocity components along 

the trajectories were calculated with a centred differences scheme from the corresponding 

coordinates (eq. 9), and then filtered themselves. In the same way, the Lagrangian acceleration 

components were obtained through differentiation of the velocities (eq. 10) and then filtered. 

𝑢௝ =
𝑥௝ାଵ − 𝑥௝ିଵ

𝑡௝ାଵ − 𝑡௝ିଵ
. (9) 

𝑎௝ =
𝑢௝ାଵ − 𝑢௝ିଵ

𝑡௝ାଵ − 𝑡௝ିଵ
. (10) 

In the equations above, the subscript 𝑗 indicates the time step. The Lagrangian acceleration is 

a measure of the force acting on an infinitesimal element of fluid which moves with the local 

and instantaneous flow. It is responsible for stretching, contraction and curvature of the fluid 

element. The statistics of Lagrangian acceleration are of great importance in turbulence 

research, as they are related to the intermittent bursts of vorticity and strain that characterize 

turbulent flows (Zeff et al., 2003). Large values of acceleration and energy dissipation are 

strongly correlated (Reynolds et al., 2005). However, to the authors’ knowledge, Lagrangian 

acceleration measurements in stirred tank flows have not been reported previously. 

2.3. Data post-processing 

2.3.1. Impeller flow numbers 

The impeller flow rates have been calculated, according to (2), at a distance 𝐷/2 from 

the impeller tip, that is halfway between the impeller tip and the tank wall (𝑟 = 𝑇/3). This 

choice was motivated by the following considerations. In the region very close to the impeller, 

the tracking efficiency, i.e. the number of obtained velocity data per volume, was low due to 



the presence of the impeller and to the longer optical path of the light scattered by the tracers 

through the fluid. On the other hand, the extension of the impeller discharge jet diminished 

with the viscosity of the fluid, and in the case of cavern formation the velocity at large 𝑟 was 

essentially null. In the literature, the flow rates are typically evaluated very close to the impeller 

tip (𝑟 = 𝑇/6). In order to account for the different radial coordinate, the flow rates have been 

scaled by a factor of 2. Then the flow numbers have been obtained by normalizing the flow 

rates by 𝑁𝐷ଷ. A perfect match with the flow numbers reported in the literature is not expected, 

because the radial velocity decreases with the distance from the impeller. Nevertheless, this 

analysis allowed the effects of fluid rheology and Reynolds number on the impeller pumping 

capacity to be assessed. 

2.3.2. Shear rate 

The Lagrangian velocity data have been interpolated in a 3D Eulerian grid to obtain the 

mean 3D velocity fields. The grid was equi-spaced in the three Cartesian directions. This 

allowed the spatial derivatives of the velocity to be calculated with a centred difference scheme, 

and the full gradient tensor to be obtained in each node. Then, the shear rate was calculated in 

each node as  

𝛾̇ = √2 𝐒: 𝐒, (11) 

where 𝐒 is the symmetric part of the gradient. Since the non-Newtonian fluids formed pseudo-

caverns and caverns, not only the shear rate distributions in the whole tank were calculated, but 

also those limited to an arbitrarily defined impeller region, i.e.: 

൝
𝑟 ≤ 𝐷

𝑐 −
𝐷

4
≤ 𝑦 ≤ 𝑐 +

𝐷

4

. (12) 

This also allowed the validity of Metzner-Otto’s approach under transitional flow conditions 

to be assessed. 



Of course, (11) is expected to underestimate the true shear rate due to the finite grid 

spacing, particularly in those regions at higher turbulence intensity. The grid spacing is 

therefore a compromise between the resolution of sharper gradients and their statistical 

reliability. With a 3 mm grid spacing, 87,901 nodes were used for the half tank and 7,139 nodes 

for the half impeller region. This allowed more than 10 velocity events to be typically binned 

in each cell, although a lesser number was present in some cells very close to the impeller and 

to the tank walls. Since the shear rate maps were determined from the mean velocities, the 

uncertainty associated to the shear rate was essentially due to the variance in the collections of 

velocity events within each cell. The standard error was selected as a metric for the shear rate 

uncertainty. With a 3 mm spacing, the standard error was in the order of a few percent of the 

shear in most of the vessel, while values close to ~10% were observed in the impeller jet, where 

the velocity variance was higher. In order to assess the effect of the finite spacing on the shear 

rate estimation, a grid of 2 mm has also been tested (293,566 nodes for the half vessel, 21,615 

in the impeller region). Considering the experiment groups PL1, PL2, HB1, and NW2, the 

mean shear rate in the impeller region was, on average, 4.9% higher than that calculated with 

the 3 mm spacing; for fluid NW1, the differences between the two grids were larger (+12% to 

+18% with the 2 mm grid). For fluid HB2, the average shear rate was 1.6% lower using the 2 

mm grid (this was probably just a binning effect, as shear decrease with grid refinement is not 

physically meaningful). However, with the smaller spacing, the number of velocity vectors per 

node obviously reduced, resulting in a few empty nodes and a noisy interpolation (over-

binning). Consequently, the uncertainty in the mean velocities (hence in the shear rate) was 

unacceptable. For this reason, it has been decided to use the 3 mm grid. Note that the current 

spacing limitation is not related to PTV resolution and could be overcome by extending the 

size of the data set and ensuring a large number of velocity data per node. This could be 

achieved in many ways – one is to increase the number of recorded frames to more than 5,400.  



