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Abstract
Radar sensing offers a method of achieving 24‐h all‐weather drone surveillance, but in
order to be maximally effective, systems need to be able to discriminate between birds
and drones. This work examines drone‐bird classification performance as a function of
signal to noise ratio (SNR). Classification at low SNR values is necessary in order to
classify drones with a small radar cross‐section (RCS), as well as to facilitate reliable
classification at longer ranges. To investigate the relationship between classification
performance and SNR, Gaussian noise is added to an experimentally obtained dataset of
radar spectrograms. Classification is performed by convolutional neural networks
(CNNs). It is shown that for the data available classification accuracy drops with falling
SNR, as might be expected for any given CNN. The degree to which performance de-
grades with reduced SNR is presented. It is further shown that simpler network archi-
tectures are more robust to noise. Finally, it is demonstrated that data augmentation can
be used as a means of enhancing classification accuracy at lower SNR values. Bayesian
optimisation is used to find the optimal augmentation hyperparameters and overall,
classification accuracies of 92% are achieved at low SNR.

1 | INTRODUCTION

Manned and unmanned airspace is undergoing a trans-
formation. Recent years have seen a proliferation in the
number of drones, and by 2030 air traffic is estimated to
quadruple with a doubling of the total number of manned
aircraft with matching numbers of unmanned air vehicles. This
is a fundamental shift in the use of airspace and in particular,
low‐level airspace.

The increasing number of hobbyist and commercial drones
is of major public interest. There are numerous benefits to the
use of drones, including in agriculture, photography, and
emergency services to support search and rescue missions, as
well as for leisure purposes [1]. In the United Kingdom alone,
drones are estimated to lead to a £42 billion uplift in GDP by
2030 across many industries including media, construction, and
transport [2].

The use of drones in an already congested airspace poses
risks to manned aircraft, with an increasing number of drone‐
aircraft near misses—in December 2018, Gatwick Airport

(UK) was closed for a number of days following reports of a
drone sighting [3]. In addition, drones can be used for nefar-
ious purposes such as illegal surveillance, contraband delivery,
and terrorism. It is therefore imperative to monitor the use of
drones, in order to ensure the safety of both civilians and
corporations. Radar is the only method capable of offering
24‐h, all‐weather non‐cooperative surveillance at long dis-
tances and is thus a promising solution.

Drones are a challenge to detect due to their relatively small
radar cross‐section (RCS), slow velocities, and low flight alti-
tude. Staring radar is able to provide the high sensitivity that is
required to slow moving targets, and also has the advantage of
providing data continuously, where the update rate is effectively
set by the dwell time and limited by the processing overhead.
As a consequence of the high sensitivity, other slow‐moving
targets with a low RCS are also detected. There is a similarity
between the RCS of drones and birds [4–6], meaning birds
often present as ‘confuser targets’ from a drone surveillance
perspective. This can lead to an unacceptably high rate of false
reports, reducing the effectiveness of the surveillance method.
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There is an inherent need for a high performing classification
algorithm, such that only detections that truly belong to drones
are reported. In this study, we explore the limitations of such a
drone discrimination algorithm by investigating performance
on targets as a function of signal to noise ratio (SNR).

In recent years, there have been a number of research
papers published on drone classification. In [7], kinematic
differences in drone and bird trajectories (including velocity,
acceleration, height, and jolt) were used to filter out bird
returns and improve the probability of drone detection. In [8],
statistical trajectory features were used to classify drone and
bird tracks with a high degree of accuracy, with the dominant
classification features being velocity based.

The rotation of drone propellers and the action of flapping
of bird's wings modulates the radar signal, producing different
and characteristic micro‐Doppler signatures [9, 10]. Returns
from the propellers of drones are a useful feature for
classification—from these returns, one can, in principle, esti-
mate the number of blades per rotor, the length of the blades,
and the rate of rotation [11, 12]. In [13], a multi‐layer per-
ceptron was used to classify drone models by estimating the
number of propellers, blades, and blade length and rotation
frequency. In [14], the eigenvalues and eigenvectors of the
micro‐Doppler signature were used to classify 10 drone models
and an artificial bird.

