UNIVERSITYOF **BIRMINGHAM** # University of Birmingham Research at Birmingham # Taking the pulse of Earth's tropical forests using networks of highly distributed plots Forestplots.net; Esquivel-Muelbert, Adriane; Pugh, Thomas DOI: 10.1016/j.biocon.2020.108849 Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Forestplots.net, Esquivel-Muelbert, A & Pugh, T 2021, 'Taking the pulse of Earth's tropical forests using networks of highly distributed plots', *Biological Conservation*, vol. 260, 108849. https://doi.org/10.1016/j.biocon.2020.108849 Link to publication on Research at Birmingham portal **General rights** Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. - •Users may freely distribute the URL that is used to identify this publication. - •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. - •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) - •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate. Download date: 20. Mar. 2024 # Taking the Pulse of Earth's Tropical Forests using Networks of Highly Distributed Plots 3 1 2 - 4 Authors: "ForestPlots.net, Cecilia Blundo, Julieta Carilla, Ricardo Grau, et al.", each of the 548 - 5 individual contributors should be included and listed as in the Author Table (alphabetical by - 6 country and family name with institution) - 7 Corresponding author: Oliver L. Phillips 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31 32 # **Abstract** Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community has responded to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in hundreds of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests. 34 35 36 37 33 **Key Words**: Amazonia, Africa, Southeast Asia, rainforest, RAINFOR, AfriTRON, species richness, forest plots, permanent sample plots, monitoring, dynamics, carbon sink, global change, ecology, biodiversity. 38 #### Introduction As the most diverse and productive ecosystems on Earth, tropical forests play essential roles in the carbon and water cycles and maintenance of global biodiversity. Tropical forest lands are also home to more than a billion people and thousands of cultures. Having first provided the environments and germplasm that sustained foragers and farmers since the earliest days of humanity, today they underpin a large fraction of our globalized diet and intense demand for water, food and clean air. They also affect our health in multiple ways, providing rich pharmacopeias to traditional and modern societies, and capable of changing the course of history when pandemic zoonotic pathogens emerge as forests and wildlife are exploited. Tropical forests are also critical to determining the degree and impact of anthropogenic climate change. Because of their extent, carbon density and productivity, they may both slow global heating by absorbing carbon into their biomass and soils, or accelerate it as deforestation and high temperatures damage forests and release carbon to the atmosphere. Tropical carbon and biodiversity are therefore critical targets for environmental measurement and monitoring. While vital to our past and future, efforts to measure and monitor them have until recently been localised and largely disconnected. Although aspects of their ecology can be sensed remotely onthe-ground, tree-by-tree measurement is essential. Indeed ground measurements are irreplaceable – whether to address a plethora of ecological questions (e.g., Wright, this volume), inform and validate ecosystem models (e.g., Malhi et al., this volume), or assist with interpreting remotely acquired data (e.g., Chave et al. 2019, Duncanson et al. 2019, Phillips et al. 2019). Yet the very features that enhance tropical forests' ecological value, such as remoteness, diversity and high rainfall, make fieldwork challenging. Tropical forest science and scientists from forest-rich countries are often under-resourced and academically marginalised. Often colonized from afar and distant from economic centres, tropical nature and many who explore it remain peripheral to national and global academic and political priorities. The focus of this paper is specifically about the power of new collaborative networks to transform tropical forest science – what we do, how we do it, and eventually who does it - to understand tropical forest functioning and dynamics over large temporal and spatial scales. Conceived and funded starting in South America in 1999 (RAINFOR, Malhi et al. 2002) and later adapted to Africa (AfriTRON, Lewis et al. 2009) and Southeast Asia (T-FORCES, Qie et al. 2017) our approach encourages international grassroots initiatives and links them with standardized field methods and data management. Now, with ForestPlots.net (Lopez-González et al. 2011, 2015) we support multiple networks with cyber-infrastructure that enables tropical scientists to do together what was previously impossible alone. Providing tools to ensure tropical scientists can manage, share and analyse their data themselves, ForestPlots.net is a global platform where data originators are in control and free to collaborate, support, or lead as much as they like. However, while much has been accomplished the wider challenges still run deep. Our aim of supporting the best possible science within a model of equitable access to data and other resources, remains as much an aspiration as a claim of achievements already made. Here we first review how the continental networks and ForestPlots.net emerged, in terms of collaborators, institutions, people and plots. Next we focus on key scientific achievements of the combined networks, including a comprehensive understanding of the variation in biomass carbon stock, growth rates, and carbon residence time among continents. We also review multiple discoveries concerning large-scale changes over time, with insights emerging from hundreds of permanent plots that have transformed our understanding of the role that tropical forests play in the biosphere. Finally, we return to the challenges of building and sustaining long-term science networks in the tropics and outline key priorities for the future. 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101102 103 104 105 106 86 ### 1. Network Development Tropical research plots that tag, measure, identify and follow forests tree-by-tree have existed for decades. They long precede any continental or global network, but no plot survives since before 1939 and few predate 1970. The earliest efforts were closely connected to the imperial- and post-imperial projects of European nations. As such, these were largely motivated by questions of timber inventory and wood production, and only later diversity and wider ecological questions. The very first permanent sample plots we are aware of in the tropics were installed in 1857 by the German forester Brandis, who worked for the
British in Burma (now Myanmar) and later other parts of India (Dawkins and Philip, 1998). In India a few extant Forest Department plots date to 1939 (Pomeroy et al. 2003). Important early work in Southeast Asia included plots installed by Don Nicholson and J.E.D. Fox in the 1950s through to the 1970s, as well as Peter Ashton since the 1960s and John Proctor since the 1970s. In Africa, early permanent plots include those installed by William Eggeling in Uganda in the 1930s. Among plots surviving today are one in Mpanga Forest, Uganda, set up by Alan Hamilton in 1968, and those established by Mike Swaine in Ghana and Hans Woell in Liberia in the 1970s, and later plots by Jan Reistma and Lee White (Gabon), Bonaventure Sonké (Cameroon), Kofi Affum Baffoe (Ghana), and Henri-Félix Maître and colleagues (Gabon, Congo, C.A.R.). In Australia, North Queensland saw the first plot sampling, for timber, in the 1930s, with many sites from the 1970s still maintained today by the national science agency (CSIRO). Separately Joe Connell, co-originator of the influential Janzen-Connell hypothesis, installed and expanded long-term ecological plots in 1963. 107108109 110 111 112 113 114 115 116 117 118119 120 121 122123 124125 126 In the tropical Americas, T.A.W. Davis and Paul Richards installed ecological plots in Guyana in the 1930s (Davis and Richards 1933) but these do not survive, while Frank Wadsworth established longterm plots in Puerto Rico's subtropical forests starting in 1943 (e.g. Drew et al. 2009). In Suriname, Schulz and colleagues established silvicultural studies in the 1950s and 60s that were used to design the CELOS Management System (Werger 2011). Neotropical ecological plots that persist today include many in Venezuela by Jean-Pierre Veillon in the 1950s, 60s and 70s (Vilanova et al. 2018) and Rafael Herrera, Ernesto Medina and colleagues in the 1970s, as well as a few in Brazilian Amazonia by João Murça Pires, H. Dobzhansky and G.A. Black and later Ghillean Prance, and several in Costa Rica since 1969 by Diana and Milton Lieberman. Elsewhere, Alwyn Gentry, John Terborgh, Terry Erwin, Gary Hartshorn, David Neill and Rodolfo Vásquez set up the first long-term plots in western Amazon in the late 1970s and 80s (Gentry 1988a, Monteagudo et al. 2020). Eastern and central Amazon plots survive established by Ima Vieira and Rafael Salomão in Pará (Salomão 1991, Pires and Salomão 2000), Tom Lovejoy, Niro Higuchi and colleagues near Manaus, Henri-Félix Maître in French Guiana, and by Marcelo Nascimento and colleagues in Roraima. The earliest extant plots in southern Amazonia originate with Tim Killeen, Luzmila Arroyo, Beatriz Marimon and José Roberto Rodrigues. The first long-term tropical large plot was established in Costa Rica (Hubbell 1979), which represented a separate innovation that permitted plot-level analysis of multi-species demography, followed soon after by the first 50-ha plot in Panama (Hubbell and Foster 1983, Wright this volume) and later developments by the Smithsonian Institution and the ForestGEO network (e.g. Anderson-Teixeira et al. 2015). 127128129 130 131132 133 RAINFOR (Red Amazónica de Inventarios Forestales) is the first international tropical forest network encompassing hundreds of long-term plots. At root, RAINFOR was inspired by Alwyn Gentry, a virtuoso tropical botanist who established the first globally standardized floristic inventories. In the 1970s Gentry developed a 0.1-ha sampling design to rapidly inventory diversity in species-rich tropical forests, capturing all stems ≥2.5 cm diameter. He and his colleagues applied it throughout the tropical Americas as well as parts of Africa, India, Southeast Asia, Australasia, and some northern and southern temperate forests. By the time of his untimely death at the age of 48 in 1993, Gentry had completed 226 of these samples, comprising an inventory of thousands of tree and liana species including many new to science. His legacy lives on in multiple ways. After studying with Walter Lewis and recruited by Peter Raven in the early 1970's, Gentry was a key figure in the Missouri Botanical Garden's golden age of tropical botany. He collected more than 80,000 plant specimens, approximately half of which are tropical trees and lianas. He pioneered a new approach to the challenge of identifying plants in the world's most diverse forests (Gentry and Vásquez 1993) which has inspired generations of botanists throughout Latin America. Perhaps most importantly, it was Gentry who embodied the ambition of combining efficient ecological sampling with high-quality identifications and replicating these to create highly distributed measurements of the world's forests (e.g. Gentry 1988b, Clinebell et al. 1995, Phillips and Miller 2002, Phillips and Raven 1997). He also established permanent plots (Gentry 1988a) that feature in the first continental and pan-tropical analyses of forest carbon and dynamics (Phillips and Gentry 1994, Phillips et al. 1994, Phillips et al. 1998), which in turn led to the creation of RAINFOR (Malhi et al. 2002, López-Gonzalez and Phillips 2012) and its protocols (e.g. Phillips et al. 2002). Originating in 1999 from a small nucleus of researchers and plots and supported by EU funding to Brazil's LBA initiative and UK scientists, RAINFOR grew to tackle the challenge of analysing Amazonian forests and climate responses tree-by-tree from the ground-up. By bringing different groups together RAINFOR facilitated the development of long-term international collaborations to measure and understand not only forest dynamics and diversity but also biogeochemistry and carbon fluxes. 153154155 156 157158 159 160 161 162 163 164 165 166167 168 169 170171 172 134 135 136 137 138 139 140141 142 143 144 145 146147 148 149150 151 152 While RAINFOR has grown steadily, other plot networks later emerged with complementary foci in South America. Some are daughter initiatives to RAINFOR, others were formed separately, but most share a similar ethos and strongly overlapping protocols. To the extent that they can be combined together these networks represent an impressive Observatory for Neotropical Forests. Below (Table 1) we report key information about many vibrant networks worldwide that specifically contribute to ForestPlots.net, while here we briefly enumerate national and international neotropical networks, the majority of which ForestPlots.net supports. These include (with dates when plots were censused or consolidated as a network) Tropical Ecology Assessment and Monitoring (TEAM, 2002), Amazon Tree Diversity Network (ATDN, 2003), Programa de Pesquisa em Biodiversidade (PPBio, 2004, Brazil), Red Colombiana de Monitoreo de los Bosques (COL-TREE, 2004), Global Ecosystems Monitoring (GEM, 2010; Malhi et al. this volume), Latin American Seasonally Dry Tropical Forest Network (DryFlor, 2012), Red de Investigación y Monitoreo del Bosque Seco Tropical en Colombia (Red BST-Col, 2014), Secondary Forest Network (2ndFOR, 2015), Peru Monitoring Network (MonANPerú, 2017), sANDES (Tree Diversity, Composition and Carbon in Andean Montane Forests, 2019), and Red de Bosques Andinos (RBA, 2020), as well as global networks and meta-networks including ForestGEO (Anderson-Teixeira et al. 2015), GFBI (Steidinger er al. 2019), sPlot (Bruelheide et al. 2019), FOS (Schepaschenko et al. 2019) and TmFO in logged forests (Sist et al. 2015). Each of these has notable achievements of their own and at the time of writing this in 2020 almost all have active research programmes. 173174175 176177 178 179180 181 In Africa, our early networking focussed on assessing whether there were similar patterns of changes in carbon stocks as observed in South American forests and the causes of such changes. Efforts began in 2001 to recensus many of the earlier plots installed in post-independence Africa (UK funding to O. Phillips, Y. Malhi and S. Lewis), which were later formalised as the African Tropical Rainforest Observation Network (AfriTRON; Lewis et al. 2009), and catalysing a tripling of the African multicensus plot dataset over the last decade (Hubau et al. 2020). These span 12 African countries with moist forests from Sierra Leone in the west to Tanzania in the east. Like RAINFOR in Amazonia, AfriTRON pools expertise and data to tackle long-term, large-scale questions relating to the ecology and biogeochemistry of tropical forests. Networks sharing a similar ethos with programmes in Africa now include TEAM, DynAfFor (Gourlet-Fleury et al. 2013), TmFO and ForestGEO. Recently, the SEOSAW (Ryan et al. in review) and AfriMont networks have been established, extending long-term plots into the extensive southern woodlands and savannas and Africa's distinctive montane forests. Our work in Southeast Asia began in 2001 to assess forest carbon balance and later developed into a network once Lan Qie undertook fieldwork and networking. European Research Council investment (T-FORCES 2012 grant to Phillips, Malhi and Lewis) enabled intensive campaigns to develop long-term plot networking in Borneo (Qie et al. 2017), and supported African recensuses (Hubau et al. 2020). While smaller than its Amazonian and African counterparts the Asian network builds on plots installed by a number of foresters and botanists as long as 60 years ago. Critically, RAINFOR, AfriTRON, T-FORCES and TmFO use the same field and analytical protocols. # Insert Table 1 here: Table 1. Networks contributing to ForestPlots.net (September 2020). How can we combine the different strengths of these and other initiatives to maximise their impact on science and society? To achieve this requires shared data management tools and horizontal organisational structures that foster leadership by tropical scientists. Our plot data management scheme was originally conceived in 2000 as a desktop database to support the first RAINFOR analyses of spatial variation in wood density, biomass, productivity, and changes in biomass over time (Baker et al.
2004a, b; Malhi et al. 2004). This was expanded to draw together inventory data from more than 100 sites in Amazonia and then African forest plots, including some of the longest running monitoring sites worldwide (Peacock et al. 2007). Since 2009 we have developed a Structured Query Language web application with sophisticated programming, providing a one-stop platform to a growing global community of contributors and users (López-Gonzalez et al. 2011). Now, ForestPlots.net supplies ecological informatics to colleagues in scientist-led networks from 54 countries working across 44 tropical nations (Fig. 1). Key advances in this platform include the ability to manage complex time-series data, to track species linked to high-quality botanical records, and to analyse records with common BiomasaFP R-language protocols (López-Gonzalez et al. 2015). While focussed on species identity, tree growth, mortality and carbon dynamics, ForestPlots.net encompasses many related forest attributes including lianas, soils, and plant traits. At their heart long-term plots are an intensely human enterprise and so we also document the personal contributions to plot establishment and continued monitoring. By tracking who did what, and when, we also honour the inter-generational aspect of plots that allows modern analysts to stand on the shoulders of giants. With ForestPlots.net data contributors retain control and are able to manage, share and analyse their records using a common toolset. If new projects requesting to use their data are proposed they can agree to collaborate, or not, as they wish. Contributors often propose their own multi-site projects. ForestPlots.net can provide DOIs to datasets, further ensuring that contributors are properly acknowledged. Developing this functionality has supported a surge in multi-site and multi-national analyses that are increasingly initiated by scientists from the tropics, gradually supplanting the traditional model where researchers from the Global North lead. In sum, ForestPlots.net enables the level of control and collaboration that individual researchers wish for while underpinning network and multi-network integration. In turn, this is empowering data owners and networks and helping to transform the face of tropical ecological science. Figure 1. Current extent of ForestPlots.net *Top:* Pantropical plot sampling density per 2.5 degree square with the 4.062 multiple- and single-inventory plots hosted at ForestPlots.net. These plots contribute to 24 networks including RAINFOR, AfriTRON, T-FORCES, ATDN, BIOTA, COL-TREE, FATE, GEM, Nordeste, PELD, PPBio, RAS, RBA and SEOSAW. Forest cover based on the Global Land Cover 2000 database (JRC, 2003) with tree cover categories: broad-leaved evergreen; mixed leaf type; and regularly flooded. Our plots also extend into neotropical and African savannas; *Bottom:* The same plot sampling but displayed at higher-resolution (1-degree grid cells) for each focal continent, South America, Africa, and Southeast Asia and Australia. The networks and ForestPlots share a 20-year history, but as already seen the history of plot monitoring is much longer. The first recorded census in ForestPlots.net dates from 1939 in Budongo, Uganda. Forty years later, 676 censuses had been completed from 90 plots, but since 1979 fieldwork has accelerated greatly with more than 10,000 censuses completed across 4,000 plots by 2020 (Fig. 2a). This acceleration is reflected by the growing community of contributors, which by 2020 had reached 2,000 individuals (Fig. 2b). ForestPlots.net itself has grown steadily both in terms of censuses uploaded and in outputs (Fig. 3). The neotropics dominate much of this inventory and monitoring effort as well as the growth of ForestPlots.net in particular, but contributions from Africa and other continents are increasing (Figs. 2, 3). Scientific outputs emerging from this collective effort have always spanned local to global scales but now have an increasingly pan-tropical theme (Fig. 3b). Figure 2. Growth of pan-tropical forest monitoring since the mid-twentieth-century. *Top*: Plot-censuses curated at ForestPlots.net by date of census; Bottom: Cumulative number of contributors to ForestPlots.net by date of first recorded fieldwork. Growth was slow following the first census in 1939, only reaching 100 censuses by 1969. For early censuses, records of field team personnel and leaders are often sparse or absent. Note that 'contributors' are defined inclusively to reflect members of indigenous communities, protected area guards, parataxonomists, students, and technicians, as well as principal investigators, botanists, and other specialists. 255 256 257 258 259 260 261 262 267 268 269 Figure 3. Growth of ForestPlots.net and its contributing networks since 2000. 270271272273274 *Top*: Cumulative upload of unique plot censuses to ForestPlots.net by date of upload (pre-2009 uploads to pre-internet versions allocated evenly back to network beginnings); **Bottom**: Cumulative peer-reviewed scientific articles based on network plots, excluding research based on single-plot studies. ### 2. Environmental Representation 277278279 280 281 282283 284 285 286 287 288 289 While it is not possible to intensively sample the whole tropical forest extent, in practice RAINFOR, AfriTRON and T-FORCES have managed to cover almost the entire climatic and geographic space across the humid tropics with permanent plots (Fig. 4a) as well as extensively sampling the biome space of the terrestrial tropics except for semi-arid biomes (Fig. 4b). Within each continent coverage has been focused on the moist tropical lowlands with sampling extending into montane and drier forest systems most effectively in South America (Fig 4c). Plots also cover the complex edaphic variation present in Amazonia (Quesada et al. 2012) where they encompass landscape-level variability within old-growth forests (Anderson et al. 2009, 2010). This effective representation of structurally intact moist forests provides good support for large-scale inferences from what is, inevitably, a limited sample of the domain. It is important to note that many tropical countries lack statistical inventories of forests, let alone long-term monitoring or historical baselines, so research plots fill critical gaps in global and national observations. 