3. Results and discussion 

3.1. Flow fields visualisation 

A qualitative visualisation of the investigated flows, obtained by superimposing the raw 

Lagrangian trajectories over four impeller revolutions, is given in Fig. 2. The white stripes 

represent the paths taken by the tracer particles and illustrate the overall flow patterns in the 

vessel. At low values of 𝑅𝑒, the power-law fluids formed pseudo-caverns and showed low axial 

circulation, whereas the Herschel-Bulkley solutions formed caverns, with the flow remaining 

effectively stagnant outside the cavern volume. 

 

Figure 2: Tracer path lines obtained by superimposition of the raw images. The labels 

indicate the experiment. 



Figure 3 shows some examples of 3D trajectories obtained after PTV data processing. 

The colour denotes the magnitude of the velocity, normalized by the tip speed. To facilitate 

visualisation, only reduced samples of trajectories are shown, i.e. 5% - 8% of the original data 

sets. For the two Newtonian fluids, the overall flow patterns were independent of the Reynolds 

number in the investigated range. The tracers entering the impeller region were discharged 

radially and followed one of the two recirculation loops, above or below the plane of the 

impeller. The lower loop reached the tank bottom, while the upper loop extended to about two 

thirds of the vessel height. The flow interacted significantly with the tank wall and the baffles, 

creating systematic paths (Fig.s 3a and 3b). Such features were present in all the Reynolds 

numbers investigated. In the region downstream of the baffles, a small portion of fluid moved 

downward at low velocity (~5% of the tip speed), met the upper circulation loop and gained 

tangential velocity. Upstream of the baffles, the liquid flowed upwards to feed the upper 

circulation loop. This mechanism was responsible for the material turnover with the top of the 

tank. As the Reynolds number is increased, a slight increase in velocity magnitude was only 

observed close to walls and baffles. 

With the two power-law fluids, the flow features and local velocity components 

changed completely with the Reynolds number. This was already visible in Fig. 2. In 

experiment PL1a, the near-impeller flow was almost completely tangential, with very low 

circulation in the radial and axial directions (Fig. 3c). In this case, the degree of agitation was 

not enough to maintain a substantial convection of fluid between the lower and the upper part 

of the tank. This was due to the shear thinning behaviour of the fluid, which dampened the 

momentum transfer. The extension of the impeller discharge stream, the magnitude of radial 

velocity in it and the intensity of the two circulation loops increased gradually with the 

rotational speed. The downflow behind the baffles, observed with the Newtonian fluids, was 

only present in experiment PL1d (Fig. 3d), but with a much smaller velocity (~1% of the tip 



speed). Dead zones of low velocity were present at the top of the vessel and in the proximity 

of the baffles. Fig. 4a illustrates the effect of the Reynolds number on the extension of the 

pseudo-caverns formed by the fluids. As in the work by Adams and Barigou (2007), the 

boundaries have been identified as the isoline corresponding to a fluid velocity equal to 1% of 

the tip speed. 

With the two Herschel-Bulkley fluids, the tracer particles were only tracked within the 

caverns around the impeller. No fluid exchange occurred with the region outside. At low 

Reynolds number, the fluid discharged by the impeller reached the cavern boundary and simply 

flowed back towards the impeller along two circulation paths, one above and one below the 

impeller plane (Fig. 3e). As the Reynolds number increased, the caverns expanded in size (Fig. 

4b), reaching the vessel bottom and the wall (Fig. 3f). However, since the fluid at the top of the 

vessel was still, the downflow behind the baffles was not observed. 

Since both the pseudo-cavern and cavern boundaries were defined according to the 

same criterion of velocity threshold, a comparison can be made between the four non-

Newtonian liquids. Interestingly, different fluids showed different cavern extensions at similar 

Reynolds conditions (Fig. 4), indicating that the phenomenon of (pseudo-) cavern formation is 

rheology dependent. 







 

Figure 3: Examples of 3D-PTV trajectories sampled from experiments: (a) NW2b, Re = 258; 

(b) NW1a, Re = 629; (c), PL1a, Re = 73; (d) PL1d, Re = 1,086; (e) HB2a, Re = 151; (f) 

HB1c, Re = 413. The impeller rotates clockwise. 



 

Figure 4: Pseudo-cavern and cavern boundaries as measured form PTV velocity data. 