In [14], the integration time is significantly longer than the
period of rotation of a drone propeller, therefore, Doppler
signatures consist of spectral lines rather than blade flashes
[15]. The spectral lines are shaped by the radar parameters
(frequency, dwell time, etc.) and by the target parameters (rotor
length, rotational frequency, and RCS)—this is explored in
[16]. Measuring the fundamental frequency of the spectral lines
gives an estimate of the rotation rate [17], whilst spectral lines
have been used in [18, 19] to distinguish between loaded and
unloaded drones. However, for bird and drone discrimination
only the drones exhibit strong spectral lines, facilitating clas-
sification [20]. In some reported publications, both kinematic
and micro‐Doppler features have been used together to
enhance the classification performance [21, 22]. In [23], the
presence of symmetrical components about the body of the
target was shown to be a key classification feature for dis-
tinguishing drones from birds.

A number of the techniques discussed here utilise finger-
print features to achieve high classification performance,
relying on many components of the micro‐Doppler signature
—some of which have very low signal levels. As the signal
power of the spectral lines reduces (whether due to a low
propeller RCS or increased range, or due to self‐shadowing by
the platform fuselage), the classification problem will become
more challenging. It is therefore expected that classification
performance will deteriorate as the drone micro‐Doppler
returns become masked by the noise floor. This will limit the
maximum range at which drones can reliably be distinguished
from birds, consequently limiting the amount of time to
respond to threats. Note that the maximum ranges for detec-
tion and for classification are likely to be different, therefore,
will need to be a factor considered in radar design.

Convolutional neural networks (CNNs) have been
demonstrated to show much promise with their ability to
derive combinations of features that are not necessarily intui-
tive and might otherwise evade more direct methods [24].
CNNs have been used both to distinguish between drones and
birds [24, 25] and drones of different models [26]. In [24–26]
transfer learning was utilised in order to classify spectrograms
taking advantage of the low‐level features learnt from optical
images. In [25, 27, 33], it is demonstrated that the use of
transfer learning speeds up the learning process and leads to
improved classification performance when the amount of
training data is limited.

The potential performance in using CNNs for drone
classification has been demonstrated in previous work. At high
SNR and short range, the performance is impressive, but a
natural extension is to consider performance degradation with
decreasing SNR [28, 29]. In order to ensure that the radar
operator has sufficient time to identify threats and respond
appropriately, it is vital to maximise the distance from the radar
at which inbound drones can be classified reliably. For
example, consider a drone moving at 20 m/s radially towards
the radar operator. Classifying the drone at 1 km gives a radar
operator less than 50 s to respond as appropriate.

The goal of this study is to explore the performance of a
CNN‐based classifier as a function of SNR, and to explore
avenues of boosting performance where necessary. Gaussian
noise is added to the data to decrease the SNR, and the
resulting impact upon classification performance is evaluated.
Following this, methods augmenting the training data are
considered, and shown to enhance classifier robustness,
especially under lower SNR conditions.

The remainder of the study is organised as follows: Sec-
tion 2 gives an overview of the staring radar used for data
collection in this work. Section 2.2 outlines the processing
steps by which spectrograms are produced. CNNs are briefly
described in Section 3. Section 4 investigates the relationship
between SNR and the accuracy of a CNN trained to distin-
guish between bird and drone radar spectrograms. Robustness
is then investigated as a function of network architecture. In
Section 5, the results of augmenting the training data by adding
Gaussian noise is presented. Bayesian optimisation is used to
find the optimal hyperparameters for data augmentation in
training, in order to extend the classification range. Finally,
conclusions are given in Section 6.

2 | DATA COLLECTION OVERVIEW

2.1 | Staring radar

Data were gathered using an Aveillant Gamekeeper 16U drone
discrimination radar (Figure 1) [30]. The radar stares in all look
directions simultaneously, therefore, all targets within the
search volume are continuously monitored (Figure 2). The
staring aspect allows long integration time, resulting in high
Doppler resolution. The transmitter uses a broad beam
covering the whole of the surveillance volume and transmits a
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pulsed L‐band waveform. The waveform is digitised on receive
by each receiver element arranged in a 4 � 16 array in azimuth
and elevation, respectively. For each pulse, samples from all
receiver channels are processed to form multiple receive
beams.

In order to obtain the Doppler spectrogram for a given
target, the three‐dimensional (3D) range and angle resolution

cell containing the target is selected and concatenated to form
a time series. For the purpose of the spectrum data extraction,
target location information is taken from the tracker output of
the Gamekeeper 16U system. As detailed in [31], ground truth
data is used to label the output tracks.

