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Pharmacological Inhibition of Caspase-2 Protects
Axotomised Retinal Ganglion Cells from Apoptosis in
Adult Rats
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Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham,

Birmingham, United Kingdom

Abstract

Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to
degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred
specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We
further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost
all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed
that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL+

RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the
pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with
z-VDVAD suppressed cleaved caspase-2 activation by .85% at 3–4 days after ONC. Increasing concentrations of z-VDVAD
protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-
VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels
of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although
suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results
suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful
therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as
glaucoma and optic neuritis.
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Introduction

Injury to the optic nerve (ON) triggers progressive death of

retinal ganglion cells (RGC), the severity of which is dependent

upon the type of lesion and its distance from the eye [1,2,3]. For

example, intraorbital ON transection and ON crush (ONC) both

trigger 70–75% RGC loss within 7 days after injury [4,5,6,7] and

by 28 days, 80–90% RGC are lost, primarily by apoptosis

[8,9,10]. RGC apoptosis, however, is recognised as a limiting

factor to the regenerative potential of RGC axons. Therefore,

treatments to block RGC apoptosis have been studied extensively.

For example, inhibition of apoptosis by neurotrophic factor

administration [11], overexpression of Bcl-2 [12,13] and inhibition

of caspase-1 and -3 [14,15] and caspase-6 and -8 [16] using

pharmacological inhibitors all reduced the number of dying RGC

after ON transection and ONC. To date, only caspase-6 and -8

inhibitors have yielded limited RGC axon regeneration after ON

axotomy [16].

Apoptosis is orchestrated by caspases, cysteine-rich proteases

capable of targeting proteins that play critical roles in DNA

replication [17,18], DNA repair [19], cell survival signalling [20]

and the regulation of proteins that control cytoskeletal re-

organisation and cellular disassembly [21,22]. There are two

groups of caspases: initiator (caspase-2, -8, -9, and -10) and effector

caspases (caspase-3, -6 and -7) the former are activated by either

death receptor activation, or the release of cytochrome-c from

mitochondria, which activate effector caspases through proteolytic

processing of pro-caspases, culminating in cleavage of structural

proteins and eventual death [23,24,25,26].

One of the most highly conserved caspases is caspase-2, which

acts as both an initiator and an executioner depending on the

apoptotic stimuli [27,28,29,30]. Caspase-2 deficient neurons are

resistant to apoptosis by b-amyloid [31,32] while activation of

caspase-2 mediates apoptosis of hippocampal neurons after

transient global ischemia [33]. Caspase-2 is also expressed in the

RGC of ischaemic retinae [34] and the neuroprotective effect of

brain-derived neurotrophic factor (BDNF) is associated with

reduced caspase-2 [35]. We have shown unequivocally that, 7

days after ONC, caspase-2 is specifically activated in RGC and

that inhibition of caspase-2 by stably-modified siRNA protects

98% of RGC from death at 7 days after ONC and significant

RGC protection lasted for at least 30 days [5,6,7]. Here, we report

that a serially injected cell permeable pharmacological inhibitor of
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caspase-2 protects 60% of RGC from apoptotic death 15 days

after ONC but does not promote RGC axon regeneration. Our

results suggest that caspase-2 is an important executioner molecule

in RGC apoptosis.

Materials and Methods

Ethics statement
This study was carried out in strict accordance to the Animals

Scientific Procedures Act, 1986 and all procedures were licensed

and approved by the UK Home Office. The protocols and

experiments were also approved by the University of Birmingham

Ethical Review Sub-Committee. Animals were kept in environ-

mentally controlled animal facilities at the University of Birming-

ham. All surgery was performed under inhalation anaesthesia

using 5% Isofluorane (IsoFlo, Abbott Animal Health, North

Chicago, IL, USA) induction and 2% for maintenance. Every

effort was made to minimise animal suffering.