3.2. Flow numbers 

In Fig. 5a, the flow rates are plotted against the group 𝑁𝐷ଶ.ଶ𝑤(𝜌/𝜇௔)଴.ହ, which was 

used by Norwood and Metzner (1960) to fit their measurements (3). Here 𝜇௔ = 𝐾𝛾̇௘
௡ିଵ is the 

‘adjusted’ viscosity due to shear, in which yield stress is not considered. It only differs from 



the Metzner-Otto effective viscosity in the case of the yield stress fluids. The reason for this 

modification is that the flowing fluid does not experience the effects of the yield stress, hence 

the volumetric flow rate only depends on shear rate. The proportionality fitting in Fig. 5a gave 

a coefficient of determination of 0.76, which is reasonably high for 17 experimental 

measurements at various conditions. Fig.5b shows the flow numbers measured against the 

adjusted Reynolds number, 𝑅𝑒௔ = 𝜌𝐷ଶ𝑁/𝜇௔. Since the flow rates were calculated at 𝑟 = 𝑇/3 

instead of the typical 𝑟 = 𝑇/6, the values of flow number were slightly lower than those 

reported in the literature. Nevertheless, their trends were very informative. For the Newtonian 

fluids, the flow number was weakly dependent on 𝑅𝑒௔. A power-law fitting indicated that 𝐹𝑙 

scaled as 𝑅𝑒௔
଴.଴ଷ଺. Non-Newtonian fluids were characterized by smaller flow numbers than 

Newtonian fluids. In the left region, for 𝑅𝑒௔ < ~400, 𝐹𝑙 increased as 𝑅𝑒௔
ଵ.ଵ. For 𝑅𝑒௔ >

~400, 𝐹𝑙 was proportional to 𝑅𝑒௔
଴.ଶଷ, approaching the curve of the Newtonian fluids. The 

exponents agree with those obtained by Koutsakos and Nienow (1990) and Dyster et al. (1993), 

indicating that the decrease in radial velocity from 𝑟 = 𝑇/6 to 𝑟 = 𝑇/3 was consistent across 

the different experiments. Flow number data, together with previous observations, suggest that 

a gradual change in the non-Newtonian flow dynamics occurred around 𝑅𝑒~400, due to the 

incipient interactions between the inner flow around the impeller and the outer flow close to 

the baffles and walls. In a previous study using DNS data (Tamburini et al., 2018), the same 

mechanism was evoked to explain the gradual transition from laminar to turbulent flow, in the 

range of 𝑅𝑒 between 150 and 600, and the different behaviour the flow between baffled and 

unbaffled vessels. It can be concluded that the Rushton capacity to pump a non-Newtonian 

fluid around the vessel becomes very poor below 𝑅𝑒~400 and practitioners should take into 

considerations different geometries for those mixing conditions. 



 

 

Figure 5: Fitting of the flow rates against Norwood and Metzner’s correlation group (a) and 

impeller flow number against Reynolds number (b). 



3.3. Shear rate and Lagrangian acceleration 

In all the experiments, both the shear rate and the Lagrangian acceleration were 

distributed in logarithmic space, spanning different orders of magnitude. This reflects the 

variety of fluid dynamics conditions at different locations within the vessel.  

 The shear rate was higher in the region surrounding the impeller, and the differences 

with the overall distribution were particularly significant with the non-Newtonian fluids (Figs. 

6a-c and 7a), due to the larger spatial variability of the flows. In the case of Newtonian fluids, 

the shear rate was distributed log-normally both in the impeller region and in the entire vessel. 

It being understood that the shear decreased with the distance from the impeller, this transition 

was smooth, and the fluid remained sufficiently and uniformly sheared also in the bulk, where 

𝛾̇~𝑁. Instead, the distributions of the non-Newtonian fluids in the entire vessels tended towards 

bimodality, due to pseudo-cavern and cavern formation. Shear rate decreased very quickly – 

more than one order of magnitude – close to the (pseudo-) cavern boundary. With the power 

law fluids, the flow occurred even outside of the pseudo-caverns, that is a significant fraction 

of the vessel volume, albeit with very low velocities and shear (𝛾̇~10ିଵ 𝑁). Instead, with the 

Herschel-Bulkley fluids, very low shear was confined close to the cavern boundary. As 

anticipated in §2.3.2, the standard error associated to the shear rate maps was in the order of a 

few percent in most of the tank and about ~10% in the impeller discharge region, due to the 

higher velocity variance there. These values could be reduced by increasing the size of the 

datasets. One example of error map is pictured in Fig.6d. Three examples of shear distributions 

are illustrated in Fig. 7a. Clearly, the curves were dependent on fluid rheology for the reasons 

discussed above. However, the means of the curves were relatively close, therefore some fitting 

models were attempted. The analysis focused on the impeller region because of its importance 

to the mixing process and to assess the validity of Metzner-Otto’s assumption. Considering all 

working fluids, the best power-law fitting of the average shear rate against the impeller 



rotational speed gave an exponent of 1.08 (Fig. 8a). The bars in Fig. 8 represent one standard 

deviation of the individual shear distributions in logarithmic space, therefore they should not 

be intended as confidence intervals (due to the large data sets, the standard error of the mean 

was extremely small). A simple proportionality law, i.e. 〈𝛾̇〉 = 6.1 𝑁, still predicts the mean 

shear rate characterising the near-impeller flow with reasonable accuracy (𝑅ଶ = 0.85). As 

already discussed, the value of the proportionality constant, 𝑘௦
∗ = 6.1, depends on the volume 

and shape of the impeller region, which was defined arbitrarily. The impeller region used in 

this paper is comparable to the control volume labelled ‘ESV’ in the work by Ramírez-Muñoz 

et al. (2017), although some differences were present. The exact dimensions of ESV were not 

reported (ESV appears smaller than the impeller region here), their tank had a curved bottom 

and the flow regime was laminar. In ESV, Ramírez-Muñoz et al. measured 𝑘௦
∗ = 7.2. 

