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Vaccination against COVID-19 induces highly protective immune responses in the great 
majority of people. As some countries switch from suppression to acceptance of 
transmission of SARS-CoV-2 within a largely vaccinated adult population, vulnerable 
patient groups that have not mounted adequate immune responses to vaccination may 
suffer significant morbidity and mortality. There is an urgent need to identify such patient 
groups and to optimise medical advice and vaccination strategies for them. 
 
In-centre haemodialysis patients (IC-HD) represent a particularly vulnerable group. 
During the first wave of the COVID-19 pandemic (1 March 2020 to 30 August 2020), 
there were 4,666 cases and 1,373 deaths in IC-HD patients reported to the United 
Kingdom’s Renal Registry1, a case fatality rate of 29%. In the UK, whilst IC-HD patients 
were treated as ‘clinically extremely vulnerable’, they were unable to fully ‘shield’ due to 
mandatory life-sustaining attendance at HD (typically three 4-hourly sessions per week), 
and instances of in-unit transmission have been shown by sequencing viral isolates2. 
 
Vaccine responses are substantially attenuated in haemodialysis patients. For example, 
the subunit hepatitis B vaccine had to be re-formulated for HD patients with a higher 
antigenic dose3. There is uncertainty that either an mRNA or an adenoviral-vectored 
vaccine could provide clinical protection in the IC-HD population.  
 
The majority of IC-HD patients were vaccinated by their dialysis care team, as part of 
the Joint Committee on Vaccination and Immunisation (JCVI) priority group 43, resulting 
in rapid delivery of doses to this at-risk population (Figure 1A). Phase 3 studies of 
authorised vaccines in the UK either excluded IC-HD or did not report their ‘renal 
disease’ subgroups4–6. While multiple reports regarding anti-S antibodies (reviewed 
recently7) in IC-HD patients have been published, they do not widely report the levels of 
neutralising antibodies (nAbs) to the prevalent variants of concern (VOCs), which have 
emerged as the crucial serological correlate of protection8. 
 
To assess the induction of nAbs in IC-HD patients, after vaccination with BNT162b2 
(Pfizer-BioNTech) or AZD1222 (Oxford-AstraZeneca), we are curating a meta-cohort of 
HD patients from around the UK (appendix, p 2). We have used our previously reported 
high throughput live virus neutralisation assays9,10, against a strain with a spike identical 
to the virus first identified in Wuhan, China (wildtype), a strain with an Asp614Gly 
mutation isolated during the UK’s first wave, and three VOCs: alpha (B.1.1.7, first 
isolated in Kent, UK), beta (B.1.351, first isolated in South Africa) and delta (B.1.617.2, 
one of several variants described in India in early 2021 and now predominant). Here, we 
report the first interim analysis of this study, using sera drawn pre-vaccination, at a 
median of 28 days after dose 1 [IQR 26-35], and at a median of 33 days [IQR 26-48] 
after the second dose (appendix, p 2), in 178 IC-HD patients. Three centres had 
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available data for this analysis: Oxford, Leicester and Royal Free Hospital (appendix, p 
4). Whilst there were differences with the deployment of vaccines - two centres 
predominantly administered AZD1222, one centre predominantly BNT162b2 - there 
were no significant differences in age (median 63.2 vs 63.1 years), gender (34% vs 
37.3% female), ethnicity, the presence of diabetes or the immunosuppression state of 
AZD1222 and BNT162b2 recipients (appendix, p 3).  
 
