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Volcanic cones are frequently near their gravitational stability limit, which can lead
to lateral collapse of the edifice, causing extensive environmental impact, property
damage, and loss of life. Here, we examine lateral collapses in mafic arc volcanoes,
which are relatively structurally simple edifices dominated by a narrow compositional
range from basalts to basaltic andesites. This still encompasses a broad range of
volcano dimensions, but the magma types erupted in these systems represent the most
abundant type of volcanism on Earth and rocky planets. Their often high magma output
rates can result in rapid construction of gravitationally unstable edifices susceptible both
to small landslides but also to much larger-scale catastrophic lateral collapses. Although
recent studies of basaltic shield volcanoes provide insights on the largest subaerial
lateral collapses on Earth, the occurrence of lateral collapses in mafic arc volcanoes
lacks a systematic description, and the features that make such structures susceptible
to failure has not been treated in depth. In this review, we address whether distinct
characteristics lead to the failure of mafic arc volcanoes, or whether their propensity
to collapse is no different to failures in volcanoes dominated by intermediate (i.e.,
andesitic-dacitic) or silicic (i.e., rhyolitic) compositions? We provide a general overview
on the stability of mafic arc edifices, their potential for lateral collapse, and the overall
impact of large-scale sector collapse processes on the development of mafic magmatic
systems, eruptive style and the surrounding landscape. Both historical accounts and
geological evidence provide convincing proofs of recurrent (and even repetitive) large-
scale (>0.5 km3) lateral failure of mafic arc volcanoes. The main factors contributing to
edifice instability in these volcanoes are: (1) frequent sheet-like intrusions accompanied
by intense deformation and seismicity; (2) shallow hydrothermal systems weakening
basaltic rocks and reducing their overall strength; (3) large edifices with slopes near the
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critical angle; (4) distribution along fault systems, especially in transtensional settings,
and; (5) susceptibility to other external forces such as climate change. These factors
are not exclusive of mafic volcanoes, but probably enhanced by the rapid building of
such edifices.

Keywords: edifice instability, landslide, unloading, decompression, volcanic geomorphology, debris avalanche,
lateral collapse, basaltic volcanism

INTRODUCTION

Lateral collapses (also called “sector” or “flank” collapses) involve
gravity-driven, deep-seated destructive removal of volcanic
materials (i.e., hundreds of m in depth) from a volcanic
edifice, with or without association to an eruption, showing a
wide variety of volumes and mobility. These processes share
similar attributes (e.g., deposits with similar morphology and
texture) to other terrestrial landslides of non-volcanic origin
(Siebert, 2002). However, their initiation is often related to
seismic processes or magmatic eruptions, and involve long-
term (at kyr timescales) modifications of the volcanic system
and its immediate environment. Collapses can occur in any
type of volcano, but by far the largest number of lateral
collapses have been identified at arc stratovolcanoes and large
intraplate volcanic islands (Siebert, 2002; Blahút et al., 2019;
Watt, 2019). Lateral collapses produce characteristic scars with
a wide opening angle and often non-parallel sidewalls (thus
affecting a sector of the cone), and often encompass the
volcano summit. Their deposits, often forming blocky and
heterogeneous debris avalanche deposits (VDAD) can mobilize
several cubic kilometers of rock (Bernard et al., 2021), with the
largest volumes identified offshore volcanic islands (McGuire,
1996; Oehler et al., 2005; Blahút et al., 2019). Both lateral
collapses and their deposits have killed ∼3,500 people since
1600 AD, in at least nine catastrophic events, and their direct
impacts have been documented between 1 and 20 km from
the volcanic source (Auker et al., 2013; Brown et al., 2017;
Siebert and Roverato, 2021). During just the twentieth century,
it is estimated that 741 people were killed and 267 injured
directly by collapse processes, while 4,600 became homeless and
about 29,000 were evacuated (Witham, 2005) as a consequence
of this phenomenon. Moreover, tsunamis directly generated
by lateral collapses have killed many thousands more people
(Day et al., 2015): some prominent examples include the 1741
collapse of Oshima-Oshima volcanic island (Japan; volume of
2.5 km3 and ∼1,500 fatalities; Satake, 2007); the 1792 collapse
of Unzen-Mayuyama (Japan; volume of 0.3 km3 and 15,135
deaths; Sassa et al., 2016); and the 1888 tsunami caused by the
collapse of Ritter Island (Papua New Guinea, with a volume
from 2.4 to 4.2 km3 and likely causing several thousand deaths
on the coastlines of surrounding islands; Watt et al., 2019).
More recently, on 22 December 2018, the SW flank of the
Anak Krakatau volcano (Indonesia) dramatically collapsed into
the sea generating tsunami waves up to 13 m-high along the
coast of Sumatra and Java, killing 437 people (Grilli et al., 2019)
and triggering a series of violent phreatomagmatic eruptions
observed on 23 December 2018 (Walter et al., 2019; Williams

et al., 2019). All of these historical examples occurred on arc
volcanoes of relatively small to moderate dimensions, in a
global context, and yet their consequences were devastating.
Moreover, many of these examples occurred in young (e.g.,
Anak Krakatau), morphologically simple (e.g., conical forms,
such as Ritter) volcanoes, characterized by a limited, mafic
compositional range, and with eruptive styles dominated by
effusive and minor-explosive activity, rather than large explosive
eruptions of viscous, evolved magma. Given that structural failure
is commonly linked to hydrothermal alteration, loading and
gravitational spreading (van Wyk de Vries and Francis, 1997;
Zimbelman et al., 2005; Karstens et al., 2019), and other factors
promoting structural weakness (such as intrusion of highly
viscous magma; Reid et al., 2010), it may be expected that both age
and overall dimensions are significant indicators of susceptibility
to failure. However, the above examples illustrate that relatively
young, structurally simpler mafic edifices may be just as prone to
lateral collapse. The rationale of this review is thus to examine
failures in this broad category of “mafic” arc volcanoes, to
elucidate the processes driving failure, and to examine if there
are specific factors that may drive collapse in these volcanoes,
or collapse is simply associated with the same range of processes
leading to collapse across other volcanic landforms.

Mafic volcanism, and specifically eruption of basaltic magma,
is a widespread volcanic manifestation in our Solar System,
extending through different scales and geological times in the
evolution of the rocky planets and their natural satellites (Carr,
1973; Strom et al., 1975; Head and McCord, 1978; Walker et al.,
1979; Greeley and Spudis, 1981; Campbell et al., 1984; Crisp,
1984; Head et al., 1992, 2008, 2011; Wilson, 2007; Braden et al.,
2014). More than a half of the Earth’s volcanoes are fed completely
or largely by basaltic magmas, and they are found in every type
of tectonic environment (Walker and Sigurdsson, 2000). In this
sense, at least 42% of the total number of arc stratovolcanoes have
either basaltic, basaltic andesite or trachybasalt-trachyandesite
dominant compositions; the population living within 30 km from
these volcanoes is 44 million, while 388 million live within 100 km
(Figure 1; Global Volcanism Program, 2013). Eruption rates tend
to be higher in mafic volcanoes than at intermediate to silica-rich
volcanic systems (White et al., 2006), which favors relatively rapid
edifice construction, and this potentially leads to gravitationally
unstable conditions (Baloga et al., 1995; Siebert, 2002; Barrett
et al., 2020; Zernack and Procter, 2021) and even to repetitive
failure. Volcano instability is also enhanced by a variety of
internal (i.e., magmatic intrusions, hydrothermal processes and
gravitational load) and external conditions (e.g., climate, erosion
and substratum weakness) (McGuire, 1996; Roverato et al., 2021).
Lateral collapse in gently sloping basaltic edifices (such as large
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shield-like volcanoes at hot-spot settings) has been documented
in detail within the last decades and has provided evidence
about the largest collapse deposits on the Earth (∼103 km3;
McGuire, 1996; Oehler et al., 2005; Blahut et al., 2019). However,
understanding how the factors controlling edifice stability and
failure processes relate to the dominant magma compositions
characterizing a particular volcano, and how this varies across
tectonic settings or is influenced by eruption styles, internal
structures and the magmatic plumbing system, is still a topic of
debate and significant investigation.