The high coefficients of determination (𝑅ଶ = 0.92 and 𝑅ଶ = 0.85) of the ‘all-fluids’ 

fittings suggest that rheology effects, if present, were small compared to the variation of shear 

rate attributable to the impeller speed. However, the shear rate measured with the Newtonian 

fluids was systematically higher than with non-Newtonian fluids, 𝑁 being the same. For this 

reason, the data have been categorised as Newtonian or non-Newtonian and two additional 

fittings have been calculated separately (Fig. 8a). Indeed, these have higher coefficient of 

determination than the overall fittings, meaning that the classification into two subsets based 

on fluid rheology has helped explain a larger share of variance in the data. In the case of 

Newtonian fluids, 𝑘௦
∗ = 8.4 (𝑅ଶ = 0.94), while 𝑘௦

∗ = 5.6 (𝑅ଶ = 0.97) for the non-Newtonian 

fluids. Further to this analysis, a dependency of 𝑘௦
∗ = 〈𝛾̇〉/𝑁 on 𝑅𝑒 was also tested (Fig. 8b). 

Again, Newtonian and non-Newtonian data were fitted separately (13a and 13b). A linear 

model was chosen because 𝑘௦
∗ is expected to become constant in the limit of low 𝑅𝑒, that is 

under fully laminar conditions. 

〈𝛾̇〉ே = (6.8 + 2.0 ∙ 10ିଷ 𝑅𝑒) 𝑁; (13𝑎) 



〈𝛾̇〉ேே = (4.8 + 1.6 ∙ 10ିଷ 𝑅𝑒) 𝑁. (13𝑏) 

In the first case, the predicted normalised shear rate changed from 6.9 to 9.3 in the range of 𝑅𝑒 

between 86 (experiment NW2a) and 1,257 (NW1c). With the non-Newtonian fluids, the 

predicted 𝑘௦
∗ changed from 4.9 to 6.5 in the range of 𝑅𝑒 between 73 (experiment PL1a) and 

1,086 (PL1d). Numerically, the effects of the Reynolds number become increasingly 

significant when 𝑅𝑒 > ~300. This reflects the gradual deviation from Metzner-Otto’s scaling 

rule as Reynolds number increases. Note that the coefficients of determination of (13a) and 

(13b) refer to the residual variance in the data, once the variation of shear due to the impeller 

speed has already been accounted for by fitting 〈𝛾̇〉/𝑁 as a dependent variable. 

 



 



 

 

Figure 6: Examples of normalised shear rate maps in the vessel. (a) experiment NW1c; (b) 

experiment PL2a; (c) experiment HB2a. Subfigure (d) shows the standard error of the shear 

rate for experiment NW1c. 



 

Figure 7: Examples of distributions of normalised shear rate (a) and Lagrangian 

acceleration (b) for three experiments at comparable Reynolds number. 



 

Figure 8: Average shear rate in the impeller region against the impeller speed (a) and its 

ratio over the impeller speed against the Reynolds number (b). 

Three examples of acceleration distribution, normalised with the centripetal 

acceleration at the impeller tip, 𝑎௧௜௣ = 2 𝑈௧௜௣
ଶ/𝐷, are pictured in Fig. 7b. The distributions 

were approximately log-normal. The mean acceleration in the impeller region was one or more 



orders of magnitude larger than in the entire vessel. In the impeller region, the average 

Lagrangian acceleration scaled with the average shear rate to the power of 1.8 (Fig. 9). The 

coefficient of determination of the fitting was 𝑅ଶ = 0.96. The high degree of correlation 

between the two quantities has two important implications. First, acceleration, which is easily 

measured with 3D-PTV, can be used as an indicator of the local degree of mixing, similarly to 

shear rate. This eliminates the difficulties related to PTV data interpolation when estimating 

the shear rate. Secondly, like for the shear rate, the forces acting on the fluid elements are 

determined by the impeller speed, the Reynolds number and the fluid rheology in combination. 

Therefore, practitioners should take into consideration that transitional flows at the same 

Reynolds number are not necessarily dynamically equivalent. Further work should be 

conducted to assess whether this is true also in the laminar and fully turbulent regimes. 

 

Figure 9: Average Lagrangian acceleration against average shear rate in the impeller 

region.  



4. Conclusions 

In this paper, the flow fields of six fluids in a 4.6 L cylindrical tank stirred with a Rushton 

turbine and operated in the transitional regime (𝑅𝑒 from 73 to 1,257) have been measured by 

means of 3D-PTV. The working fluids had different rheology, namely Newtonian, shear-

thinning and Herschel-Bulkley. 