290291292 293 294 295 296 297 298299 300 301 302 303 304305 306 Yet significant work remains to be done to increase representativeness, better understand impacts of geological and edaphic variation, and expand sampling in remote areas especially in parts of Amazonia, the central Congo Basin, and New Guinea (c.f. Brearley et al. 2019, Fig 4. below). Fuller environmental coverage can help networks address challenges such as monitoring of protected area effectiveness (Baker et al. 2020) and providing calibration-validation of Earth Observation space-borne sensors (Chave et al. 2019). Beyond the lowland humid tropics, special effort is also needed for long-term, ground-based monitoring in particular environments. Expansion is especially required for: (i) secondary forests and those impacted by disturbance events such as logging, fragmentation, and wildfires (e.g. Chazdon et al. 2016, Elias et al. 2020, Villela et al. 2006); (ii) montane forests, which harbour exceptional concentrations of endemism and are at great risk of biodiversity loss due to deforestation and climate change and therefore represent urgent conservation opportunities (e.g. Malizia et al. 2020); (iii) Asian dry forests, and (iv) the wider extent of tropical dry forest and savanna biomes, which are home to distinctive biotas and significant carbon stocks of their own (DRYFLOR 2016, Pennington et al. 2018). ForestPlots.net partner groups are expanding research and monitoring in such critical areas beyond the structurally intact lowland forests that have been the main focus of RAINFOR and AfriTRON. # 1. Geographic distance (km) # 2. Environmental distance (Euclidean distance [SD]) 311 312 # [Previous Page] Figure 4. Network coverage of geographical and climate space Analyses include >1500 permanent plots managed at ForestPlots.net. (a) Top panels: (1) Geographic distance between multi-census plots across the humid tropical forest biome; and (2) Minimum climate dissimilarity (Euclidean distance on variables scaled by their standard deviation, accounting for mean annual temperature, temperature seasonality, mean annual precipitation and precipitation seasonality), where for each cell environmental distance represents how dissimilar a location is to the most climatically similar plot in the network. Note that some poorly sampled areas are mostly deforested, such as Central America, Madagascar, and much of tropical South and Southeast Asia. The baseline map depicts WWF terrestrial ecoregions (Olson et al. 2001). (b) Middle panel: Tropical plots displayed in global biome space (Whittaker diagram), showing the main concentration of plots from lowland wet through to moist forests and savanna, with some samples in cooler montane climates. (c) Lower panels: Plots displayed within tropical humid and sub-humid climate space, with plots displayed colour-coded by continent and symbol size corresponding to total census effort. Note the important differences in baseline climatic conditions between continents. # 3. Discovery: Forest Ecology across the Tropical Continents RAINFOR, AfriTRON and T-FORCES plots have generated ecological and biogeographical insights that have only been achievable via large-scale collaboration. RAINFOR has revealed that Amazonian forests differ substantially from one another, even those that share essentially identical climates. For example, basal-area weighted wood density of northeastern forests is 50% greater than that of southern and western forests. This reflects floristic differences (Baker et al. 2004, ter Steege et al. 2006, Honorio Coronado et al. 2009, Patiño et al. 2009), which, in turn, are
associated with large differences in forest dynamics. Stem turnover is twice as fast in the west and south as the east (Phillips et al. 2004) due to younger soils with poorer structure providing less rooting support (Quesada et al. 2012, Schietti et al. 2016) and in spite of only modest productivity differences (Malhi et al. 2004, 2014). In contrast, biomass in north-eastern Amazonia is higher than elsewhere due to the reduced mortality risk and hence bigger trees and denser wood (Baker et al. 2004, Malhi et al. 2006, Marimon et al. 2014, Pallqui et al. 2014, Johnson et al. 2016, Alvarez et al. 2018, Phillips et al. 2019). In Africa, AfriTRON plots also show that species-driven differences in wood density prevail at large scales. In mature forests, soil-related compositional differences cause significant variation in basal-area weighted wood density. Forests on younger and more fertile acrisols and cambisols have 10 and 20% lighter wood than those on arenosols and histosols, respectively (Lewis et al. 2013). Similarly to Amazonia, African forests growing on older, less fertile soils have higher biomass (Lewis et al. 2013). Local and regional variation in soils and forest attributes are important within both continents but the key difference is that only Amazonia has clear continental-scale gradients in wood density, due to the powerful influence of Andean orogeny in the west. This leads to young, geologically dynamic landscapes with fertile, less-developed soils, influencing speciation, immigration and extinction, and contrasts with the ancient, stable Brazilian and Guianan Shields of the east. Large-scale analysis thus reveals how soils and species help control the carbon that tropical forests store. This has implications for monitoring carbon stocks using remotely-sensed data. In tropical forests neither soil nor tree composition is easily perceived from space. For example, RAINFOR plots show that LiDAR-derived biomass estimates of Amazonian forests are compromised because they do not perceive the critical large-scale floristic gradients (Mitchard et al. 2014). Accounting for such limitations by relating plot-derived woody density and allometry to LiDAR sampling shows that plots greatly improve biomass maps (Mitchard et al. 2014, Avitabile et al. 2016). Thus the role of soils and species composition in affecting biomass carbon is a key reason why ground data are essential for mapping forests (Chave et al. 2019). While Earth Observation has great benefits in terms of spatial coverage and ability to update frequently the incorporation of plot-derived compositional data greatly improves our understanding of carbon storage patterns over large scales. When networks using the same protocols are combined it is also possible to discover and explore variation between continents too. Common protocols have revealed major pan-tropical variation in vertical structure, including tree height and height-diameter allometry (Feldpausch et al. 2011) which have impacts on biomass (Banin et al. 2012; Feldpausch et al. 2012; Sullivan et al. 2018). African forests average one-third higher biomass per unit area than Amazon forests (Lewis et al. 2013), yet have roughly one-third *fewer* stems >10 cm diameter per unit area. This may be driven by systematically lower tree mortality in these forests (Hubau et al. 2020, Sullivan et al. 2020). Similarly, comparing climatically and edaphically similar forests in parts of Borneo with northwest Amazonia reveals that Bornean forests produce much more wood, with trees growing up to 50% more rapidly than those of Amazonia. This suggests that differences in phylogenetic composition of tree communities, especially the dominance of the dipterocarp family in tropical Asia (Corlett and Primack 2011), determine the efficiency with which atmospheric carbon is converted to woody carbon (Banin et al. 2014). Tree species composition and dominance strongly control forest function within continents too. For example, a recent RAINFOR study discovered that Amazon woody productivity is enhanced in more phylogenetically diverse forests (Coelho de Sousa et al. 2019). Yet while Amazonian forests are very diverse, remarkably few species dominate in terms of stems (ter Steege et al. 2013, research led by the ATDN network), while biomass stocks and woody productivity are dominated by a different set of species (Fauset et al. 2015, RAINFOR network). Evidence also suggests that some of these 'hyperdominants' may have been long favoured by indigenous people as part of wider human influences on old-growth Amazon forests (Levis et al. 2017, Oliveira et al. 2020). These and other studies show that identity matters. Dominant species and their evolutionary history thus affect forest ecology and forest values, whether in terms of storing carbon, converting solar energy into wood or sustaining whole cultures. These insights show that two of the defining challenges of the twenty-first century, climate change and biodiversity loss, are closely linked. How then do we best devise conservation strategies to achieve the targets of biodiversity protection and climate mitigation and adaptation? Can we rely for example on carbon conservation via schemes like REDD+ to protect tropical diversity too? The answers to these questions depend on the relationship between diversity and carbon storage but assessing this has been challenging due to the scarcity of inventories in which both carbon stocks and species identifications have been reliably quantified. By combining RAINFOR, AfriTRON and T-FORCES plots we found that for tropical trees diversity-carbon storage relationships barely exist at all (Sullivan et al. 2017, Fig. 5). For example, South America, the continent with the richest forests, actually stores the least carbon per hectare, while within continents there is no association. Independent data from the RAS network data support this, showing that strong carbon-biodiversity relationships are only found in disturbed and secondary forests but not old-growth (Ferreira et al. 2018). As mature forests exhibit all possible combinations of tree diversity and carbon stocks it is clear that both need to be explicitly considered to protect the climate and biodiversity. In addition, long-term carbon storage is threatened by defaunation of large-bodied frugivores, often essential for dispersing large-seeded heavy-wooded tree species (Peres et al. 2016). We cannot simply focus on carbon and achieve biodiversity conservation, and vice versa. Figure 5. Pantropical forest carbon storage is independent of species richness. There are no clear within-continent or pantropical relationships between carbon stocks and tree species richness per hectare in structurally intact old-growth tropical forests. Figure adapted from Sullivan et al. 2017. Figure 6. Tropical continental macroecology Remarkable continental differences in species richness, stem density and carbon stocks emerge among lowland tropical moist forests when densely-sampled plot networks are combined. Graphics depict probability densities such that the whole area for each continent sums to 1. Note that the y-axis scale for each variable thus *itself varies depending on the range of the x-axis*: for continents with larger variation in x, the probability density at any point along the y axis is correspondingly smaller. Analysis adapted from Sullivan et al. 2017 and 2020. When network data are combined surprisingly large and coherent continental-level differences emerge (Fig. 6). African forests are remarkably species-poor at the 1-ha scale whereas South American and Asian forests are more than twice as rich on average, but also vary much more in species-richness and diversity. The very richest forests in the world are located in parts of Western Amazonia, vindicating a claim by Gentry (Gentry 1988a, b) from more than three decades ago. African forests have many fewer stems than their Asian and South American counterparts, but South American forests have considerably less biomass. In terms of carbon gains Borneo's forests are outliers, being up to twice as productive as other forests. Yet it is in South America where woody carbon turns over fastest. Fully half the carbon in neotropical trees has been replaced since 1970. Overall these comparisons reveal remarkable differences between the tropical forest continents that are not strongly driven by rainfall, temperature or soil (Sullivan et al. 2020). The implication is that other factors related to the evolutionary and historical happenstance of each continent matter. We draw three higher level conclusions from this. First, global-scale ecological modelling ignores biological composition at its peril. Second, if there was ever any doubt, each continent clearly needs its own robust research and monitoring programme. And third, each region likely responds to climate change in its own, idiosyncratic way. # 4. Discovery: Tropical Forest Change The single most significant scientific impact of these multiple permanent plot networks has been to transform our understanding of how tropical forests function in the Earth system. As the most diverse and carbon-rich tropical biome, the fate of humid tropical forests will impact the future of all life on Earth. Until quite recently it was axiomatic that old-growth tropical forests are at equilibrium when considered over sufficiently large scales, and that any changes observed at smaller scales are driven by natural disturbance-recovery processes. However, large-scale imbalances observed in the global carbon balance have cast doubt on this assumption (e.g. Taylor and Lloyd 1992). Over time, network analyses have helped to recast our understanding of contemporary old-growth tropical forests as being non-stationary systems. Their carbon, biodiversity and ecosystem processes are widely recognised as dynamic and continually responsive to multiple anthropogenic drivers (e.g. Lewis et al. 2004b, Pan et al. 2011,
Malhi et al. 2014, Levis et al. 2017, Mcdowell et al. 2018, Reis et al. 2018). Key discoveries at this intersection between global change science and forest ecology and biodiversity include: (1) A pantropical increase in tree turnover rates, representing the first evidence for a widespread impact of global anthropogenic change on old-growth tropical forests (Phillips and Gentry 1994). The finding that these forests were changing was controversial at the time - let alone the inference that global drivers were responsible - and contradicted established ecological orthodoxy. The debate that ensued helped generate new questions and analyses (e.g. Sheil 1996, Phillips and Sheil 1997) and address potential biases (e.g. Sheil 1995, Condit 1997, Lewis et al. 2004a, Gloor et al. 2009, Espirito-Santo 2014, Kohyama et al. 2019). A quarter of a century of research since then has rejected the notion that 'intact' tropical forests are unaffected by atmospheric changes and reinforced the central concept that all tropical forests are being influenced by a suite of large-scale contemporary anthropogenic drivers. - 470 (2) **Biomass dynamics have also accelerated in Amazonia**. In parallel with the increases in stem dynamics, as RAINFOR grew it became clear that carbon fluxes via biomass growth and mortality were also increasing. Moreover, the increased gains in stems (recruitment) and biomass (woody productivity) clearly preceded increases in stem and biomass losses (mortality) (Lewis et al. 2004b, Phillips et al. 2004, 2008, Brienen et al. 2015, Nogueira et al. 2018). The mechanism underlying this acceleration of forest dynamics must therefore involve stimulated productivity via increased resources for plant growth, rather than direct stimulation of tree mortality such as by drought (Lewis, Phillips and Malhi 2004). - (3) **The Amazon forest carbon sink**. In conjunction with faster growth and turnover, the biomass density of Amazonian forests has increased (Phillips et al. 1998, Baker et al. 2004, Pan et al. 2011). Old-growth Amazonian forests have absorbed (net) atmospheric carbon for at least three decades now (Brienen et al. 2015), providing a true "subsidy from nature" with flux magnitude matching or exceeding net losses from neotropical deforestation (Aragão et al. 2014, Gatti et al. 2014). Thus, monitoring networks have shown that most Amazonian nations are on balance *not* net emitters of carbon (Espirito-Santo et al. 2014, Phillips and Brienen 2017). The location, magnitude and persistence of this old-growth carbon sink has important implications for guiding approaches to meeting nationally differentiated targets for controlling climate change (Vicuña Miñano et al. 2018). - (4) The African forest carbon sink. The AfriTRON network discovered a long-term net biomass increase similar in magnitude to that of the Amazon in the 1990s and early 2000s (Lewis et al. 2009). The consistency of these results on a second continent supports the idea that global drivers of change can affect even the most remote forests. The fact that biomass is increasing across the entire wood density spectrum of tree species implies that forests are responding to increasing atmospheric CO₂ concentrations (Lewis et al. 2009). The long-term increase in carbon stocks of African forests was recently updated and confirmed, with three times as many plots showing continued sink strength (Hubau et al. 2020). - (5) The Pan-Tropical forest carbon sink. Once the T-FORCES network allowed sufficient plot coverage across remaining Bornean forest a similar increase in aboveground biomass over recent decades was revealed (Qie et al. 2017). Thus the three continental networks discovered that old-growth tropical forests as a whole have been a long-term sink. Our ground measurements imply this totalled more than one billion tonnes of carbon each year over the 1990s and early 2000s, i.e. half the terrestrial global carbon sink (Pan et al. 2011), which is sufficient to significantly slow climate change. The fact that the main blocs of remaining tropical forests are *en masse* out-of-equilibrium and undergoing biomass increases of similar magnitude implies a common global driver of growth. Increasing atmospheric CO₂ is the most parsimonious candidate and is consistent with predictions from first principles (e.g., Phillips and Gentry 1994, Huntingford et al. 2013), inference from CO₂ fertilization experiments (Terrer et al. 2019), analyses of the global carbon budget (Ballantyne et al. 2012, Gaubert et al. 2019), observed greening of forests unaffected by land-use change (Piao et al. 2019), and recent plot analyses showing a significant role of CO₂ (Hubau et al. 2020). - (6) **The Amazon sink is slowing.** After 30 years of monitoring Amazonian forests, the RAINFOR plots show that the rate of increase in forest growth is declining. Tree mortality rates have increased in some regions, leading to a slow decline in the magnitude of the net biomass accumulation (Brienen et al. 2015, Phillips and Brienen 2017). The subsidy from nature provided by tropical forests may be time-limited. (7) Recent droughts in Amazonia have had large impacts. Long-term plots also monitored immediately before and soon after droughts reveal that these forests can switch rapidly from being a major sink to a source of carbon. Both the 2005 and 2010 Amazon droughts had a net impact on the order of 1 Pg of carbon, driven primarily by drought-induced mortality (Phillips et al. 2009, Lewis et al. 2011; Doughty et al. 2015, Feldpausch et al. 2016). RAINFOR and GEM have quantified the drought sensitivity of the world's biggest rainforest and identified the key process affected: mostly tree mortality rather than growth, and not photosynthesis. The impact on the biomass carbon sink of the 2010 drought and non-drought years match independent inferences from measurements of atmospheric [CO₂] using aircraft (Gatti et al. 2014). (8) The African and Amazon sinks have diverged. Thirty years of monitoring AfriTRON plots show that African forests have continued to function as a carbon sink, although the most intensively monitored plots suggest that the sink may be declining (Hubau et al. 2020). When analysed together with RAINFOR data, within-plot changes over time reveal a common set of drivers that suggest the sinks will decline, with African forests lagging behind Amazonian forests by 15-20 years (Hubau et al. 2020). Changes across both continents are best explained by a combination of the positive effects of increasing CO₂ enhancing productivity and negative effects of higher temperatures and droughts in suppressing growth and accelerating mortality, combined with the intrinsic properties of forests themselves. The time-lag of the African sink saturation is due to longer carbon residence times in African forests, so that mortality catches-up slower than in faster turnover forests. Amazonian forests are often harder hit because they are hotter and can be drought-prone (Hubau et al. 2020). Together, the pan-tropical plot networks have revealed long-term trends in carbon storage and determined which drivers matter, which processes are affected, where they are impacting, and what the lags are. (9) The future of the tropical forest carbon sink. Monitoring the present and the recent past of forest behaviour can also reveal likely future scenarios as the climate continues to change. Our plot networks provide two powerful and independent lines of evidence. First, the long-term sensitivity to climate emerges from a space-for-time analysis based on 813 plots across the Earth's tropical forests. This shows how maximum temperature and dry season intensity combine to determine the equilibrium climate controls on forest carbon, acting on productivity and mortality to limit forest carbon storage in the long-term (Sullivan et al. 2020). Forests exhibit remarkable thermal resilience under low amounts of warming, but in the hottest forests (>32.2°C max. temp.) biomass carbon drops off rapidly. Most of the biome will exceed this value with one further degree of warming (approximately equivalent to a 2°C increase above pre-industrial levels). Second, analysing recent changes in productivity and mortality as a function of recent climates, and coupling them with future climate scenarios, confirms that the carbon sink is likely to decline (Hubau et al. 2020). A key uncertainty with these latter projections is the extent to which local resilience due to shallow water-tables (Sousa et al. 2020) may mitigate effects, and whether more compositional changes will extend the carbon sink further if species better-adapted to the new conditions compensate for others' losses. The analysis by Sullivan et al. (2020) confirms that lagged species-related resilience is likely as long as forests do not experience substantial warming. (10) **Tropical forest biodiversity is changing**. RAINFOR data show that an entire group of plants, lianas (woody vines), are increasing in dominance across Amazonia (Phillips et al. 2002). Large lianas in turn contribute to higher tree mortality (Phillips et al. 2005). Tree community composition is changing too. In the Andes, plots of ABERG, RBA and RedSPP show 'thermophilization' – communities becoming more warm-adapted (e.g Fadrique et al. 2018). Climate change is inducing large-scale change in tropical lowland trees too, as wet-adapted taxa in Amazonia face greater mortality risks from drought (Esquivel Muelbert et al. 2017, 2019) while a shift towards drought-deciduous tree species is observed in west African plots experiencing a multi-decadal drought (Fauset et al. 2012, Aguirre-Gutiérrez et al. 2019, 2020). In both continents these community responses to drought coincided with biomass gains. Nonetheless, because of the long generation times of tropical trees the compositional change has not kept pace with the drying of Amazonia (Esquivel-Muelbert et al. 2019). This suggests that further community change is