We focused initially on seronaïve patients (n=115) - defined by pre-vaccination sera that 
lacked detectable anti-S IgG by ELISA, or nAbs against wildtype or D614G and who 
had never returned a positive PCR prior to commencing vaccination - and assessed 
nAb responses 33 days after two vaccine doses of either AZD1222 or BNT162b2 
(appendix, p 2,4). We found that BNT162b2 induced nAb titres (nAbTs) across all 5 
strains (median NAbT IC50=719, 344, 182, 135, 266 against wildtype, D614G, alpha, 
beta and delta respectively; appendix, p 2 & 4). For AZD1222 the response was 
markedly reduced compared to BNT162b2 (appendix, p 5), and may fall below the 
correlate of protection from severe disease against alpha (>4 fold reduction, falling 
below the limit of detection of IC50>40), beta (>3 fold reduction, falling below the limit of 
detection), or delta (>6 fold reduction, falling below the quantitative limit of detection) 
variants (appendix, p 2 & 5). Stratifying the nAbTs (appendix, p 2) better illustrates the 
differing distributions of responses with patients with low (<40), medium (40-256) and 
high (>256) titres after two doses of AZD1222 compared to BNT162b2 (P<0.001 by 
ANOVA for vaccine effect in ordered logistic regression; appendix, p 2, 5). The 
corresponding analysis for infection-experienced patients revealed smaller differences 
between AZD1222 and BNT162b2, with AZD1222 achieving median NAbT IC50>256 for 
all strains (appendix, p 8-9). 
  
Next, we sought to compare with the healthy individuals we have already reported from 
the LEGACY study. As a control group, we selected LEGACY participants who had 
never reported COVID symptoms (likely infection and sero-naive) and had received two 
doses of either vaccine (appendix, p 2, 6-7). We found that an mRNA vaccine 
performed similarly in IC-HD as in healthy volunteers (both infection naive), despite the 
age difference between the cohorts (appendix, p 7). As expected, we found an 
attenuated response in the IC-HD AZD1222 recipients (appendix, p 2, 6). 
 
Given the ability of BNT162b2 to induce nAbTs across all strains in IC-HD, we wanted 
to assess other vaccine response associations. The response to BNT162b2 exhibits 
age associated waning (age grouped as greater or less than 65; (appendix, p 9), this is 
not discernible in the AZD1222 response due to its low titres (appendix, p 9). Stratifying 
by gender or diabetes found no effect (appendix, p 10. As expected, 
immunosuppressed patients showed attenuated responses (appendix, p 10). 
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There are several limitations to our study, most importantly the potential for confounding 
factors to exist between HD centres. However, it is unlikely that the same confounder 
would be present between several different centres since they are physically split over 
more than one site (a hub – satellite model), and the hub and satellite have used 
BNT162b2 or AZD1222, but share medical, nursing staff, HD protocols and a single 
dialysis supplier. Whilst we have stringently tried to exclude prior antigenic exposure in 
our seronaive group (by anti-S ELISA, by nAbT to relevant strains, and PCR data where 
available), we cannot fully exclude the possibility that there were infections in early 
2020, before widespread PCR and whose patients either did not generate an antibody 
response, or their response had waned below the level of detection in our baseline 
sampling. 
 
We draw several conclusions from this interim report on a subset of the full UK cohort. 
Firstly, an mRNA vaccine induces nAb titres in IC-HD patients comparable to healthy 
controls. This represents an important initial step in improved vaccinations in IC-HD for 
other pathogens. We note that there is a mRNA influenza vaccine in phase 1/2 
development, and IC-HD are a cohort of patients that stand to benefit from a novel 
influenza vaccine. Secondly, two doses of either vaccine consolidates antibody 
immunity in infection-experienced individuals. A caveat to this conclusion is presence of 
survivor bias for individuals infected in the first wave. Thirdly, AZD1222 alone in 
seronaïve individuals induces sub-optimal nAbT against all VOCs, including the delta 
variant dominant in the UK and globally. Fourthly, the very high proportion of previously 
infected IC-HD patients may obfuscate calculations of vaccine efficacy if based on 
epidemiological parameters alone. Overall, our data highlight an urgent need for similar 
studies assessing vaccine responses in at-risk populations. 
 