For this work, a Hamming window is applied to the
time series data before being coherently processed in a fast
Fourier transform with a window length of 2048, to obtain
N Doppler spectra corresponding to time steps of ∼0.25 s.
Forty of these spectra are then combined to form a single
spectrogram.

2.2 | Spectrogram data

The long‐time duration of the spectrogram captures the time
evolution of the Doppler returns. The overall dataset consists
of 966 spectrograms, equally balanced between birds (of
various species) and DJI Inspire 1 drones, where the drones
carried out different manoeuvres corresponding to pre‐
determined scenarios. 60% of the data was used for training
and 30% was used for testing, whilst the remaining 10% was
used for validation during training. Table 1 contains the
number of spectrograms in the training, test and validation
subsets. The main radar and signal processing parameters are
given in Table 2.

Figures 3 and 4 show example spectrograms for a DJI
Inspire 1 drone and a bird (species unknown), respectively. The
drone body is evident as the time series of high amplitude

F I GURE 1 Aveillant Gamekeeper 16U L‐Band multi‐beam staring
radar

F I GURE 2 A diagram showing the transmit (red) and receive (blue)
beams of a staring radar

TABLE 2 The operating parameters of the Aveillant Gamekeeper
16U radar used for data collection, and the processing parameters for
spectrogram generation

Parameter Value

Frequency L band

Bandwidth 2 MHz

Transmit power 2 kW

Receiver channels 4 � 16

Azimuth coverage 90°

Elevation coverage 30°

Pulse repetition frequency ∼7.5 kHz

Coherent processing interval ∼0.25 s

Doppler resolution ∼4 Hz

Spectrogram length ∼11 s

TABLE 1 The number of spectrograms used for training, validation
and testing

Training data Validation data Test data

Number of spectrograms 580 97 289

Time (s) 6335 1059 3157

Note: The spectrograms are equally balanced between the two classes.
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echoes close to zero Doppler frequency in Figure 3. Micro‐
Doppler returns are clearly visible on either side of the
drone body return. These modulations are due to the rapidly
rotating propellers. The SNR of the body was approximately
45 dB. On average, the maximum propeller returns sit 15 dB
below the return from the body.

In Figure 4 the bird echo is the strongest observable re-
turn. The time series shows a similar form for the body return
as observed for the drone and the absence of any sidebands is
obvious. The Doppler frequency oscillates from positive to
negative as the bird flies in an approximately circular trajectory.
The SNR of this particular bird is approximately 35 dB.

These example spectrograms are typical of those generally
observed and the differences between the two suggest that
high classification performance ought to be possible [24]. The
most obvious difference between Figures 3 and 4 is the pres-
ence of spectral lines in the drone spectra.

It is this difference that provides an obvious basis for
discrimination between birds and drones and we may expect
high classification results when these drone sidebands are
visible. However, as SNR reduces (whether due to increasing
distance from the radar or reduced drone RCS), the Doppler
sidebands will also have reduced (sideband) SNR and will,
ultimately, become undetectable, changing the nature of the
classification problem and making it much more challenging.
This poses the question as to what classification accuracy can
be maintained as the SNR decreases.

In order to investigate the classifier's robustness to noise,
the SNR has been reduced artificially by adding Gaussian
distributed noise to all available spectrograms. The SNR of the
original dataset has been decreased in increments of 3 dB, up
to a maximum reduction of 24 dB, resulting in nine datasets of
varying SNR. Note that adding noise to the data is not
equivalent to increasing the target range, as some effects (such
as the degradation in beam resolution that would increase the
likelihood of the spectrogram containing multiple targets, and
increase the amount of clutter present) have not been
considered.

Figure 5a–c show a series of example drone spectrograms
where white Gaussian noise was added to reduce the SNR by 12
and 24 dB compared to the original, corresponding to a doubling
and quadrupling of range, respectively. In addition, a high pass
filter was applied to remove the stationary clutter from the
spectrograms, to prevent overfitting of the classifier during
training. Note that, as expected, decreasing the SNR reduces the
visibility of the drone propeller returns. It is, therefore, expected
that classification performance will also degrade with reducing
SNR or by consequence with increasing range.