This review is intended to establish a connection between the
nature of mafic arc volcanism (Figure 1) and volcanic instability,
and, using a variety of case studies, to provide a comprehensive
typology of the occurrence, impact (on both magmatic systems
and volcano surroundings) and post-collapse reactivation of
volcanic activity related to large-scale lateral collapses on these
volcanoes. This review is not intended to cover sector collapses
in volcanic islands of hot spot settings, which have been treated
in detail in recent publications (McGuire, 1996; Oehler et al.,
2005, 2008; McGuire, 2006; Boulesteix et al., 2012, 2013; Blahút
et al., 2019; Di Muro et al., 2021a,b), and are out of the focus
of this review on mafic arc volcanoes. Also, we provide just
a brief description of other types of landslides affecting mafic
volcanoes (smaller, i.e., <0.1 km3), originated by surface sliding
of slope materials rather than deep-seated flank failures (i.e.,
sector collapses).

THE CONSTRUCTION AND INTRINSIC
INSTABILITIES OF MAFIC EDIFICES IN
ARC SETTINGS

Mafic volcanic landforms include both monogenetic and
polygenetic volcanoes, which may be all observed in arc
settings. Monogenetic volcanoes (formed by single continuous
or polycyclic eruptions) are the simplest structures, while
polygenetic mafic volcanoes (i.e., erupting more than once
during their lifetime) represent centralized venting of magma
over time scales of 103–107 years, and can develop complex
feeding pathways to the surface from significant depths in the
crust (Figures 2A,B; Jerram and Bryan, 2015). Many of these
volcanoes are basaltic, in a strict sense, being volumetrically
dominated by the eruption of basaltic magmas. However,
other volcanoes, including both monogenetic and polygenetic
types, may involve similar eruption styles (effusive eruption
of relatively low-viscosity lavas; accompanied by minor to
moderate explosive eruption styles dominated by Hawaiian
to violent-Strombolian activity), but involving magmas that
are slightly more silica- or alkali-rich. We thus group such
volcanoes under a broader term of mafic volcanoes. We also
note that, in long-lived arc volcanoes, the boundary between a
mafic and an intermediate volcano can only be loosely defined,
and we simply use the term mafic volcano here to denote
a volcano that, based on current exposures, is dominated
volumetrically by basaltic/basaltic-andesite compositions.
A summary of the characteristics of mafic volcanoes is provided
in the detailed works of Walker and Sigurdsson (2000);

Valentine and Gregg (2008), Valentine and Connor (2015),
and Kereszturi and Németh (2012), the latter two focused on
monogenetic basaltic volcanoes specifically.

Small-Volume (<1 km3) Monogenetic
Edifices
Monogenetic mafic volcanoes are represented by purely
magmatic edifices such as spatter cones (Figure 3A), cinder
cones (Figure 3B), and fissures (Figure 3C), but also by
hydrovolcanic structures (maars, tuff rings, and tuff cones;
Figure 3D). These volcanoes have volumes normally <0.1 km3,
rarely up to 1 km3, and their maximum slope angles are ∼30◦

for cinder cones and >30◦ for spatter cones (Vespermann and
Schmincke, 2000; Németh and Kereszturi, 2015). The largest
monogenetic edifices are represented by pyroclastic (cinder)
cones, which reach about 300 m height and 900 m in basal
diameter (Németh and Kereszturi, 2015). Due to the rapid
accumulation of pyroclastic materials, spatter cones may suffer
small landslides as seen during the recent (2021) Geldingadalur
eruption (Figure 3E; Reykjanes Peninsula, Iceland). Cinder cones
may also develop a horseshoe shape, related to lavas flowing
away from one region of the cone, resulting in the continuous
drafting of pyroclastic material away from the growing cone
(Figure 3F; Valentine and Gregg, 2008; Németh et al., 2011). The
rafts are made of bedded fragments from the intact cone, partially
disintegrated agglutinate deposits or loose pyroclastic debris
blanketed by scoria fallout (Valentine et al., 2006) as clearly seen
in Marcath volcano (Figure 3F; Valentine et al., 2017). If sudden,
a small scale flank failure of the cone portion may cause the
unloading of the shallow plumbing system, producing a change
in the eruption style (e.g., enhancing explosivity), as seen in
Los Morados scoria cone (Figure 3G; Argentina, Németh et al.,
2011) or the Timanfaya eruption (1730–1736) at Mazo volcano
(Canary Islands) which triggered a small directed blast as well
as forming a debris avalanche deposit covering 1,218 km2 and
extending 1.6 km from the vent (Romero et al., 2020a).

Large Volume Polygenetic Volcanoes
(>1 km3)
Polygenetic mafic volcanoes may correspond to shield volcanoes
(Figure 4A), stratovolcanoes (Figure 4B), or even clusters of
volcanic landforms such as basaltic volcanic fields and flood
basalts. Basaltic volcanic fields are more frequent in back arc
basins (Gribble et al., 1996) and flood basalts almost exclusively
occur in hot-spot settings intrinsically related to lithospheric
architecture (Sheth, 1999). Polygenetic volcanoes of homogenous
mafic composition may have a short-lasting evolution, from a
few centuries to several 1,000 years, which is comparable in
duration of activity to small shield volcanoes in arc settings,
but much shorter-lived than typical andesite-dacite stratocones
(104–106 years; Hildreth et al., 1998). In quasi-closed systems,
even a protracted storage prior to eruption (∼25–6,000 years)
may not significantly alter the primitive bulk composition of
magmas before reaching the surface (Winslow et al., 2020). Mafic
volcanoes may also represent an early stage in the development
of a longer-lived stratovolcano and its underlying feeder system,
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FIGURE 1 | Location map of mafic volcanoes in arc settings. Data source: Global Volcanism Program (2013).

which on longer timescales may become dominated by a broader
range of more evolved magmatic compositions. This is the case
of young stratovolcanoes like Izalco in El Salvador (began in
1770), Pacaya in Guatemala or Cerro Negro in Nicaragua, all
of them with basaltic composition contrasting with other more
“mature stratovolcanoes” which are often andesitic or dacitic and
show evolution trends that have more silicic eruptions with time
(Rose et al., 2010). An arguably similar case is the young basaltic-
andesite cone of Anak Krakatau, which has developed since
the 1883 eruption and destruction of the rhyo-dacitic Krakatau
edifice, elevated eruption rates, driven by a high magmatic flux to
the surface and the occurrence of frequent, repeated eruptions
(with repose intervals of months to decades) appears to be an
important factor driving the rapid construction and consequent
flank instability of mafic stratocones.