Whilst delivery of any approved vaccine will likely mitigate morbidity and mortality, the 
optimal strategy for IC-HD patients yet to start a vaccination course remains to be 
determined. Our data suggest two doses of mRNA vaccine or a heterologous boosting 
strategy are likely to offer the broadest VOC nAb coverage. The UK’s JCVI has 
announced, in principle, booster doses for many vulnerable groups11. The precise start 
date for this programme, which vaccines are used, and the ordering of the groups is 
under review. Internationally, most countries with pre-existing IC-HD vaccination 
strategies (Israel, USA, Canada, France, Germany, Portugal), have used two doses of 
mRNA7 and there are two studies reporting a third dose response in solid organ 
transplant patients12,13. We suggest that IC-HD patients should be prioritised for a third 
dose, particularly AZD-1222 recipients that have not already survived infection.  
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Figure 1: Neutralising antibody responses after two doses of AZD1222 or BNT162b2 in 
seronaïve haemodialysis patients 
(A) Study design. Dates of vaccine administration and serum sampling times are shown in the top and 

bottom panels respectively. N=178 patients. 
(B) The proportion of patients defined as seronaïve at the time of first vaccination. Seronaïve was defined 

as (i) no detectable anti-S IgG by ELISA (143 patients of 178 had no anti-S IgG), no positive PCR 
results before first dose (140 patients) and no detectable neutralising antibodies to either wildtype 
SARS-CoV-2 or SARS-CoV-2 carrying the D614G spike mutation at baseline (115 patients). 

(C) Live virus microneutralisation titres against SARS-CoV-2: wildtype, the D614G spike mutant, and VOCs 
- alpha, beta and delta - 33 days after two doses in seronaïve haemodialysis patients comparing 
AZD1222 and BNT162b2 responses (AZD1222 n=56, BNT162b2 n=59). 

(D) Data as in (C) plotted with stratification of titres into three categories (see also Supplementary Table 5 
for ordinal logistic regression). P<0.001 is indicated by *** for the vaccine term. 

(E) and (F) Microneutralisation titres as in (C) and (D), comparing two doses in seronaïve haemodialysis 
patients (IC-HD) with two doses in never-symptomatic healthy individuals (LEGACY) for AZD1222 and 
BNT162b2. (Supplementary Tables 6-8). P<0.001 is indicated by *** for the cohort term from ANOVA of 
ordinal linear regression models. 

In (C) and (E), the medians are plotted as a black diamond. Note that the median is below the quantitative 
range (IC50<40) in some instances.  



	 3	

Supplementary tables 1-9 
Supplementary table 1: Demographics of the whole interim report cohort, grouped by 
vaccine 
 AZD1222 BNT162B2 P-VALUE 
 n = 94 n = 84  

AGE   0.946 
 63.2 (13.5) 63.1 (13.3)  

GENDER   0.685 
F 32 (34%) 32 (38.1%)  

M 62 (66%) 52 (61.9%)  

ETHNICITY   0.139 
 0 (0%) 0 (0%)  

ASIAN 37 (39.4%) 38 (45.2%)  

BLACK 20 (21.3%) 7 (8.3%)  

MIXED 0 (0%) 1 (1.2%)  

OTHER 4 (4.3%) 3 (3.6%)  

WHITE 33 (35.1%) 35 (41.7%)  

DIABETIC   0.921 
N 51 (54.3%) 44 (52.4%)  

Y 43 (45.7%) 40 (47.6%)  

IMMUNOSUPPRESSED   0.133 
N 78 (83%) 77 (91.7%)  

Y 16 (17%) 7 (8.3%)  

DIALYSIS_CENTRE_CODE   <.001 
A 19 (20.2%) 1 (1.2%)  

B 58 (61.7%) 15 (17.9%)  