Newtonian fluids showed very similar flow patterns in the range of Reynolds number 

from 86 to 1,257. Non-Newtonian flow patterns changed dramatically in the range of Reynolds 

number investigated. Non-Newtonian fluids formed pseudo-caverns and caverns around the 

impeller, the size of which was rheology dependent and increased with Reynolds. The impeller 

flow numbers have been calculated from azimuthally averaged radial velocity data. For 

practical reasons, they have been evaluated at a radial coordinate 𝑟 = 𝑇/3 instead of 𝑟 = 𝑇/6 

(impeller tip). For the Newtonian fluids, the flow number was almost constant (0.6 on average) 

in a range of Reynolds from 86 to 1,257. With the non-Newtonian fluids, two separate trends 

were observed. 𝐹𝑙 scaled as 𝑅𝑒ଵ.ଵ for 𝑅𝑒 < ~400 and as 𝑅𝑒଴.ଶଷ for 𝑅𝑒 > ~400. Non-

Newtonian rheology significantly decreased the impeller’s capacity to pump the fluid in the 

vessel when 𝑅𝑒 < ~400. Low fluid circulation and (pseudo-) cavern formation have 

detrimental effects on macromixing. High impeller velocities could potentially guarantee 

substantial flow in the whole vessel. However, the resulting power drawn would be too high 

for industrial purposes. Close-clearance impellers, such as anchors and ribbons, could be a 

better solution for non-Newtonian fluid agitation at low Reynolds. 

The shear rate maps have been obtained by interpolating the velocity vectors in a 

Cartesian grid. The shear rate distributions were approximately log-normal. For practical 

purposes, the volume-averaged shear in the impeller region can be assumed to scale as 〈𝛾̇〉 =

6.1 𝑁 with reasonable accuracy (𝑅ଶ = 0.85). This proportionality law clearly resembles the 

Metzner-Otto’s assumption, valid in the laminar regime. The model has been refined by fitting 



Newtonian and non-Newtonian shear data separately and by expressing 𝑘௦
∗ as a function of the 

Reynolds number. This accounts for rheology effects and reflects the growing contribution of 

turbulence to shear generation as the flow deviates from fully laminar conditions. Equations 

(13a) or (13b) can be used by practitioners to predict the mean shear conditions of a mixing 

process in the transitional regime, with higher accuracy than a simple proportionality law. 

However, it is important to remember that (a) the value of all fitting parameters depend on the 

volume and shape of the impeller region, which was defined arbitrarily, thus consistent 

procedures must be adopted when comparing different mixing systems, (b) individual shear 

rate realisations may be much greater or smaller than the mean, because this quantity is 

distributed over many orders of magnitude and (c) fluid rheology strongly affects the shear 

distribution in the vessel (with power-law fluids, the shear can be 𝛾̇~10ିଵ 𝑁 in a substantial 

fraction of the vessel volume). 

Lagrangian acceleration was also distributed log-normally within the vessel. In the 

impeller region, the mean acceleration scaled as the volume-averaged shear to the power of 1.8 

(𝑅ଶ = 0.96). This suggests that acceleration, measured directly with PTV, is a good indicator 

of local mixing intensity. 

To the authors’ knowledge, this is the first publication in which PTV is used to study 

stirred tank flows in a wide range of experimental conditions. Current knowledge has been 

confirmed with very simple hardware, and this might be extremely relevant for industrial R&D 

sectors with limited access to advanced experimental facilities. Furthermore, PTV data have 

provided unique information regarding the local fluid acceleration in the vessel, which has been 

rarely reported in the literature and is not accessible by means of traditional Eulerian 

techniques, such as PIV and LDV. 



Appendix: Statistical convergence of the measurements 

The statistical convergence of the velocity measurements has been validated by 

monitoring its ensemble average and ensemble standard deviation in three sample volumes as 

a function of the number of events, 𝑚. The average velocity was calculated as  

〈𝑈〉௠ =
1

𝑚
෍ 𝑈௜

௠

௜ୀଵ

 (14) 

and the standard deviation as 

𝜎௠ = ඩ
1

𝑚 − 1
෍(𝑈௜ − 〈𝑈〉௠)ଶ

௠

௜ୀଵ

 . (15) 

Here the index 𝑖 indicates the individual observations. The sample volumes were semi-annular 

voxels of volume 𝑉௦ = 0.1% (𝑉௧௔௡௞/2) = 2.3 cmଷ (Fig. 10). The first was placed in the 

impeller discharge region at 𝑟 = 𝑇/4 ± 2 mm, 𝑦 = 𝐻/3 ± 2 mm. The second was close to the 

wall, at 𝑟 = (𝑇 − 𝑏)/2 ± 1.5 mm, 𝑦 = 𝐻/2 ± 1.5 mm. The third was in the bulk of the flow, 

at 𝑟 = 𝑇/3 ± 1.75 mm, 𝑦 = 2𝐻/3 ± 1.75 mm. With some of the Herchel-Bulkley flows, the 

sample volumes had to be placed differently, because of the caverns. In all experiments, both 

the average and the standard deviation were independent by the number of events. One example 

of such plots is given in Fig.11. The standard deviation was higher in the impeller region and 

changed between different flows depending on the Reynolds number. Note that the standard 

deviation does not correspond to the root-mean-square turbulent velocity, because the flow 

tracers were too large to resolve the flow turbulent scales. 



 

Figure 10: Position of the sample volumes in the vessel. 

 

Figure 11: Ensemble average and standard deviation of the velocity in the sample volume 

(data from experiment PL1c). 



Acknowledgments 

Manuele Romano was supported by the Engineering and Physical Sciences Research 

Council (EPSRC) Centre for Doctoral Training in Formulation Engineering (EP/L015153/1) 

and Johnson Matthey Plc. 