In contrast to other hotspot or rift-related basaltic volcanoes,
which produce large volumes of lava flows, mafic volcanoes
in arc settings are fed by volatile-rich magmas (see Xu et al.,
2020 for a detailed description of basaltic magma generation
in arc settings): typical volatile contents include H2O from 2
to 6 wt%, significant CO2 (as high as 2,500 ppm), S (900–
2,500 ppm), and Cl (250–2,500 ppm) (Wallace et al., 2015).
This promotes the occurrence of explosive eruptions (Houghton
and Gonnermann, 2008) and the deposition of tephra fall and
pyroclastic density current (PDC) deposits interbedded with
lavas (Figure 4C). Mafic polygenetic arc edifices are usually cone-
shaped, many hundreds to thousands of meters above their base,
and their flanks steepen upward until approximating the repose
angle of clastic deposits (about 33–36◦; Figure 4D) (Walker,
1993). In addition, when their altitude favors snow accumulation,
ice-clad volcanoes generate abundant volcaniclastic deposits of
variable origin that include hydrovolcanic interaction, such as
tuff breccias, hyaloclastites, lahar sequences and heterogeneous
debris avalanche deposits (VDADs) (Skjelkvåle et al., 1989;
Sheth et al., 2009), which are intercalated with moraines to

create complex internal structures. Such features also characterize
volcanoes with intermediate compositions, but a significant
difference, linked to dominant eruptive styles and the dispersal
and accumulation patterns of pyroclastic material, distinguishes
mafic polygenetic volcanoes.

Predominantly mafic edifices experience a relatively higher
frequency of Hawaiian, Strombolian or lava fountain eruptions
(Stern et al., 2007; Houghton and Gonnermann, 2008) thus
giving high potential of rapid accumulation of unstable, locally
dispersed deposits lying at critical angles in the upper part of
the edifice (i.e., spatter agglutinates, thick scoria fall deposits
or a’a’ lavas) with variable mechanical properties and frequent
unit boundaries or structural discontinuities. These deposits tend
to be gravitationally unstable, and are capable of producing
small landslides in the summit area of the active volcano,
generating valleys clogged by volcanic and volcaniclastic deposits
(Figure 5A). Some historical examples of this process include
the 12 January 2013 Stromboli (Italy) landslide (0.1 × 106 m3)
which was triggered by high magmastatic pressure within the
conduit and the weakening of the cone by magma fingering
(Calvari et al., 2016), or the crater wall collapse of the young
Soputan volcano (Indonesia) on 25–26 October 2007, producing
a 0.85 × 106 m3 debris avalanche during a VEI 3 eruption
(Figure 5B) (Kushendratno et al., 2012). On 27 May 2010, Pacaya
(Guatemala) experienced the collapse of materials deposited in
a ravine (Figure 5C) after a flank eruption (300 m below the
summit), causing both a directed blast and debris avalanche,
which were then followed by enhanced explosive activity (the
most intense eruption since 1964; Wardman et al., 2012;
Bollasina, 2014). More recently, a similar valley-infill collapse
at Fuego (Guatemala) on 3 June 2018, affected Barranca Las
Lajas (Figure 5D; 15 × 106 m3), and the hot avalanche mixed
with PDCs traveled about 12 km to San Miguel de los Lotes,
killing hundreds of people (Albino et al., 2020). Collapse scars
from small-scale landslides of this type have distinctive parallel
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FIGURE 2 | Basaltic volcanism in arc settings. (A) Cartoon (not to scale) of the oceanic-continental lithosphere subduction showing the main processes of slab
dehydration and generation of partial melts which accumulate below the crust (underplating), then feeding the active volcanism of the overlying arc. Illustration based
in Schmidt and Poli (1998). (B) Cartoon (not to scale) of the shallow storage and plumbing system of a basaltic volcano.

sidewalls and generally occupy just a small surface in the flanks
of the volcano. Other small-scale landslides can be formed by
the removal of shallow layers of unstable material producing
a flat sliding surface with parallel sidewalls, such as those
observed on 30 December 2002 in Stromboli as consequence of
a fissure eruption (Figure 5E; 33.5 × 106 m3; Tinti et al., 2005;
Landi et al., 2006; Miraglia, 2006) or by 17 January 2008 in Llaima
by spatter collapse (Figure 5F; Romero et al., 2013; Franco
et al., 2019). All these different styles of landsliding correspond
to shallow-seated landslides, thus encompassing only surficial
processes that do not involve a long-term modification of both
the internal and external volcanic apparatus, as in the case of
lateral collapses.

LATERAL COLLAPSES IN MAFIC ARC
VOLCANOES

Sector collapses result from the cumulative effects of different
sources of volcanic instability, which increase susceptibility to

failure, potentially in addition to a final triggering event that
materializes the failure. Instability factors may be classified
in two groups: internal and external. Internal factors include
magmatic intrusions, hydrothermal alteration and gravitational
deformation (Figure 6A), while external factors are related
to the behavior and structural features of the basement
(Figure 6B), as well as seismic activity and exogenous
processes such as sea-level change and glacial erosion or
debuttressing (Figure 6A) (Roverato et al., 2021 and references
therein). These factors are not distinct to mafic edifices,
but potentially act in all constructional volcanic landforms.
Nevertheless, we consider below whether the rapid construction
rate and eruption styles typical of mafic volcanoes enhance any
of these factors.

Instability Factors
Stratovolcanoes function as high-toughness composite structures
made of layers of widely different elastic properties, encouraging
fracture deflection and arrest (Gudmundsson, 2012). Therefore,
fracture propagation may require less energy in shield-like
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FIGURE 3 | Mafic monogenetic volcanoes. (A) Spatter Cone (Osorno volcano, Chile); (B) Scoria Cone (Villarrica, Chile); (C) volcanic fissure (Antuco, Chile); (D) Maar
(Overo volcano, Chile); (E) Sequence of landslide at a spatter cone during the Geldingadalur eruption (Reykjanes Peninsula, Iceland, 2021); (F) Marcath volcano
(United States) and tephra rafts. (G) Los Morados cone (Argentina) and tephra rafts. Photos (A–C) by Jorge Romero. Photos (D–G) by Gabriel Ureta, Bini Smári,
G.A. Vallentine.

volcanoes than in stratovolcanoes, due to their homogeneous
internal structure, dominated by lava flows. Despite this, mafic
arc stratovolcanoes are expected to be more or less homogeneous
in comparison to volcanoes with a wider compositional range
and different types of volcanic deposits/products (domes,

coulees, block, and ash flows, etc.) as consequence of similar
erupted products along their lifetime and construction. The
application of regional or local stress fields in rocks may
produce deformation, failure or changes in the physical
properties of such rocks (Supplementary Table 1; Schön, 2015).
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FIGURE 4 | Geomorphology of basaltic polygenetic volcanoes. (A) Belknap crater, a shield volcano (OR, United States). (B) Osorno stratovolcano (Chile).
(C) Interbedded pyroclastic deposits and lava flows at Villarrica volcano (Chile). (D) Steep slopes of Llaima compound volcano (Chile). Photos by Jorge Romero.

FIGURE 5 | Small landslides in mafic volcanoes. (A) Instable spatter and tephra fall deposits in the upper part of Lonquimay volcano, Chile; (B) Debris avalanche
deposit produced by a landslide in Soputan volcano (October 2007), Indonesia; (C) Partial summit and gully collapse at Mackenney cone (Pacaya 2010, Guatemala)
and at (D) Fuego volcano (2019; Guatemala); (E) Scar produced by the Sciara del Fuoco 2002 landslide in Stromboli (Italy); (F) Summit landslide of a spatter deposit
in Llaima volcano (2008; Chile). Photo (A) by Jorge Romero, (B) by John Pallister, (C) by Gustavo Chigna, (D) by Alisa Naismith (E) by Mauro Coltelli and (F) by
Daniel Basualto.