C 17 (18.1%) 68 (81%) 
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Supplementary table 2: Demographics of the seronaïve cohort 
 AZD1222 BNT162B2 P-VALUE 
 n = 56 n = 59  
AGE   0.754 
 63.5 (13.7) 62.7 (12.6)  
GENDER   0.685 
F 22 (39.3%) 20 (33.9%)  
M 34 (60.7%) 39 (66.1%)  
ETHNICITY   0.142 
 0 (0%) 0 (0%)  
ASIAN 18 (32.1%) 26 (44.1%)  
BLACK 12 (21.4%) 4 (6.8%)  
MIXED 0 (0%) 1 (1.7%)  
OTHER 2 (3.6%) 1 (1.7%)  
WHITE 24 (42.9%) 27 (45.8%)  
DIABETIC   1 
N 31 (55.4%) 33 (55.9%)  
Y 25 (44.6%) 26 (44.1%)  
IMMUNOSUPPRESSED   0.357 
N 46 (82.1%) 53 (89.8%)  
Y 10 (17.9%) 6 (10.2%)  
DIALYSIS_CENTRE_CODE   <.001 
A 10 (17.9%) 0 (0%)  
B 32 (57.1%) 7 (11.9%)  
C 14 (25%) 52 (88.1%)  

For supplementary tables 1 and 2, P values are t tests for single level continuous variables 
(eg age) and ANOVAs for higher levels (eg ethnicity). The Chi2 tests for categorical data 
(eg gender). 

 

Supplementary table 3: Median NAbT fold changes between wildtype and variant SARS-
CoV-2 for each vaccine, related to Figure 1E (* demark medians below the quantitative 
[10*] or qualitative scales [5*]. Fold changes are calculated against 40, the lower limit of 
the quantification scale) 
VACCINE COMPARISON MEDIAN1 MEDIAN2 MEDIANFC LL UL LEVEL 
AZD1222 wt_vs_D61G 201 56 3.53 2.20 3.45 0.95 
AZD1222 wt_vs_alpha 201 5 5.03    
AZD1222 wt_vs_beta 201 5* 5.03    
AZD1222 wt_vs_delta 201 10* 5.03    
AZD1222 alpha_vs_delta 5* 10*     
AZD1222 beta_vs_delta 5* 10*     
BNT162B2 wt_vs_D61G 719 344 2.09 1.73 2.39 0.95 
BNT162B2 wt_vs_alpha 719 182 3.94 1.80 4.86 0.95 
BNT162B2 wt_vs_beta 719 135 5.29 4.11 6.13 0.95 
BNT162B2 wt_vs_delta 719 266 2.69 2.31 4.17 0.95 
BNT162B2 alpha_vs_delta 182 267 0.68 0.76 1.02 0.95 
BNT162B2 BETA_VS_DELTA 136 267 0.51 0.53 0.88 0.95 
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Supplementary table 4: Median NAbT fold changes between AZD1222 and BNT162b2 for 
each SARS-CoV-2 variant, related to Figure 1C (* demark medians below the quantitative 
[10*] or qualitative scales [5*]. Fold changes are calculated against 40, the lower limit of 
the quantification scale) 

STRAIN MEDIAN 
BNT162B2 

MEDIAN 
AZD1222 

MEDIAN 
FC 

LL UL LEVEL 

WILDTYPE 719 201 3.57 0.71 5.25 0.95 
D614G 344 57 6.04  9.30 0.95 
ALPHA 182 5* 4.55*    
BETA 136 5* 3.40*    
DELTA 267 10* 6.75*    

 
 
 
Supplementary table 5: Ordered logistic regression model of effect of strain and vaccine 
type on neutralising antibody titres 33 days after 2 doses in seronaïve IC-HD patients, 
relating to Figure 1D. Model: ic50_binned ~ strain * vaccine 
 
FACTOR COEF SE WALD Z PR(>|Z|) 
STRAIN (VS WILDTYPE)     
D614G -1.1438  0.3490 -3.28 0.0010 
ALPHA -1.721 0.3613 -4.76 <0.0001 
BETA -1.9063 0.3683 -5.18 <0.0001 
DELTA -1.5055 0.3635 -4.14 <0.0001 
VACCINE (VS AZD1222)     
BNT162B2 1.272 0.3765 3.38 0.0007 
INTERACTION (STRAIN * 
VACCINE) 

    

D614 * BNT162B2 0.3934 0.5199 0.76 0.4492 
ALPHA * BNT162B2 0.2704 0.5168 0.52 0.6009 
BETA * BNT162B2 0.1996 0.5185 0.39 0.7002 
DELTA * BNT162B2 0.5259 0.5246 1 0.3161 