3 | CONVOLUTIONAL NEURAL
NETWORKS

3.1 | Feature extraction

CNNs map image inputs on to a set of output variables. In the
first convolutional layer, learnt kernels are convolved with the
input; the sliding window is moved across the image as shown
in Figure 6, taking the dot product of the filter and the sampled
image to build up a 2D activation map. Each filter within a
layer is applied to the image, each producing its own activation
maps. The activation map for a particular filter is an indicator
of whether the feature learnt by the filter is present in the input
image.

In subsequent convolutional layers, filters are reapplied to
the output, mapping lower order features such as edges or a
particular colour (echo strength) onto increasingly complex non‐
linear features in a hierarchical fashion. CNNs are often used for
image classification as spatial information is preserved, the
networks are invariant to small variations in shape, and they are
capable of learning abstract features directly from the data.

The filters are learnt by updating the network weights and
biases to minimise the number of training samples that are
misclassified. Errors are backpropagated through the network,
and the weights in each layer are adjusted accordingly. This
process is then iterated over until the network error converges.

F I GURE 3 Example spectrogram showing the time series of Doppler
profiles for a DJI Inspire 1 drone

F I GURE 4 Example spectrogram showing the times series of Doppler
profiles for a bird
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3.2 | Network architecture

AlexNet [32], a classifier ‘pre‐trained’ on 1.2 million
ImageNet images, across 1000 categories, was modified to
output a spectrogram label. The benefit of transfer learning
is that rather than starting from scratch with initial random
weights, the network can already pick out low level features

such as colour and edges, which are also suitable for the
classification of radar spectrograms. Transfer learning using
RGB images has been shown to speed up the learning
process and lead to improved spectrogram classification
performance [33].

The input to AlexNet is a 256 � 256 colour image. The
network, as illustrated in Figure 7, consists of five convolu-
tional layers and three fully connected layers. The weights in
these layers are trained using stochastic gradient descent with
momentum, to minimise the loss function on the training data.
The overlapping max pooling layers down sample the feature
maps and promote local translation invariance. A dropout rate
of 0.5 was used, whereby nodes were randomly dropped during
training. As well as this, augmentation of the training data
(mirroring in X and Y dimensions) was performed to prevent
overfitting of the model.

Although CNNs are a ‘black box’ algorithm, feeding an
image to the network and viewing the corresponding activa-
tions can indicate the types of features that the network is
extracting. Examining the areas of high activation in the out-
puts from each channel within a particular layer and comparing
these with the original image may allow one to deduce which
features the network is learning. Identifying these features can
give a deeper understanding of the network, and potentially
allow exploitation of this knowledge to enhance classifier
performance.

3.3 | Hyperparameter optimisation

Model performance is not only a function of architecture but
also a choice of hyperparameters: particularly learn rate, mini‐
batch size, and number of epochs over which the classifier is
trained. Hyperparameter optimisation is used to tune the
values of the hyperparameters in order to achieve the highest
possible classification performance.

Due to the ‘black box’ nature of CNNs, the objective
function that is to be maximised is unknown. Therefore, the
impact of hyperparameters on classification performance must
be approximated rather than calculated explicitly. ‘Brute force’
hyperparameter optimisation methods such as grid search and
random search can be time consuming and computationally
expensive, particularly when many hyperparameters are to be
considered.

In [34], Bayesian optimisation based on Gaussian processes
is used to tune several parameters of a CNN trained on the
CIFAR‐10 dataset―a set of 60,000 images across 10 classes
commonly used for training and testing machine learning al-
gorithms. The parameters tuned include the number of training
epochs, learning rate, and pooling parameters. It was demon-
strated that the Bayesian optimisation approach tuned the
parameters faster than other approaches, and the resulting
accuracy was demonstrated to beat the then state of the art
performance. In [35], a Bayesian optimisation algorithm is
outlined, and used to optimise learning rate, decay rate, and
mini batch size of CNNs trained on the MNIST and CIFAR‐
10 databases.

F I GURE 5 An example drone spectrogram where the signal to noise
ratio (SNR) has been artificially reduced (a) original, (b) SNR reduced by
12 dB, and (c) SNR reduced by 24 dB
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The classifier is trained with a set of initial parameters, and
the objective function is calculated. The acquisition function is
used to determine the next set of hyperparameters to use for
training, based on the estimated objective function. Model
performance can be treated as a sample from a Gaussian
process, and as more observations are made, the posterior
distribution is updated. A common choice of acquisition
function is the expected improvement [36], as it strikes a
compromise between focussing on regions where the objective
function is estimated to be at a maximum, and investigating
unexplored regions of high uncertainty.