Schaefer et al. (2015) show how the strength of basaltic rocks
in stratovolcanoes may be modified: it decreases with porosity,
increases with strain rate, increases with ambient temperature,
and is unsystematically varied by thermal stressing, and due
to prolonged loading/unloading (i.e., repeated dike intrusion or
inflation/deflation cycles) suggesting these rocks may not behave
entirely elastically and accumulate damage, inducing mechanical
hysteresis (change in mechanical response as consequence of
previous maximum loading). This behavior is not different to that

observed in other intermediate silica rocks (e.g., dacites at Mt.
Saint Helens; Kendrick et al., 2013). In terms of their geological
strength index (Marinos and Hoek, 2000), basalts from Pacaya
may vary between very good (mainly unweathered fresh lavas) to
very poor, such as pyroclasts (Schaefer et al., 2013).

Internal Factors
Although dikes are found of all magma compositions, by far the
most common and volumetrically significant dikes are basaltic in
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FIGURE 6 | Instability of mafic polygenetic volcanoes. (A) Cartoon (not to scale) illustrating the different internal and external sources of instability. Potential slide
planes are red dashed lines, while seismicity and deformation are indicated by yellow stars and red arrows, respectively; (B) Styles of basement faulting and
corresponding styles of collapse at volcano edifices (modified from Mathieu et al., 2011).

composition (Jerram and Bryan, 2015). Polygenetic mafic systems
are commonly fed by arrangements of radial or sub-parallel
mafic dikes (Figures 7A,B), frequently sourcing monogenetic
flank eruptions or fissure events, but also central-vent eruptions
(Figure 2C; Hildreth et al., 1998; Keating et al., 2008; Rose et al.,
2010; Gudmundsson, 2012; Gudmundsson et al., 2014; Harp and
Valentine, 2018). Magmatic intrusions, especially dikes, are an
important source of instability, since they produce deformation,
seismicity and release of mechanical (i.e., expansive) and thermal
(i.e., heating) energy. This can increase pore fluid pressures,
acting on potential basal failure planes and decreasing strength
(Figure 6A; Elsworth and Voight, 1996; Norini and Acocella,
2011; Hacker et al., 2017). Despite thermal pore fluid pressure
changes acting faster than their mechanical counterparts, the
latter have a more significant impact on the strength drop
(Elsworth and Voight, 1996). Earthquakes may be induced by
pore fluid pressure variations caused by dike intrusions (Elsworth
and Voight, 1995). In this sense, dike intrusion during modern
eruptions of basaltic volcanoes has led to moderate magnitude
(Mw 4–6) seismicity (Liu et al., 2018; Williams et al., 2019;
Ágústsdóttir et al., 2019), but occasionally these earthquakes may

reach Mw > 7 (Chen et al., 2019). During the December 2018
eruption of Etna, a dike intruding in the eastern flank caused
spreading (see section “External factors” for spreading; Bonforte
et al., 2019). Magma intruded within the sedimentary cover on
top of the broad intrusive mesh, generating a transient velocity
increase consistent with stress propagation on the unstable flank,
and culminating, a few days later, with a magnitude MW = 4.9
earthquake on the Fiandaca–Pennisi Fault (10 km SE from
the eruption fissure; Giampiccolo et al., 2020). Thus, increased
magma supply rate, preferential intrusion orientation parallel to
the maximum regional stress or even intrusion through pre-
existing fault planes may promote flank failure (Siebert, 1984;
Tibaldi, 2004; Famin and Michon, 2010; Giampiccolo et al., 2020;
Hickey et al., 2020). In Cumbre Vieja volcano (Canary islands),
dikes of a meter in thickness, but with significant length (>1 km)
may cause flank destabilization (Elsworth and Day, 1999).

The temporary development of shallow intrusions (such as
shallow sheet-like intrusions within a few hundreds of meters
in depth, Figure 7C) is also able to produce flank deformation
and collapse (Tormey et al., 1995; Solaro et al., 2010). Deep
magma intrusions may also produce edifice deformation and
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enhanced sliding, as observed during eruptive cycles in Etna,
Stromboli (both in Italy), and Cumbre Vieja (Canary Islands;
Walter et al., 2005; Bonaccorso et al., 2011; Alparone et al.,
2013; Nolesini et al., 2013; González and Palano, 2014). Events of
cryptodome formation, such as that observed during the 1980 Mt.
Saint Helens collapse (Reid et al., 2010) are uncommon in mafic
volcanoes given the comparatively lower viscosity of basaltic
or basaltic andesite magmas [see Lesher and Spera (2015) for
additional physical and physico-chemical properties of basaltic
magmas], but cannot be discarded as in some volcanoes highly
crystalline basalts are found (Kushendratno et al., 2012; Fox,
2019). The exact same factors related to deep magma intrusion
and edifice deformation may act at mafic volcanoes in the same
way as in volcanoes with wider compositional range.

Hydrothermal alteration is widely known as an instability
factor for the lateral collapse of volcanoes (Delmelle et al., 2015).
Studies carried out in andesitic arc stratovolcanoes point to acid-
sulfate alteration (i.e., smectite, alunite, kaolinite ± pyrite, and
gypsum) as a main indicator of structural weakening (Zimbelman
et al., 2005 and references therein). Similar processes are likely
to occur in mafic volcanic edifices (Navarre-Sitchler et al., 2009).
According to Moon and Jayawardane (2004), the early stages of
basalt weathering (fresh to slightly weathered) consist of a rapid
reduction in both CaO and MgO concentrations without major
mineralogical change, but with a dramatic loss of strength (-43%
of bearing capacity). Weathering also involves loss of cations and
disruption of mineral lattice structures, and with more extensive
weathering, secondary clay minerals form. The loss of shear
strength will be a function of the type of alteration (related to
T and pH) rather than the amount or degree of alteration (del
Potro and Hürlimann, 2009), and in basaltic lava and pyroclasts
it may vary between -45 and -85% (Pola et al., 2014). Low-
T hydrothermal alteration products of basalts (i.e., <300◦C)
include smectites, zeolites, calcium silicates, calcite, pyrite, and
quartz (Kristmannsdóttir, 1979): mineral assemblages that would
result in structural weakening of the affected rocks. Geophysical
surveys have imaged hydrothermal systems at large mafic arc
stratovolcanoes such as Fuji (Japan), Llaima or Osorno (Chile)
at shallow levels (∼1 km), with kilometric extension inside or
below the edifice (Aizawa et al., 2005; Franco et al., 2019; Díaz
et al., 2020), indicating the possible presence of hydrothermally
altered cores inside these edifices. These cores may deform under
gravitational deformation producing a series of surface landslides
before, during and after the main flank failure event (Cecchi
et al., 2004). Thus, there is good evidence that a very similar
range of hydrothermal alteration and weakening processes can
apply in mafic edifices, in the same way that occurs in edifices
dominated by other compositions. Indeed, the rates of such
weathering may commonly be high in mafic edifices, particularly
those characterized by a vigorous hydrothermal system.