 
 
ANOVA 
 
Wald Statistics  Response: ic50_binned 
FACTOR COEF SE WALD Z 
STRAIN (INCL. HIGHER ORDER FACTORS 58.33 8 <0.0001 
VACCINE (INCL. HIGHER ORDER 
FACTORS) 

84.74 5 <0.0001 

INTERACTION 1.16 4 0.8852 
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Supplementary table 6: Demographics comparison between IC-HD and LEGACY cohorts 

 IC-HD LEGACY P-VALUE 
 n = 115 n = 162  
AGE   <.001 
 63.1 (13.1) 40.5 (11.4)  
GENDER   <.001 
F 42 (36.5%) 102 (63%)  
M 73 (63.5%) 60 (37%)  

 
 
 
Supplementary table 7: Ordered logistic regression model of effect of strain and vaccine 
type on neutralising antibody titres after 2 doses of AZD1222 in seronaïve IC-HD patients 
or LEGACY participants, relating to Figure 1F.Model: ic50_binned ~ strain * cohort 
FACTOR COEF SE WALD Z PR(>|Z|) 
STRAIN (VS WILDTYPE)     
D614G -1.4783  0.3791 -3.28 0.0010 
ALPHA -2.3635 0.3934 -6.01 <0.0001 
BETA -1.9119 0.3914 -4.88 <0.0001 
DELTA -2.3635 0.3934 -6.01 <0.0001 
COHORT (VS IC-HD)     
LEGACY 1.223 0.3972 3.08 0.0021 
INTERACTION (STRAIN * COHORT)     
D614 * LEGACY -0.7809 0.5409 -1.44 0.1488 
ALPHA * LEGACY 0.4523 0.552 0.82 0.4125 
BETA * LEGACY -0.6477 0.5573 -1.16 0.2451 
DELTA * LEGACY -1.1936 0.5529 -2.16 0.0309 

 
 
ANOVA 
 
Wald Statistics  Response: ic50_binned 
Factor Coef SE Wald Z 
Strain (incl. Higher Order Factors 103.57 8 <.0001 
Cohort (incl. Higher Order Factors) 103.57 8 <.0001 
Interaction 11.46 4 0.0219 
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Supplementary table 8: Ordered logistic regression model of effect of strain and vaccine 
type on neutralising antibody titres after 2 doses of BNT162b2 in seronaïve IC-HD patients 
or LEGACY participants, relating to Figure 1F. Model: ic50_binned ~ strain * cohort 

 
FACTOR COEF SE WALD Z PR(>|Z|) 
STRAIN (VS WILDTYPE)     
D614G -0.8328 0.3973 -2.1 0.0361 
ALPHA -1.7238 0.3961 -4.35 <0.0001 
BETA -2.0854 0.3969 -5.25 <0.0001 
DELTA -1.1083 0.3943 -2.81 0.0049 
COHORT (VS IC-HD)     
LEGACY 0.9569 0.394 2.43 0.0151 
INTERACTION (STRAIN * 
COHORT) 

    

D614 * LEGACY -0.3408 0.5174 -0.66 0.5101 
ALPHA * LEGACY 0.1285 0.5115 0.25 0.8016 
BETA * LEGACY -0.3135 0.5094 -0.62 0.5383 
DELTA * LEGACY -1.6829 0.5093 -3.3 0.001 

 
 