inevitable, even before accounting for losses driven by deforestation and disturbance of remaining forests (Barlow et al. 2016). Current models lack the capacity to account for variation in tropical woody plant biodiversity and demographic processes and their lagged responses to global change drivers. In sum, highly distributed, long-term monitoring of the world's richest forests has profoundly increased our understanding of nature's sensitivity to climate change. It has shown that intact forests have been surprisingly resilient, but that many are now reaching the limits of their tolerance to global heating and drying. Looking forward, many of the key uncertainties that remain concern the responses of tropical biodiversity itself. This includes the extent to which the great biocomplexity of tropical forests themselves will provide an effective and timely insurance policy in the face of rapidly changing climates. To understand this, we must continue to monitor. # 5. Challenges and the Future of Tropical Forest Monitoring Large-scale plot networks have not only made a series of crucial scientific discoveries and advances, but even more profoundly the Social Research Network model pioneered by RAINFOR since 2000 has influenced how the science itself is being done. Tropical ecology has undergone a remarkable shift from a small cadre of researchers working in one or two sites to a more globalised and decentralised process with greatly increased contributions from tropical scientists. This has been made possible by supporting highly-distributed researchers and field sites, establishing mechanisms for shared data management, fostering an equitable concept of data ownership, and embracing groups who are often marginalised in research. Importantly, the network model is nurtured by researchers placing trust in the sharing of hardwon data to answer big questions and recognising the value of developing trusting relationships over time. Finally, the growth of interactive multi-site, multi-cultural science has benefited hugely from standardized field and analytical methods that have been agreed upon, formalised and promoted. The ForestPlots.net experience demonstrates that collaborative, multi-polar structures help ensure breadth and resilience, while supporting and encouraging the leaders of the future. The transformative power of this approach has now led to the establishment of multiple plot-centred networks that are reshaping our understanding of tropical ecosystems. However, these networks face a number of key challenges to sustain the achievements made and enact even deeper transformational change, which we set out here. 1. How can networks support leadership in the Global South? Although no single project can reverse the impact of centuries of global inequality, tackling the barriers to a more equitable world is the responsibility of all. Ecology and conservation science remain biased towards temperate ecosystems in terms of funding and topical focus (Di Marco et al. 2017, Reboredo et al. 2020), while tropical ecology is often detached from policy-making processes and with most high-impact papers still led from the North. Together with open data-sharing and long-term collaboration, more leadership of forest science from tropical countries helps to address these disparities and achieve more impact on forest and carbon management (e.g., Vargas et al. 2017, Baker et al. 2020). Supporting tropical students at different levels up to PhD and mentoring beyond the doctoral degree is also important. To help, ForestPlots.net has made shared tools widely available, and especially data management and analytic tools that support data contributors as much as users. To ensure fieldwork is valued and leadership in tropical researchers is fostered, we have developed a Code of Conduct to encourage contributions, support scientists in tropical countries, and promote mentoring of junior scientists. To oversee this we created a diverse committee that currently supports more than projects (http://www.forestplots.net/en/join-forestplots/research-projects). As a result, the proportion of ForestPlots.net research projects and products being led by tropical nationals has greatly increased, with less than 10% of publications as RAINFOR began (2000-2004), rising to 35% in 2009 and 50% by 2019. In spite of such gains diversifying leadership is a long-term process. Ultimately, sustained funding in and by tropical countries themselves will ensure they not only have strong training programmes to develop the core field and analytical skills scientists need, but equal opportunities for career development. 2. How should we value and recognise collaboration and leadership? Most of the obvious reward structures in science - job security, income, grant success, peer reputation and public acclaim - can favour a 'me first' approach. Credit accrues to individuals, but true collaboration involves trust, sharing and encouraging others. Collaboration is gratifying, but letting go of our egos can be challenging, and in larger groups there is greater risk that individuals feel their contributions go unnoticed. Likewise, the essential and major effort needed 'backstage' in ForestPlots.net to check data, update and develop data management, and support requests to utilize data, goes unseen. A partial developmental solution to this involves providing network contributors the opportunity to lead analyses with the expectation that these new leaders then support others with their analyses. Another approach is to reflect the diversity of contributions that underpin the success of networks by using a group author that shares credit amongst all, as in the current paper. These steps can promote the recognition of multiple contributions and development of tomorrow's leaders. 3. How do we properly value the long-term? Project and thesis time-scales last from one to five years, but the lifespans of trees are measured in decades and centuries. What can seem vitally important in a hypothesis-driven research grant or a PhD may, in fact, have little relevance to the longer natural rhythms of nature. What if the dominant processes governing climate responses of forests turn out to involve lifetime accumulated ecophysiological stress, tree demography and species migration? Clearly very long-term research is essential to decode these processes. Meanwhile, maintaining permanent plots is as much an expression of hope in the future as a stake in an immediate scientific outcome, as rewards may accrue to others distant in time and space. Indeed, we have all benefited from researchers installing plots from the 1930s onwards. These pioneers never dreamt that their careful tree measurements and botanical identifications would help reveal the impacts of climate change on tropical forests, but look what they have achieved! Long-term research programmes are simply irreplaceable, enabling us to discover, quantify, identify the causes of, and ultimately tackle environmental change. 4. Can we ensure fieldwork and human skills are valued for what they are? Technology provides many benefits to the scientific endeavor, but there are risks too, particularly in a field where long-term measurements may be perceived as unfashionable (Ríos-Saldaña et al. 2018). A serious risk is that the tail wags the dog: when technological advance is an end in itself, it is unlikely that scientific and human progress will follow. We should never forget the basic truth that human beings and their skills are essential to measure and identify tropical trees. It is notable that those measuring, climbing and collecting tropical trees in permanent plots are among the least well-paid of all actors in the global scientific endeavour. Yet these true key workers are irreplaceable as tree measurement in many locations is completely dependent on such labour and skill (Fig. 7) and, more broadly, *combinations* of people and technology provide the best results (next section). Moreover, because tropical tree floras usually run into the thousands of species (e.g., >4,700 tree species in Peru, Vásquez et al. 2018), identification depends on the work of highly skilled climbers and botanists to collect material from canopies, make vouchers, and identify and permanently store them in herbaria. Without physical collections and the immense multi-cultural knowledge and skills that produce them, identifications are untestable hypotheses whose quality cannot be evaluated. But with vouchers, we have the names that are essential to test questions about diversity, composition, functional traits, and wood density and biomass. 5. How should we fund proven networks long-term? As the most pressing concern, this question intersects closely with all of the above. Few organisations have the vision to support long-term endeavours where leadership and credit is shared diffusely, many benefits accrue after decades, and where the most exciting discoveries may be unforeseeable. We recommend the following, potentially transformational changes to address the challenges and unlock the benefits of ambitious, long-term forest monitoring: (i) Science Agencies have the foresight to build long-term research capacity, and consciously adopt the challenge of international ecosystem monitoring and tropical career development; (ii) Space Agencies recognise that tropical fieldwork can measure the things they cannot and validate the attributes that they can, and contribute to the labour and unique skills of tropical field scientists and help overcome the challenges they face; (iii) Development and Conservation Agencies who depend on a robust understanding of the long-term health of forests, recognise that high quality, long-term, on-the-ground monitoring of trees, and supporting these skills, is vital for their agenda; (iv) National and international climate adaptation and mitigation funders recognise that long-term, world-class forest monitoring is essential to assess
both the mature forest carbon fluxes and the land-based emissions which will together impact forest management, nature-based solutions, and nationally determined contributions (NDCs) to reducing greenhouse gases for decades to come. Every one of these user groups requires successful networks with long-term, research-grade tropical forest plots to discern the status and change of biodiversity and to assess the stocks and flows of carbon. 701 702 703 704 705 706 707 712 713 714 715 716 717 718 719 720 721 722 723 724 Figure 7. Accurately measuring and identifying trees in remote tropical forests requires dedication, skill and courage. To measure the diameter of this giant Ceiba (Malvaceae) tree in Colombia's Chocó, three people each needed to climb more than 10 meters. Such techniques can be the most practical and accurate options for measuring large trees. Here, like many of our sites, there is no electric power, let alone a field station, and chronic insecurity due to political and social conflicts and narcotrafficking means that aircraft and laser-scanners are not deployable. Images: Pauline Kindler. #### 6. Achievements, Impact and Potential Despite the challenges, tropical forest science has come a very long way. Until recently, tropical ecology suffered from a massive data deficit. We had plenty of theory and conjecture, but few comparable observations over time and space to deductively put these ideas to the test or inductively generate new ones. Networks such as ForestGEO, RAINFOR, AfriTRON, and the wider ForestPlots community have contributed much to resolving this. By leveraging a remarkably old technology, forest plot networks have sparked a modern revolution in tropical forest science. They provide the means by which we have quantified the trajectory of tropical forest carbon balance, including its climate sensitivity, and now provide a Pan-Tropical Observatory for tracking these vital indicators of Earth's health going forward. Permanent plots are now the prism through which ecologists address a rich suite of ecological questions, but they have also changed the way others see forests. For example, well-identified permanent plots have proved fertile ground for botanists to discover new tree species and genera (e.g. Reitsma et al. 1988, Baker et al. 2017, Wurdack and Farfan Rios 2017, Vásquez et al. 2018, Gosline et al. 2019, Vásquez & Soto, 2020), ethnoecologists to quantify forest people's values (Phillips and Gentry 1993, Lawrence et al. 2005), atmospheric scientists to explore organic volatiles production (Harley et al. 2004), ecophysiologists to assess why trees die (Rowland et al. 2015, Mcdowell et al. 2018) and how necromass accumulates and decays (Chao et al. 2009), modelers to verify ecosystem simulations (Johnson et al. 2016), and foresters to predict and manage wood production and its impacts (Berry et al. 2008, Gourlet-Fleury et al. 2013). They provide critical infrastructure for whole-biodiversity and cross-taxa inventory, including exploration of cryptic canopy and soil faunal and microbial biodiversity (e.g., Nakamura et al. 2017). The impacts of these networks on policy are also growing. In Peru for example, ForestPlots.net, MonANPe and RAINFOR contribute to estimating National Forest Reference Emission Levels (NREF) since 2016, and our permanent plots are now being used to validate national contributions to the Paris Climate Accord via forest carbon sequestration (Vicuña et al 2018, Baker et al. 2020). In Ghana, plots were needed to quantify historical and current carbon stocks, helping to establish baseline forest reference levels for the flagship Cocoa Forest REDD+ Programme (FCPF, 2017). In Gabon stratified-random sampling of high-quality AfriTRON plots is now used for the National Forest Inventory (Poulsen et al. in press. Ecol. Apps). Internationally, RAINFOR, AfriTRON, T-FORCES and 2ndFor provide the new IPCC default values on old-growth and secondary forest carbon sequestration to assist countries develop their nationally determined contributions as part of the UNFCCC process (Requena Suarez et al. 2019). What of the future? As new technologies for probing forests become available, the hundreds of standardised long-term plots and networks of skilled tropical researchers represent critical infrastructure to enhance and calibrate new insights as they arise. The benefits of working within established plots go beyond simply having confidence in species identifications and hence biomass. By leveraging their labour and insights, we can increase the scientific value of new technology. For example, the ability to match individual trees from laser-scanning surveys to tagged, censused individuals provides critical information on growth and identity (Disney et al. 2018). Integrating long-term botanical and ecological records of plots with terrestrial and airborne laser-scanning in designated *super-sites* (Chave et al. 2019) can help overcome limitations of different approaches, providing greater certainty to biomass estimates (e.g., Schepaschenko et al. 2019). Hence forest networks can help unlock the value of space-based efforts to monitor forests. Just as the constellation of Earth-observing environmental satellites is a public good, the plot constellation provides highly complementary, critical global infrastructure. And last, but not least, as intact tropical ecosystems continue to shrink, burn and fray at the edges, permanent plots provide the indispensable baseline for understanding biodiversity and ecosystem processes too. They should be our shining North Star for guiding sorely needed restoration efforts throughout this century. So far this effort has relied on the goodwill of hundreds of colleagues and dozens of grants from many sources (see Acknowledgments). Only long-term funding will ensure that the vital public benefits of plot networks continue to flow. Such support is surprisingly difficult to obtain (see Box 1). Yet twenty years of hard-won scientific results show that reliable and highly distributed monitoring is irreplaceable. They underscore the importance of welcoming all contributors to this effort, and of valuing the diverse skills needed to understand tropical biodiversity and its dynamics. Ultimately, we will understand the nature of tropical forests best when the science is global, local skills are fairly valued, and when the development of tropical scientists is at its heart. Indeed, we know of no other model capable of achieving this. [Main Body of Text Ends] 772 [*Insert Box*] # **Box 1. What Does It Take?** Clearly long-term ground-based monitoring of tropical forests requires a sustained global team effort. But just how much does it take to deliver tropical forest plot data in practice? It requires both skilled people and their labour, and funds. So here we address this question in terms of *the human effort made thus far* and the *financial investment needed to monitor across continents*. (a) The Human Contribution: Network efforts include not only in-country field campaigns but much besides. To deliver from conception to product, high-quality data collected over many years and in dozens of countries requires multiple teams that are well-led and consistently trained in the proper protocols, quality control, and data management. In RAINFOR and AfriTRON this includes national or local field-team members to establish and remeasure plots, others to collect and identify plants and collect and analyse soils, colleagues to organize and manage the data, and others to sustain and lead the process nationally and globally – not to mention those who support these processes with essential administration, herbarium assistance, database development, analytical packages, information technology support, technical training and so on. Naturally some individuals contribute in several ways and roles change over time as lives change. All these local, national and global efforts ultimately depend on funding. The average effort *in the field, herbarium, and lab* to install a typically remote and diverse 1-ha tropical forest plot and analyse its species and soil sums to 98 person-days, with an additional effort of 38 person-days to support and sustain these teams and data management. Together a total of 136 person-days is needed on average to deliver high-quality data from a new plot. Recensusing a plot is usually less demanding (for example soil collection is not repeated and there are fewer plants to identify) but still considerable: 45 person-days in the field and herbarium, and 31 person-days to support and sustain. Therefore, 76 person-days are required to deliver high quality data from a recensused plot. These represent long-term averages. These estimates are based on remeasuring plots within five years or less between each census, and assume the plot was installed using standard protocols. Naturally circumstances can vary from site-to-site and country-to-country. Thus far our teams have established 4,062 plots in tropical forests of which 1,816 are recensused, from as little as once up to as many as 40 times each. Of the 4,062 plots the modal size is between 0.9 and 1.1 ha but there are smaller plots too (1,844 are \ge 0.9 ha, and 2,216 are <0.9 ha). The recensused plots tend to be larger: of the 1,816 recensused plots, 62% are \ge 0.9 ha (1,131) and 38% are <0.9 ha (675). If we conservatively assume that plots \geq 0.9 ha (average size = 1.2 ha) require 136 days to install and 76 days to recensus, and those <0.9ha require half this effort (also likely to be conservative due to fixed costs for even the smallest plots), then the total effort to install these plots has been 196,248 persondays, and recensusing them has taken 357,940 person-days. In total this comes to 1,518 years. As if one remarkably talented and tireless individual had been working continuously since AD 502. **(b)** Cost of Sustained Continental Monitoring: How much does it cost to monitor Earth's