References 

Adams, L.W., Barigou, M., 2007. CFD Analysis of Caverns and Pseudo-Caverns 

Developed During Mixing of Non-Newtonian Fluids. Chem. Eng. Res. Des. 85, 598–604. 

https://doi.org/10.1205/cherd06170 

Aguirre-Pablo, A.A., Aljedaani, A.B., Xiong, J., Idoughi, R., Heidrich, W., 

Thoroddsen, S.T., 2019. Single-camera 3D PTV using particle intensities and structured light. 

Exp. Fluids 60, 25. https://doi.org/10.1007/s00348-018-2660-7 

Alberini, F., Liu, L., Stitt, E.H., Simmons, M.J.H., 2017. Comparison between 3-D-

PTV and 2-D-PIV for determination of hydrodynamics of complex fluids in a stirred vessel. 

Chem. Eng. Sci. 171, 189–203. https://doi.org/10.1016/j.ces.2017.05.034  

Ameur, H., Bouzit, M., 2012. Mixing in shear thinning fluids. Braz. J. Chem. Eng. 29, 

349–358. https://doi.org/10.1590/S0104-66322012000200015 

Anne-Archard, D., Marouche, M., Boisson, H.-C., 2006. Hydrodynamics and Metzner-

Otto correlation in stirred vessels for yield stress fluids. Chem. Eng. J. 125, 15–24. 

https://doi.org/10.1016/j.cej.2006.08.002 

Barnes, H.A., Hutton, J.F., Walters, K. (Eds.), 1989. Chapter 2 - Viscosity, in: An 

Introduction to Rheology, Rheology Series. Elsevier, Oxford, UK, pp. 11–35. 

https://doi.org/10.1016/B978-0-444-87469-6.50006-8 

Beckner, J.L., Smith, J.M., 1966. Anchor-Agitated Systems: PowerInput With 

Newtonian and Pseudo-Plastic Fluids. Trans. IChemE 44, 224–236. 



Bertrand, F., Tanguy, P.A., Fuente, E.B.-D.L., 1996. A New Perspective for the Mixing 

of Yield Stress Fluids with Anchor Impellers. J. Chem. Eng. Jpn. 29, 51–58. 

https://doi.org/10.1252/jcej.29.51 

Böhme, G., Stenger, M., 1988. Consistent scale-up procedure for the power 

consumption in agitated non-newtonian fluids. Chem. Eng. Technol. 11, 199–205. 

https://doi.org/10.1002/ceat.270110127 

Cabaret, F., Fradette, L., Tanguy, P.A., 2008. New Turbine Impellers for Viscous 

Mixing. Chem. Eng. Technol. 31, 1806–1815. https://doi.org/10.1002/ceat.200800385 

Calderbank, P.H., Moo-Young, M.B., 1961. The Power Characteristics of Agitators for 

the Mixing of Newtonian and Non-Newtonian Fluids. Trans. IChemE 39, 337–347. 

Chiti, F., Bakalis, S., Bujalski, W., Marigo, M., Eaglesham, A., Nienow, A., 2011. 

Using positron emission particle tracking (PEPT) to study the turbulent flow in a baffled vessel 

agitated by a Rushton turbine: Improving data treatment and validation. Chem. Eng. Res. Des. 

89, 1947–1960. https://doi.org/10.1016/j.cherd.2011.01.015  

Dickey, D.S., 2015. Tackling Difficult Mixing Problems. Chem. Eng. Prog. 35–42. 

Distelhoff, M.F.W., Laker, J., Marquis, A.J., Nouri, J.M., 1995. The application of a 

strain gauge technique to the measurement of the power characteristics of five impellers. Exp. 

Fluids 20, 56–58. https://doi.org/10.1007/BF00190598 

Doraiswamy, D., Grenville, R.K., Etchells, A.W., 1994. Two-Score Years of the 

Metzner-Otto Correlation. Ind. Eng. Chem. Res. 33, 2253–2258. 

https://doi.org/10.1021/ie00034a001 

Dyster, K.N., Koutsakos, E., Jaworski, Z., Nienow, A.W., 1993. An LDA study of the 

radialdischarge velocities generated by a Rushton turbine: Newtonian Fluids, Re>=5. Trans. 

IChemE 71, 11–23. 



Gallo, D., Gülan, U., Di Stefano, A., Ponzini, R., Lüthi, B., Holzner, M., Morbiducci, 

U., 2014. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and 

computational fluid dynamics. J. Biomech. 47, 3149–3155. 

https://doi.org/10.1016/j.jbiomech.2014.06.017 

Greenville, R.K., 1992. Blending of Viscous Newtonian and Pseudo-Plastic FLuids 

(PhD Thesis). Cranfield Institute of Technology, Cranfield, UK. 

Gülan, U., Lüthi, B., Holzner, M., Liberzon, A., Tsinober, A., Kinzelbach, W., 2012. 

Experimental study of aortic flow in the ascending aorta via Particle Tracking Velocimetry. 

Exp. Fluids 53, 1469–1485. https://doi.org/10.1007/s00348-012-1371-8 

Hemrajani, R.R., Tatterson, G.B., 2004. Mechanically Stirred Vessels, in: Handbook of 

Industrial Mixing. John Wiley & Sons, Ltd, Hoboken, N.J., US, pp. 345–390. 

https://doi.org/10.1002/0471451452.ch6 

Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W., Tsinober, A., 2008. 