In this study, the fractional split of the training data across
a range of SNR bins is expressed as a set of hyperparameters.
Bayesian optimisation is used to find the optimal values of
these hyperparameters, thus suggesting the optimal amount of
noise for data augmentation (for a particular dataset) in order
to train a robust classifier.

4 | INVESTIGATION OF CLASSIFIER
ROBUSTNESS

4.1 | Testing a classifier on low SNR data

The CNN was trained on a subset of the unmodified (high
SNR) data, and performance was evaluated on the unseen
subsets of the spectrograms for varying levels of added noise.
Figure 8 shows that, as expected, classification accuracy falls
as noise is increased. For example, reducing the test data
SNR by 12 dB (corresponding to a doubling of range) results
in a reduction in classification accuracy from 99.0% to
95.5%, whilst reducing the SNR by 24 dB leads to a

classification accuracy of 81.3%. Degrading the SNR beyond
this leads to almost half of the drones being misclassified. In
this way it is seen that the classification accuracy ultimately
degrades as a function of decreasing SNR. Consequently,
there comes a point where the SNR is too low, preventing
the classifier from being used to reliably discriminate drones
from birds.

Note the difference in accuracy between the two classes—
degrading the SNR of the test data has more of an impact on
the classification of drones than of birds. This indicates that
the poor performance at low SNR is partly due to the classifier
overfitting on the training data, relying on the presence of the
modulations from the drone propellers. This can be seen
clearly by viewing the activations from the first convolutional
layer (Figure 9a–e). The filters that are most strongly activated

F I GURE 6 An example convolution between
the input image (white) and a single filter (green). A
sliding window (blue) passes over the image: the dot
product of the sampled image and the filter produces
a single element in the feature map (yellow)

F I GURE 7 AlexNet architecture

F I GURE 8 Performance of a classifier trained on data of a high signal
to noise ratio (SNR), as the SNR of the test data is decreased in increments
of 3 dB. Shown is the percentage of birds, drones and total number of
targets correctly classified (blue, orange and grey, respectively)
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by the input images are those selecting spectral lines, sug-
gesting that the presence of propeller returns is one of the key
features used by the classifier to achieve high classification

accuracies. As noise is added to the test image, the channel
becomes less activated. This aligns well with what might be
expected from a visual inspection of the spectrograms such as
those shown in Figure 5.

4.2 | Robustness as a function of network
architecture

A robust classifier is one whose performance remains high
when testing on data that differs from the data seen during
training. Here, the classifier's robustness to noise is under
investigation. The performance of different CNN architectures
is compared in order to determine whether there is a prefer-
ential network that is more suitable for classification in the
radar domain, particularly when test data SNR is low.

Choice of CNN architecture will have different trade‐offs
between performance, ease of training and computational
cost. Recently, seven models were evaluated and compared in
the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) [37]. Broadly, the networks that have a deeper
structure such as Inception‐v4 and VGG‐16 and 19 had better
classification performance at the expense of a higher compu-
tational load. In [37], optical data was used to examine drone
classification performance. It was reported that shallower
networks such as AlexNet or GoogLeNet performed better
than their more complex counterparts when the number of
classification classes is small.

The CNNs compared are AlexNet, GoogLeNet, Squee-
zeNet, Inception‐v3 and ResNet (ResNet‐18 and 50). These
networks are in common usage, and were considered to be
representative given the various options available.

Figure 10 shows a comparison of the classification accu-
racy of the six CNNs. All of the CNNs perform well on test
data where the SNR is comparable to that of the training data,
that is, 44 dB. This performance is more or less maintained
up to an SNR of 32 dB and hence a doubling in range. As
further noise is added, classification accuracy becomes a
function of architecture. Figure 10 shows that AlexNet vastly

F I GURE 9 Maximum activations in the first convolutional layer when
testing a CNN on a drone spectrogram with varying SNR. White indicates
areas of high activation, whilst black indicates no activation (a) 46 dB SNR,
(b) 40 dB SNR, (c) 34 dB SNR, (d) 26 dB SNR and (e) 20 dB SNR. CNN,
convolutional neural network; SNR, signal to noise ratio