Volcanoes that are particularly unstable are those with
weak zones represented by intense silica-clay alteration, active
acid lakes and/or solfatara fields (Figure 7D; van Wyk de
Vries et al., 2000; Cecchi et al., 2004; Delmelle et al.,
2015) commonly related to hydrovolcanic and glaciovolcanic
interactions. Mafic ice-capped or tropical volcanoes, such as
Copahue, Planchón (Both in Chile-Argentina) or Poás (Costa

Rica) can develop persistent intracrater acid and clay alteration
(Rodríguez and van Bergen, 2017; Báez et al., 2020; Romero et al.,
2020b) in this way. However, other mafic volcanoes with
persistent magmatic influx such as Villarrica (Chile), Etna or
Stromboli (Italy) have only developed a weak or peripheral
hydrothermal system, which respond to magmatic intrusions
and seasonal meteoric waters (Finizola et al., 2003; Ortiz et al.,
2003; Liotta et al., 2010). Such systems are less prone to being
extensively affected by hydrothermal alterations, and it is not
therefore simply the case that a high magmatic flux and elevated
thermal gradient within an edifice is associated with more active
or more extensive hydrothermal alteration.

Rapid edifice building, typical of mafic stratovolcanoes in arc
settings, normally means the generation of significant height
differences above the surroundings (2–4 km), constructional
processes that outpace erosion, and the development of typically
steep slopes (30–40◦ for stratovolcanoes and cinder cones). These
volcanoes may be active during hundreds of years (e.g., Sangay
erupting since at least 1628 AD or Villarrica since ∼1400 AD;
Monzier et al., 1999; van Daele et al., 2014). As consequence of
persistent eruptions at mafic, they constitute many of the largest
continental volcanic edifices (e.g., Semeru and Slamet, Indonesia;
Fuji, Japan; Etna, Italy; Arenal, Costa Rica; and Llaima and
Villarrica in Chile, etc.). These all act to increase flank instability
(Ponomareva et al., 2006), and are factors promoted by the
elevated magmatic flux and frequent eruptions that characterize
many mafic arc systems.

Under gravitational load, volcanoes may also develop
“spreading” or outward edifice displacement, and “sagging”,
which implies inward displacement (Borgia, 1994; Merle and
Borgia, 1996). Spreading promotes summit extension and basal
constriction (Figure 6A), potentially forming incipient flank
instabilities (Karstens et al., 2019), while sagging will produce
inner thrusting, constricts the upper edifice and thus impedes
magma rise. Within their “lifetime”, some volcanoes may
experience a full cycle of deformation processes (Borgia, 1994)
which may overlap, repeat, or be omitted: building, sagging,
intruding (magmas trapped in the base of the edifice) and
spreading. Such factors may be important in volcanoes of all types
and compositions, but again the rapid construction characteristic
of many mafic systems potentially exacerbates the influence of
spreading and loading effects. Spreading is also promoted by
external factors, such as a weak basement (substratum), and will
be detailed in the next section.

External Factors
External factors may not be expected to differ substantially
between mafic edifices and those of other compositions, unless
the factors are promoted in specific volcano-tectonic settings
that are also characterized by mafic volcanism. The geometry
and type of substratum controls basal edifice spreading in
continental environments, and spreading is possible if (1)
there is a weak layer in the substratum (Figure 6A; evaporates,
marls, clays, hydrothermally altered rocks or shales, or poorly
consolidated marine sediments), (2) the thickness of the brittle
layer above the weak layer is relatively thin, and (3) the volcano
is not buttressed on all sides (Merle and Borgia, 1996). Excellent
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FIGURE 7 | Internal architecture of basaltic edifices. (A) Cerro Campanario and its radial dikes Chile; (B) Basaltic dikes intruding volcaniclastic sequences in the
flanks of Callaqui volcano, Chile; (C) Basaltic sill intruding Cenozoic dacitic units at Clearwater Overlook, Washington (United States); (D) Internal structure and
peripheral hydrothermal alteration at Mt. Washington (Cascades of Oregon, United States), a basaltic shield edifice; (E) Elongation of Callaqui volcano (Chile), lying
over a transtensional fault system; (F) Glacial retreat at Lanin volcano (Chile), exposing the volcano structure (causing unloading) and increasing flank instability.
Photos (B) by Gerd Sielfeld and the rest by Jorge Romero.

examples of spreading are found in Mombacho (Nicaragua;
van Wyk de Vries and Francis, 1997), Mt. Iriga (Philippines;
Paguican et al., 2012), Mt Usu (Japan, Goto and Tomiya,
2019), and probably the volumetrically largest in Socompa
(Chile, van Wyk de Vries et al., 2001) with 35 km3 of VDAD.
There is limited evidence supporting spreading at mafic arc
edifices, however, this process has been described in Ritter Island
(Papua New Guinea; Karstens et al., 2019), and the lower slopes
of Mt. Etna (Acocella et al., 2003; Lundgren et al., 2004; Solaro
et al., 2010; Bonforte et al., 2011), as indicated by the growth of
anticline structures, while the spreading is probably driven by
deeper magma injection. In contrast, spreading has been widely
reported in large-sized volcanic islands, where the underlying
sediments form a low-viscosity decollement which results in the
formation of rift zones, generally triangular, producing flanks
prone to sliding (Walter and Troll, 2003; Münn et al., 2006).

Possible explanations for the lack of documented spreading
at mafic arc edifices are that (1) a weak substratum is not
especially common in arc settings and (2) mafic arc volcanoes
have comparatively smaller volumes than larger edifices with
a broader compositional range (and smaller than intraplate
volcanic islands), and as such, spreading is a less significant
factor in many mafic settings.

Arc volcanism is associated with extensional, compressional,
strike–slip or oblique motions; the structure of the arc does
control the volcanic output through different processes, even
though extension (also in strike–slip and compressional arcs) is
directly related to output rate (Acocella and Funiciello, 2010).
A review of volcanism in compressional settings (Tibaldi et al.,
2009) demonstrates that active intra-arc fault systems commonly
control the position of volcanic centers and contribute to a
causal relationship between magmatism and thermal weakening
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of the upper crust (de Saint Blanquat et al., 1998). For instance,
within arc fault systems, strike-slip domains favor the production
of less hydrous magmas, limit crustal assimilation and shorten
residence times, hence producing more mafic volcanism than
occurs in contractional/transpressional settings, as can be found
along the Southern Andean volcanic zone (SAVZ) or Eastern
Anatolia (Tibaldi et al., 2009). The transtensional Liquiñe-Ofqui
Fault System in the SAVZ hosts numerous stratovolcanoes
dominated by basaltic and basaltic andesitic products (e.g.,
Planchón, Callaqui, Llaima, Antillanca, Osorno, Hornopirén,
and Apagado volcanoes). Here, Andean transverse faults play a
role in the distribution of basaltic lavas: Most late Pleistocene
and Holocene volcanic centers defining NE-trending alignments,
including both composite stratovolcanoes and minor eruptive
centers, contain mainly basaltic to basaltic andesite lithologies
(e.g., Osorno–Puntiagudo–Cordón Cenizos volcanic chain in the
Southern Andes), while NW-trending fractures and faults have
more evolved compositions, including rhyolites (Stern et al.,
2007; Cembrano and Lara, 2009; Bucchi et al., 2015; Pérez-
Flores et al., 2016; Sielfeld et al., 2019). This is in contrast to
the Indonesian volcanic arc, where the Sumatra Fault has limited
control on volcanic processes, distribution and size (Acocella
et al., 2018). These crustal fault intersections represent highly
permeable zones for fluid circulation and magmatic intrusion
(Piquer et al., 2019; Norini et al., 2020; Pearce et al., 2020), but also
transfer structural instabilities to the overlying edifice. The role of
the regional tectonic regime and the collapse of stratovolcanoes
has been studied for decades (Moriya, 1980; Francis and Wells,
1988; Tibaldi, 1995; Lagmay et al., 2000; Wooller et al., 2009;
Mathieu et al., 2011; Paguican et al., 2012), and as is illustrated
by the examples above, is a potentially significant control on both
the construction and failure of mafic edifices, just as in edifices
dominated by broader or more evolved compositional ranges.