ON crush (ONC)
The ON of adult female 200–250 g Spraque-Dawley rats

(Charles River, Margate, UK) was exposed through a supraorbital

approach and crushed bilaterally within the orbit, 2 mm from the

eye, using forceps as described previously [5,7,36,37,38,39].

Intravitreal injections
The cell membrane permeable caspase-2 inhibitor, z-V-D-

(OMe)-V-A-D(OMe)-fluromethylkeone (z-VDVAD) (R&D Sys-

tems, Abingdon, Oxford, UK), was dissolved in sterile DMSO

(Sigma, Poole, UK) and further diluted in sterile PBS before

intravitreal injection in a final volume of 5 ml. Control animals

(n = 6 rats/treatment (12 eyes/treatment)) were intravitreally

injected with PBS (containing the same diluted amount of DMSO

as z-VDVAD) (vehicle) at the same time-points as z-VDVAD,

whilst treated rats (n = 6 rats/treatment (12 eyes/treatment))

received either 400 ng/ml, 1000 ng/ml, 2000 ng/ml, 4000 ng/

ml or 5000 ng/ml of z-VDVAD immediately after ONC (day 0),

and intravitreal injections repeated at 4, 8 and 12 d after ONC.

The rationale for doses of 400 ng/ml and 4000 ng/ml were based

on previously published data using caspase-3 inhibitors [40].

Animals survived for 15 d, after which the retinae were dissected

out for retinal wholemounts and protein extraction for western

blotting, while whole eyes were removed for immunohistochem-

istry. None of the animals developed cataracts, confirming that the

lens had not been injured either during surgery or after subsequent

intravitreal injections.

Determining the optimal dosing regime
To determine the frequency of intravitreal z-VDVAD injec-

tions, we used the same dose of a pharmacological inhibitor to

caspase-3 and the same 3–4 d injection schedule after ONC,

reported by Kermer et al. (1998) [40] that caused RGC survival.

We therefore chose to intravitreally inject 4000 ng/ml immedi-

ately after ONC and killed animals at 2, 3 and 4 days by overdose

of CO2 (n = 3 rats/treatment (6 retinae/treatment)). Eyes were

enucleated, retinae harvested and snap frozen until required for

extraction of total proteins and western blotting as described later.

Retinal wholemounts
At 13 d after ONC, 2 ml of 4% FluoroGold (FG, Cambridge

Bioscience, Cambridge, UK), were prepared from a solid stock

and injected into the proximal ON segment mid-way between the

lamina cribrosa and the site of ONC. Animals were killed and eyes

were enucleated 48 h later and retinae were immersion-fixed in

4% formaldehyde (TAAB Laboratories, Aldermaston, UK) for

30 min, and flattened onto a Superfrost Plus microscope slides

(VWR International, Lutterworth, UK), after dividing the retinae

with 4 equidistant radial cuts to give 4 equally sized quadrants

attached together at the optic disc. Retinal wholemounts were

dried onto glass slides and mounted in Vectamount (Vector

Laboratories, Peterborough, UK). Samples were randomised and

blinded by a second investigator and photographs were captured

using a Zeiss fluorescent microscope equipped with a digital

camera in Axiovision 4 (all from Zeiss, Hertfordshire, UK). The

number of FG-labelled RGC was counted using automated

particle counting software in ImagePro Version 6.0 (Media

Cybernetics, Bethesda, USA) from photographs of 12 rectangular

areas (0.3660.24 mm), 3 from each quadrant, placed at radial

distances from the centre of the optic disc of the inner (1/6

eccentricity), midperiphery (1/2 eccentricity) or outer retina (5/6

eccentricity). RGC densities were summed together and averaged

over the entire retina and expressed as mean RGC densities/mm2

for each treatment (n = 6 rats/treatment (12 retinae/treatment)).