F I GURE 1 0 Classification accuracy as a function of network
architecture
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outperforms the other networks, maintaining an accuracy of
80% despite degrading the SNR of the test data by 24 dB. For
this reason, the AlexNet architecture was used for the
remainder of this work. The two deepest networks—Resnet50
and Inception‐v3—perform very poorly, achieving an accu-
racy of around 50%, which is no better than guessing. The
results indicate that the deeper networks are more prone to
overfitting on this dataset rather than learning robust features
that are characteristic of the targets. Perhaps the depth of the
network leads to an unnecessary level of abstraction for the
size of dataset and complexity of the problem, preventing
generalisation to noisier spectrograms. Of course, the results
are limited by the available dataset and it could be that the
performance of the shallower networks degrade when a wider
range of drone models are considered.

Table 3 shows a summary of the results for each CNN in
terms of the number of layers in the network, the number
of filters, and the time required for learning. Overall, choice of
network will be a judgement made against the requirements of
an individual application, but the results indicate that AlexNet
is a good choice of classifier for low SNR data, balancing high
performance with the lowest training and test times. However,
this is in direct contradiction with the results of ILSVRC, but
supports the findings of [37] that shallower networks can
outperform deeper networks when trained on a small number
of classes.

5 | DATA AUGMENTATION FOR LOW
SNR CLASSIFICATION

5.1 | Training and testing on data of a
similar SNR

In order to investigate whether reliable classification accuracy
is possible as the SNR is reduced, a classifier was trained on
each of the 10 training datasets. Each subset of test data was
then tested on the model that was trained exclusively on data of
the same SNR. As shown in Figure 11, as the SNR of the
training data was decreased, the fall‐off in test accuracy was less
severe. The accuracy only drops by 3.4%, after reducing the

SNR by 24 dB, where spectrograms are similar to those shown
in Figure 9e and do not clearly show sideband returns, whereas
previously it had dropped by 19%. This suggests that higher
classification accuracies can be achieved at longer ranges,
provided that data of a similar SNR is represented in the
training data. In other words, the training data is now more
representative of both the higher and lower SNR conditions
and hence the classification performance is boosted and the
range of potential applications is extended.

Classifying spectrograms using CNNs trained on data at
similar SNR levels therefore appears to result in lower false
alarm rates at lower SNR (that can equate to data at longer
ranges) compared to using an algorithm trained solely on high
SNR data. In our example, comparing Figures 8 and 11, a
target at nearly four times the distance (24 dB less SNR) can be
classified with a ∼15% better accuracy. This is an important
result in terms of strategies for collecting training data, for best
practices to follow when training a classifier, and for con-
straints on the performance achieved by the CNN.

The result also indicates that performance accuracy could
be optimised by having a series of classifiers, all trained on a
narrow range of SNRs. The SNR of a target would then
be measured, and the spectrogram would be fed to the cor-
responding classifier. However, this may be an unnecessarily
complicated approach. Simply training on lower SNR data
could result in the extraction of more robust classification
features that allow classification at both high and low SNR.

To investigate this, classifiers were trained on each of the
training subsets, in 6 dB increments, and each model was tested
on every subset of test data. As shown in Figure 12, adding
some noise to the training data facilitates improved classifica-
tion of noisier test spectrograms, and in some cases, high ac-
curacy on the high SNR data is still maintained. This indicates
that a single classifier may be robust across a span of ranges,
provided that it has been exposed to a sufficient amount of
noise in the training data. Whilst performance may not be as
good as in the ideal case shown in Figure 11, it may be deemed
acceptable for some applications, and is an improvement over
the classifier trained exclusively on high SNR spectrograms
(Figure 8). In the case considered here, the highest performing
classifier is the one trained on data with an SNR 12 dB lower

TABLE 3 Comparison of the training and test times of six different
CNN architectures

Network
Number
of layers

Number of
learnable
parameters [M]

Training
time [s]

AlexNet 8 61 2029

Squeezenet 18 1.24 1668

Resnet‐18 18 25.6 3821

GoogLeNet 22 7 4136

Inception‐v3 48 23.9 16,808

Resnet‐50 50 44.6 10,842

Abbreviation: CNN, convolutional neural network.
F I GURE 1 1 Classification performance when training and testing on
data of a similar SNR. SNR, signal to noise ratio
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than the original SNR. This experiment indicates that it is
possible to achieve higher performance without training on
data of a similar SNR. There is clearly a limit to the amount of
noise to add to the training data, as evidenced by the result of
training a classifier on the lowest SNR training dataset,
whereby performance on the high SNR test dataset is poor,
since the training and test datasets are very different from each
other. However, performance on the low SNR dataset is
significantly higher than that of the other classifiers considered
in Figure 12, suggesting that adding small amounts of noise to
the training data may lead to an improvement in classifier
robustness. The next section will explore this in more detail, by
training a classifier on multiple SNR bins.