remaining old-growth tropical forests with ground networks? This is a critical question given the exceptional ecological value of these systems, the threats they are under, and the role they have and can play in modifying the rate of global climate change. At first sight this question appears difficult to answer, or to even agree upon the terms of reference. Scientists would ask and likely argue: Monitoring what? For whom? With what precision, level of confidence, or spatial and temporal resolution? Recognising such difficulties we take a pragmatic approach and reframe the question. Instead we posit, *How much will it cost to monitor tropical forests using all the permanent plots that we have already remeasured?* This question is tractable *practically* (these plots represent a known quantity: we know exactly *where* they are, *what* most of the species are, and to a large extent *who* can actually do the work – *each of* which is critical), it makes sense scientifically (the plots already have a baseline monitoring period against which we can assess any change, which is essential), and it is justifiable quantitatively (using somewhat smaller datasets than this we have already detected long-term changes in carbon balance, productivity and tree mortality on each continent, reported short-term changes in response to El Niño droughts and other climate anomalies, and attributed changes in carbon and biodiversity to climate drivers, *all of which establish proof-of-concept*). So here goes: * There are 1,105 remeasured ForestPlots.net plots in tropical forest South America (422<0.9ha + 683>0.9ha), 462 in tropical forest Africa (109 + 353), 192 in tropical forest Asia (106 + 86) and 32 in tropical forest Australasia (22 + 10). With all 1,791 plots monitored on a four-year cycle this requires revisiting 448 plots annually, of which 165 are <0.9 ha and 283 are >0.9 ha. * Recensus costs can vary from site-to-site. Botanical identification is especially challenging in most of South America due to the extraordinary diversity, while some African forests are exceptionally remote. Employment, social security and health costs vary but are rising almost everywhere. On average, considering all *the direct and indirect human effort required* (above) and *additional direct costs* (including consumables, equipment, travel, subsistence, insurance, visas, permits, shipping, training, IT), the current cost to deliver a high-quality tropical recensus is ≈ 18,000 USD for plots ≥0.9 ha, and at least half this for plots that are <0.9 ha. That's about 30 USD per tree. [Similarly, to install plots is a significant operation but it requires more expert time to collect and identify hundreds of trees. The total cost to properly install a high-quality tropical forest plot is $\approx 27,000$ USD for a 1 ha plot. When forests are recensused this start-up investment is leveraged as a contribution: this enables the subsequent monitoring of forest dynamics but it's not new spend.] Thus, the annual delivery cost for a pantropical, practical ground-based *recensus programme* capable of tracking and attributing forest change to published standards is estimated as: $(283*18,000 + 165*9,000) \approx 6.6$ million US dollars. This annual investment is sufficient to ensure that ground-measurements track the biome-wide and continent-specific biomass carbon balance of the remaining intact tropical moist forests, as well as their climate sensitivity. It also provides ground calibration and validation for remote estimates of biomass. It further enables us to detect whether the tropical sink is now disappearing as predicted, and where and why, and what the consequences for biodiversity are, and to determine how much intact ecosystems can contribute to countries' nationally determined contributions (NDCs) to climate mitigation. While \$6.6 million is a significant sum it is instructive to compare it to funding required for other large-scale science initiatives. The United States alone spends \$80 million annually (i.e., twelve times as much) on its national forest inventory (Castillo and Alvarez, 2020). Space Agencies invest from ca. \$80 million to 500 million Euros for a single mission to estimate biomass from space for a few years (i.e, one to two orders of magnitude more). And as we have seen, ground networks ultimately not only transcend the short-term time windows of such missions but add huge value to them. In conclusion, the ongoing cost of monitoring Earth's remaining tropical forests on the ground is extraordinarily small compared to the great scientific and practical benefits it provides. Meanwhile, tropical forests themselves are in greater trouble than ever before, even while still providing tremendous and irreplaceable benefits to the people of the world. Now that the capacity to monitor tropical forests is established and proven it is surely incumbent on all of us to ensure this collective effort continues and grows. #### Acknowledgments 885 886 887 888 889 890 891 892 893 894 895 896 897 This paper is a product of the RAINFOR, AfriTRON and T-FORCES networks and the many other partner networks in ForestPlots.net which support long-term forest science and monitoring across tropical countries. These initiatives have been supported by numerous people and grants since their inception. We are particularly indebted to more than one thousand four hundred field assistants for their essential help in establishing and maintaining the plots, as well hundreds of rural communities and institutions. For additional assistance we thank Michel Baisie, Wemo Betian, Vincent Bezard, Mireille Breuer-Ndoundou Hockemba, Ezequiel Chavez, Douglas Daly, Armandu Daniels, Eduardo Hase, Muhammad Idhamsyah, Phillipe Jeanmart, Cisquet Keibou Opepa, Jeanette Kemp, Antonio Lima, Jon Lloyd, Mpanya Lukasu, Sam Moore, Klaus Scipal and Rodrigo Sierra. We thank Mark Burkitt for help developing the ForestPlots.net database. We acknowledge the long-term help provided by national and local government offices in all countries where colleagues work in facilitating the permission and documentation for fieldwork, as well as help provided by protected area and other authorities. 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 The networks have been supported by multiple grants, most notably the European Research Council (ERC Advanced Grant 291585 - 'T-FORCES'), the Gordon and Betty Moore Foundation (#1656 'RAINFOR', and MonANPe), the David and Lucile Packard Foundation, the European Union's Fifth, Sixth, and Seventh Framework Programme (EVK2-CT-1999-00023 – 'CARBONSINK-LBA', 283080 - 'GEOCARBON', 282664 - 'AMAZALERT'), the Natural Environment Research Council (NE/D005590/1 - 'TROBIT', NE/F005806/1 - 'AMAZONICA', 'PPFOR' E/M0022021/1, several NERC Urgency and New Investigators Grants, the NERC/ State of São Paulo Research Foundation consortium grants 'BIO-RED' (NE/N012542/1, 2012/51872-5), (NE/K016431/1, 2012/51509-8), 'ARBOLES' (NE/S011811/1), the Royal Society (University Research Fellowships and Global Challenges Awards ('FORAMA', ICA/R1/180100), the National Geographic Society, the Centre for International Forestry (CIFOR), Gabon's National Parks Agency (ANPN), US National Science Foundation (DEB 1754647), and Colombia's Colciencias. We thank the National Council for Science and Technology Development of Brazil (CNPq) for support to the Cerrado/Amazonia Transition Long-Term Ecology Project (PELD/441244/2016-5), the PPBio Phytogeography of Amazonia/Cerrado Transition project (CNPq/PPBio/457602/2012-0), the Goiás Research Foundation (FAPEG/PELD: 2017/10267000329), and several PVE and Productivity Grants. Funding for plots in the Udzungwa Mountains (Tanzania) was obtained from the Leverhulme Trust under the Valuing the Arc project. Plots in the Democratic Republic of Congo were funded by the Belgian Science **Policy** Office (SD/AR/01A/COBIMFO, BR/132/A1/AFRIFORD, BR/143/A3/HERBAXYLAREDD, CongoFORCE), the Flemish Interuniversity Council VLIR-UOS (CD2018TEA459A103, FORMONCO II); and the European Union (REAFOR, FORETS projects). We acknowledge grant CEBA (ref. ANR-10-LABX-25-01) and the support of the Forestry Development Authority of Liberia. We also acknowledge the support of the European Space Agency. Data from RAINFOR, AfriTRON and T-FORCES are stored and curated at ForestPlots.net, a cyber-infrastructure initiative developed at the University of Leeds that unites permanent plot records and supports scientists from the world's tropical forests. The development of ForestPlots.net and curation of data has been funded by several grants including NE/B503384/1, NE/N012542/1 BIO-RED, ERC Advanced Grant 291585 'T-FORCES', NE/F005806/1 'AMAZONICA', NERC New Investigators Awards, NE/N004655/1, 'TREMOR', the Gordon and Betty Moore Foundation ('RAINFOR', 'MonANPe'), ERC Starter Grant 758873 'TreeMort', EU Framework 6, a Royal Society University Research Fellowship, and a Leverhulme Trust Research Fellowship. The manuscript has been developed with the encouragement of Richard Primack and Reinmar Seidler and has benefited from the constructive comments of three reviewers; we thank them all. Finally we thank several late, great colleagues for their unique and lasting contributions that have made possible all that the networks and ForestPlots.net have achieved together since the beginning: Samuel Almeida, Elisban Armas, José Armas, Sandra Brown, Kwaku Duah, Gloria Galeano, Alwyn Gentry, Max Gunther, Moïse Mikame, Norman Myers, Sandra Patiño, John Proctor, David Smith and Jean-Pierre Veillon. #### **Author Contributions** 941 942 - All authors have contributed to ForestPlots.net-associated networks by leading, or collecting or supporting field data acquisition, or implementing and funding network development, data - 945 management, analyses and outputs. O.L.P. wrote the manuscript with contributions from most co- - authors,
M.J.S. contributed new analyses and M.J.S., G.L.P. and A.L.L. helped prepare the figures. - 947 O.L.P., T.R.B., G.L.-G. and S.L.L. conceived ForestPlots.net. R.B., T.F., D.G., E.G., E.H., W.H., A.E.- - 948 M., A.L., K.M., Y.M., G.C.P., B.S-M., L.Q., and M.J.P.S have additionally contributed tools, funding - or management to its development since. 950 951 # Literature Cited 952953 Aguirre-Gutiérrez, J., Oliveras, I., Rifai, S., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T.R., Feldpausch, T.R., et al. 2019. Drier tropical forests are susceptible to functional changes in response to a long-term drought. *Ecology Letters*, 22, 855-865. 957 Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S.L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T.R., Gvozdevaite, A., et al., 2020. Long-term droughts may drive drier tropical forests towards increased 960 functional, taxonomic and phylogenetic homogeneity. *Nature Communications*, 3346 (2020). 961 Alvarez-Davila, E., Cayuela, L., González-Caro, S., Aldana, A.M., Stevenson, P.R., Phillips, O., Cogollo, Á., Penuela, M.C., von Hildebrand, P., Jiménez, E. and Melo, O., 2017. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. *PloS One*, 12(3). 966 967 968 969 Anderson, L.O., Malhi, Y., Ladle, R.J., Aragao, L.E.O., Shimabukuro, Y., Phillips, O.L., Baker, T., Costa, A.C.L., Espejo, J.S., Higuchi, N. and Laurance, W.F., 2009. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. *Biogeosciences*, 6, 1883-1902. 970 971 972 Anderson, L. O., Malhi, Y., Aragão, L. E., Ladle, R., Arai, E., Barbier, N., & Phillips, O. 2010. Remote sensing detection of droughts in Amazonian forest canopies. *New Phytologist*, 187, 733-750. 973 974 Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre, E.B., Muller-Landau, H.C., Joseph Wright, S., et al. 2015. CTFS-Forest GEO: a worldwide network monitoring forests in an era of global change. Global Change Biology 21, 528-549. 978 Aragao, L.E., Poulter, B., Barlow, J.B., Anderson, L.O., Malhi, Y., Saatchi, S., Phillips, O.L. and Gloor, E., 2014. Environmental change and the carbon balance of Amazonian forests. *Biological Reviews*, 89, 913-931. 982 Avitabile, V., Herold, M., Heuvelink, G.B., Lewis, S.L., Phillips, O.L., Asner, G.P., Armston, J., Ashton, P.S., Banin, L., Bayol, N et al., 2016. An integrated pan-tropical biomass map using multiple reference datasets. *Global Change Biology*, 22, 1406-20. 986 987 Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., 988 Laurance, S.G., Laurance, W.F. et al., 2004. Variation in wood density determines spatial patterns in 989 Amazonian forest biomass. *Global Change Biology*, 10, 545-62. - Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., - 992 Killeen, T.J., Laurance, S.G. and Laurance, W.F., 2004. Increasing biomass in Amazonian forest plots. 993 Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 353-994 995 Baker, T.R., Phillips, O.L., Laurance, W.F., Pitman, N.C., Almeida, S., Arroyo, L., DiFiore, A., Erwin, 996 997 T. et al., 2009. Do species traits determine patterns of wood production in Amazonian forests? 998 Biogeosciences 6, 297-307. 999 1000 Baker, T.R., Pennington, R.T., Magallon, S., Gloor, E., Laurance, W.F., Alexiades, M., Alvarez, E., Araujo, A., Arets, E.J., Aymard, G. and De Oliveira, A.A., 2014. Fast demographic traits promote high 1001 1002 diversification rates of Amazonian trees. Ecology Letters, 17, 527-536. 1003 1004 Baker, T.R., Vicuña Minano, E., Banda, K., del Castillo, D., Farfan-Rios, W, Lawson, I.T., Loja 1005 Alemán, E., Pallqui Camacho, N., Silman, M.R., Roucoux, K.H., Phillips, O.L., Honorio Coronado, 1006 E.N., Monteagudo Mendoza, Rojas Gonzáles, R., 2020. From plots to policy: how to ensure long-term 1007 forest plot data supports environmental management in intact tropical forest landscapes. Plants, People 1008 and the Planet (in press). 1009 Ballantyne, A.P., Alden, C.B., Miller, J.B., Tans, P.P. and White, J.W.C., 2012. Increase in observed 1010 1011 net carbon dioxide uptake by land and oceans during the past 50 years. *Nature*, 488, 70-72. 1012 Banin, L., Feldpausch, T.R., Phillips, O.L., Baker, T.R., Lloyd, J., Affum-Baffoe, K., Arets, E.J., Berry 1013 1014 et al., 2012. What controls tropical forest architecture? Testing environmental, structural and floristic 1015 drivers. Global Ecology and Biogeography, 21, 1179-1190. 1016 1017 Banin, L., Lewis, S.L., Lopez-Gonzalez, G., Baker, T.R., Quesada, C.A., Chao, K.J., Burslem, D.F., 1018 Nilus, R., Abu Salim, K., Keeling, H.C. and Tan, S., 2014. Tropical forest wood production: a cross-1019 continental comparison. Journal of Ecology, 102, 1025-1037. 1020 1021 Barlow, J., Lennox, G.D., Ferreira, J., Berenguer, E., Lees, A.C., Mac Nally, R., Thomson, J.R., de 1022 Barros Ferraz, S.F., Louzada, J., Oliveira, V.H.F. and Parry, L., 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. *Nature*, 535, 144-147. 1023 1024 Berry, N.J., Phillips, O.L., Ong, R.C. and Hamer, K.C., 2008. Impacts of selective logging on tree 1025 1026 diversity across a rainforest landscape: the importance of spatial scale. Landscape Ecology, 23, 915-1027 929. 1028 Brienen, R.J., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lloyd, J., Lopez-Gonzalez, G., 1029 1030 Monteagudo-Mendoza, A., Malhi, Y., Lewis, S.L. and Martinez, R.V., 2015. Long-term decline of the Amazon carbon sink. Nature, 519, 344-348. 1031 1032 Brearley, F.O., Adinugroho, W.C., Cámara-Leret, R., Krisnawati, H., Ledo, A., Qie, L., Smith, T.E., 1033 1034 Aini, F., Garnier, F., Lestari, N.S. and Mansur, M., 2019. Opportunities and challenges for an 1035 Indonesian forest monitoring network. Annals of Forest Science, 76, 54. 1036 1037 Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S.M., Chytrý, M., Pillar, 1038 V.D., Jansen, F., Kattge, J., Sandel, B. and Aubin, I., 2019. sPlot-A new tool for global vegetation analyses. Journal of Vegetation Science, 30, 161-186. 1039 1040 1041 Castillo, P.S.B. and M. Alvarez, 2020. Forest Inventory and Analysis Fiscal Year 2018 Business Report. 1042 United States Department of Agriculture, 78 pp. 1043 1044 Chao, K.J., Phillips, O.L., Baker, T.R., Peacock, J., Lopez-Gonzalez, G., Vásquez Martínez, R., Monteagudo, A. and Torres-Lezama, A., 2009. After trees die: quantities and determinants of 1045 1046 necromass across Amazonia. Biogeosciences, 6, 1615-1626. - 1048 Chave, J., Davies, S.J., Phillips, O.L., Lewis, S.L., Sist, P., Schepaschenko, D., Armiston, J., Baker, - T.R., Coomes, D. et al., 2019. Ground data are essential for biomass remote sensing missions. *Surveys* in *Geophysics* 40, 863-880. - 1051 - 1052 Chazdon, R.L., Broadbent, E.N., Rozendaal, D.M., Bongers, F., Zambrano, A.M.A., Aide, T.M., - Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H. et al., 2016. Carbon sequestration potential - of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), - 1055 p.e1501639. - 1056 - 1057 Clinebell, R., Phillips, O.L., Gentry, A.H., Stark, N., and Zuuring. H., 1995. Prediction of neotropical woody plant diversity from soil and climatic data. *Biodiversity and Conservation* 4, 56-90. - 1059 - 1060 Coelho de Souza, F., Dexter, K.G., Phillips, O.L., Pennington, R.T., Neves, D., Sullivan, M.J., Alvarez- - Davila, E., Alves, Á., Amaral, I., Andrade, A. and Aragao, L.E., 2019. Evolutionary diversity is - associated with wood productivity in Amazonian forests. *Nature Ecology & Evolution*, 3, 1754-1761. - 1063 - 1064 Condit, R.S., 1997, Forest turnover, diversity, and CO₂. Trends in Ecology & Evolution 12, 249-250. - 1065 - 1066 Corlett, R. T. and R.B. Primack., 2011. Tropical Rain Forests: An Ecological and Biogeographical Comparison, 2nd Edition. Wiley-Blackwell. - 1068 - Davis, T.A.W. and Richards, P.W., 1933. The vegetation of Moraballi Creek, British Guiana: an ecological study of a limited area of tropical rain forest. Part I. *Journal of Ecology*, 21, 350-384 - 1071 - Dawkins, H.C. and Philip, M.S., 1998. Tropical moist forest silviculture and management: a history of success and failure. CAB international. - 10731074 - Di Marco, M., Chapman, S., Althor, G., Kearney, S., Besancon, C., Butt, N., Maina, J.M., Possingham, - H.P., von Bieberstein, K.R., Venter, O. and Watson, J.E., 2017. Changing trends and persisting biases - in three decades of conservation science. Global Ecology and Conservation, 10, 32-42. - 1078 - Disney, M.I., Boni Vicari, M., Burt, A., Calders, K., Lewis, S.L., Raumonen, P. and Wilkes, P., 2018. - Weighing trees with lasers: advances, challenges and opportunities. *Interface Focus*, 8(2), p.20170048. - 1081 - Doughty, C.E., Metcalfe, D.B., Girardin, C.A.J., Amézquita, F.F., Cabrera, D.G., Huasco, W.H., Silva- - Espejo, J.E., Araujo-Murakami, A., Da Costa, M.C., Rocha, W., Feldpausch, T.R. et al., 2015. Drought - impact on forest carbon dynamics and fluxes in Amazonia. *Nature*, 519, 78-82. - 1085 - Drew, A.P., Boley, J.D., Zhao, Y., Wadsworth, F.H., 2009. Sixty-two years of change in subtropical wet forest structure and composition at El Verde, Puerto Rico. *Interciencia*, 34, 34-40. - 1088 - DRYFLOR, 2016. Plant diversity patterns and their conservation implications in neotropical dry forests. - 1090 Science, 353, 1383-1387. - 1091 - Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., - Herold, M., Crowther, T.W., Falkowski, M. et al., 2019. The importance of consistent global forest - aboveground biomass product validation. Surveys in Geophysics, 40, 979-999. - 1095 - 1096 Elias, F., Ferreira, J., Lennox, G.D.,
Berenguer, E., Ferreira, S., Schwartz, G., Melo, L.D.O., Reis - Junior, D.N., Nascimento, R.O., Ferreira, F.N. and Espirito-Santo, F., 2020. Assessing the growth and - 1098 climate sensitivity of secondary forests in highly deforested Amazonian landscapes. *Ecology*, 101(3), - p.e02954. - 1100 - 1101 Espírito-Santo F.D., Gloor M., Keller M., Malhi Y., Saatchi S., Nelson B., Junior R.C., Pereira C., - Lloyd J. et al. 2014. Size and frequency of natural forest disturbances and the Amazon forest carbon - balance. Nature Communications, 5:3434. - 1104 - 1105 Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., ter Steege, H., Lopez-Gonzalez, G., - Monteagudo Mendoza, A., Brienen, R., Feldpausch, T.R., Pitman, N., Alonso, A. et al. 2017. Seasonal - drought limits tree species across the Neotropics. *Ecography*, 40, 618-629. - 1108 - 1109 Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J., Feldpausch, T.R., Lloyd, - 1110 J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N. et al. 2019. Compositional - response of Amazon forests to climate change. *Global Change Biology*, 25, 39-56. - 1112 - 1113 Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., - Silman, M., Farfán-Ríos, W. et al., 2018. Widespread but heterogeneous responses of Andean forests - 1115 to climate change. *Nature* 564, 207-212. - 1116 - 1117 Fauset, S., Johnson, M.O., Gloor, M., Baker, T.R., Monteagudo, A., Brienen, R.J., Feldpausch, T.R. et - al., 2015. Hyperdominance in Amazonian forest carbon cycling. *Nature Communications* 6:6857. - 1119 - 1120 Feldpausch, T.R., Banin, L., Phillips, O.L., Baker, T.R., Lewis, S.L., Quesada, C.A., Affum-Baffoe, K., - Arets, E.J., Berry, N.J., Bird, M. et al. 2011. Height-diameter allometry of tropical forest trees. - 1122 *Biogeosciences*, 8, 1081-1106. - 1123 - Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J., Gloor, M., Monteagudo Mendoza, A., Lopez- - Gonzalez, G., Banin, L., et al. 2012. Tree height integrated into pantropical forest biomass estimates. - 1126 *Biogeosciences*, 9, 3381-3403. - 1127 - 1128 Feldpausch, T.R., Phillips, O.L., Brienen, R.J.W., Gloor, E., Lloyd, J., Lopez-Gonzalez, G., - Monteagudo-Mendoza, A., Malhi, Y., Alarcón, A., Dávila, E.Á. and Alvarez-Loayza, P., 2016. Amazon - forest response to repeated droughts. Global Biogeochemical Cycles, 30, 964-982. - 1131 - Ferreira, J., Lennox, G.D., et al. 2018. Carbon-focused conservation may fail to protect the most - biodiverse tropical forests. *Nature Climate Change*. DOI 10.1038/s41558-018-0225-7. - 1134 - 1135 Forest Carbon Partnership Facility (FCPF) Carbon Fund, 2017. Emission Reductions Programme - 1136 Document (ER-PD), Ghana Cocoa Forest REDD+ Programme (GCFRP). World Bank, 339 pp. - 1137 - 1138 Fyllas, N.M., Patiño. S., Baker, T.R., Bielefeld Nardoto, G., Martinelli, L.A., Quesada, C.A., Paiva, R., - Schwarz, M. et al., 2009. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, - soils and climate. *Biogeosciences* 6, 2677-708. - 1141 - 1142 Gatti, L.V., Gloor, M., Miller, J.B., Doughty, C.E., Malhi, Y., Domingues, L.G., Basso, L.S. et al. 2014. - Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. *Nature*, 506, - 1144 76-80. - 1145 - Gaubert, B., Stephens, B.B., Basu, S., Chevallier, F., Deng, F., Kort, E.A., Patra, P.K., Peters, W. et al., - 2019. Global atmospheric CO₂ inverse models converging on neutral tropical land exchange, but - disagreeing on fossil fuel and atmospheric growth rate. *Biogeosciences*, 16, 117-134. - 1150 Gentry, A.H., 1988a, Tree species richness of upper Amazonian forests. Proceedings of the National - 1151 *Academy of Sciences*, 85, 156-159. - 1153 Gentry, A.H., 1988b, Changes in plant community diversity and floristic composition on environmental - and geographical gradients. *Annals of the Missouri Botanical Garden*, 75, 1-34. - 1155 - 1156 Gentry, A.H. and Vasquez, R., 1993. A field guide to the families and genera of woody plants of - 1157 *northwest South America (Colombia, Ecuador, Peru): with supplementary notes on herbaceous taxa.* - 1158 - Gloor, M., Phillips, O.L., Lloyd, J.J., Lewis, S.L., Malhi, Y., Baker, T.R., Lopez-Gonzalez, G., et al. - 2009. Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot - data? *Global Change Biology*, 15, 2418-2430. Gosline, G., Marshall, A.R., Larridon, I., 2019. Revision and new species of the African genus Mischogyne (Annonaceae). *Kew Bulletin*, 74, 28. 1165 - Gourlet-Fleury, S., F. Mortier, A. Fayolle, F. Baya, D. Ouédraogo, F. Bénédet, and N. Picard, 2013. - 1167 Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. - Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1625: 20120302. 1169 - Harley, P., Vasconcellos, P., Vierling, L., Pinheiro, C.C.D.S., Greenberg, J., Guenther, A., Klinger, L., - Almeida, S.S.D., Neill, D., Baker, T., Phillips, O., Malhi, Y. 2004. Variation in potential for isoprene - emissions among Neotropical forest sites. *Global Change Biology*, 10, 630-650. 1173 - Honorio Coronado E.N., Baker T.R., Phillips O.L., Pitman N.C., Pennington R.T., Vásquez Martinez - 1175 R,, Monteagudo, A. et al., 2009. Multi-scale comparisons of tree composition in Amazonian terra firme - 1176 forests. *Biogeosciences* 30, 2719-31. 1177 - Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe K., Beeckman H., Cuní-Sanchez A., Daniels - 1179 A.K., Ewango C.E.N. et al. 2020. Asynchronous carbon sink saturation in the world's largest tropical - 1180 forests. *Nature* 579, 80-87. 1181 - Hubbell, S.P., 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. *Science*, 203, - 1183 1299-1309. 1184 - Hubbell, S.P., Foster, R.B., 1983. Diversity of canopy trees in a neotropical forest and implications for - the conservation of tropical trees, In *Tropical Rainforest Ecology and Management*. Eds. S.J. Sutton, - 1187 T.C. Whitmore, A.C. Chadwick, pp. 25-41. Blackwell, Oxford. 1188 - 1189 Johnson, M.O., Galbraith, D., Gloor, M., De Deurwaerder, H., Guimberteau, M., Rammig, A., - 1190 Thonicke, K. et al., 2016, Variation in stem mortality rates determines patterns of above-ground - biomass in Amazonian forests: implications for dynamic global vegetation models. Global Change - 1192 *Biology* 22, 3996-4013. 1193 - Joint Research Centre (2003) Global Land Cover 2000 database. European Commission, Joint - Research Centre. https://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php 1196 - Jucker, T., Bongalov, B., Burslem, D.F., Nilus, R., Dalponte, M., Lewis, S.L., Phillips, O.L., Qie, L., - 1198 Coomes, D.A., 2018. Topography shapes the structure, composition and function of tropical forest - landscapes. *Ecology Letters* 21, 989-1000. 1200 - 1201 Kohyama, T.S., Kohyama, T.I. and Sheil, D., 2019. Estimating net biomass production and loss from - repeated measurements of trees in forests and woodlands: Formulae, biases and recommendations. - 1203 Forest Ecology and Management, 433, 729-740. 1204 - Lawrence, A., Phillips, O.L., Ismodes, A.R., Lopez, M., Rose, S., Wood, D. and Farfan, A.J., 2005. - 1206 Local values for harvested forest plants in Madre de Dios, Peru: towards a more contextualised - interpretation of quantitative ethnobotanical data. *Biodiversity & Conservation*, 14, 45-79. - Levis, C., Costa, F.R., Bongers, F., Peña-Claros, M., Clement, C.R., Junqueira, A.B., Neves, E.G., - Tamanaha, E.K., Figueiredo, F.O., Salomão, R.P. and Castilho, C.V., 2017. Persistent effects of pre- - 1211 Columbian plant domestication on Amazonian forest composition. *Science*, 355, 925-931. - 1212 - Lewis, S.L., Phillips, O.L., Sheil, D., Vinceti, B., Baker, T.R., Brown, S., Graham, A.W., Higuchi, N., - Hilbert, D.W., et al., 2004a. Tropical forest tree mortality, recruitment and turnover rates: calculation, - interpretation and comparison when census intervals vary. Journal of Ecology, 92, 929-944. - 1216 - Lewis, S.L., Phillips, O.L., Baker, T.R., Lloyd, J., Malhi, Y., Almeida, S., Higuchi, N., Laurance, W.F., - Neill, D.A., Silva, J.N.M. and Terborgh, J., 2004b. Concerted changes in tropical forest structure and - dynamics: evidence from 50 South American long-term plots. *Philosophical Transactions of the Royal* - 1220 Society of London. Series B: Biological Sciences, 359, 421-436. - 1221 - Lewis, S.L., Malhi, Y., Phillips, O.L., 2004. Fingerprinting the impacts of global change on tropical - forests. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, - 1224 437-462. - Lewis, S.L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T.R., Ojo, L.O., Phillips, O.L., - 1226 Reitsma, J.M., White, L., Comiskey, J.A., Ewango, C.E., et al. 2009. Increasing carbon storage in intact - 1227 African tropical forests. *Nature*, 457, 1003-1006. - 1228 - 1229 Lewis S.L., Sonké, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., van der Heijden, G.M.F., - 1230 Phillips, O.L. et al., 2013. Above-ground biomass and structure of 260 African tropical forests. - 1231 Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120295. - 1232 - López-Gonzalez G., Lewis, S.L., Burkitt, M., Phillips, O.L., 2011. ForestPlots.net: a web application - and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22, - 1235 610-613. - 1236 - 1237 López-González, G. and Phillips, O.L., 2012. Estudiando el Amazonas: la experiencia de la Red - 1238 Amazónica de Inventarios Forestales. *Revista Ecosistemas*, 21, 1-2. - 1239 - 1240 López-Gonzalez G., Sullivan, M.J.P., Baker, T.R., 2015. BiomasaFP: Tools for analysing data - downloaded from ForestPlots.net. R package version 1.1. - 1242 - Malhi, Y., Baker, T.R., Phillips, O.L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C.I., - Fiore, A.D.,