ANOVA 
 
Wald Statistics  Response: ic50_binned 
FACTOR COEF SE WALD Z 

STRAIN (INCL. HIGHER ORDER FACTORS 126.67 8 <.0001 

COHORT (INCL. HIGHER ORDER FACTORS) 28.97 5 <.0001 

INTERACTION 19.13 4 7.00E-04 

Whilst there is a significant cohort effect, there is also (unlike for AZD1222) an opposing 
interaction effect is seen with delta, such that the two cohorts have equivalent delta 
responses.  
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Supplementary table 9: Ordered logistic regression model of effect of strain and vaccine 
type on neutralising antibody titres after 2 doses of either vaccine in IC-HD patients, 
relating to Supplementary Figure 1F. Model: ic50_binned ~ strain * vaccine 
FACTOR COEF SE WALD Z PR(>|Z|) 
STRAIN (VS WILDTYPE)     
D614G -1.8444 0.2731 -6.75 <0.0001 
ALPHA -1.9491 0.2787 -6.99 <0.0001 
BETA -2.6846 0.2844 -9.44 <0.0001 
DELTA -2.4913 0.282 -8.83 <0.0001 
VACCINE (VS AZD1222)     
BNT162B2 1.4435 0.2727 5.29 <0.0001 
INTERACTION (STRAIN * 
VACCINE) 

    

D614 * BNT162B2 0.865 0.3685 2.35 0.0189 
ALPHA * BNT162B2 0.4226 0.3679 1.15 0.2507 
BETA * BNT162B2 0.518 0.3688 1.4 0.1602 
DELTA * BNT162B2 0.3446 0.3666 0.94 0.3473 

 
 
ANOVA 
 
Wald Statistics  Response: ic50_binned 
 
FACTOR COEF SE WALD Z 
STRAIN (INCL. HIGHER ORDER FACTORS) 211.2 8 <.0001 
VACCINE (INCL. HIGHER ORDER FACTORS) 242.58 5 <.0001 
INTERACTION 5.84 4 0.2116 
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Supplementary figure 1: Live-virus microneutralisation antibody 
titres in infection-experienced IC-HD patients 

 
(A) Live virus microneutralisation titres against SARS-CoV-2: wildtype, the D614G spike 

mutant, and VOCs - alpha, beta and delta - 33 days after two doses in seronaïve 
haemodialysis patients comparing AZD1222 and BNT162b2 responses (63 patients in 
total (AZD1222 n=38; BNT162b2 n=25). 

(B) Data as in (A) plotted with strafication of titres, P < 0.001 from denoted by *** (ANOVA 
of regression model; see also Supplementary Table 7 for ordinal logistic regression). 
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Supplementary figure 2: Comparing nAbT responses by age group, 
gender, diabetes and immunosuppression in seronaïve IC-HD 
patients 

 
NAbTs are compared 33 days after two doses in seronaïve haemodialysis patients. The 
data is grouped by age (18-65 or >65 years old, A & B), gender (C & D), the presence of 
diabetes (E & F), or the presence of immunosuppression (G & H) and each vaccine is 
shown separately. P values from ANOVA for the effect of age (P=0.76, P<0.0001), gender 
(P=0.72, P=0.17), diabetes (P=0.99, P=0.29), or immunosuppression (P<.0001, P=0.02), 
performed on ordinal linear regression models are provided (AZD1222, BNT162b2). 
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Supplementary Methods 
  
  
Clinical cohorts 
  
Three haemodialysis centres are included in this interim report, and one healthy control 
cohort. In centre haemodialysis patients were included if they were able to consent into 
their local study. Home haemodialysis patients and peritoneal dialysis patients were not 
included. Anonymised (coded only against a research identifier) sera and phenotype data 
were provided for central analysis: age, gender, ethnicity, diabetes, immunosuppression, 
primary renal disease, alongside the dates of vaccine, vaccine manufacturer and the dates 
of serum sampling. Ethnicity was recorded as Asian, Black, Mixed, White or Other (in line 
with UK government advice at the time of commencing the study 
https://webarchive.nationalarchives.gov.uk/20210224165417/https://design-
system.service.gov.uk/patterns/ethnic-group/ ). Diabetes was recorded as Y/N, and we 
defined immunosuppression as Y/N as in Billany et al.1. 
  