Tissue preparation and sectioning
After intracardiac perfusion with 4% formaldehyde, eyes and

ON were removed, immersion-fixed in 4% formaldehyde (TAAB)

for 2 h, washed for 10 min in 10 mM phosphate buffered saline

(PBS), and immersed in 10% and 20% sucrose (Sigma) each for

2 h and finally immersed in 30% sucrose overnight. Eyes and ON

were embedded in OCT mounting medium (Raymond A Lamb

Ltd) and 15 mm thick parasaggital sections of eyes and longitudinal

sections of ON were cut on a cryostat (Bright Instruments,

Huntingdon, UK), adhered onto glass slides and stored at 220uC
until required.

Immunohistochemistry
Double immunohistochemistry for cleaved caspase-2 (C-

CASP2) and bIII-tubulin was performed on sections of retina as

described by us previously [7]. Briefly, sections were washed in

PBS, non-specific binding blocked with PBS containing 3% BSA

and 0.05% Tween 20 for 20 min before incubation with rabbit

anti-C-CASP2 (Abcam, Cambridge, UK; 1:200 dilution) and

monoclonal anti-bIII-tubulin (Sigma, Poole, UK; 1:200 dilution)

primary antibodies overnight at 4uC. Sections were then washed in

63 changes of PBS, incubated with appropriate Alexa Fluor 488

and Texas Red-labelled secondary antibodies for 1 h at room

temperature, washed, mounted using Vectashield mounting

medium with DAPI (Vector Laboratories) and examined under

an Axioplan-2 epi-fluorescent microscope (Zeiss).

GAP-43 immunohistochemistry was performed on ON sections

(n = 9 rats/treatment; (i.e. 18 ON)) to detect RGC axon

regeneration at 15 d after ONC using a sheep polyclonal anti-

GAP-43 antibody (donated by Professor Larry Benowitz, Harvard

Medical School, Boston, USA) as described previously [39].

Protein extraction and Western blotting
At 15 d after ONC, a total of 3 rats/treatment group were killed

and retinae (n = 3 rats/treatment (6 retinae/treatment)) were

pooled prior to protein extraction in cell lysis buffer and processed

for Western blotting as previously described [7]. Experiments were

then repeated62 using a further 3 rats/treatment/experiment and

retinae (n = 6 retinae/treatment/experiment) were again pooled

and proteins extracted prior to western blot analysis. Western blots

were probed overnight at 4uC with antibodies against: Goat anti-

human cleaved caspase-2 (directed against the p12 fragment) (C-

CASP2) and rabbit anti-human cleaved caspase-8 (p20 fragment)

(C-CASP8) (both from Santa Cruz Biotechnology, CA, USA);

z-VDVAD Rescues RGC from Death
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Rabbit anti-cleaved caspase-3 (C-CASP3), rabbit anti-cleaved

caspase-6 (C-CASP6) and rabbit anti-cleaved caspase-7 (C-

CASP7) (all from Cell Signalling Technology, Danvers, MA,

USA). Relevant bands were detected with an appropriate HRP-

labelled secondary antibody (GE Healthcare, Buckinghamshire,

UK) and detected using an enhanced chemiluminescence system

(ECL) (GE Healthcare).

Western blots were probed with a rabbit monoclonal antibody

to GAPDH (Cell Signalling Technology, Danvers, MA, USA) at

1:1000 dilution and used as a loading control. Blots were stripped

and re-probed as required.

Biotin-VAD-fmk trapping assay of active caspase
The caspase trapping assay which employs the bVAD (biotin-