Higuchi, N. and Killeen, T.J., 2004. The above-ground coarse wood productivity of 104 - Neotropical forest plots. *Global Change Biology*, 10, 563-591. - 1246 - Malhi, Y., Girardin, C., Metcalfe, D., Doughty, C., Aragão, L.E.O., Rifai, S., Shenkin, A., Aguirre - 1248 Gutierrez, J., Dahlsjö, C. et al. The Global Ecosystems Monitoring network: monitoring ecosystem - productivity and carbon cycling across the tropics. *Biological Conservation* (this volume) - 1250 - Malhi, Y, Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., Frederiksen, T., Grace, - J., Higuchi, N. et al., 2002. An international network to monitor the structure, composition and dynamics - 1253 of Amazonian forests (RAINFOR). Journal of Vegetation Science 13, 439-50. - 1254 - Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo - L et al., 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. - 1257 *Global Change Biology* 12, 1107-1138. - 1258 - Malhi, Y., Farfán Amézquita, F., Doughty, C.E., Silva-Espejo, J.E., Girardin, C.A., Metcalfe, D.B., - 1260 Aragão, L.E., Huaraca-Quispe, L.P., et al. 2014. The productivity, metabolism and carbon cycle of two - lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology & Diversity 7, 85-105. - 1262 - Malhi, Y., Gardner, T.A., Goldsmith, G.R., Silman, M.R. and Zelazowski, P., 2014. Tropical forests in - the Anthropocene. *Annual Review of Environment and Resources*, 39. - 1265 - 1266 Malizia, A, Blundo, C., Carilla, J., Osinaga-Acosta, O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., - Ataroff, M., Baez, S. et al. (2020). Elevation and latitude drives structure and tree species composition - in Andean forests: results from a large-scale plot Network. *PLoS ONE* (in press) - Marimon B.S., Marimon-Junior B.H., Feldpausch T.R., Oliveira-Santos C., Mews H.A. et al., 2014. - 1271 Disequilibrium and hyperdynamic tree turnover at the forest-cerrado transition zone in southern - 1272 Amazonia. Plant Ecology & Diversity 7, 281-92. 1273 - 1274 McDowell, N., Allen, C.D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., - 1275 Christoffersen, B., Davies, S., Doughty, C., Duque, A. and Espirito-Santo, F., 2018. Drivers and - mechanisms of tree mortality in moist tropical forests. *New Phytologist*, 219, 851-869. 1277 - 1278 Mitchard, E.T.A., Feldpausch, T.R., Brienen, R.J.W., Lopez-Gonzalez, G., Monteagudo, A., Baker, - T.R. et al., 2014. Markedly divergent estimates of Amazon forest carbon density from ground plots and - satellites. *Global Ecology and Biogeography*. doi:10.1111/geb.12168. 1281 - Monteagudo Mendoza A, Vásquez Martínez R., Rojas Gonzales R., Phillips O.L., Baker T.R., Dueñas - Linares H., Pickavance G.C., Núñez Vargas P et al., 2020. Primer Catálogo de los Arboles de la - Amazonía de Madre De Dios, Perú. Universidad Andina del Cusco, Cusco, Peru, 240pp. 1285 - Nakamura, A., Kitching, R.L., Cao, M., Creedy, T.J., Fayle, T.M., Freiberg, M., Hewitt, C.N., Itioka, - T., et al., 2017. Forests and their canopies: achievements and horizons in canopy science. Trends in - 1288 *Ecology & Evolution*, 32, 438-451. 1289 - Nemani, R. R. et al., 2003. Climate-driven increases in global terrestrial net primary production from - 1291 1982 to 1999. Science 300, 1560–1563. 1292 - Nogueira, D.S., Marimon, B.S., Marimon-Junior, B.H., Oliveira, E.A., Morandi, P., Reis, S.M., Elias, - 1294 F., Neves, E.C., Feldpausch, T.R., Lloyd, J. and Phillips, O.L., 2019. Impacts of fire on forest biomass - dynamics at the southern Amazon edge. *Environmental Conservation*, 46, 285-292. 1296 - Norden, N., González-M, R., Avella-M, A., Salgado-Negret, B., Alcázar, C., Rodríguez-Buriticá, S., - 1298 Aguilar-Cano, J., et al., 2020, Building a socio-ecological monitoring platform for the comprehensive - management of tropical dry forests. *Plants, People, Planet.* https://doi.org/10.1002/ppp3.10113. 1300 - 1301 Oliveira, E.A., Marimon-Junior, B.H., Iriarte, J., Morandi, P.S., Maezumi, S.Y., Nogueira, D.S., - Aragão, L.E.O.C. and Feldpausch, T.R. 2020. Legacy of Amazonia Dark Earth soil on forest structure - and species composition. Global Ecology and Biogeography, in press. 1304 - Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V. Underwood, E.C., - 1306 D'Amico, J.A., et al., 2001. Terrestrial ecoregions of the world: a new map of life on Earth. *Bioscience*, - 1307 51, 933-938. 1308 - 1309 Pallqui, N.C., Monteagudo, A., Phillips, O.L., Lopez-Gonzalez, G., Cruz, L., Galiano, W., Chavez, W., - 1310 Vasquez, R., 2014. Dinámica, biomasa aérea y composición florística en parcelas permanentes Reserva - Nacional Tambopata, Madre de Dios, Perú. Revista Peruana de Biología 21, 235-42. 1312 - Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E. et al., 2011. A large and persistent carbon - sink in the world's forests. *Science*, 333, 988–993. https://doi.org/10.1126/science.1201609. - 1316 Pan, Y., Birdsey, R.A., Phillips, O.L. and Jackson, R.B., 2013. The structure, distribution, and biomass - of the world's forests. *Annual Review of Ecology, Evolution, and Systematics*, 44, 593-622. - 1318 - Patiño, S., Lloyd, J., Paiva, R., Baker, T.R., Quesada, C.A., Mercado, L.M. et al., 2009. Branch xylem - density variations across the Amazon Basin. *Biogeosciences*, 6, 545-568. - 1321 - Peacock, J., Baker, T.R., Lewis, S.L., Lopez-Gonzalez, G., Phillips, O.L., 2007. The RAINFOR - database: monitoring forest biomass and dynamics. *Journal of Vegetation Science*, 18, 535-42. - 1324 - Pennington, T., Lehmann, C.E., Rowland, L. 2018. Tropical savannas and dry forests. *Current Biology* - 1326 28, 541-45. - 1327 - Peres, C.A., Emilio, T., Schietti, J., Desmoulière, S.J. and Levi, T., 2016. Dispersal limitation induces - long-term biomass collapse in overhunted Amazonian forests. *Proceedings of the National Academy of* - 1330 Sciences, 113, 892-897. - 1331 - Phillips, O.L., 1996. Long-term environmental change in tropical forests: increasing tree turnover. - 1333 Environmental Conservation 23, 235-248. - 1334 - Phillips, O. and Gentry, A.H., 1993. The useful plants of Tambopata, Peru: I. Statistical hypotheses - tests with a new quantitative technique. *Economic Botany*, 47, 15-32. - 1337 - 1338 Phillips, O.L. and Gentry, A.H., 1994. Increasing turnover through time in tropical forests. *Science*, - 1339 263, 954-958. - 1340 - Phillips, O. L., P. Hall, A. H. Gentry, S. A. Sawyer and R. Vasquez, 1994. Dynamics and species - richness of tropical rain forests. Proceedings of the National Academy of Sciences of the United States - 1343 *of America* 91, 2805-2809. - 1344 - Phillips, O.L. and Raven, P.H., 1997. A strategy for sampling neotropical forests. *Neotropical* - 1346 *Biodiversity and Conservation*, 1, 141-165. - 1347 - Phillips, O. and Sheil, D. 1997. Forest turnover, diversity and CO₂. Trends in Ecology & Evolution 12, - 1349 404-404. - 1350 - 1351 Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Núnez, P.V., Vásquez, R.M., Laurance, S.G., - Ferreira, L.V., Stern, M., Brown, S. and Grace, J., 1998. Changes in the carbon balance of tropical - forests: evidence from long-term plots. *Science*, 282, 439-442. - 1354 - Phillips, O.L., Baker, T., Feldspauch, T., & Brienen, R. J. W., 2002. Field manual for plot establishment - and remeasurement (RAINFOR). Amazon Forest Inventory Network, Sixth Framework Programme - 1357 (2002–2006). URL: http://www.geog.leeds.ac.uk/projects/rainfor. - 1358 - Phillips, O. and Miller, J.S., 2002, Global patterns of plant diversity: Alwyn H. Gentry's forest transect - data set. *Monographs in Systematic Botany* 89:1-319. Missouri Botanical Press. - 1361 - Phillips, O.L., Baker, T.R., Arroyo, L., Higuchi, N., Killeen, T.J., Laurance, W.F., Lewis, S.L., Lloyd, - 1363 J., Malhi, Y., Monteagudo, A. and Neill, D.A., 2004. Pattern and process in Amazon tree turnover, - 1364 1976–2001. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, - **1365** 359, 381-407. - 1366 - Phillips, O.L., Aragão, L.E., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., - Monteagudo, A., Peacock, J., Quesada, C.A. and Van Der Heijden, G., 2009. Drought sensitivity of the - 1369 Amazon rainforest. *Science*, 323, 1344-1347. - 1370 - 1371 Phillips, O.L. and Brienen, R.J., 2017. Carbon uptake by mature Amazon forests has mitigated Amazon - nations' carbon emissions. Carbon Balance and Management, 12, 1. - 1373 - Phillips, O.L., Sullivan, M.J., Baker, T.R., Mendoza, A.M., Vargas, P.N. and Vásquez, R. 2019. Species 1374 - matter: wood density influences tropical forest biomass at multiple scales. Surveys in Geophysics, 404, 1375 - 1376 913-935. - 1377 - Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., Tømmervik, 1378 - 1379 H. and Nemani, R.R., 2019. Characteristics, drivers and feedbacks of global greening. *Nature Reviews* - 1380 Earth & Environment, pp.1-14. - Pires, J.M. and Salomão, R.P. 2000. Dinâmica da diversidade arbórea de um fragmento de floresta 1382 - 1383 tropical primária na Amazônia oriental - 1. Período: 1956 a 1992. Bol. Mus. Para. Emílio goeldi, Sér. - 1384 Botânica, 16, 63-110. 1385 - Pomeroy, M., R. B. Primack, and S. N. Rai. 2003. Changes in four rain forest plots of the Western 1386 Ghats, India, 1939–93. Conservation and Society 1, 113–135. - 1387 1388 - Oie L, Lewis SL, Sullivan MJ, Lopez-Gonzalez G, Pickavance GC, Sunderland T, Ashton P, Hubau W 1389 - et al., 2017, Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. 1390 - 1391 Nature Communications 8:1966. 1392 - Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, 1393 - 1394 Herrera R et al., 2012. Basin-wide variations in Amazon forest structure and function are mediated by - 1395 both soils and climate. *Biogeosciences* 9,
2203-2246. doi:10.5194/bg-9-2203-2012. 1396 - Reboredo Segovia, A.L., Romano, D., Armsworth, P.R., 2020. Who studies where? Boosting tropical 1397 - 1398 conservation research where it is most needed. Frontiers in Ecology and the Environment, 18, 159-166. 1399 - Requena Suarez, D., Rozendaal, D.M., De Sy, V., Phillips, O.L., Alvarez-Dávila, E., Anderson-1400 - 1401 Teixeira, K., Araujo-Murakami, A., Arroyo, L., Baker, T.R., Bongers, F., et al., 2019. Estimating - aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates 1402 - 1403 using forest plot data. Global Change Biology, 25, 3609-3624. 1404 - 1405 Reis, S.M., Marimon, B.S., Marimon-Junior, B.H., Morandi, P.S., Oliveira, E.A., Eias, F., Neves, E.C., - 1406 Oliveira, B., Nogueira, D.S., Umetsu, R.K., Feldpausch, T.R. and Phillips, O.L., 2018. Climate and - 1407 fragmentation affect forest structure at the Southern border of Amazonia. Plant Ecology & Diversity, - 1408 11, 13-25. 1409 - 1410 Reitsma, J.M. 1988. Forest vegetation of Gabon. TROPENBOS Technical Series, ISBN: 90-5113-007- - 1411 1412 - Ríos-Saldaña, C.A., Delibes-Mateos, M. and Ferreira, C.C., 2018. Are fieldwork studies being relegated 1413 - 1414 to second place in conservation science? Global Ecology and Conservation, 14, p.e0389. 1415 - 1416 Rowland, L., da Costa, A.C.L., Galbraith, D.R., Oliveira, R.S., Binks, O.J., Oliveira, A.A.R., Pullen, - 1417 A.M., Doughty, C.E., Metcalfe, D.B., Vasconcelos, S.S. and Ferreira, L.V., 2015. Death from drought - 1418 in tropical forests is triggered by hydraulics not carbon starvation. *Nature*, 528,119-122. 1419 - 1420 Salomão, R.D., 1991. Uso de parceles permanentes para estudos da vegetação da floresta tropical - 1421 úmida. I. Municipio de Marabá, Pará. Boletim do Museu Paraense Emilio Goeldi. Serie Botânica, 7, - 1422 543-604. 1423 - Schepaschenko, D., Chave, J., Phillips, O.L. et al., 2019. The Forest Observation System, building a 1424 - 1425 global reference dataset for remote sensing of forest biomass. Sci Data 6, 198 (2019). - https://doi.org/10.1038/s41597-019-0196-1 1426 - 1428 Schietti, J., Martins, D., Emilio, T., Souza, P.F., Levis, C., Baccaro, F.B., et al. 2016. Forest structure - along a 600 km transect of natural disturbances and seasonality gradients in central-southern Amazonia. - 1430 *Journal of Ecology*, 104, 1335-1346. Sheil, D., 1995. Evaluating turnover in tropical forests. *Science*, 268, 894-896. 1433 Sheil, D., 1996. Species richness, tropical forest dynamics and sampling: questioning cause and effect. *Oikos*, 76, 587-590. 1436 - 1437 Sist, P., Rutishauser, E., Peña-Claros, M., Shenkin, A., Hérault, B., Blanc, L., Baraloto, C., Baya, F., - Benedet, F., da Silva, K.E., Descroix, L., et al. 2015. The Tropical managed Forests Observatory: a - 1439 research network addressing the future of tropical logged forests. *Applied Vegetation Science*, 18, 171- - 1440 174. 1441 - Sousa, T.R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I.O., Emílio, T. et al., - 2020. Palms and trees resist extreme drought in Amazon forests with shallow water tables. *Journal of* - 1444 *Ecology*. 1445 - Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D., Reich, P.B., Nabuurs, - 1447 G.J., et al., 2019. Climatic controls of decomposition drive the global biogeography of forest-tree - 1448 symbioses. *Nature*, 569, 404-408. 1449 - Sullivan, M.J., Talbot, J., Lewis, S.L., Phillips, O.L., Qie, L., Begne, S.K., Chave, J., Cuni-Sanchez, A., - Hubau, W., Lopez-Gonzalez, G. and Miles, L., 2017. Diversity and carbon storage across the tropical - forest biome. *Scientific Reports*, 7, 1-12. 1453 - Sullivan, M.J., Lewis, S.L., Hubau, W., Qie, L., Baker, T.R., Banin, L.F., Chave, J., Cuni-Sanchez, A., - Feldpausch, T.R., et al., 2018. Field methods for sampling tree height for tropical forest biomass - estimation. *Methods in Ecology and Evolution*, 9, 1179-1189. 1457 - 1458 Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Cuni Sanchez, A., Ewango, - 1459 C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., et al., 2020. Long-term thermal sensitivity - of Earth's tropical forests. Science 368, 869-874. DOI: 10.1126/science.aaw7578. 1461 Taylor, J.A. and Lloyd, J., 1992. Sources and sinks of atmospheric CO2. *Australian Journal of Botany* 40, 407-418. 1464 - ter Steege, H., Pitman, N., Sabatier, D., Castellanos, H., Van Der Hout, P., Daly, D.C., Silveira, M., et - 1466 al., 2003. A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity & - 1467 *Conservation*, 12, 2255-2277. 1468 - ter Steege, H., Pitman, N.C., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.F., Prévost, - 1470 M.F., Spichiger, R., Castellanos, H., Von Hildebrand, P., 2006. Continental-scale patterns of canopy - tree composition and function across Amazonia. *Nature* 443, 444-447. 1472 - ter Steege, H., Pitman, N.C., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., - 1474 Castilho CV et al., 2013. Hyperdominance in the Amazonian tree flora. *Science* 342, 1243092. 1475 - 1476 Terrer, C. et al., 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. - 1477 *Nature Climate Change* 9, 684–689. - 1479 Vargas, R., Alcaraz-Segura, D., Birdsey, R., Brunsell, N.A., Cruz-Gaistardo, C.O., de Jong, B., - 1480 Etchevers, J., Guevara, M., Hayes, D.J., Johnson, K. and Loescher, H.W., 2017. Enhancing - interoperability to facilitate implementation of REDD+: Case study of Mexico. Carbon Management, - 1482 8, 57-65. Vásquez, R., Rojas, R., Monteagudo, A.M., Valenzuela, L.G., Huamantupa, I., 2018. *Catalogo de los Arboles del Perú*. Q'ueña Revista de la Sociedad Botánica del Cusco 9 (1), número especial. 1486 1487 Vásquez, M. R. & Soto Shareva, Y. 2020. *Virola pseudosebifera* (Myristicaceae), una nueva especie para la Selva Alta del Perú. *Revista O'ueña*, 10, 07-12. 1489 Vicuña Miñano, E., Baker, T.R., Banda, K., Coronado, E.H., Monteagudo, A., Phillips, O.L., Torres, D.D.C., Rios, W.F., Flores, G., Huaman, D. and Huaman, K.T., 2018. El sumidero de carbono en los bosques primarios Amazónicos es una oportunidad para lograr la sostenibilidad de su conservación. 1493 Folia Amazónica, 27, 101-109. 1494 Vilanova, E., Ramírez-Angulo, H., Torres-Lezama, A., Aymard, G., Gámez, L., Durán, C., Hernández, L., Herrera, R., van der Heijden, G., Phillips, O.L. and Ettl, G.J., 2018. Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. *PloS one*, 13(6). 1498 Villela, D.M., Nascimento, M.T., de Aragao, L.E.O. and Da Gama, D.M., 2006. Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. *Journal of Biogeography*, 33, 506-516. 1502 Werger, M.J.A. (ed.). 2011. Sustainable Management of Tropical Rainforests: the CELOS Management System. Tropenbos International, Paramaribo, Suriname. 1505 Wright, S.J. (this volume). The Smithsonian Tropical Research Institute: ecological and applied research. *Biological Conservation*. 1508 Wurdack, K.J. and Farfan-Rios, W., 2017. *Incadendron*: a new genus of Euphorbiaceae tribe Hippomaneae from the sub-Andean cordilleras of Ecuador and Peru. *PhytoKeys*, 85, 69-86. | 1512 | Taking the Pulse of Earth's Tropical Forests using Networks of Highly Distributed Plots | |------|---| | 1513 | Author: ForestPlots.net (Cecilia Blundo, Julieta Carilla, Ricardo Grau, Hieu Dang Tran) | | 1514 | Corresponding author: Oliver L. Phillips | | 1515 | | | 1516 | Table 1 of Contributing Networks | | 1517 | and | | 1518 | Table of Contributing Authors | ForestPlots.net Taking the Pulse of Tropical Forests ### Table 1. Networks contributing to ForestPlots.net We report the 24 international, national, and regional plot networks contributing to and supported by ForestPlots.net in 2020, in order of date of affiliation. Note that some plots contribute to more than one network, in some cases the plots managed at ForestPlots.net are fewer than the total number of plots of the network, while others are not 'networked' but managed by individual researchers. Hence, cross-network totals do not correspond precisely to the number of plots managed. We include 20 tropical networks with multi-census plots plus four large-scale floristic-focussed networks (ATDN, CAO, sANDES, RedGentry) that work exclusively with single-census data. As an open collaborative project ForestPlots.net welcomes all contributors with carefully-managed plots. | Network ¹ | Geography | Main Purposes ² | Joined
ForestPlots.net | | First census in
ForestPlots.net | n (plots in
ForestPlots.net) | n (plots
recensued) | Modal plot | Mean
size
(ha) | Mean
(maximum)
years
monitored | |----------------------|--|----------------------------|---------------------------|------|------------------------------------|---------------------------------|------------------------|----------------------------------|----------------------|---| | RAINFOR | South America:
tropical forests | B,D,F,M,T,V | 2000 | 2000 | 1961 | 593 | 427 | 1-ha, >10cm d | 0.8 | 15 (56) | | DBTV | Venezuela: tropical forests | B,D,M,T | 2004 | 1956 | 1961 | 48 | 48 | 0.25-ha, >10cm d | 0.25 | 30 (55) | | COL-TREE | Colombia | B,D,F,H,M,R,V | 2004 | 2004 | 1992 | 61 | 55 | 1-ha, >10cm d | 0.8 | 9 (25) | | TROBIT | Pantropical: forest-
savanna transition | B,D,F,H,R,T | 2006 | 2006 | 2006 | 58 | 49 | 1-ha, >10cm d | 1 | 12 | | AfriTRON | Africa: tropical forests | B,D,F,M | 2009 | 2009 | 1939 | 575 | 407 | 1-ha, >10cm d | 0.9 | 11 (69) | | ABERG | Peru Andes:
Kosñipata Valley | B,D,F,M,P,T | 2011 | 2011 | 2003 | 23 | 23 | 1-ha, >10cm d | 1 | 12 (16) | | T-FORCES | Southeast
Asia:
tropical forests | B,D,F,H,M | 2012 | 2012 | 1958 | 95 | 71 | 1-ha, >10cm d | 1.3 | 22 (56) | | GEM | Worldwide | D,H,M,P,R,T | 2012 | 2010 | 2010 | 53 | 45 | 1-ha, >10cm d | 0.8 | 5 (16) | | PELD-
TRAN | Brazil: Amazon-
Cerrado transition | B,D,F,H,M,R,T,V | 2012 | 2010 | 1996 | 48 | 45 | 1-ha, >10cm d | 1 | 9 (22) | | DRYFLOR | Latin America and
Caribbean dry forests | B,D,F,H,M,R,T,V | 2013 | 2012 | 2007 | 39 | 8 | 0.5-ha, >5cm d | 0.3 | 7 (8) | | ATDN | Amazonia: tropical forests | F,V | 2014 | 2003 | 1974 | 413 | N/A | 1-ha, >10cm d | 1 | N/A | | PPBio | Brazil: forests and savanna | B,D,F,H,M,T,V | 2015 | 2004 | 2000 | 277 | 205 | $1-\text{ha}, > 10\text{cm d}^3$ | 0.9 | 7 (17) | | BIOTA | Brazil: São Paulo
state, Atlantic forests | B,D,F,H,M,P,R,T,V | 2016 | 2005 | 2005 | 20 | 18 | 1-ha, >10cm d | 0.9 | 11 (14) | ## Taking the Pulse of Tropical Forests #### ForestPlots.net | FATE | Brazil: Amazon fire-