Particular collapse directions might be influenced by basement
fault interactions, such as fault intersections and complex fault
damage zone architectures. In general, for volcanoes lying over
normal faults, the fault will propagate through the edifice and
produce a shallow graben, which will constrain instability to be
nearly parallel, not perpendicular to the fault strike (Figure 6B;
Wooller et al., 2009) and the collapse is in favor of the
downthrown block (Figure 6B; Vidal and Merle, 2000). Vertical
and thrust faulting favors landslides normal to the fault strike
(Figure 6B; van Wyk de Vries and Davies, 2015). Significant
instability directed normal to thrust fault strike is most likely
to develop when a fault is sited beneath a peripheral flank,
where it is able to destabilize a large portion of the edifice
(Wooller et al., 2009; Paguican et al., 2012). Volcanic edifices
lying over strike-slip fault systems usually generate a pair of
sigmoidal faults (one reverse and another normal; Figure 6B)
with a “flower-like” structure (folded structures associated with
strike-slip faults) inside the edifice which allows magma intrusion
and promotes instability (Lagmay et al., 2000). Collapse areas
are normal to the strike of the dike injections and affect the
cone flanks subject to extension (Mathieu et al., 2011). In
summary, the role of basement faults seems to be the same for
volcanoes of different compositions, with the exception that some
transtensional tectonic settings favor the occurrence of mafic

volcanoes, as aforementioned. In transtensional tectonic regimes
such as these typically controlling mafic volcanism in the SAVZ
or Indonesia, volcanic edifices are prone to growth following
elongated architectures (as result of the overall feeder dikes
geometry), but these elongated edifices may increasingly lead
to normal-to-the-volcano-elongation steeper flanks, triggering
avalanches and flank erosion (e.g., Callaqui volcano in Chile,
Figure 7E; Polanco and Naranjo, 2008; Sielfeld et al., 2017).

Climate and the related erosive forces may also play a role in
volcanic instability (Figure 7F; Roberti et al., 2021), at both long
and immediate time-scales. However, this is a field in progress
and subject to active discussion, and it is not clear whether
there are particular factors that would make these processes
more or less significant in mafic versus other settings, except
for the fact that the often relatively smaller dimensions and
younger age of mafic edifices may reduce the overall importance
of edifice erosion in influencing lateral collapse. Several works
(Keating and McGuire, 2004; Capra, 2006; Quidelleur et al., 2008;
Roverato et al., 2011, 2015; Tost and Cronin, 2016) suggest that
major inter-eruptive lateral collapses were absent during glacial
climax, but started immediately during glacial retreat and sea
level rise. Some of this evidence (Capra, 2006) is subject to the
new geochronologic constrains and the finding of other different
triggering mechanisms at these case studies (van Wyk de Vries
et al., 2001; Clavero et al., 2008; Clavero and Godoy, 2010; Jicha
et al., 2015).

Triggering Mechanisms
Earthquakes frequently trigger landslides on the Earth (Keefer,
2002), however, volcanic seismicity is generally characterized by
lower-magnitude events (M 2–3) than tectonic seismicity, and
moderate-to-large volcanic earthquakes (M ≥ 4.5) are relatively
scarce (Zobin, 2001). In volcanoes lying above seismically active
tectonic faults, those faults can produce earthquakes as large as
Mw 6.0 or 7.0 and can trigger near-field landslides, i.e., ∼10 km
radius from the epicenter (Sepúlveda et al., 2010; Lastras et al.,
2013; Piquer et al., 2019) or even the flank failure of the edifice.
Despite this, the 1980 collapse of Mt. Saint Helens was initiated
by an M 5 earthquake (Malone et al., 1981).

Intense meteorological events or important variations in the
climate do trigger lateral collapses (Crandell, 1989; Scott et al.,
1995, 2005; Vallance and Scott, 1997; Capra, 2006; Roverato
et al., 2011; Capra et al., 2013; Farquharson and Amelung,
2020), such as during the 1998 Casita alkali-basalt volcano
landslide (Nicaragua), which was initiated by hurricane Mitch
precipitations and killed 2,513 people (Scott et al., 2005), but the
intense weathering played a key conditioning role in the volcano
instability (Kerle et al., 2003).

Collapse Dimensions and Geometry
Small-scale lateral collapses (0.2–1.0 km3) are frequent in mafic
arc stratovolcanoes, and they involve a narrow sector of the
volcano or a part of one flank producing characteristics U or
V-shaped scars in plan view. This is the case of the lateral collapses
in Callaqui (Chile) and Pacaya 1 ka BP (Guatemala). For Callaqui,
its >320 ± 70 BP collapse (0.69 km3) only affected a portion
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of the NW flank, and was probably triggered by a structurally-
controlled magmatic intrusion as indicated by dikes parallel to
the collapse scar (Sielfeld et al., 2017), which may have suddenly
depressurized producing a thin PDC deposit directly overlying
the avalanche (Polanco and Naranjo, 2008). On Pacaya, the
lateral collapse (0.65 km3) occurred during an ongoing eruption
and affected mostly the SW flank and the top of the edifice
(Figure 8A), producing then a full sequence of directed blasts and
scoria fallout (Kitamura and Matías, 1995; Vallance et al., 1995).
More recently, Anak Krakatau collapsed on 22 December 2018
removing c. 50% of the subaerial extent of the island (Figure 8B),
estimated at 0.22–0.3 km3 (Walter et al., 2019). Despite the
relatively small volume of these avalanches, they have traveled
tens of kilometers from their source, and their occurrence is
relatively common at small volume mafic volcanoes.