Val-Ala-DL-Asp-fluoromethylketone (biotin-VAD-fmk)) probe is

the best way to determine whether caspases are active after a death

stimuli. bVAD is an irreversible pan-caspase inhibitor and binds

irreversibly to all activated caspases. Once bVAD binds irrevers-

ibly it inhibits that specific caspase and blocks downstream events,

and as the bVAD is biotinylated, it can be isolated on streptavidin

agarose along with any active caspases that are bound to it. We

therefore used the biotin-VAD-fmk assay was used to detect the

presence of active caspase-2 as described previously [28,41,42] but

with modifications for our in vivo experiments. Briefly, 200 nmol of

b-VAD-fmk (MP Biomedical, UK) was diluted in 5 ml of sterile

saline and intravitreally injected 24 hr prior to ONC (to capture

any caspases being activated by ONC) while control animals

received 5 ml of sterile saline prior to ONC. bVAD treated animals

were killed at 1, 4 and 7 d after ONC whilst control animals were

killed at 4 d (since our previous experiment demonstrated optimal

C-CASP2 immunohistochemistry at this time-point). Eyes were

enucleated and retinae were immediately homogenised in ice-cold

Figure 1. Caspase-2, TUNEL localisation in RGC and caspase trapping assay. (A) Immunohistochemistry to show the absence of C-CASP2
(red) reactivity in bIII-tubulin+ (green) RGC in intact controls, while 4 days after ONC the majority of bIII-tubulin+ RGC (green) were C-CASP2+ (red;
arrowheads). (B) bIII-tubulin+ RGC in intact controls were also negative for TUNEL staining while some TUNEL+ (arrowheads) RGC were present at 4 d
after ONC. Some RGC were also negative for TUNEL staining at 4 d after ONC (arrow). (C) Active CASP2 is induced by ONC and its levels increase over
the 7 d time period and (D) densitometry to quantify the relative CASP2 activity compared to controls. GCL = ganglion cell layer. Scale bars in A and
B = 50 mm.
doi:10.1371/journal.pone.0053473.g001

z-VDVAD Rescues RGC from Death
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CHAPS buffer (150 mM KCl, 50 mM HEPES and 0.1% CHAPS

(pH 7.4)) supplemented with protease inhibitor cocktail (Sigma).

Samples were incubated on ice for 10 min prior to centrifugation

at 130006 g for 10 mins at 4uC and the supernatants were

collected and boiled for 5 min. Streptavidin-agarose beads were

then added to the boiled supernatant and incubated overnight at

4uC with constant agitation. Beads were spun at 75006 g for

5 min at 4uC, washed 65 in PBS, resuspended in 26 Laemmli

buffer and boiled for 5 min. The beads were centrifuged at

150006 g for 10 min, supernatant collected and supplemented

with 5% 2-mercaptoethanol and samples were resolved on 12%

SDS-PAGE gels and analysed by western blotting as described

above using an affinity purified goat polyclonal anti-C-CASP2

antibody (Santa Cruz Biotechnology). Blots were stripped and re-

probed with antibodies against total CASP-2 (Santa Cruz

Biotechnology) and GAPDH (Cell Signalling Technology).

Densitometry
Western blots were quantified by densitometry as described by

us previously [7,38,39]. Briefly, blots were scanned into Adobe

Photoshop and TIFF files were analysed in ScionImage (version

4.0.2, Scion Corp, Maryland, USA) using the built-in gel plotting

macros. The integrated density of each band in each lane was

calculated from 3 separate blots.

Statistical analysis
The significance of differences between sample means were

calculated using GraphPad Prism (GraphPad Software Inc.,

Version 4.0, CA, San Diego, USA) by one-way analysis of

variance (ANOVA) followed by post-hoc testing with Dunnett’s

method.

Results

ONC induced caspase-2 activation and TUNEL in RGC
We have previously shown that C-CASP2 is localised in

RGC within 5 hr after ONC and is present in a significant

number of RGC after 24 hr [7]. Here we confirmed by

immunohistochemistry that C-CASP2 was absent in bIII-

tubulin+ RGC in intact (uninjured) animals (Figure 1A), but

was specifically localised in RGC and present in abundant

numbers of RGC at 4 d after ONC (Fig. 1A). The localisation

of C-CASP2 paralleled the presence of TUNEL+ nuclei in

bIII-tubulin+ RGC in ONC animals (Figure 1B), indicating

RGC apoptosis. The b-VAD caspase trapping assay captured

increasing amounts of CASP2 activity and demonstrated 2-, 3-

and 6-fold higher levels of CASP2 at 1 d, 4 d and 7 d,

respectively, when compared to controls (Figure 1C and D).