A Lagrangian investigation of the small-scale features of turbulent entrainment through particle 

tracking and direct numerical simulation. J. Fluid Mech. 598, 465–475. 

https://doi.org/10.1017/S0022112008000141 

Israel, R., Rosner, D.E., 1982. Use of a Generalized Stokes Number to Determine the 

Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compressible Gas Flow. 

Aerosol Sci. Tech. 2, 45–51. https://doi.org/10.1080/02786828308958612 

Jahangiri, M., Golkar-Narenji, M.R., Montazerin, N., Savarmand, S., 2001. 

Investigation of the viscoelastic effect on the Metzner and Otto coefficient through LDA 

velocity measurements. Chin. J. Chem. Eng. 9, 77–83. 

Kelly, W., Gigas, B., 2003. Using CFD to predict the behavior of power law fluids near 

axial-flow impellers operating in the transitional flow regime. Chem. Eng. Sci. 58, 2141–2152. 

https://doi.org/10.1016/S0009-2509(03)00060-5 



Kinzel, M., Wolf, M., Holzner, M., Lüthi, B., Tropea, C., Kinzelbach, W., 2010. 

Simultaneous two-scale 3D-PTV measurements in turbulence under the influence of system 

rotation. Exp. Fluids 51, 75–82. https://doi.org/10.1007/s00348-010-1026-6 

Koutsakos, E., Nienow, A.W., Dyster, K.N., 1990. Laser Anemometry study of shear 

thinning fluids agitated by a Rushton turbine. IChemE Symp., Series 121 121, 51–73. 

Krug, D., Holzner, M., Lüthi, B., Wolf, M., Tsinober, A., Kinzelbach, W., 2014. A 

combined scanning PTV/LIF technique to simultaneously measure the full velocity gradient 

tensor and the 3D density field. Meas. Sci. Technol. 25, 065301. https://doi.org/10.1088/0957-

0233/25/6/065301 

Krug, D., Lüthi, B., Seybold, H., Holzner, M., Tsinober, A., 2012. 3D-PTV 

measurements in a plane Couette flow. Exp. Fluids 52, 1349–1360. 

https://doi.org/10.1007/s00348-011-1256-2 

Kukukova, A., Aubin, J., Kresta, S.M., 2011. Measuring the scale of segregation in 

mixing data. Can. J. Chem. Eng. 89, 1122–1138. https://doi.org/10.1002/cjce.20532 

Liberzon, A., Lüthi, B., Holzner, M., Ott, S., Berg, J., Mann, J., 2012. On the structure 

of acceleration in turbulence. Physica D 241, 208–215. 

https://doi.org/10.1016/j.physd.2011.07.008 

Lüthi, B., Tsinober, A., Kinzelbach, W., 2005. Lagrangian measurement of vorticity 

dynamics in turbulent flow. J. Fluid Mech. 528, 87–118. 

https://doi.org/10.1017/S0022112004003283 

Maas, H.G., Gruen, A., Papantoniou, D., 1993. Particle tracking velocimetry in three-

dimensional flows. Exp. Fluids 15, 133–146. https://doi.org/10.1007/BF00190953 

Machado, M.B., Bittorf, K.J., Roussinova, V.T., Kresta, S.M., 2013. Transition from 

turbulent to transitional flow in the top half of a stirred tank. Chem. Eng. Sci. 



Malik, N.A., Dracos, Th., Papantoniou, D.A., 1993. Particle tracking velocimetry in 

three-dimensional flows. Exp. Fluids 15, 279–294. https://doi.org/10.1007/BF00223406 

Márquez-Baños, V.E., De La Concha-Gómez, A.D., Valencia-López, J.J., López-

Yáñez, A., Ramírez-Muñoz, J., 2019. Shear rate and direct numerical calculation of the 

Metzner-Otto constant for a pitched blade turbine. J. Food Eng. 257, 10–18. 

https://doi.org/10.1016/j.jfoodeng.2019.03.021 

McKeon, B., Comte-Bellot, G., Foss, J., Westerweel, J., Scarano, F., Tropea, C., 

Meyers, J., Lee, J., Cavone, A., Schodl, R., Koochesfahani, M., Andreopoulos, Y., Dahm, W., 

Mullin, J., Wallace, J., Vukoslavčević, P., Morris, S., Pardyjak, E., Cuerva, A., 2007. Velocity, 

Vorticity, and Mach Number, in: Tropea, C., Yarin, A.L., Foss, J.F. (Eds.), Springer Handbook 

of Experimental Fluid Mechanics, Springer Handbooks. Springer, Berlin, Heidelberg, 

Germany, pp. 215–471. https://doi.org/10.1007/978-3-540-30299-5_5 

Mendoza, F., Bañales, A.L., Cid, E., Xuereb, C., Poux, M., Fletcher, D.F., Aubin, J., 

2018. Hydrodynamics in a stirred tank in the transitional flow regime. Chem. Eng. Res. Des. 

132, 865–880. https://doi.org/10.1016/j.cherd.2017.12.011 

Metzner, A.B., Otto, R.E., 1957. Agitation of non-Newtonian fluids. AIChE J. 3, 3–10. 