Large sector collapses (>1.0 km3) are events that destroy
a great extent of the edifice including its summit and part of
the basement underlying the cone. Sector collapses cut deeply
enough into the edifice to involve multiple rock units, and the
resulting collapse scar is generally horseshoe-shaped in plan view
with diameters of a few kilometers. Historical collapses of basaltic
to basaltic andesitic arc stratovolcanoes include the 1741 Oshima-
Oshima Island (Figure 8C; Japan) and the 1888 Ritter Island
failures (Papua New Guinea). Satake and Kato (2001) calculated
the total volume of Oshima-Oshima VDAD as 2.5 km3, with
a total run out of 16 km from the island, producing a deadly
tsunami with about 2,000 fatalities (Satake, 2007). 147 years later,
Ritter Island produced the largest historically recorded lateral
collapse and removed 2–4 km3 of the cone but mobilized up to
13 km3 of material by eroded and deformed seafloor plus distal
turbidites (Day et al., 2015; Karstens et al., 2019). A similar scale
(c. 2.9 km3) sector collapse affected Sajaka I edifice (Figure 8D;
Aleutians) <5 ky BP destroying nearly a half of the edifice and
producing a collapse scar of 1.5-km-diameter (Coombs et al.,
2007). Geologic records provide abundant evidence on several
sector collapses of other mafic volcanoes during the Holocene.
For instance, Antuco volcano (Chile), produced a 5 km3 VDAD
between 6 and 4 ky BP involving the loss of c. 1 km of height of
the cone, leaving a remarkable 4-km-diameter scar (Figure 8E;
Moreno et al., 2000; Clavero and Godoy, 2010; Martínez et al.,
2018; Romero et al., 2021). During the Pleistocene, mafic edifices
of Mt. Kanaton and Adagdak island (Aleutians) collapsed, the
first forming a 5-km-diameter horseshoe caldera where N.
Kanaga volcano has reconstructed inside; VDAD extends 30 km
N, with volume ∼25 km3 (Waythomas et al., 2003; Coombs et al.,
2007; Montanaro et al., 2011). The VDAD of basaltic Adagdak
volcano (Figure 8F) is poorly constrained and reaches 33 km of
run-out and 12.5 km wide, with c. 35-m-thickness (Montanaro
et al., 2011). Repetitive sector collapses are also frequent at some
basaltic volcanoes, such as Gareloi (Aleutians), which shows three
large submarine VDADs to the N, NW, and E, from which
one of them (NW; Unknown age) is 8.3 km3 and is sourced
from a 6.5 km wide submarine scar (Montanaro et al., 2011).
This situation has been also reported in subaerial volcanoes
of Kamtchatka: Kambalani has collapsed at least three times
between 6.3 and 6.0 ky BP producing VDADs totaling 5–10 km3,
while Late Pleistocene Zarechny volcano experienced at least two

major collapses to southeast involving 6–8 and 0.5–0.7 km3 of
the edifice, respectively (Ponomareva et al., 2006). This evidence
is diagnostic of a relevant susceptibility of such mafic volcanic
edifices to collapse, even several times during their evolution,
mainly as consequence of rapid growth. However, mafic edifices
do span the same volume and mobility fields than volcanoes with
other compositions as seen in Figure 9.

Characteristics of Debris Avalanche
Deposits
Irrespective of the composition of the collapsed volcano, VDADs
are composed of detritic volcanic material, i.e., coherent,
consolidated or poorly consolidated fragments of the volcanic
edifice (Glicken, 1991). They correspond to chaotic breccias, with
extremely variable grain size (size from a few micrometers to
blocks >10 m), and a main sandy grain size, without internal
structures (Figure 6A; Leyrit, 2000). Blocks (blocks are 1–100
m size; megablocks are >100 m size; Figure 10A) and clasts
(clasts are 2 mm–1 m size; megaclasts are >1 m) use to show
jigsaw cracks (Figure 10B) and the matrix (1 µm–2 mm size)
forms mixed facies when combined with clasts (Figure 10C), or
matrix facies if it represents the dominant fraction in the deposit
(Dufresne et al., 2021). The surface of the deposit is usually
hummocky (Figure 10D; Ui, 1983; Bernard et al., 2021; Dufresne
et al., 2021). VDADs are described in terms of their characteristic
facies (Ui, 1983; Glicken, 1991, 1996; Palmer et al., 1991; Capra
et al., 2002; Scott et al., 2001; Roverato et al., 2011; van Wyk de
Vries and Davies, 2015; Dufresne et al., 2021). The mobility of
VDADs can be expressed as H/L ratio (height loss v/s run out
distance, i.e., coefficient of friction).

In Guatemala, La Democracia (Late Pleistocene) and Late
Holocene Pacaya VDADs are characterized by hummocky
surface, and volumes of 2.4 and 0.65 km3, respectively. La
Democracia contains exclusively mafic clasts (basalts and basaltic
andesites), and hummocks are up to 40 m high, mainly
distributed in the margins of the deposit (Vallance et al.,
1995). The Pacaya VDAD (Figure 10A) is also characterized by
mixed facies containing homogeneous basaltic jigsaw-fit blocks,
disturbed pyroclastic sequences and pumices incorporated by the
ingestion of pre-collapse ignimbrites in a sandy-grain size matrix
and hummocks with heights between 5 and 15 m (Kitamura and
Matías, 1995; Vallance et al., 1995). Another two massive basaltic-
andesite VDADs are recognized at Sangay volcano; older-S1,
250–100 ka, and younger-S2, about 30 ka, and they involve 29 and
32.5 km3 of material, from which S2 is among the most significant
volcanic avalanches in the world associated with continental arc
volcanoes (Valverde et al., 2021). In S2 at least 541 hummocks
have been identified and they have heights of 2–40 m, with largest
sizes observed at 40–50 km from the vent (ibid). The presence
of hummocks, block facies and metric jisaw-fit clasts is also
characteristic at the small volume (0.69 km3) 320 ± 70 BP VDAD
of Callaqui (Polanco and Naranjo, 2008). Another remarkable
example corresponds to the mafic VDADs of Kambalani volcano
(Kamtchatka; 6.3 and 6.0 ky BP) which contain containing mafic
lava blocks and splintered scoria, which are supported in a minor
amount of matrix, facies with dominant clay-sized material and a
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FIGURE 8 | Morphological features related to sector collapses in basaltic volcanoes (A) Pacaya volcano (Guatemala); (B) Anak Krakatau (Indonesia);
(C) Oshima-Oshima volcano (Japan); (D) Sakaja volcano (Aleutians); (E) Antuco volcano (Chile), and (F) Adagdak volcano (Aleutians) with multiple collapse scars.
Individual authors of selected field photos are indicated in the figure. Red dashed lines show the scar of these collapses. Photo (A) by CONRED, and (E) by
Constanza Jorquera. (B–D,F) image source is Google Earth.

FIGURE 9 | Plot of the H/L ratio v/s volume for VDAD deposit sourced from basaltic volcanoes. The field for non-volcanic and planetary landslides is indicated. The
plot and fields are modified from van Wyk de Vries and Davies (2015). Original data is found in Supplementary Table 2. All small landslides in mafic volcanes fall in
the field of non-volcanic landslides, while all sector collapses are in the same field than any other sector collapse irrespectively of the composition of the failed
volcanic edifice.
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FIGURE 10 | Debris avalanche deposits (DADs). (A) VDAD from Pacaya (Guatemala) 1 kyr BP sector collapse, with the presence of metric clasts. Scale shovel
indicated by the yellow square. (B) Jigsaw-fit clast and (C) matrix facies of the Antuco (Chile) VDAD. Hummocky surface left by the 90–20 kyr BP sector collapse of
Planchón volcano (Chile). (E) Kilometric megablock (toreva) of the Antuco volcano sector collapse (Chile). Photo (A) was provided by Shigeru Kitamura and photos
(B–E) by Jorge Romero.