Other caspases (e.g. CASP3 or CASP7 (data not shown)) were

not captured. These results demonstrate that CASP2 is

localised and specifically activated in RGC after ONC.

Determining the frequency of z-VDVAD administration
After ONC and immediate intravitreal injection of 4000 ng/

ml of z-VDVAD, western blotting detected reduced levels of

C-CASP2, of approximately 50% (P,0.0001, ANOVA), at 2 d

after ONC compared to ONC+vehicle treated eyes (Figure 2A

and B). The levels of C-CASP2 decreased significantly by

.85% at 3 days (P,0.0001, ANOVA), remaining significantly

low for 4 days (P,0.0001, ANOVA) but without further

reductions from day 3 (Figure 2A and B). Based on these

results, every 4th day was selected for repeated intravitreal

injections of z-VDVAD for the duration of the 15 d experi-

mental time period to minimise the number of intravitreal

injections required prior to harvesting of tissues.

z-VDVAD promoted RGC survival after ONC
To determine whether inhibition of caspase-2 protected

RGC from apoptosis for 15 d after ONC, we injected z-

VDVAD intravitreally every 4th day and compared results with

control vehicle treated eyes. Very few FG+ RGC were

observed in retinal wholemounts from ONC+vehicle injected

eyes (Figure 3A and G) compared to those treated with

increasing concentrations of z-VDVAD (400 ng/ml to

5000 ng/ml) (Figure 3B–F and G), where progressively more

FG+ RGC were present up to a concentration of 4000 ng/ml

(Figure 3E and G) (P,0.0001, ANOVA). There was no

increase in FG+ RGC using the highest concentration of z-

VDVAD (5000 ng/ml) (Figure 3F and G) compared to that

observed at 4000 ng/ml RGC (Figure 3E and G). No changes

in cell morphology, nor soma size were observed in retinal

wholemounts after treatment with z-VDVAD, with all RGC

morphology appearing healthy and as diverse soma sizes as

that observed in controls without z-VDVAD treatment

(Figure 3A–F: insets) The average density of FG+ RGC in

ONC+vehicle treated eyes were 293634 RGC/mm2

(Figure 3A). Intravitreal delivery of 400 ng/ml of z-VDVAD

increased RGC survival to 590656 RGC/mm2, while the

optimum concentration of 4000 ng/ml z-VDVAD increased

Figure 2. Determining the optimal z-VDVAD dosing regime. (A)
Representative western blot to show that 4000 ng/ml z-VDVAD
treatment caused optimal suppression of C-CASP2 (.80%) by 3 d after
ONC. (B) Densitometry confirmed 50% reduction of C-CASP2 by 2 d
after ONC+z-VDVAD treatment compared to ONC alone, which
increased to 80% at 3 d after ONC+z-VDVAD treatment with no further
reduction by 4 d. GAPDH was used as a loading control. n = 6 rats/
treatment (12 eyes/treatment).
doi:10.1371/journal.pone.0053473.g002

z-VDVAD Rescues RGC from Death
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survival to 1430630 RGC/mm2 (Figure 3G). Therefore,

4000 ng/ml of z-VDVAD protected 60% of RGC from death

after 15 d compared to uninjured, intact controls (Figure 3G).

z-VDVAD reduces caspase-2 activation in RGC of the
ganglion cell layer

We investigated if intravitreal z-VDVAD injection maintained

the suppression of cleaved caspase-2 (C-CASP2) in sections of

retinae by immunohistochemistry at 15 d. After ONC+vehicle

treatment (Figure 4A and B), C-CASP2 was localised in most

ganglion cells (GCL) and cells of the inner nuclear layer (INL).

However, treatment with 4000 ng/ml of z-VDVAD (Figure 4C

and D) almost completely suppressed C-CASP2 immunohisto-

chemistry. High power magnifications of the GCL confirmed C-

CASP2 immunolocalisation in cells of the GCL after ONC+ve-

hicle treatment (Figure 4E and F) while little or no immunoloca-

lisation for C-CASP2 was observed in the cells of the GCL of eyes

treated with 4000 ng/ml z-VDVAD (Figure 4G and H).