impacted | B,D,H,M,R,S,T | 2016 | 2014 | 2009 | 57 | 38 | 0.25-ha, > 10 cm d ³ | 0.3 | 4 (10) | |-----------------|----------------------------------|---------------------|------|------|------|-----|-----|-----------------------------------|------|---------| | RAS | Brazil: Para state | B,D,F,H,M,P,R,T,U,V | 2016 | 2009 | 1999 | 256 | 59 | 0.25-ha, > 10 cm d ³ | 0.26 | 6 (20) | | MonANPeru | Peru | B,D,F,H,M,R,U,V | 2017 | 2017 | 1974 | 128 | 103 | 1-ha, >10cm d | 1 | 15 (43) | | Nordeste | Brazil: Caatinga
biome | B,D,F,H,M,R,T | 2017 | 2017 | 2017 | 33 | 3 | 0.5-ha, >10cm d | 0.5 | 3 | | SEOSAW | Southern Africa
woodlands | B,D,F,H,M,R,S,T,U,V | 2018 | 2018 | 2006 | 113 | 98 | 1-ha, >5cm d | 0.5 | 9 (15) | | Red BST-
Col | Colombia: dry forests | B,D,F,H,M,R,U,V | 2018 | 2014 | 2014 | 11 | 1 | 1-ha, >2.5cm d | 1 | 3 (3) | | CAO | Peru Amazon-Andes | B,F,S,T,V | 2019 | 2009 | 2009 | 276 | N/A | 0.28-ha, >5cm d | 0.28 | N/A | | RedSPP | Argentina: subtropical | B,D,F,H,M,R,V | 2019 | 2019 | 1992 | 16 | 7 | 1-ha, >10cm d | 1.4 | 10 (25) | | RBA | South America:
Andean forests | B,D,F,H,M,R,V | 2020 | 2012 | 1992 | 46 | 34 | 1-ha, >10cm d | 1 | 11 (25) | | sANDES | South America:
Andean forests | B,F,V | 2020 | 2019 | 2003 | 191 | N/A | 0.1-ha, >2.5cm d | 0.4 | N/A | | AfriMont | Africa: tropical montane forests | B,H,M,U,V | 2020 | 2020 | 1939 | 105 | N/A | 1-ha, >10cm d | 0.6 | 10 (69) | | RedGentry | South America:
Amazon forests | F,V | 2020 | 2020 | 1983 | 350 | N/A | 0.1-ha, >2.5cm d | 0.2 | N/A | #### 1527 1528 #### Footnotes - 1529 1 Full Network Names: - 1530 Red Amazónica de Inventarios Forestales (RAINFOR) - 1531 Dinámica y crecimiento del Bosque Tropical Venezolano (DBTV) - 1532 Tropical Biomes in Transition (TROBIT) - 1533 African Tropical Rainforest Observation Network (AfriTRON) - Andes Biodiversity and Ecosystem Research Group (ABERG) - 1535 Tropical Forests in the Changing Earth System (T-FORCES) - 1536 Red Colombiana de Monitoreo de los Bosques (COL-TREE) - 1537 Global Ecosystems Monitoring (GEM) - 1538 Programa Ecológico de Longa Duração (PELD-TRAN) - 1539 Amazon Tree Diversity Network (ATDN) - 1540 Programa de Pesquisa em Biodiversidade (PPBio) # Taking the Pulse of Tropical Forests # ForestPlots.net | 1541 | Programa de Pesquisas em Caracterização, Conservação e Uso Sustentável da Biodiversidade (BIOTA) | |------|--| | 1542 | Fire-Associated Transient Emissions (FATE) | | 1543 | Rede Amazônia Sustentável (RAS) | | 1544 | Monitoreo de las Areas Naturales Protegidos del Peru (MonANPeru) | | 1545 | Projeto Nordeste (Nordeste) | | 1546 | A Socio-Ecological Observatory for Southern African Woodlands (SEOSAW) | | 1547 | Red de Investigación y Monitoreo del Bosque Seco Tropical en Colombia (Red BST-Col) | | 1548 | Carnegie Airborne Observatory (CAO) | | 1549 | Red Subtropical de Parcelas Permanentes (RedSPP) | | 1550 | Red de Bosques Andinos (RBA) | | 1551 | Tree Diversity, Composition and Carbon in Andean Montane Forests (sANDES) | | 1552 | African tropical Montane forest network (AfriMont) | | 1553 | Red de parcelas Gentry (RedGentry) | | 1554 | | | | | | 1555 | 2 Purpose: Biomass; Dynamics (mortality, recruitment, growth); Floristic composition; Human-impacts (fire, logging, fragmentation); Monitoring carbon storage, sink, | | 1556 | change; Productivity and carbon-cycle; Recovery and restoration, Remote-Sensing calibration/validation; Traits; Sustainable Use; DiVersity | | | | | 1557 | 3 = with nested sub-plots for smaller stems | | | • | | 1558 | | | ==00 | | Taking the Pulse of Earth's Tropical Forests using Networks of Highly Distributed Plots # Authors: ForestPlots.net, Cecilia Blundo, Julieta Carilla, Ricardo Grau, Hieu Dang Tran Corresponding author: Oliver L. Phillips Author Table of All Contributing Authors To Be Listed as Authors of This Paper: | Country | First Name | Last Name | Institution | |-----------|-------------------|----------------|--| | Argentina | Cecilia | Blundo | Instituto de Ecología Regional (IER); Universidad Nacional de Tucumán (UNT); | | | | | Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | | Argentina | Julieta | Carilla | Instituto de Ecología Regional (IER); Universidad Nacional de Tucumán (UNT); | | | | | Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | | Argentina | Ricardo | Grau | Instituto de Ecología Regional (IER); Universidad Nacional de Tucumán (UNT); | | | | | Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | | Argentina | Agustina | Malizia | Instituto de Ecología Regional (IER); Universidad Nacional de Tucumán (UNT);
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | | Argentina | Lucio | Malizia | Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy. Jujuy, Argentina. | | Argentina | Oriana | Osinaga-Acosta | Instituto de Ecología Regional (IER); Universidad Nacional de Tucumán (UNT);
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | | Australia | Michael | Bird | James Cook University (JCU) | | Australia | Matt | Bradford | CSIRO (Commonwealth Scientific and Industrial Research Organisation) | | Australia | Damien | Catchpole | School of Land & Food University of Tasmania | | Australia | Andrew | Ford | CSIRO (Commonwealth Scientific and Industrial Research Organisation) | | Australia | Andrew | Graham | CSIRO Tropical Forest Research Centre | | Australia | David | Hilbert | Independent researcher | | Australia | Jeanette | Kemp | Environmental Protection Agency (EPA) | | Australia | Susan | Laurance | Centre for Tropical Environmental and Sustainability Science (TESS) and | | | | | College of Marine and Environmental Sciences, James Cook University | | Australia | William | Laurance | Centre for Tropical Environmental and Sustainability Science (TESS) and College of Marine and Environmental Sciences, James Cook University | | Australia | Francoise | Yoko Ishida | Centre for Tropical Environmental and Sustainability Science, College of | | | | | Science and Engineering, James Cook University | | Australia | Andrew | Marshall | University of the Sunshine Coast; University of York; Flamingo Land Ltd. | | Australia | Catherine | Waite | University of the Sunshine Coast | | Austria | Hannsjoerg | Woell | Sommersbergseestrasse | | Belgium | Jean-
Francois | Bastin | Ghent University | | Belgium | Marijn | Bauters | CAVElab, Ghent University | | Belgium | Hans | Beeckman | Royal Museum for Central Africa - Service of Wood Biology | | Belgium | Pfascal | Boeckx | Isotope Bioscience Laboratory-ISOFYS, Ghent University | | Belgium | Jan | Bogaert | Gembloux Agro-Bio Tech, Université de Liege | | Belgium | Charles | De Canniere | Landscape Ecology and Vegetal Production Systems Unit | | Belgium | Thales | de Haulleville | CAVElab Computational & Applied Vegetation Ecology, Ghent University | | Belgium | Jean-Louis | Doucet | Tropical Forestry, Forest Ressources Management, Gembloux Agro-Bio Tech, University of Liege | |---------|------------------|------------------------|--| | Belgium | Olivier | | Université Libre de Bruxelles (ULB) Evolutionary Biology and Ecology | | Belgium | Wannes | - | Royal Museum for Central Africa, Belgium | | Belgium | Elizabeth | Kearsley | Royal Museum for Central Africa, Ghent University | | Belgium | Hans | Verbeeck | Department of Environment, Ghent University | | Belgium | Jason | Vleminckx | Service Evolution Biologique et Ecologie | | Belize | Steven W. | | Belize Foundation for Research and Environmental Education | | Bolivia | Alfredo | Alarcón | IBIF | | Bolivia | Alejandro | Araujo-Murakami | Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma
Gabriel Rene Moreno | | Bolivia | Eric | Arets | PROMAB | | Bolivia | Luzmila | Arroyo | Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma
Gabriel Rene Moreno | | Bolivia | Ezequiel | Chavez | Museo Noel Kempff | | Bolivia | Todd | Fredericksen | IBIF | | Bolivia | René | Guillén Villaroel | Consultor independiente | | Bolivia | Gloria | Gutierrez Sibauty | Jardin Botanico Municipal de Santa Cruz | | Bolivia | Timothy | | Museo de Historia Natural Noel Kempff Mercado | | Bolivia | Juan Carlos | Licona | IBIF | | Bolivia | John | Lleigue | PROMAB | | Bolivia | Casimiro | | Forest Management in Bolivia | | Bolivia | Samaria | | PROMAB | | Bolivia | Alexander | Parada Gutierrez | Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma
Gabriel Rene Moreno | | Bolivia |
Guido | Pardo | Universidad Autónoma del Beni Riberalta | | Bolivia | Marielos | Peña-Claros | PROMAB | | Bolivia | Lourens | Poorter | PROMAB | | Bolivia | Marisol | Toledo | Museo de Historia Natural Noel Kempff | | Bolivia | Jeanneth | Villalobos Cayo | Herbario del Sur de Bolivia | | Bolivia | Laura
Jessica | Viscarra | Museo de Historia Natural Noel Kempff Mercado | | Bolivia | Vincent | Vos | Universidad Autónoma del Beni | | Brazil | Jorge | Ahumada | Conservation International | | Brazil | Everton | Almeida | Instituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará | | Brazil | Jarcilene | Almeida | Universidade Federal de Pernambuco | | Brazil | Edmar | Almeida de
Oliveira | Universidade do Estado de Mato Grosso | | Brazil | Wesley | | Universidade do Estado de Mato Grosso (UNEMAT) | | Brazil | Atila | | Projeto TEAM – Manaus | | Brazil | Fabrício | Alvim Carvalho | Universidade Federal de Juiz de Fora (UFJF) | | Brazil | Flávio | Amorim
Obermuller | Universidade Federal do Rio de Janeiro | | Brazil | Ana | | Instituto Nacional de Pesquisas da Amazônia, Projeto Dinâmica Biológica de Fragmentos Florestais | | Brazil | Fernanda | Antunes Carvalho | Departamento de Genética, Ecologia e Evolução. Universidade Federal de Minas
Gerais | | Brazil | Simone | Aparecida Vieira | Universidade Estadual de Campinas | | Brazil | Ana Carla | Aquino | Laboratório de Ecologia de Comunidades e Funcionamento de Ecossistemas-
ECoFERP, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras - USP- Ribeirão Preto-SP | | Brazil | Luiz | Aragão | National Institute for Space Research (INPE) | | Brazil | Ana Claudia | Araújo | Universidade Federal de Roraima (UFRR) | | Brazil | Marco
Antonio | Assis | UNESP - São Paulo State University | |--------|------------------------------------|---------------------------------|--| | Brazil | Jose | Ataliba Mantelli
Aboin Gomes | Carbonozero Consultoria Ambiental | | Brazil | Fabrício | | Departamento de Biologia, Universidade Federal do Amazonas (UFAM) | | Brazil | Plínio | Barbosa de
Camargo | Centro de Energia Nuclear na Agricultura, Universidade de São Paulo | | Brazil | Paulo | | UERR - Campus Rorainópolis | | Brazil | Jorcely | Barroso | Universidade Federal do Acre | | Brazil | Luis Carlos | Bernacci | Instituto Agronômico de Campinas | | Brazil | Kauane | Bordin | Universidade Federal do Rio Grande do Sul | | Brazil | Marcelo | Medeiros | Embrapa | | Brazil | Igor | Broggio | Universidade Estadual do Norte Fluminense (UENF) | | Brazil | José Luís | Camargo | Instituto Nacional de Pesquisas da Amazônia, Projeto Dinâmica Biológica de Fragmentos Florestais | | Brazil | Domingos | Cardoso | Universidade Federal da Bahia (UFBA) | | Brazil | Maria
Antonia | | Universidade do Estado de Mato Grosso (UNEMAT) | | Brazil | Andre Luis | Casarin Rochelle | Instituto de Biologia, Universidade Estadual de Campinas | | Brazil | Carolina | Castilho | Embrapa Roraima | | Brazil | Antonio
Alberto
Jorge Farias | | Universidade Federal do Piauí, Teresina (UFPI) | | Brazil | Wendeson | | Botany and Plant Ecology Laboratory, Federal University of Acre | | Brazil | Sabina | | Universidade Federal do Acre | | Brazil | Flávia | | INPA- Instituto Nacional de Pesquisas da Amazônia | | Brazil | Rodrigo | | UERR - Campus Boa Vista | | Brazil | Italo | | Universidade Federal do Ceará | | Brazil | John | Cunha | Universidade Federal de Campina Grande | | Brazil | Lola | | Universidade Federal do Para | | Brazil | Lucia | da Costa Ferreira | Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas | | Brazil | Richarlly | da Costa Silva | Instituto Federal de Educação, Ciência e Tecnologia do Acre | | Brazil | Marta | da Graça Zacarias
Simbine | Universidade Estadual de Campinas | | Brazil | Vitor | de Andrade
Kamimura | UNESP - São Paulo State University | | Brazil | Haroldo
Cavalcante | de Lima | Instituto de Pesquisas Jardim Botânico do Rio de Janeiro | | Brazil | Lia | | Universidade Federal do Oeste do Pará | | Brazil | Luciano | de Queiroz | UEFS - Depto. de Ciências Biológicas | | Brazil | José
Romualdo | | Universidade Federal do Agreste de Pernambuco (UFAPE) | | Brazil | Mário | | Universidade Estadual de Montes Claros | | Brazil | Tomas | U | FFCLRP-USP/Br | | Brazil | Nayane
Cristina | dos Santos Prestes | | | Brazil | Steffan | Carneiro | Universidade Federal de Jataí | | Brazil | Fernando | | Universidade Federal do Pará, Instituto de Ciências Biológicas | | Brazil | Gabriel | Eliseu | Universidade Federal de Jatai | | Brazil | Thaise | | Universidade de Campinas | | Brazil | Camila Laís | * | Universidade Federal de Lavras (UFLA) | | Brazil | Letícia | Fernandes | Universidade Federal do Acre | | Brazil | Gustavo | Ferreira | Universidade Federal de Jatai | |--------|--------------------|-------------------------------|---| | Brazil | Joice | Ferreira | Embrapa | | Brazil | Leandro | | Museu Goeldi | | Brazil | Socorro | Ferreira | Embrapa Amazônia Oriental | | Brazil | Marcelo | Fragomeni Simon | EMBRAPA | | Brazil | Maria | | Instituto Nacional de Pesquisas da Amazônia | | | Aparecida | | | | Brazil | Queila S | | UFMG - Universidade Federal de Minas Gerais | | Brazil | Angelo | | Fundação Universidade Fedral de Rondônia - UNIR | | Brazil | Paulo | | INPA- Instituto Nacional de Pesquisas Amazônicas | | Brazil | Frederico | Guilherme | Universidade Federal de Jatai | | Brazil | Eduardo | Hase | Instituto Nacional de Pesquisas da Amazônia | | Brazil | Niro | Higuchi | Instituto Nacional de Pesquisas da Amazônia - Coordenação de Pesquisas em | | Brazil | Mariana | | Silvicultura Tropical
Jardim Botânico do Rio de Janeiro | | Brazil | Reinaldo | , | National Institute for Research in Amazonia | | Brazil | Margarita | Jaramillo | Universidade Federal de Roraima (UFRR/PRONAT) | | Brazil | Carlos | | Universidade Estadual de Campinas/UNICAMP | | Brazil | Joice | • | Universidade Federal do Rio Grande do Sul (UFRGS) | | Brazil | Iêda | | Instituto Nacional de Pesquisas da Amazônia/CPBO | | Brazil | Carolina | Levis | Universidade Federal de Santa Catarina (UFSC) | | Brazil | Antonio S | | Museu Goeldi | | Brazil | Maurício | | INCAPER- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão | | | | | Rural | | Brazil | Aline | | INPE- Instituto Nacional de Pesquisas Espaciais | | Brazil | Herison | Madeiros | Universidade de São Paulo | | Brazil | William E. | | INPA- Instituto Nacional de Pesquisas da Amazônia | | Brazil | Rubens | Manoel dos
Santos | Universidade Federal de Lavras (UFLA) | | Brazil | Beatriz | Marimon | Universidade do Estado de Mato Grosso | | Brazil | Ben Hur | Marimon Junior | Universidade do Estado de Mato Grosso | | Brazil | Roberta | Marotti Martelletti
Grillo | Instituto de Biociências, Universidade Estadual Paulista | | Brazil | Luiz | Martinelli | Centro de Energia Nuclear na Agricultura, Universidade de São Paulo | | Brazil | Simone | Matias Reis | Universidade do Estado de Mato Grosso | | Brazil | Salomão | Medeiros | Semiarid National Institute (INSA) | | Brazil | Milton | Meira-Junior | Universidade de Brasília, Departamento de Engenharia Florestal | | Brazil | Thiago | Metzker | IBAM - Instituto Bem Ambiental | | Brazil | Paulo | Morandi | Universidade do Estado de Mato Grosso, Campus de Nova Xavantina | | Brazil | Natanael | Moreira do
Nascimento | Universidade Federal de Jatai | | Brazil | Magna | | EMBRAPA | | Brazil | Sandra
Cristina | Müller | Universidade Federal do Rio Grande do Sul | | Brazil | Laszlo | Nagy | University in Campinas | | Brazil | Henrique | Nascimento | Instituto Nacional de Pesquisas da Amazônia | | Brazil | Marcelo | | Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) | | Brazil | Adriano | Nogueira Lima | LMF, Instituto Nacional de Pesquisas da Amazônia | | Brazil | Raimunda | | Instituto Nacional de Pesquisas da Amazônia | | Brazil | Jhonathan | | Universidade Federal do Vale do São Francisco | | Brazil | Marcelo | | USP- University of São Paulo | | Brazil | Gabriel | | UNESP - São Paulo State University | | | | | | | Brazil | Karla Maria | Pedra de Abreu | Instituto Federal do Espírito Santo (IFES) | |----------|-------------------------|-----------------------|--| | Brazil | | Pena Rodrigues | Instituto de Pesquisas Jardim Botânico do Rio de Janeiro | | | Francisco | | | | Brazil | Maria | Piedade | INPA- Instituto Nacional de Pesquisas da Amazônia - Grupo MAUA | | Brazil | Domingos | Rodrigues | Universidade Federal de Mato Grosso, Instituto de Ciências Naturais, Humanas e Sociais, Sinop | | Brazil | José
Roberto | Rodrigues Pinto | Universidade de Brasília, Departamento de Engenharia Florestal | | Brazil | Carlos | Quesada | Instituto Nacional de Pesquisas da Amazônia | | Brazil | Eliana | Ramos | Instituto Nacional da Mata Atlântica | | Brazil | Rafael | Ramos | Universidade Estadual de Campinas | | Brazil | Priscyla | Rodrigues | Universidade Federal do Vale do São Francisco | | Brazil | | Rodrigues de
Sousa | RAINFOR-PPBIO | | Brazil | Rafael | Salomão | Universidade Federal Rural da Amazônia - UFRA/CAPES | | Brazil | Flávia | Santana | Instituto Nacional de Pesquisas da Amazônia | | Brazil | Marcos | Scaranello | Instituto de Biologia, Universidade Estadual de Campinas | | Brazil | Rodrigo | Scarton Bergamin | Universidade Federal do Rio Grande do Sul | | Brazil | Juliana | Schietti | Universidade Federal do Amazonas (UFAM) | | Brazil | Jochen | Schöngart | INPA/ Max-Planck Project | | Brazil | Gustavo | Schwartz | EMBRAPA- Empresa Brasileira de Pesquisa Agropecuária (Amazônia Oriental) | | Brazil | Natalino |
Silva | Serviço Florestal Brasileiro | | Brazil | Marcos | Silveira | Museu Universitário, Universidade Federal do Acre | | Brazil | Cristiana | Simão Seixas | Universidade Estadual de Campinas | | Brazil | Marta | Simbine | Instituto de Biologia, Universidade Estadual de Campinas | | Brazil | Ana Claudia | Souza | UNESP - São Paulo State University | | Brazil | Priscila | Souza | INPA- Instituto Nacional de Pesquisas da Amazônia | | Brazil | Rodolfo | Souza | Universidade Federal Rural de Pernambuco | | Brazil | Tereza | Sposito | IBAM - Instituto Bem Ambiental | | Brazil | Edson | Stefani Junior | Instituto de Biologia, Universidade Estadual de Campinas | | Brazil | Julio Daniel
do | Vale | PUCPR - Pontificia Universidade Católica do Paraná | | Brazil | | Vieira | Museu Paraense Emilio Goeldi | | Brazil | | Villela | Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) | | Brazil | Marcos | Vital | Universidade Federal de Roraima | | Brazil | Haron | Xaud | Embrapa Roraima | | Brazil | Katia | Zanini | Universidade Federal do Rio Grande do Sul | | Brazil | Charles
Eugene | Zartman | Instituto Nacional de Pesquisas Amazônicas | | Brunei | Nur Khalish
Hafizhah | Ideris | Universiti Brunei Darussalam | | Brunei | Faizah binti
Hj | Metali | Environmental and Life Sciences, Faculty of Science, Universiti Brunei
Darussalam | | Brunei | | Abu Salim | Environmental and Life Sciences, Faculty of Science, Universiti Brunei
Darussalam | | Brunei | Muhd
Shahruney | Saparudin | Universiti Brunei Darussalam | | Brunei | Rafizah Mat | Serudin | Universiti Brunei Darussalam | | Brunei | Rahayu | Sukmaria Sukri | Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam | | Cameroon | Serge | Begne | Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaounde I | | Bibaa, Bibaa, Cameroon Marie Noel Djuiksuo Cameroon Christelle Gommadje National Herbarium, Yasuunde Cameroon Christelle Gommadje National Herbarium, Yasuunde Palmi Systematics and Ecology Laboratory, Higher Teachers' Training College, Guiversity of Yasuunde Palmi Systematics and Ecology Laboratory, Higher Teachers' Training College, Guiversity of Yasuunde Palmi Systematics and Teology, Laboratory, Higher Teachers' Training College, Guiversity of Yasuunde Cameroon Hermann Taedoumg Department of Plant Biology, Faculty of Sciences, University of Yasuunde Cameroon Lise Zemagho Diversity of Proststy international, Yasuunde-Cameroon Cameroon Lise Zemagho Palant Systematics and Teology Laboratory, Higher Teachers' Training College, University of Proststy, University of Toronto Cantral African Edicle Gustavo Saiz Luiversidad Carollica de la Santisima Concepción Chila Gustavo Saiz Universidad Carollica de la Santisima Concepción Chila Javier Silva Espejo Universidad de La Serona China Deviang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Chila Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tsubou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Ch | Cameroon | George | Chuyong | Faculty of Science, Department of Botany and Plant Physiology, University of | |--|-----------------|-------------|----------------|--| | Cameroon Caristelle Gommadje National Herburium, Yaounde Cameroon Murielle Simo-Droissart Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaounde I Cameroon Bonaventure Sonké Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaounde I Cameroon Hermann Taedoumg Department of Plant Biology, Faculty of Sciences, University of Yaounde I, Cameroon Lise Zemagho Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaounde I, Cameroon Plant Biology, Faculty of Sciences, University of Yaounde I, Cameroon Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaounde I, Cameroon Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Toronto Central African Fiddle Baya Republic Canada Sean Thomas Faculty of Forestry, University of Toronto Central African Republic Chile Gustavo Saiz Universidad Católica de la Santisima Concepción Chile Javier Silva Espejo Universidad Católica de la Santisima Concepción China Dexing Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry University China Alam Hamilton Xumming Institute of Floropy, Chinese Academy of Forestry China Tashou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Dia Santa Alvarez Davilla UNAD, Corporación COL-TREE Colombia Sateban Alvarez Davilla UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Jiame Cabezas Duarte University University National Plant Carlos Plant Canderón Asociación GAICA, Universidad de Nariño Red BST-Col Colombia Herny Caudron Universidad del Tolima Colombia Dian Calderón Asociación GAICA, Universidad de Nariño Red BST-Col Colombia Hernando García Sepinosa Universidad del Tolima Sociación GAICA, Universidad de Nariño Red BST-Col Colombia Peranda Sociación GAICA, Universidad de Nariño Red BST-Col Colombia Alejandro Gómez Un | | | | | | Cameroon Murielle Simo-Droissart University of Yaoundé I Cology Laboratory, Higher Teachers' Training College, University of Yaoundé I Plant Systematics and Leology Laboratory, Higher Teachers' Training College, University of Yaoundé I Cameroon Hermann Taedoumg Department of Plant Biology, Faculty of Sciences, University of Yaoundé I, Cameroon / Bioversity international, Yaoundé-Cameroon (Plant Plant Plan | Cameroon | Marie Noel | Djuikouo | Faculty of Science, Department of Plant Science, University of Buea. | | Cameroon Bonaventure Sonké Diant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaoundé I Department of Plant Biology, Faculty of Sciences, University of Yaoundé I, Cameroon Lise Zemagho Department of Plant Biology, Faculty of Sciences, University of Yaoundé I, Cameroon Lise Zemagho Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaoundé I Cameroon // Bioversity international, Yaoundé Cameroon Plant Biology, Faculty of Sciences, University of Yaoundé I Cameroon // Bioversity international, Yaoundé Cameroon Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, Universidad Catolica de la Santisima Concepción Plant Systematics of Mostro Plant Systematics of Research Institute of Tropical Forestry, Chinese Academy of Forestry Chile Javier Silva Espejo Universidad de La Serena Republic China Dexlang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Plant Lio Research Institute of Tropical Forestry, Chinese Academy of Forestry China Plant Plan | Cameroon | Christelle | | 2 | | Cameroon Hermann Taedoumg Department of Plant Biology, Faculty of Sciences, University of Yaounde 1 Cameroon Lise Zemagho Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaounde 1 Camada Sean Thomas Faculty of Forestry, University of Toronto Cantral African Fidele Baya Ministere des Eaux, Forêts, Chasse et Pêche (MEFCP), Bangui, Central African Republic Chile Gustavo Saiz Universidad Católica de la Santisima Concepción Chile Javier Silva Espejo Universidad de la Serena Concepción Chile Javier Silva Espejo Universidad de la Serena Concepción China Deviang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kumming Institute of Horacy, Chinese Academy of Forestry China Vide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu
Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Pang Zhou Zh | Cameroon | Murielle | Simo-Droissart | | | Cameroon Hermann Taedoung Department of Plant Biology, Faculty of Sciences, University of Yaounde I, Cameroon Lise Zemagho Plant Systematics and Leology Laboratory, Higher Teachers' Training College, University of Yaounde I Cameroon Plant Systematics and Leology Laboratory, Higher Teachers' Training College, University of Toronto Central African Fidèle Baya Ministère des Eaux, Forêts, Chasse et Péche (MEFCP), Bangui, Central African Republic Chile Sustavo Saiz Universidad Católica de la Sartas Chila Lavier Silva Espejo Universidad de La Serena China Dexiang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kumming Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Tu | Cameroon | Bonaventure | Sonké | | | Cameroon Lise Zemagho Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaoundé I Cantad Sean Thomas Faculty of Forestry, University of Toronto Central African Republic Chile Baya Ministere des Eaux, Forêts, Chasse et Pêche (MEFCP), Bangui, Central African Republic Chile Gustavo Saiz Universidad Catolica de la Santisima Concepción Chile Javier Silva Espejo Universidad Catolica de la Santisima Concepción Chila Dexiang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kunming Institute of Botany, Chinese Academy of Sciences China Vide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China China China China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Usteban Alvarez Dávila UNAD, Corporación COL-TREE Colombia Isan Carlos Andrés Escobar Corporación COL-TREE Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jiaime Cabezas Duarte Universidad del Tolima Colombia Borish Cuadrado Parques Nacionaidas Naturales, Territorial Caribe – Red BST-Col Colombia Borish Cuadros Universidad del Alantico – Red BST-Col Colombia Borish Cuadros Universidad del Alantico – Red BST-Col Colombia China Maria Corales Bravo Colombia China Maria Corales Parvo | Cameroon | Hermann | Taedoumg | Department of Plant Biology, Faculty of Sciences, University of Yaounde 1, | | Central African Republic | Cameroon | Lise | Zemagho | Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, | | Republic Republic Chile Gustavo Saiz Universidad Católica de la Santisima Concepción Chile Javier Silva Espejo Universidad de La Serena China Dexiang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kunming Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alvarez Dávila UNAD, Corporación COL-TREE Colombia Bitach Alvarez Dávila UNAD, Corporación COL-TREE Colombia Herry Arellano-Peña Nevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Univer | Canada | Sean | Thomas | | | Chile Gustavo Saiz Universidad Católica de la Santisima Concepción Chile Javier Silva Espejo Universidad de La Serena Dexiang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kunming Institute of Botany, Chinese Academy of Forestry China Yide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Esteban Alvarez Dávila Colombia Esteban Alvarez Dávila UNAD, Corporación COL-TREE Colombia Universidad Alvarez Dávila UNAD, Corporación COL-TREE Colombia Jaime Cabezas Duarte Colombia Jaime Cabezas Duarte Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño - Red BST-Col Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe - Red BST-Col Colombia Hermes Cuadros Universidad del Tolima Colombia Hermes Cuadros Universidad del Tolima Colombia Luisa Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Colombia Cariba Duque Socioecosistemas y clima sostenible, Fundacion con Vida Ferranda Colombia Rober Franke-Ante Parques Nacionales Naturales de Colombia - Red BST-Col Colombia Rober Grantes Brave Colombia - Sede Milena García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Red BST-Col Colombia Rober González-M. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Red BST-Col Colombia Rober González-M. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Red BST-Col Colombia Rober Jurado Asociación GAICA, Universidad de Nariño - Red BST-Col Colombia Rober González-M. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Red BST-Col Colombia Rober Jurado Asociación GAICA, Universidad de Nariño - Red BST-Col Colombia Rober Jurado Asociación GAICA, Universidad de Nariño - Red BST-Col Co | Central African | Fidèle | Baya | Ministère des Eaux, Forêts, Chasse et Pêche (MEFCP), Bangui, Central African | | Chile Javier Silva Espejo Universidad de La Serena China Dexiang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kunming Institute of Tropical Forestry, Chinese Academy of Forestry China Yide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Alvarez Dávila UNAD, Corporación COL-TREE Colombia Henry Arellano-Peña Corporación COL-TREE Colombia Jaime Cabezas Duarte Colombia Jaime Cabezas Duarte Colombia Jaime Cabezas Duarte Colombia Jihon Calderón Calderón Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellin Colombia Sandra Espinosa Corporación COL-TREE Colombia Co | Republic | | | | | China Dexiang Chen Research Institute of Tropical Forestry, Chinese Academy of Forestry China Alan Hamilton Kunning Institute of Botany, Chinese Academy of Sciences China Yide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Land Caloma Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Land Caloma Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Land Caloma Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Colombia China Maria Chinese Academy of Forestry Colombia China Zhang Zhou Chinese Academy of Forestry Colombia China Zhang Zhou Chinese Academy of Forestry Colombia China Zhang Zhou Chinese Academy of Forestry Colom | | Gustavo | | = | | China Alan Hamilton Kunming Institute of Botany, Chinese Academy of Sciences China Yide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of
Forestry China Shukui Niu Beijing Forestry University China Lan Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Chorporación COL-TREE Colombia Galarcarlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaine Cabezas Duarte Colombia Jaine Cabezas Duarte Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Sandra Sandra Sandra Sandra Milena Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Norral Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alvaro Idárraga Piedrahita JAUM) – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Chies Piedrahita JAUM) – Red BST-Col Colombia Chies Piedrahita JAUM) – Red BST-Col Colombia Chies Piedrahita JAUM) – Red | | Javier | | | | China Yide Li Research Institute of Tropical Forestry, Chinese Academy of Forestry China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Beijing Forestry University China Shukui Niu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Álvarez Dávila UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jaime Cadezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Carribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Duque Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hermando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Alejandro Gómez UNAL, Colombia Colombia Alvaro Idárraga- Franke-Ante Parques Nacionales Naturales de Colombia sede Amazonia Fernanda Jurado Jurado Jurado Pundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" Jurado Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Repé López-Camacho Feacultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima Colombia Melo Cruz Universidad de Tolima | China | Dexiang | Chen | Research Institute of Tropical Forestry, Chinese Academy of Forestry | | China Tushou Luo Research Institute of Tropical Forestry, Chinese Academy of Forestry China Shukui Niu Bejjing Forestry University China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Chang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Álvarez Dávila UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Joria Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luísa Duque Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Roy González-M. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alajandro Gómez UNAL, Colombia Colombia Clárraga- piedrahita JAUM) – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rebén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rebén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rebén Jurado López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima | China | Alan | Hamilton | · · · · · · · · · · · · · · · · · · · | | China Shukui Niu Beijing Forestry University China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Álvarez Dávila Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Unina Maria Corrales Bravo Universidad del Tolima Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Duque Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hermando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Roy González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Cluiraga- Findación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" Pindación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" Pindación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" Olombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col | China | Yide | Li | Research Institute of Tropical Forestry, Chinese Academy of Forestry | | China Han Xu Research Institute of Tropical Forestry, Chinese Academy of Forestry China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Alvarez Dávila UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Sandra Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Univa del Nacional de Colombia sede Amazonia Colombia Rubén Univa del Nacional de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Rubén Univa del Nacional de Colombia sede Amazonia Colombia Rubén Univa del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Rubén Univa Melo Cruz Universidad del Tolima Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad del Tolima | China | Tushou | Luo | Research Institute of Tropical Forestry, Chinese Academy of Forestry | | China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Álvarez Dávila UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS
Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Sandra Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Álvaro Idárraga Findación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" Piedrahita Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Fracultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima Aurelio | China | Shukui | Niu | Beijing Forestry University | | China Zhang Zhou Research Institute of Tropical Forestry, Chinese Academy of Forestry Colombia Esteban Álvarez Dávila UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Pernanda Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Colombia Sandra Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima Aurelio | China | Han | Xu | Research Institute of Tropical Forestry, Chinese Academy of Forestry | | Colombia Esteban Álvarez Dávila UNAD, Corporación COL-TREE Colombia Juan Carlos Andrés Escobar Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Espinosa Corporación COL-TREE Milena Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Idárraga-Piedrahita (JAUM) – Red BST-Col Colombia Rubén Jurado Asociación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López-Oviedo Coltree Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima | China | Zhang | Zhou | <u> </u> | | Colombia Juan Carlos Andrés Escobar Corporación COL-TREE Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Duque Socioecosistemas y clima sostenible, Fundacion con Vida Colombia Sandra Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia | Colombia | | Álvarez Dávila | | | Colombia Henry Arellano-Peña Nuevo Estándar Biotropical NEBIOT SAS Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Sandra Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Alejandro Idárraga Findación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad del Tolima Nuiversidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima | | | | * | | Colombia Jaime Cabezas Duarte Universidad del Tolima Colombia Jhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Fernanda Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Roy González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Bray González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Roy Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima Universidad del Tolima Universidad del Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima | | | | * | | Colombia Uhon Calderón Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Fernanda Colombia Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Roy González-M. Instituto de Investigación Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Bardara Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital
Francisco José de Caldas – Red BST-Col Universidad de Tolima Colombia Omar Melo Cruz Universidad de Tolima | | | | - | | Colombia Lina Maria Corrales Bravo Universidad del Tolima Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Duque Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Espinosa Corporación COL-TREE Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Alvaro Idárraga- Piedrahíta Jaum) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López Oviedo Coltree Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | | | | | | Colombia Borish Cuadrado Parques Nacionales Naturales, Territorial Caribe – Red BST-Col Colombia Hermes Cuadros Universidad del Atlantico – Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Fernanda Colombia Sandra Espinosa Corporación COL-TREE Milena Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Álvaro Idárraga- Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | | _ | | | | Colombia Hermes Cuadros Universidad del Atlantico — Red BST-Col Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Fernanda Colombia Sandra Espinosa Corporación COL-TREE Milena Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia — Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt — Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. BST-Col Colombia Álvaro Idárraga- Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) — Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño — Red BST-Col Colombia René López Oviedo Coltree Colombia Omar Melo Cruz Universidad de Tolima Melo Cruz Universidad de Tolima | | | | | | Colombia Alvaro Duque Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín Colombia Luisa Duque Socioecosistemas y clima sostenible, Fundacion con Vida Fernanda Espinosa Corporación COL-TREE Milena Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia - Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt - Red BST-Col Colombia Álvaro Idárraga- Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) - Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño - Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas - Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | | | | * | | Medellín | | _ | | | | Fernanda Colombia Sandra Milena Colombia Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Alvaro Idárraga- Piedrahíta Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Aurelio Melo Cruz Universidad de Tolima | | | _ | Medellín | | Milena Colombia Rebeca Franke-Ante Parques Nacionales Naturales de Colombia – Red BST-Col Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Alvaro Idárraga- Piedrahíta Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Universidad de Tolima Melo Cruz Universidad de Tolima | | Fernanda | | | | Colombia Hernando García Instituto de Investigación de Recursos Biológicos Alexander von Humboldt – Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Álvaro Idárraga- Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | | | | | | Red BST-Col Colombia Alejandro Gómez UNAL, Colombia Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Álvaro Idárraga- Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | Colombia | Rebeca | Franke-Ante | Parques Nacionales Naturales de Colombia – Red BST-Col | | Colombia Roy González-M. Instituto de Investigación Recursos Biologicos Alexander von Humboldt – Red BST-Col Colombia Álvaro Idárraga- Piedrahíta Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | Colombia | Hernando | García | | | BST-Col Colombia Álvaro Idárraga- Piedrahíta (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | Colombia | Alejandro | Gómez | UNAL, Colombia | | Piedrahíta (JAUM) – Red BST-Col Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | Colombia | Roy | González-M. | | | Colombia Eliana Jimenez Universidad Nacional de Colombia sede Amazonia Colombia Rubén Jurado Asociación GAICA, Universidad de Nariño – Red BST-Col Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima | Colombia | Álvaro | | Fundación Jardín Botánico de Medellín, Herbario "Joaquín Antonio Uribe" | | Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima Aurelio | Colombia | Eliana | | | | Colombia Wilmar López Oviedo Coltree Colombia René López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima Aurelio | Colombia | Rubén | Jurado | Asociación GAICA, Universidad de Nariño – Red BST-Col | | Colombia René
López-Camacho Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima Aurelio | Colombia | | | | | Francisco José de Caldas – Red BST-Col Colombia Omar Melo Cruz Universidad de Tolima Aurelio | | _ | - | | | Colombia Omar Melo Cruz Universidad de Tolima
Aurelio | | | r -= - amazno | | | | Colombia | | Melo Cruz | | | | Colombia | | Mendoza Polo | Socioecosistemas y clima sostenible, Fundacion con Vida | | Colombia | Edwin | Paky | Corporación COL-TREE | |----------------------------------|-----------|-----------------|--| | Colombia | Karen | Pérez | Fundación Orinoquia Biodiversa – Red BST-Col | | Colombia | Angel | Pijachi | Corporación COL-TREE | | Colombia | Camila | Pizano | Departamento de Biología, Facultad de Ciencias Naturales, Universidad Icesi – | | | | | Red BST-Col | | Colombia | Adriana | Prieto | Instituto de Ciencias Naturales, Universidad Nacional de Colombia | | Colombia | Laura | Ramos | Universidad de los Llanos | | Colombia | Zorayda | Restrepo Correa | Servicios Ecoysistemicos y Cambio Climatico (SECC) Fundación Con Vida & Corporación COL-TREE | | Colombia | James | Richardson | Universidad del Rosario | | Colombia | Elkin | Rodríguez | Parques Nacionales Naturales, Territorial Caribe – Red BST-Col | | Colombia | Gina M. | Rodriguez M. | Fundacion Ecosistemas Secos de Colombia – Red BST-Col | | Colombia | Agustín | Rudas | Instituto de Ciencias Naturales, Universidad Nacional de Colombia | | Colombia | Pablo | Stevenson | Universidad de los Andes - ANDES herbarium | | Czech Republic | Markéta | Chudomelová | Institute of Botany, Czech Academy of Sciences | | _ | Martin | Dancak | Palacky University | | Czech Republic | Radim | Hédl | Institute of Botany, Czech Academy of Sciences | | Czech Republic | Stanislav | Lhota | Czech University of Life Sciences, Prague | | | | Svatek | · · · · · · · · · · · · · · · · · · · | | Czech Republic | Martin | | Mendel University, Brno | | Democractic
Republic of Congo | Jacques | Mukinzi | World Wide Fund for Nature | | Democratic | Corneille | Ewango | Wildlife Conservation Society-DR Congo | | Republic of Congo | | Ewango | Whathe Conservation Society-DR Congo | | | Terese | Hart | Lukuru Wildlife Research Foundation | | Republic of Congo | | | | | | Emmanuel | Kasongo Yakusu | Université de Kisangani | | Republic of Congo | | | | | | Janvier | Lisingo | Faculté des Sciences, Laboratoire d'écologie et aménagement forestier, | | Republic of Congo
Democratic | | N 4 1 | Université de Kisangani, Kisangani, Democratic Republic of Congo | | Republic of Congo | | Makana | Wildlife Conservation Society-DR Congo | | Democratic | Faustin | Mbayu | Université de Kisangani Faculté des Sciences Agronomiques République | | Republic of Congo | | iviouj u | Démocratique du Congo | | Democratic | Benjamin | Toirambe | Ministère de l'Environnement et Développement Durable, Kinshasa, Democratic | | Republic of Congo | J | | Republic of Congo | | Democratic | John | Tshibamba | Université de Kisangani Faculté des Sciences Agronomiques République | | Republic of Congo | | Mukendi | Démocratique du Congo | | Denmark | Lars | Kvist | Aarhus University | | Denmark | Gustav | Nebel | University of Copenhagen | | Ecuador | Selene | Báez | Escuela Politécnica Nacional del Ecuador | | Ecuador | Carlos | Céron | Herbario Alfredo Paredes (QAP), Universidad Central del Ecuador | | Ecuador | Daniel M. | Griffith | Universidad Técnica Particular de Loja | | Ecuador | Juan | Guevara Andino | Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS- | | | Ernesto | | Universidad de las Américas, Campus Queri, Quito Ecuador; Keller Science
Action Center, The Field Museum, 1400 South Lake Shore Dr., Chicago, IL | | Ecuador | David | Neill | Universidad Estatal Amazónica, Facultad de Ingeniería Ambiental | | Ecuador | Walter | Palacios | Universidad Tecnica del Norte, Herbario Nacional del Ecuador | | Ecuador | Maria | Peñuela-Mora | Grupo de Ecosistemas Tropicales y Cambio Global, Universidad Regional | | | Cristina | 2110010 111010 | Amazónica ikiam | | Ecuador | Gonzalo | Rivas-Torres | Colegio de Ciencias Biológicas y Ambientales COCIBA & Extensión
Galápagos, Universidad San Francisco de Quito-USFQ; Herbario de Botánica
Económica del Ecuador QUSF, Universidad San Francisco de Quito USFQ;
Galapagos Science Center, USFQ, UNC Chapel Hill, San Cristobal, Galapagos,