https://doi.org/10.1002/aic.690030103 

Monica, M., Cushman, J.H., Cenedese, A., 2009. Application of Photogrammetric 3D-

PTV Technique to Track Particles in Porous Media. Transp. Porous Med. 79, 43–65. 

https://doi.org/10.1007/s11242-008-9270-4 

Nagata, S., Nishikawa, M., Tada, H., Gotoh, S., 1971. Power Consumption of Mixing 

Impellers in Pseudoplastic Liquids. J. Chem. Eng. Jpn. 4, 72–76. 

https://doi.org/10.1252/jcej.4.72 

Norwood, K.W., Metzner, A.B., 1960. Flow patterns and mixing rates in agitated 

vessels. AIChE J. 6, 432–437. https://doi.org/10.1002/aic.690060317 



Oliveira, J.L.G., Geld, C.W.M. van der, Kuerten, J.G.M., 2015. Lagrangian velocity 

and acceleration statistics of fluid and inertial particles measured in pipe flow with 3D particle 

tracking velocimetry. Int. J. Multiph. 73, 97–107. 

https://doi.org/10.1016/j.ijmultiphaseflow.2015.03.017 

Ramírez-Muñoz, J., Guadarrama-Pérez, R., Márquez-Baños, V.E., 2017. A direct 

calculation method of the Metzner-Otto constant by using computational fluid dynamics. 

Chem. Eng. Sci. 174, 347–353. https://doi.org/10.1016/j.ces.2017.09.023 

Rammohan, A.R., Duduković, M.P., Ranade, V.V., 2003. Eulerian Flow Field 

Estimation from Particle Trajectories:  Numerical Experiments for Stirred Tank Type Flows. 

Ind. Eng. Chem. Res. 42, 2589–2601. https://doi.org/10.1021/ie020552l  

Rammohan, A.R., Kemoun, A., Al-Dahhan, M.H., Dudukovic, M.P., 2001. A 

Lagrangian description of flows in stirred tanks via computer-automated radioactive particle 

tracking (CARPT). Chem. Eng. Sci. 56, 2629–2639. https://doi.org/10.1016/S0009-

2509(00)00537-6  

Reynolds, A.M., Mordant, N., Crawford, A.M., Bodenschatz, E., 2005. On the 

distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, 58–58. 

https://doi.org/10.1088/1367-2630/7/1/058 

Romano, M.G., Alberini, F., Liu, L., Simmons, M.J.H., Stitt, E.H., 2021. Development 

and application of 3D-PTV measurements to lab-scale stirred vessel flows. Chem. Eng. Res. 

Des. 172, 71–83. https://doi.org/10.1016/j.cherd.2021.06.001 

Sánchez Pérez, J.A., Rodríguez Porcel, E.M., Casas López, J.L., Fernández Sevilla, 

J.M., Chisti, Y., 2006. Shear rate in stirred tank and bubble column bioreactors. Chem. Eng. J. 

124, 1–5. https://doi.org/10.1016/j.cej.2006.07.002 

Savitzky, A., Golay, M.J.E., 1964. Smoothing and Differentiation of Data by Simplified 

Least Squares Procedures. Anal. Chem. 36, 1627–1639. https://doi.org/10.1021/ac60214a047 



Story, A., Jaworski, Z., Simmons, M.J., Nowak, E., 2018. Comparative PIV and LDA 

studies of Newtonian and non-Newtonian flows in an agitated tank. Chem. Pap. 72, 593–602. 

https://doi.org/10.1007/s11696-017-0307-4 

Tamburini, A., Gagliano, G., Micale, G., Brucato, A., Scargiali, F., Ciofalo, M., 2018. 

Direct numerical simulations of creeping to early turbulent flow in unbaffled and baffled stirred 

tanks. Chem. Eng. Sci. 192, 161–175. https://doi.org/10.1016/j.ces.2018.07.023 

Venneker, B.C.H., Derksen, J.J., Van den Akker, H.E.A., 2010. Turbulent flow of 

shear-thinning liquids in stirred tanks—The effects of Reynolds number and flow index. Chem. 

Eng. Res. Des. 88, 827–843. https://doi.org/10.1016/j.cherd.2010.01.002 

Wessel, R.A., Righi, J., 1988. Generalized Correlations for Inertial Impaction of 

Particles on a Circular Cylinder. Aerosol Sci. Tech. 9, 29–60. 

https://doi.org/10.1080/02786828808959193 

Willneff, J., 2003. A Spatio-Temporal Matching Algorithm for 3D Particle Tracking 

Velocimetry (Doctoral Thesis). Swiss Federal Institute of Technology Zurich, Zurich, 

Switzerland. 

Zeff, B.W., Lanterman, D.D., McAllister, R., Roy, R., Kostelich, E.J., Lathrop, D.P., 

2003. Measuring intense rotation and dissipation in turbulent flows. Nature 421, 146–149. 

https://doi.org/10.1038/nature01334 

Zhou, G., Kresta, S.M., 1996. Impact of tank geometry on the maximum turbulence 

energy dissipation rate for impellers. AIChE J. 42, 2476–2490. 

https://doi.org/10.1002/aic.690420908 

 