Co-localisation of C-CASP2 with bIII-tubulin+ confirmed that

bIII-tubulin+ RGC showed specific C-CASP2 activation in RGC

after ONC+vehicle (Figure 4I–K) but little or no C-CASP2

activation in bIII-tubulin+ RGC after treatment with 4000 ng/ml

z-VDVAD (Figure 4L–N).

Only C-CASP2 levels are suppressed by z-VDVAD
Using western blots of retinal lysates, we found that

ONC+vehicle treatment not only upregulated pro-caspase-2

(Pro-CASP2) (P,0.001, ANOVA) in the retina but also

significantly upregulated the levels of C-CASP2 (P,0.0001,

ANOVA), particularly the p12 fragment recognised by our

which our antibody, as detected by the relative band size

(Figure 5A) but also after quantification by densitometry

(Figure 5B). However, ONC+4000 ng/ml of z-VDVAD

treatment significantly reduced C-CASP2 and the integrated

density of the C-CASP2 p12 fragment (P,0.0001, ANOVA)

(Figure 5A and B).

Figure 3. Treatment with z-VDVAD protects RGC from death at 15 d after ONC. FG+ RGC in flat mounted retina and high power inserts
after (A) ONC+vehicle, (B) ONC+400 ng/ml z-VDVAD, (C) 1000 ng/ml and ONC+1000 ng/ml z-VDVAD, (D) ONC+2000 ng/ml z-VDVAD, (E)
ONC+4000 ng/ml z-VDVAD, (F) ONC+5000 ng/ml z-VDVAD at 15 d after ONC. (G) Quantitation of surviving RGC density (6SEM) at 15 d after ONC and
treatment with z-VDVAD. Scale bars in A–F = 50 mm, and in insets = 25 mm.
doi:10.1371/journal.pone.0053473.g003

z-VDVAD Rescues RGC from Death

PLOS ONE | www.plosone.org 5 December 2012 | Volume 7 | Issue 12 | e53473



Since Pro-CASP2 can be activated by cleaved caspase-3 (C-

CASP3) we probed our western blots against antibodies to C-

CASP and detected the p17/19 processed fragment of C-

CASP3 (Figure 5A) which was upregulated after ONC+vehicle

treatment (P,0.001, ANOVA) (Figure 5A and C). However,

these raised levels of C-CASP3 p17/p19 fragment were

unaffected by 4000 ng/ml z-VDVAD treatment. We then

probed our blots with antibodies against cleaved caspase-6 (C-

CASP6), -7 (C-CASP7) and -8 (C-CASP8) to investigate if z-

VDVAD non-specifically attenuated other caspases implicated

in RGC survival after ONC and failed to observe any

significant changes after treatments in C-CASP3, C-CASP6,

C-CASP7, or C-CASP8 (Figure 5A–C).

Inhibition of caspase-2 does not promote RGC axon
regeneration after ONC

To investigate if suppression of caspase-2 by z-VDVAD

enhanced RGC axon regeneration, we stained longitudinal

sections of ON with antibodies against GAP-43 to detect

regenerating axons. In ONC+vehicle treated rats, there were

few surviving axons in the proximal ON segment between lesion

site and eye at 15 d while no axons extended across the lesion into

the distal ON segment (Figure 6A). However, in sections of ON

treated with ONC+4000 ng/ml z-VDVAD greater numbers of

GAP-43+ RGC axons were seen in the proximal ON segment,

reflecting RGC survival, but no axons traversed the crush site to

enter the distal ON segment (Figure 6B). Taken together, these

data showed that caspase-2 inhibition promotes significant RGC

survival but not axon regeneration.