Ecuador; University of North Carolina-UNC Chapel Hill, USA; University of | | | j | | Florida, Gainesville, USA. | | Ecuador | Gorky | Villa | FindingSpecies | |---------------------------------|-----------------|----------------|---| | Ethiopia | Sheleme | Demissie | Mekelle University | | Ethiopia | Tadesse | Gole | independent researcher | | Ethiopia | Techane | Gonfa | Environment, Climate Change and Coffee Forest Forum (ECCCFF) | | Finland | Kalle | Ruokolainen | University of Turku | | France | Michel | Baisie | CIRAD | | France | Fabrice | Bénédet | Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD) | | France | Wemo | Betian | CNRS | | France | Vincent | Bezard | ONF | | France | Damien | Bonal | INRAE | | France | Jerôme | Chave | Centre National de la Recherche Scientifique | | France | Vincent | Droissart | AMAP, Univ Montpellier, IRD, CNRS, CIRAD, INRA, Montpellier, France. | | France | Sylvie | Gourlet-Fleury | Forêts et Sociétés (F&S), Centre de coopération International en Recherche
Agronomique pour le Développement (CIRAD), Montpellier, France | | France | Annette | Hladik | Departement Hommes Natures Societes Museum national d'histoire naturelle | | France | Nicolas | Labrière | Centre National de la Recherche Scientifique | | France | Pétrus | Naisso | Cirad | | France | Maxime | Réjou-Méchain | AMAP, Univ Montpellier, IRD, CNRS, CIRAD, INRA, Montpellier, France. | | France | Plinio | Sist | Cirad | | French Guiana | Lilian | Blanc | CIRAD | | French Guiana | Benoit | Burban | INRA Kourou | | French Guiana | Géraldine | Derroire | Cirad, UMR Ecologie des Forêts de Guyane (AgroparisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane) | | French Guiana | Aurélie | Dourdain | Cirad, UMR Ecologie des Forêts de Guyane (AgroparisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane) | | French Guiana | Clement | Stahl | INRAE | | Gabon | Natacha
Nssi | Bengone | Ministry of Forests, Seas, Environment and Climate | | Gabon | Eric | Chezeaux | Rougier-Gabon | | Gabon | Fidèle | Evouna Ondo | Agence Nationale des Parcs Nationaux Gabon | | Democratic
Republic of Congo | | Medjibe | Commission of Central African Forests (COMIFAC), Libreville | | Gabon | Vianet | Mihindou | Agence Nationale des Parcs Nationaux / Ministère des Forêts, des Eaux, de la Mer, de l'Environnement, Chargé du Plan Climat, des Objectifs de Développement Durable et du Plan d'Affectation des Terres | | Gabon | Lee | White | Institut de Recherche en Ecologie Tropicale (CENAREST) Gabon/Agence
Nationale des Parcs Nationaux | | Germany | Heike | Culmsee | Georg-August-University Göttingen | | Germany | Cristabel | Durán Rangel | University of Freiburg | | Germany | Viviana | Horna | Institute of Botany, University of Hohenheim, 70593 Stuttgart | | Germany | Florian | Wittmann | Max Planck Institute for Chemistry | | Ghana | Stephen | Adu-Bredu | Forestry Research Institute of Ghana (FORIG) | | Ghana | Kofi | Affum-Baffoe | Mensuration Unit, Forestry Commission of Ghana | | Ghana | Ernest | Foli | Forestry Research Institute of Ghana (FORIG) | | Guinea | Michael | Balinga | Center for International Forestry Research | | Guyana | Anand | Roopsind | Iwokrama International Centre for Rainforest Conservation and Development | | Guyana | James | Singh | Guyana Forestry Commission | | Guyana | Raquel | Thomas | Iwokrama International Centre for Rainforest Conservation and Development | | Guyana | Roderick | Zagt | Utrecht University | | India | Indu | K Murthy | Centre for Sustainable Technologies, Indian Institute of Science | | Indonesia | Kuswata | Kartawinata | CIFOR | | Indonesia | Kuswata | Kartawinata | Herbarium Borgoriense, Indonesian Institute of Sciences (LIPI) | | Indonesia | Edi | Mirmanto | Indonesian Institute of Science, Bogor, Indonesia | |-------------|-----------------|---------------------------|--| | Indonesia | Hari | Priyadi | Centre for International Forestry Research (CIFOR) | | Indonesia | Ismayadi | Samsoedin | Forest Research and Development Agency (FORDA) | | Indonesia | Terry | Sunderland | Center for International Forestry Research | | Indonesia | Ishak | Yassir | Balitek-KSDA Samboja | | Italy | Francesco | Rovero | University of Florence and MUSE - Museo delle Scienze | | Italy | Barbara | Vinceti | Bioversity International | | Ivory Coast | Bruno | Hérault | Cirad | | Japan | Shin-Ichiro | Aiba | Hokkaido University | | Japan | Kanehiro | Kitayama | Graduate School of Agriculture, Kyoto University | | Liberia | Armandu | Daniels | Forestry Development Authority of the Government of Liberia (FDA) | | Liberia | Darlington | Tuagben | Forestry Development Authority of the Government of Liberia (FDA) | | Liberia | John T. | Woods | University of Liberia | |
Malaysia | Muhammad | Fitriadi | Sungai Wain Protection Forest | | Malaysia | Alexander | Karolus | South East Asia Rainforest Research Partnership, Danum Valley Field Centre,
Lahad Datu, Sabah | | Malaysia | Kho Lip | Khoon | Malaysian Palm Oil Board | | Malaysia | Noreen | Majalap | Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah | | Malaysia | Colin | Maycock | Universiti Malaysia Sabah | | Malaysia | Reuben | Nilus | Sabah Forestry Department | | Malaysia | Sylvester | Tan | Sarawak Forestry Corporation | | Mozambique | Almeida | Sitoe | Eduardo Mondlane University | | Nicaragua | Indiana | Coronado G. | Herbarium UNAN-Leon, Universidad Nacional Autónoma de Nicaragua | | Nigeria | Lucas | Ojo | University of Abeokuta | | Norway | Rafael | de Assis | Natural History Museum of Norway | | Norway | Axel
Dalberg | Poulsen | University of Oslo | | Norway | Douglas | Sheil | Norwegian University of Life Sciences | | Peru | Karen | Arévalo Pezo | Universidad Nacional de la Amazonía Peruana | | Peru | Hans | Buttgenbach
Verde | Universidad Nacional Agraria La Molina (UNALM), Peru | | Peru | Victor | Chama Moscoso | Jardin Botanico de Missouri | | Peru | Jimmy
Cesar | Cordova Oroche | Universidad Nacional de la Amazonia Peruana (UNAP) | | Peru | Fernando | Cornejo Valverde | Andes to Amazon Biodiversity Program | | Peru | Massiel | Corrales Medina | Universidad Nacional de San Agustín de Arequipa | | Peru | Nallaret | Davila Cardozo | Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana | | Peru | Jano | de Rutte Corzo | Kené - Instituto de Estudios Forestales y Ambientales | | Peru | Jhon | del Aguila
Pasquel | Instituto de Investigaciones de la Amazonia Peruana | | Peru | Gerardo | Flores Llampazo | Universidad Nacional Jorge Basadre de Grohmann (UNJBG) | | Peru | Luis | Freitas | Instituto de Investigaciones de la Amazonia Peruana (IIAP) | | Peru | Darcy | Galiano Cabrera | Universidad Nacional de San Antonio Abad del Cusco | | Peru | Roosevelt | García Villacorta | | | Peru | Karina | Garcia Cabrera | Universidad Nacional de San Antonio Abad del Cusco | | Peru | Diego | García Soria | Instituto de Investigaciones de la Amazonía Peruana | | Peru | Leticia | Gatica Saboya | Universidad Nacional de la Amazonia Peruana (UNAP) | | Peru | | Grandez Rios | Universidad Nacional de la Amazonia Peruana (UNAP) | | Peru | Gabriel | Hidalgo Pizango | Instituto de Investigaciones de la Amazonia Peruana | | Peru | Eurídice | Honorio Coronado | Instituto de Investigaciones de la Amazonía Peruana | | Peru | Isau | Huamantupa-
Chuquimaco | Universidad Nacional de San Antonio Abad del Cusco | | | | Т | | |-------------------|-------------------|-----------------------|---| | Peru | Walter | Huaraca Huasco | Universidad Nacional de San Antonio Abad del Cusco | | Peru | | Huillca Aedo | Universidad Nacional de San Antonio Abad del Cusco | | Peru | Jose Luis | Marcelo Peña | Universidad Nacional Agraria La Molina | | Peru | | Monteagudo
Mendoza | Universidad Nacional de San Antonio Abad del Cusco | | Peru | | Moreano
Rodriguez | Universidad Nacional Agraria La Molina (UNALM) | | Peru | | | Universidad Nacional de San Antonio Abad del Cusco | | Peru | Sonia
Cesarina | Palacios Ramos | Universidad Nacional Agraria La Molina (UNALM), Peru | | Peru | | Pallqui Camacho | Universidad Nacional de San Antonio Abad del Cusco | | Peru | | Peña Cruz | Jardin Botanico de Missouri | | Peru | Freddy | Ramirez Arevalo | Universidad Nacional de la Amazonía Peruana | | Peru | José | Reyna
Huaymacari | Universidad Nacional de la Amazonía Peruana (UNAP) | | Peru | | | Universidad Nacional Agraria La Molina (UNALM), Peru | | Peru | | | Universidad Nacional de la Amazonia Peruana | | Peru | | Rodriguez Bayona | Centro de Conservación, Investigación y Manejo, CIMA | | Peru | - | Rojas Gonzales | Jardín Botánico de Missouri | | Peru | Maria Elena | Rojas Peña | Universidad Nacional de la Amazonía Peruana (UNAP) | | Peru | | Salinas Revilla | Pontificia Universidad Católica del Perú | | Peru | Yahn Carlos | Soto Shareva | Jardin Botanico de Missouri, Oxapampa | | Peru | Raul | | Asociacion Bosques Perú | | Peru | Luis | Valenzuela
Gamarra | Jardín Botánico de Missouri | | Peru | Rodolfo | | Jardín Botánico de Missouri | | Peru | Jim | _ | Universidad Nacional de la Amazonia Peruana | | Republic of Congo | | • | Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo | | Republic of Congo | | Averti Ifo | Université Marien N'Gouabi, Brazzaville | | Republic of Congo | | Bocko | Université Marien Ngouabi, Brazzaville | | Republic of Congo | | Boundja | Wildlife Conservation Society | | Republic of Congo | | Ekoungoulou | Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien
Ngouabi | | Republic of Congo | Mireille | Hockemba | Wildlife Conservation Society | | Republic of Congo | Donatien | Nzala | Univeriste Marien Ngouabi | | Sierra Leone | Alusine | Fofanah | The Gola Rainforest National Park, Kenema, Sierra Leone | | Singapore | David | Taylor | Department of Geography, National University of Singapore | | Spain | Luis | | Departamento de Biología, Geología, Física y Química Inorgánica, Universidad
Rey Juan Carlos | | Spain | Íñigo | | Real Jardín Botánico - CSIC | | Spain | Manuel | Macía | Departamento de Biología, Área de Botánica, Universidad Autónoma de Madrid | | Spain | Juliana | Stropp | Museo Nacional de Ciencias Naturales (MNCN-CSIC) | | Suriname | Maureen | Playfair | Centre for Agricultural Research in Suriname (CELOS) | | Suriname | Verginia | Wortel | Centre for Agricultural Research in Suriname (CELOS) | | Sweden | Toby | Gardner | Stockholm Environment Institute | | Sweden | Robert | Muscarella | Department of Plant Ecology and Evolution, Uppsala University | | Sweden | Hari | Priyadi | Southern Swedish Forest Research Centre | | Switzerland | Ervan | Rutishauser | InfoFlora, Conservatoire et Jardin Botanique Geneve | | Taiwan | Kuo-Jung | Chao | National Chung Hsing University | | Tanzania | | Munishi | Sokoine University of Agriculture | | 1 | | 1 | | | The Netherlands | Olaf | Bánki | Naturalis Biodiversity Center | |-----------------|------------|----------------|--| | The Netherlands | Frans | Bongers | Wageningen University, Forest Ecology and Forest Management Group | | The Netherlands | Rene | Boot | Tropenbos International | | The Netherlands | Gabriella | Fredriksson | Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam | | The Netherlands | Jan | Reitsma | Bureau Waardenburg BV | | The Netherlands | Hans | ter Steege | Naturalis Biodiversity Center | | The Netherlands | Tinde | van Andel | Naturalis Biodiversity Center | | The Netherlands | Peter | van de Meer | Van Hall Larenstein University of Applied Sciences | | The Netherlands | Peter | van der Hout | Van der Hout Forestry Consulting | | The Netherlands | Mark | van Nieuwstadt | Utrecht University, Domplein 29, 3512 JE Utrecht | | The Netherlands | Bert | van Ulft | PROMAB | | The Netherlands | Elmar | Veenendaal | Wageningen University, Plant Ecology and Nature Conservation Group | | The Netherlands | Ronald | Vernimmen | Data for Sustainability | | The Netherlands | Pieter | Zuidema | Wageningen University, Plant Ecology and Nature Conservation Group | | The Netherlands | Joeri | Zwerts | Utrecht University | | Uganda | Perpetra | | Department of Zoology,Entomology & Fisheries Sciences, | | | | | Makerere University, Kampala | | Uganda | Robert | Bitariho | The Institute of Tropical Forest Conservation (ITFC), Mbarara University of Science and Technology (MUST), Mbarara, Uganda | | Uganda | Colin | Chapman | George Washington University/ Makerere University | | Uganda | Eilu | | Department of Forestry, Biodiversity and Tourism, | | Ganda | Liiu | | Makerere University, Kampala | | Uganda | Miguel | Leal | Wildlife Conservation Society | | Uganda | Patrick | Mucunguzi | Makerere University, Kampala | | United Kingdom | Katharine | Abernethy | University of Stirling | | United Kingdom | Miguel | | University of Kent | | United Kingdom | Timothy R. | Baker | School of Geography, University of Leeds | | United Kingdom | Karina | Banda | School of Geography, University of Leeds | | United Kingdom | Lindsay | Banin | UK Centre of Ecology & Hydrology | | United Kingdom | Jos | | Lancaster University | | United Kingdom | Amy | Bennett | School of Geography, University of Leeds | | United Kingdom | Erika | Berenguer | Lancaster University, University of Oxford | | United Kingdom | Nicholas | Berry | The Landscapes and Livelihoods Group (TLLG) | | United Kingdom | Neil M. | | Overseas Development Institute | | United Kingdom | George A. | Blackburn | Lancaster University | | United Kingdom | Francis | Brearley | Manchester Metropolitan University | | United Kingdom | Roel | | School of Geography, University of Leeds | | United Kingdom | David | | University of Aberdeen | | United Kingdom | Lidiany | Carvalho | University of Exeter | | United Kingdom | Percival | Cho | Lancaster University | | United Kingdom | Fernanda | | School of Geography, University of Leeds | | United Kingdom | Murray | | School of GeoSciences, University of Edinburgh | | United Kingdom | David | Coomes | University of Cambridge | | United Kingdom | Aida | | Department of Environment and Geography, University of York | | United Kingdom | Greta | | School of Geography, University of Leeds | | United Kingdom | Kyle | Dexter | School of GeoSciences, University of Edinburgh | | United Kingdom | Mat | · | Department of Geography University College London | | United Kingdom | Freddie | - | School of Geography, University of Leeds | | United Kingdom | Muying | Duan
 Imperial College, London | | United Kingdom | Adriane | - | School of Geography, Earth & Environmental Sciences and Birmingham Institute of Forest Research, University of Birmingham | | United Kingdom | Robert | Ewers | Imperial College London | | United Kingdom | Belen | Fadrique | School of Geography, University of Leeds | |----------------|--------------|----------------|---| | United Kingdom | Sophie | Fauset | University of Plymouth | | United Kingdom | Ted R. | Feldpausch | Geography, College of Life and Environmental Sciences, University of Exeter | | United Kingdom | Filipe | França | Lancaster Environment Centre, Lancaster University | | United Kingdom | David | Galbraith | School of Geography, University of Leeds | | United Kingdom | Martin | Gilpin | School of Geography, University of Leeds | | United Kingdom | Emanuel | Gloor | School of Geography, University of Leeds | | United Kingdom | John | Grace | University of Edinburgh | | United Kingdom | Keith | Hamer | School of Biology, University of Leeds | | United Kingdom | David | Harris | Royal Botanic Garden Edinburgh | | United Kingdom | Kath | Jeffery | CENAREST & ANPN & Stirling University | | United Kingdom | Tommaso | Jucker | University of Bristol, School of Biological Sciences | | United Kingdom | Michelle | Kalamandeen | School of Geography, University of Leeds; Department of Plant Sciences, | | emica imgaem | TVIIOII CIIC | | University of Cambridge and Living with Lake Centre, Laurentian University | | United Kingdom | Bente | Klitgaard | Royal Botanic Gardens Kew | | United Kingdom | Aurora | Levesley | School of Geography, University of Leeds | | United Kingdom | Simon L. | Lewis | School of Geography, University of Leeds | | United Kingdom | Jeremy | Lindsell | The Royal Society for the Protection of Birds, Centre for Conservation Science, Sandy, UK | | United Kingdom | Gabriela | Lopez-Gonzalez | School of Geography, University of Leeds | | United Kingdom | Jon | Lovett | School of Geography, University of Leeds & Royal Botanic Gardens, Kew | | United Kingdom | Yadvinder | Malhi | Environmental Change Institute, School of Geography and the Environment, University of Oxford | | United Kingdom | Toby | Marthews | UK Centre for Ecology & Hydrology | | United Kingdom | Emma | McIntosh | School of Geography and the Environment, University of Oxford | | United Kingdom | Karina | Melgaço | School of Geography, University of Leeds | | United Kingdom | William | Milliken | The Royal Botanic Gardens | | United Kingdom | Edward | Mitchard | School of GeoSciences, University of Edinburgh | | United Kingdom | Peter | Moonlight | Royal Botanic Garden Edinburgh | | United Kingdom | Sam | Moore | School of Geography and the Environment, University of Oxford | | United Kingdom | Alexandra | Morel | Department of Geography and Environmental Science, University of Dundee | | United Kingdom | Julie | Peacock | School of Geography, University of Leeds | | United Kingdom | Kelvin | Peh | School of Biological Sciences, University of Southampton | | United Kingdom | Colin | Pendry | Royal Botanical Garden Edinburgh | | United Kingdom | R. Toby | Pennington | University of Exeter; Royal Botanic Garden Edinburgh | | United Kingdom | Luciana de | Pereira | University of Exeter | | | Oliveira | | | | United Kingdom | Carlos | Peres | University of East Anglia | | United Kingdom | Oliver L. | Phillips | School of Geography, University of Leeds | | United Kingdom | Georgia | Pickavance | School of Geography, University of Leeds | | United Kingdom | Thomas | Pugh | School of Geography, Earth & Environmental Sciences and Birmingham Institute of Forest Research, University of Birmingham | | United Kingdom | Lan | Qie | School of Geography, University of Leeds | | United Kingdom | Terhi | Riutta | University of Oxford | | United Kingdom | Katherine | Roucoux | Stirling University | | United Kingdom | Casey | Ryan | University of Edinburgh | | United Kingdom | Tiina | Sarkinen | Royal Botanical Gardens Edinburgh | | United Kingdom | Camila | Silva Valeria | Lancaster University | | United Kingdom | Dominick | Spracklen | School of Earth and Environment, University of Leeds | | United Kingdom | Suzanne | Stas | School of Earth and Environment, University of Leeds | | United Kingdom | Martin | Sullivan | School of Geography, University of Leeds | | United Kingdom | Michael | Swaine | Department of Plant & Soil Science, Cruickshank Building, School of Biological Sciences, University of Aberdeen | |----------------|------------|-----------------|---| | United Kingdom | Joey | Talbot | School of Geography, University of Leeds and Institute for Transport Studies, University of Leeds | | United Kingdom | James | Taplin | UK Research & Innovation | | United Kingdom | Geertje | van der Heijden | University of Nottingham | | United Kingdom | Laura | Vedovato | University of Exeter | | United Kingdom | Simon | Willcock | University of Bangor | | United Kingdom | Mathew | Williams | University of Edinburgh | | USA | Luciana | Alves | Center for Tropical Research, Institute of the Environment and Sustainability,
University of California, Los Angeles | | USA | Patricia | Alvarez Loayza | Center for Tropical Conservation, Nicholas School of the Environment, Duke University | | USA | Gabriel | Arellano | Ecology and Evolutionary Biology, University of Michigan | | USA | Cheryl | Asa | Saint Louis Zoo | | USA | Peter | Ashton | Department of Organismic and Evolutionary Biology, Harvard University | | USA | Gregory | Asner | Center for Global Discovery and Conservation Science, Arizona State University | | USA | Terry | Brncic | Wildlife Conservation Society – Programme Congo | | USA | Foster | Brown | Woods Hole Research Center | | USA | Robyn | Burnham | The University of Michigan Herbarium | | USA | Connie | Clark | Nicholas School of the Environment | | USA | James | Comiskey | National Park Service | | USA | Gabriel | • | University of California | | USA | | Damasco | · | | | Stuart | Davies | ForestGEO, Smithsonian Tropical Research Institute | | USA | Tony | Di Fiore | University of Texas at Austin | | USA | Terry | Erwin | Smithsonian Institute | | USA | William | Farfan-Rios | Washington University in Saint Louis; Center for Conservation and Sustainable | | USA | Jefferson | Hall | Development at the Missouri Botanical Garden Smithsonian Tropical Research Institute, Smithsonian Institution Forest Global Earth Observatory (ForestGEO) | | USA | David | Kenfack | Forest Global Earth Observatory (ForestGEO), Smithsonian Tropical Research
Institute, Washington, DC, USA | | USA | Thomas | Lovejoy | George Mason University, Virginia | | USA | Roberta | Martin | Center for Global Discovery and Conservation Science, Arizona State University | | USA | Olga Marth | | Missouri Botanical Garden | | USA | John | Pipoly | Broward County Parks and Recreation | | USA | John | Pipoly | Nova Southeastern University | | USA | Nigel | Pitman | Science and Education, The Field Museum | | USA | John | Poulsen | Nicholas School of the Environment | | USA | Richard | Primack | Department of Biology, Boston University | | USA | Miles | Silman | Wake Forest University | | USA | Marc | Steininger | Department of Geographical Sciences, University of Maryland, College Park, MD | | USA | Varun | Swamy | San Diego Zoo Institute for Conservation Research | | USA | John | Terborgh | Center for Tropical Conservation, Nicholas School of the Environment, Duke | | T.G. 4 | - | | University | | USA | Duncan | Thomas | Biology Department, Washington State University, Vancouver, WA, USA | | USA | Peter | Umunay | Yale School of Forestry & Environmental Studies | | USA | Maria | Uriarte | Columbia University | | USA | Emilio | Vilanova Torre | Department of Environmental Science, Policy, and Management, University of California, Berkeley. | | USA | Ophelia | Wang | School of Earth Sciences and Environmental Sustainability, Northern Arizona University | | USA | Kenneth | Young | Department of Geography and the Environment University of Texas at Austin | | Venezuela | Gerardo A. | Aymard C. | UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario | |-----------|------------|-------------------|---| | | | | Universitario (PORT); Ci Progress GreenLife, | | Venezuela | Lionel | Hernández | Universidad Nacional Experimental de Guayana | | Venezuela | Rafael | Herrera Fernández | Instituto Venezolano de Investigaciones Científicas (IVIC) | | Venezuela | Hirma | Ramírez-Angulo | Universidad de los Andes | | Venezuela | Pedro | Salcedo | Universidad de los Andes | | Venezuela | Elio | Sanoja | Universidad Nacional Experimental de Guayana | | Venezuela | Julio | Serrano | Universidad de Los Andes | | Venezuela | Armando | Torres-Lezama | Universidad de los Andes Merida | | Viet Nam | Tinh Cong | Le | Viet Nature Conservation Centre | | Viet Nam | Trai Trong | Le | Viet Nature Conservation Centre | | Viet Nam | Hieu Dang | Tran | Viet Nature Conservation Centre |