Leicester cohort (IC-HD) 
Patient samples were collected as part of the study “PHENOTYPING 
SEROCONVERSION FOLLOWING VACCINATION AGAINST COVID-19 IN PATIENTS 
ON HAEMODIALYSIS”, with REC approval from (West Midlands - Solihull Research 
Ethics Committee, REC: 21/WM/0031) sponsored by the University of Leicester and 
included consent for samples to transfer to the Francis Crick Institute. This work was 
conducted locally with support from the NIHR Leicester Biomedical Research Centre and 
funding from the Leicester Hospitals Charity, University Hospitals of Leicester NHS Trust. 
Data from these patients have been published previously 1. 
  
Royal Free Hospital cohort (IC-HD) 
Patients were consented to join the UCL-RFH biobank approved study "ANALYSIS OF 
ANTI-SARS COV2 IMMUNE RESPONSE". The UCL-RFH Biobank has been given a 
favourable ethics opinion for conduct in the NHS by the Wales research ethics Committee 
4 (REC: 16/WA/0289). 
  
Oxford cohort (IC-HD) 
Patients were consented to join the Oxford Radcliffe Biobank approved study 
“Immunological responses to COVID-19 vaccines in transplant and haemodialysis 
patients” (ref: ORB 21/A014). The Oxford Radcliffe Biobank has a favourable ethics 
opinion from the South Central Oxford Committee C (REC: 19/SC/0173). This work was 
conducted locally with funding support by the Oxford Transplant Foundation and the 
Oxfordshire Health Services Research Committee, part of Oxford Hospitals Charity. 
 
LEGACY cohort (Healthy volunteers) 
The LEGACY cohort (NCT04750356) has been described recently2,3. It comprises of 
healthcare workers from University College London Hospital and scientists from the 
Francis Crick Institute, London. The LEGACY study was approved by London Camden 
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and Kings Cross Health Research Authority (HRA) Research and Ethics committee (REC: 
20/HRA/4717) and sponsored by University College London. The full dataset was kindly 
made available by the LEGACY team for analysis in this report. Please see Wall et al. for 
access details2,3. 
 
Serological Analysis and live-virus neutralisation 
All serum samples were collected during routine IC-HD sessions from the HD circuit, 
without additional venepuncture. Sera were separated from blood in local laboratories and 
stored frozen. Sera were shipped to the Crick on dry ice, and barcoded whilst frozen. All 
serological analyses, including in-house anti-Spike IgG ELISA and live-virus 
microneutralisation were performed as described previously4. 
  

Data analysis, statistics 

Data analysis was performed in R/Rstudio, using Rmarkdown to knit to pdf. Anonymised 
data wrangling used a mix of base R and tidyverse. As previously2,3, IC50 values above the 
quantitative limit of detection of the assay (>2560) were re-coded as 5120; IC50 values 
below the quantitative limit of the assay (< 40) but within the qualitative range were re-
coded as 10 and data below the qualitative range (i.e. no response observed) were re-
coded as 5. IC50 values are shown on a log2 scale throughout. NAbT are compared 
between vaccines, age groups, gender, diabetes (as a categorical variable) or 
immunosuppression using unpaired Mann-Whitney tests. 95% confidence intervals of the 
fold changes of median NAbT were estimated using bootstrap and boot.ci, with 
type=”basic” argument, which does not assume normality. Where the median is below the 
quantitative range of the assay and estimated effect is shown using the lower bound of the 
quantitative range (IC50=40), and confidence intervals are not reported. Stratified IC50 
NAbT were compared using ordinal logistic regression using the model: IC50 binned ~ 
strain * vaccine and the rms package. Correlation between log2 NAbT and age was 
performed using Spearman’s correlation coefficient. Plots were generated using ggplot2 
and ggpubr packages. 

Data Sharing 

All R code to reproduce all figures and analyses is freely available at XXX. The public 
dataset omits dialysis centre, age and dates, to ensure an individual participant cannot be 
identified. The LEGACY data is already available as outlined in their original 
publications2,3. 

Ethics 

This work is covered by the following REC approvals: REC: 21/WM/0031, REC: 
16/WA/0289, REC: 19/SC/0173, REC: 20/HRA/4717, as described in the cohort 
descriptions above. Within REC: 21/WM/0031, central processing in the Crick was 
included. 
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