Figure 4. C-CASP2 immunoreactivity after treatment with z-VDVAD. (A, B) C-CASP2 is highly up regulated in ONC+vehicle treated in the GCL
and INL cells. (C, D) C-CASP2 immunoreactivity (red) was barely detectable in the GCL after treatment with 4000 ng/ml z-VDVAD. (E–H) High power
magnification of the GCL showed C-CASP2 immunoreactivity (red) in RGC after ONC+vehicle treatment (arrowheads) whilst treatment with z-VDVAD
suppressed immunoreactivity in the GCL. Double immunohistochemistry showing that bIII-tubulin+ RGC (I) were also C-CASP2+ (J) (arrowheads) after
ONC+vehicle treatment while treatment with ONC+4000 ng/ml z-VDVAD suppressed C-CASP2 levels in RGC (L–N). GCL = ganglion cell layer,
INL = inner nuclear layer; ONL = outer nuclear layer. Scale bars in A–D, 100 mm, scale bars in E–N, 50 mm.
doi:10.1371/journal.pone.0053473.g004

z-VDVAD Rescues RGC from Death
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Discussion

The data presented in this study confirm our previous findings

that caspase-2 is an important regulator of RGC apoptosis induced

after ONC [7]. We report that caspase-2 is specifically activated in

RGC and that significant RGC survival is promoted after

pharmacological inhibition of caspase-2 with z-VDVAD, but no

RGC axon regeneration occurs. These results complement those

of our previous study with a gene silencing approach [7],

demonstrating that caspase-2 is a key orchestrator of RGC

apoptosis.

Caspase-mediated RGC apoptosis
Caspase-3, -6, -8 and -9 activities all play a role in RGC

apoptosis after ON injury [1,15,16]. Using inhibitors besides

caspase-2, RGC neuroprotection ranged from 30–60% at 15 d

after ONC [16,43,44], with caspase-8 inhibitors supporting the

survival of nearly 60% RGC compared to intact controls [16].

Inhibition of caspase-2 using a chemically stabilised siRNA at 7 d

after ONC rescued 98% RGC from apoptosis [7]. In the current

study, pharmacological inhibition of caspase-2 with repeated

delivery of z-VDVAD over a 15 d period after ONC protected

60% RGC from apoptosis, corroborating our earlier study that

caspase-2 is an important regulator of RGC apoptosis [7]. We

have not established the long-term efficacy of z-VDVAD on RGC

neuroprotection, however, the advantage of z-VDVAD is that it is

an already available, small molecule inhibitor that may be used

immediately in clinical trials. Our results are similar to those of

Monnier et al. (2011) [16] who reported similar levels of RGC

rescue at 14 d after ONC and ON transection with a similar

intravitreal delivery regime, using a caspase-8 and caspase-6

inhibitor, respectively.

Although caspase-3 inhibition rescued ,35% RGC from death

[15], we localised C-CASP3 not in RGC but in neurons of the

INL [7], suggesting that caspase-3 was not a direct regulator of

RGC apoptosis. In the current study, the observed elevated levels

of C-CASP3 after ONC were not attenuated by z-VDVAD,

suggesting that caspase-3 was not activated as a downstream

effector molecule by caspase-2. Moreover, C-CASP6, C-CASP7

and C-CASP8 levels were unchanged after ONC and were also

Figure 5. Western blot analysis after z-VDVAD treatment. (A) Pro-CASP2 levels rose after ONC and remained high even after treatment with
4000 ng/ml z-VDVAD. The level of the C-CASP2 p12 fragment also rose after ONC but was significantly decreased after treatment with z-VDVAD. (A)
and (B) Levels of Pro-CASP2 and C-CASP2 (p12) reflected these changes and showed that the C-CASP2 fragment was 40% lower in retinae treated
with 4000 ng/ml z-VDVAD than those treated with vehicle alone. C-CASP3 and C-CASP6 levels increased after ONC+vehicle treatment but these levels
remained unchanged after ONC+4000 ng/ml z-VDVAD treatment. C-CASP7 and C-CASP8 levels were much lower and did not change after
ONC+vehicle, or ONC+4000 ng/ml z-VDVAD treatments. (B) and (C) Densitometry reflected these observed changes in Pro-CASP2, C-CASP2, C-CASP3,
C-CASP6, C-CASP7 and C-CASP8. GAPDH was used as a loading control.
doi:10.1371/journal.pone.0053473.g005
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unaffected by z-VDVAD caspase-2 inhibitor suggesting that,