5.2 | Data augmentation for a robust
classifier

A method of improving classifier robustness to noise is to train
a single classifier on data with a range of SNRs. This is similar
to a common method of data augmentation often used in
machine learning, whereby noise is added to some of the
training samples to reduce overfitting. This method introduces
additional hyperparameters for training, namely, which values
of SNR to train on, and how to split this percentage‐wise.

The 10 training subsets were equally sampled and used to
train a CNN. Note that each image was only represented in the
training data once, at a random noise level. The network was
then tested on each of the training subsets. As shown in
Figure 13, this method still resulted in a sharp falloff in accuracy
as the SNR of the test images was reduced, although the
percentage of drones correctly classified remained high
throughout. Augmenting the data using this method produces a
classifier that is slightly more robust than the original, although
performance on high SNR data has been impacted somewhat.

Better performance could be achieved by weighting the
training data towards a particular noise value, rather than
sampling uniformly. To investigate this, Bayesian optimisation
was used to find the optimal percentage split across the

training subsets, where the objective function is the perfor-
mance loss on a set of test data. There is a choice of which test
data to use to calculate the objective function―whether to
optimise performance across the board, or to optimise solely
on low SNR data. Both methods are considered.

First, six hyperparameters were introduced: %0, %6, %12,
%18, %21, and %24, with the constraint that the sum of these
values is equal to 100. These hyperparameters control the
amount of training data taken from a particular SNR bin.
The Expected Improvement acquisition function was used to
choose the next set of hyperparameters after each evaluation. A
time constraint of 12 h was imposed on the objective function
evaluation, after which the optimal hyperparameters were
selected.

The hyperparameters that resulted in optimal performance
on the test data are displayed in Table 4. If the parameters are
chosen based on performance across the board, then the
optimal solution is to reduce the SNR of over half of the
training data by 12 dB. Only 2% of the training data should
have no noise added to it. Conversely, if the hyperparameters
are chosen based on classifier performance of low SNR data
(i.e., test data that had the SNR reduced by 12 dB or more)
then the optimal solution is slightly different that is, one third
of the training data should have the SNR reduced by 18 dB,
and 14% of the data should be unchanged. The results can be
understood as follows: adding a moderate amount of noise to
the majority of training samples improves generalisation to
both medium and low SNR data.

The performances of the resulting classifiers are shown in
Figures 14 and 15. Both figures show that high performance is
retained at high SNRs, and the fall of in performance at lower
SNR is now decreased. In both cases, an accuracy above 90%

F I GURE 1 2 Classification accuracy as a function of test SNR, for
classifiers trained on a range of SNR bins. SNR, signal to noise ratio

F I GURE 1 3 Classification accuracy as a function of test SNR, when
each SNR bin is equally represented in the training data. SNR, signal to
noise ratio

TABLE 4 The optimal percentage split of the training data across
various SNR bins

%0 %6 %12 %18 %21 %24

Validated on all data 2 7 57 4 28 1

Validated on low SNR data 14 10 23 33 6 13
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is maintained despite reducing the test data SNR by 24 dB.
Both the optimisation methods resulted in a more robust
classifier than the case where the training data was equally split
across the SNR bins, resulting in an improvement in accuracy
of over 10% at the most extreme range.

Optimising only on the low SNR data only leads to a slight
improvement in performance at lower SNR but slightly poorer
performance on intermediate SNR. In particular, note the
number of drones misclassified―these are the critical errors, as
the consequences of failing to identify a hazardous dronemay be
much more severe than the occasional nuisance of bird false
alarms. Of course, this is very much application dependent. The
second method results in drone misclassification rate of 11.7%
at its largest, compared with 7.6% for the first method. There-
fore, for most applications, the best method is the Bayesian
optimisation approach, where the choice of hyperparameters is
made by validating on the full spectrum of SNR bins.