although caspase-3 and -7 can be inhibited by the VDVAD

substrates [45], C-CASP3 and C-CASP7 were not affected in this

instance. We therefore, attribute the RGC protective effect of z-

VDVAD to specific inhibition of caspase-2. To our knowledge this

is the first study that demonstrates significant RGC protection

using the pharmacological z-VDVAD inhibitor and suggests that

despite these inhibitors showing some promiscuity, z-VDVAD in

this case specifically inhibited caspase-2.

Although caspase-2 is structurally similar to an initiator caspase,

its predicted cleavage specificity resembles that of the effector

caspase-3 [46]. Caspase-2 shows a multifaceted participation in

apoptosis after a variety of cellular stresses that include DNA

damage, stimulation of death receptors, heat shock, cytoskeletal

disruption and oxidative stress [27,32]. In addition, caspase-2

deficient neurons are resistant to apoptosis induced by b-amyloid

[31,32], while activation of caspase-2 occurs in hippocampal

neurons after transient global ischemia [47]. Moreover, caspase-2

is expressed in the RGC of ischemic retinae and the reported

neuroprotective effect of intravitreal BDNF administration was

associated with diminished caspase-2 immunoreactivity [34,35].

Given this body of evidence for the involvement of caspase-2 in

RGC apoptosis, the results of our previous [7] and current studies

suggest that RGC death is orchestrated directly by caspase-2 after

ON injury, a proposition that is supported by the observed

absence of caspase-3 in RGC [7]. Similarly, few RGC were

immunopositive for C-CASP6 and C-CASP8 (VV and ZA,

unpublished observations), while no significant changes in the

levels of C-CASP6 and C-CASP8 were observed after z-VDVAD

treatment. Furthermore, significant RGC protection was observed

in our current study after caspase-2 inhibition with z-VDVAD

treatment without significant reductions in other potential effector

caspases such as caspase-3 and -7.

Caspase-2 inhibition does not promote RGC axon
regeneration

Although there are early reports that caspase inhibition does not

prevent axon degeneration [48,49], recent evidence shows

otherwise. For example, caspase-6 has been implicated as a

downstream regulator of axon degeneration initiated by p75NTR

and b-amyloid precursor protein and death receptor 6 [50,51],

while inhibition of caspase-6 and -8 promotes RGC axon

regeneration after ON injury [16]. This latter observation has

been explained by demonstrations that caspase-6 predominantly

degrades nuclear and cytoskeletal components and triggers

microtubule destabilization [24,52,53] which may contribute to

the failure of RGC axon regeneration [53]. Similarly, caspase-8

acts on molecules that regulate cytoskeletal dynamics, including

p21-activated kinase (PAK) [54] and Rho-associated protein

kinase (ROCK) [55], and may therefore contribute to the failure

of RGC axon regeneration [53]. However, we did not observe

RGC axon regeneration after intravitreal delivery of z-VDVAD

caspase-2 inhibitor, suggesting that caspase-2 does not interact

with components of the signalling cascades in which caspase-6 and

-8 regulates cytoskeletal dynamics.

In conclusion, our results demonstrate that caspase-2: (1), plays

a critical role in RGC apoptosis and that inhibition of caspase-2

significantly rescues RGC from death; (2), triggers RGC apoptosis

in a manner that is distinct to that elicited by caspase-6 or -8; and

(3), protects RGC from apoptosis after visual trauma and injury,

including glaucoma [56] and optic neuropathies [57]. These

results imply that targeting caspase-2 activation may be a useful

therapeutic in the fight against diseases in which RGC are

specifically lost, e.g. glaucoma, optic nerve injury and optic

neuritis.
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