Using augmentation and choosing the training hyper-
parameters using Bayesian optimisation produces a classifier
that maintains an accuracy of 95% when degrading the test
data SNR by 18 dB. Assuming a drone is moving radially to-
wards the radar at a uniform velocity, classifying at this range
would give an operator almost triple the time to respond to the
threat.

6 | CONCLUSIONS

In this study the problem of drone‐bird discrimination has
been considered as a function of SNR in both the data used to
train a CNN and the data used for evaluation of classification
accuracies. It has been shown that a classifier trained on high
SNR data will have degraded performance on lower SNR data,
which may be the case for longer range. Methods of restoring
classifier performance to improve overall robustness have been
examined. This has included investigation of different network
architectures, augmentation of the training data, and the use of
Bayesian optimisation to find the optimal augmentation
parameters.

It was demonstrated that adding noise to the training data
results in a more robust classifer, facilitating classification at
longer ranges than would otherwise be the case. The optimal
solution for the dataset considered here is to train a series of
classifiers, each on a particular SNR bin, then to measure the
SNR of test data and use the corresponding classifier. How-
ever, in practice, this would be difficult to implement. It was
shown that training on noisier data could lead to the extraction
of features that are robust across the board, leading to an
improvement in accuracy at low SNR whilst maintaining high
accuracy on high SNR data.

It has also been shown that training on a range of SNR
bins leads to a marked improvement in classification accuracy
and robustness. The optimal solution was found to be reducing
the SNR of 57% of the data by 12 dB. This solution leads to a
more robust classifier that maintains an accuracy of 92.4%
upon test data with a 24 dB degradation in SNR, reflecting a
quadrupling of range.

Based on the results of this work it is recommended to
train on a range of SNR values in order to train a robust
classifier―either through direct measurement or by deliberately
degrading training data acquired at high SNR. Very high test
performance can be achieved on test data with an SNR be-
tween 45 and 20 dB by training primarily on data with an SNR
in the region of 30 dB. Based on this work an initial recom-
mendation for training a robust classifier is to have 55%–60%
of the training data at the halfway point between the minimum
and maximum range at which classification is desired. Of
course, simply adding noise to the training and test data is not
equivalent to operating at longer ranges; future work will use
real long range data to validate the results of this work.

With an SNR of 20 dB, drones and birds can be classified
with 92% accuracy. Since this is comparable to the SNR values
required for robust detection, perhaps such a classification
method paves the way for an improved method of detection,
following a classify before detect approach.

In this work, each spectrogram consists of 40 frames of
data, meaning that there is a latency of approximately 11 s
before the target is classified. Obviously this will have some

F I GURE 1 4 Classification accuracy as a function of test signal to
noise ratio (SNR), when the hyperparameters for augmentation of the
training data have been found using Bayesian optimisation on data across a
range of SNRs

F I GURE 1 5 Classification accuracy as a function of test signal to
noise ratio (SNR), when the hyperparameters for augmentation of the
training data have been found using Bayesian optimisation on data across
low SNRs (32–20 dB)
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implications for operational use. To mitigate this, one might
consider using a fused classification approach whereby a short‐
dwell time classifier (whether a CNN or a traditional machine
learning approach) is used for the first 11 s before switching to
the network discussed here. Note that after 11 s a label could
be output every quarter of a second, although this may be
highly correlated and the update rate may be reduced in
practice. The latency could be further reduced by reducing the
integration period, although this will negatively impact upon
the Doppler sensitivity and SNR.

The results of this work are likely to be dataset dependent;
data for this work was collected from a single site, and only a
single model of drone was considered. Bird data could have
come from number of species but the actual bird types were
not known. The effects of SNR dependency are likely to vary
on a drone‐by‐drone basis, depending on the RCS of the
propellers relative to the body of the drone. SNR has been
measured as the ratio of the body signal to the noise floor,
where it is assumed that the drone signal sits approximately
15 dB below the body return. A drone model whose propellers
have a smaller RCS relative to the body will likely require a
higher body SNR for reliable classification. One could expect
performance to degrade rapidly in the case where spectral
returns from the propellers cannot be detected.

A benefit of staring radar is that the integration time can be
arbitrarily long. It is postulated that increasing the integration
time will enhance the SNR―provided coherent integration is
possible―and that this in return will improve the visibility of
target body and propeller returns, facilitating classification.
Future work will consider varying the processing interval to
raise the SNR, thus improving classification.
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