zone enriched in pumice clasts picked up from older ignimbrites
(Ponomareva et al., 2006). The youngest of these deposits is
directly overlaid by a mafic PDC deposits. In Japan, two
well-studied VDADs sourced from dominantly mafic volcanoes
provide good constrains on their overall characteristics: The c.16
ka Zenkoji deposit from Usu volcano (0.3 km3; Goto and Tomiya,
2019) and the 2.9 ky BP Gotemba debris avalanche deposit (Goda;
1.76 km3) from Mt. Fuji (Miyaji et al., 2004). Zenkoji VDAD
has hummocky surface and reaches 6.5 km of subaerial run out,
entering the sea; block facies dominate, and jigsaw-fit blocks
correspond to pre-collapse basaltic andesite from Usu, ignimbrite
and fluvial fragments ingested from the soft basement (Goto and
Tomiya, 2019). Gotemba VDAD resulted from the collapse of
Ko-Fuji (Older Fuji; Japan) and is composed of blocks, showing
jigsaw cracks, along with smaller blocks ranging from several tens
of centimeters up to 1 m in diameter, with a matrix composed
of a mixture of smaller pieces of blocks and ash-sized materials,
all of them corresponding to altered gray basaltic lava, weathered
tephra including red scoria and white clay (Miyaji et al., 2004).
This deposit has also a hummocky surface, reaching 24 km
in distance and its H/L is estimated at 0.113 (Supplementary
Table 2; Yoshida et al., 2012). It seems the presence of megablocks
(intact fragments of the collapsed edifice) is not common,
however, the VDAD of Antuco volcano (7.0–4.0 cal. ky BP, c.
5 km3) develops a toreva/block facies in the most proximal

region (<4 km distance from the vent; Figure 10E), in part
represented by a kilometric fragment named “Cerro Condor”,
while at larger distances the avalanche develops mixed facies and
matrix facies with jigsaw fragments an metric blocks (Lohmar,
2000; Moreno et al., 2000; Clavero and Godoy, 2010; Romero
et al., 2021). From the statistical comparison of both Zenkoji
and Gotemba deposits with other five andesitic VDADs, by
analysis the size distribution of hummocks with distance from the
source, the data show little or no difference between them, thus
suggesting similar physical characteristics despite compositional
variations and size distribution only correlated to the mobility
of the avalanche (Yoshida et al., 2012). In this sense, the most
important factor in controlling flow mobility is the proportion
of fine grained material (Masson et al., 2002) which in turn is
related to the nature of the failed volcanic edifice: volcanoes
with higher proportions of pyroclastic materials will allow grater
run-out distances than those mainly composed of lava. We can
assume that mafic volcanoes may have a considerable proportion
of tephras in the edifice; however, this condition is also present in
many intermediate or acid volcanoes, and does not constitute a
significant difference.

Depending on the confinement of the avalanche, the resultant
VDAD deposits may distribute their facies in a longitudinal
arrangement with a proximal-to-distal textural variation (when
confined to valleys), or display a fan-like arrangement of facies
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at open areas (see Palmer et al., 1991). With an exceptional high
mobility, the Río Teno VDAD (Planchón) is a unique case study
as the fall height is estimated at 3,700 m and a run out distance of
95 km, with an H/L of 0.03 (Naranjo et al., 1999; Scott et al., 2001;
Tormey, 2010). This deposit is confined to a narrow Andean
valley draining to the west, and the majority of hummocks are
distributed in the margins of the channelized flow, and at the
extensive fan formed at the foothills of the Andes (McPhail, 1973;
Naranjo et al., 1999).

Data collected within this work (Supplementary Table 2;
Figure 9) show both landslides and sector collapses in mafic
volcanoes display a reverse correlation between their H/L values
and the volume of DADs (105–1010 m3; Figure 9); H/L values
for small landslides range between 0.3 and 0.6, while typical
sector collapses vary from 0.03 to 0.17. This relationship implies
a greater mobility of those debris masses with increasing
slid volume, and has no significant difference with VDADs
from volcanoes with other geochemical compositions rather
than mafic ones.

Overall Impacts
Syn- and Post-collapse Eruptive and Magmatic
Activity
The pressure drop caused by sector collapses (Manconi et al.,
2009) may trigger eruptions by either sudden decompression
of the hydrothermal system, shallow magma or by initiation
of renewed magma ascent (Watt, 2019), but also to suppress
an ongoing eruption (Pinel and Albino, 2013). For instance,
“Bandai-type” collapses are entirely non-magmatic in nature, but
may be accompanied by phreatic explosions as hydrothermal
system is decompressed; non-juvenile tephra fallouts (106–
108 m3) are typically emitted, and then the activity can be
followed by magmatic or phreatomagmatic eruptions. This may
be the case of Antuco, where the VDAD does not contain juvenile
material, but diluted PDCs overlie the collapse sequence (Moreno
et al., 2000; Romero et al., 2021).

The effect of decompression in hydrous basaltic melts
includes volatile (i.e., H2O and CO2) oversaturation, degassing,
crystallization and cooling (Pichavant et al., 2013; Arzilli et al.,
2015, 2019 and references therein). Isothermal (T of 1,025◦C)
basaltic andesite rapid magma decompression experiments (from
150 MPa to 100, 65, 42, 21, and 10 MPa) of Shea and Hammer
(2013) show that the crystallizing textures are comparable to
those observed by cooling. Crystallinity may reach ∼30% below
40 MPa, with an important effect on magma rheology, thus
affecting degassing efficiency, and finally affecting explosivity
(Lindoo et al., 2017; Arzilli et al., 2019). Apart from the
crystal fraction, bubble nucleation also affects magma rheology
(rigid spherical bubbles increase bulk viscosity while deformable
bubbles reduce it; Giordano, 2019). One of the most immediate
volcanic phenomena related to the rapid decompression of
shallow magma during a sector collapse may be a blast (if a
collapse occurs during an eruption or when magma is within
the shallow conduit), which is caused by the rapid collapse
of an inclined explosive column resulting from instantaneous
decompression initiated by lateral collapse. Blasts form relatively

dense, density-stratified and grain-size-stratified PDC (Belousov
et al., 2007). As blasts require high viscosity magmas to be
formed (i.e., andesitic to rhyolitic; Belousov et al., 2020) there
are very few examples in mafic systems, and such processes may,
in general, be more common in volcanic systems characterized
by more evolved magmas. They may, however, occur in
basaltic systems erupting high-crystallinity magma (Kitamura
and Matías, 1995; Vallance et al., 1995; Natland and Atlas, 2003;
Pallister et al., 2012).

Available examples of mafic syn-collapse magmatic eruptions
include Secche di Lazzaro phreatomagmatic eruption (Stromboli)
and its related PDCs during the Neostromboli sector collapse
(6 ky BP) (Bertagnini and Landi, 1996; Giordano et al., 2008;
Petrone et al., 2009), the 1888 collapse of Ritter Island followed
by a powerful submarine explosive eruption triggered by collapse
(Papua New Guinea; Watt et al., 2019), or the 23 December
2018 collapse of Anak Krakatau (Williams et al., 2019), which
was immediately followed by intense surtseyan eruptions with an
elevated magma flux and gas release relative to typical historical
eruptions (Gouhier and Paris, 2019). Additional evidence of
syn-collapse explosive activity, constrained by the existence of
pyroclastic deposits directly overlying VDADs, is found in Sajaka
and Kanaga (Aleutians), Oshima-Oshima island in Japan, Pacaya
1 ka (Guatemala), where an ongoing Strombolian eruption (unit
Pc-t5a) became more intense after the lateral collapse (c. 0.6 km3)
(Kitamura and Matías, 1995; Vallance et al., 1995; Coombs et al.,
2007; Satake, 2007). Another potential case is the 7–4 ka sector
collapse of Antuco volcano (Chile; 5 km3) which was apparently
followed by a Plinian tephra fallout dispersed eastward, and
westward stratigraphy includes massive PDCs and subsequent
lava flows (Moreno et al., 2000; Clavero and Godoy, 2010;
Romero et al., 2020c). However, classifying these eruptions as
“syn-collapse” is a difficult task if the timing of these stratigraphic
events is not well constrained.

The extrusion of lava domes or effusive eruptions, soon after
a sector collapse without any syn-eruptive activity, are usually
called “Unzen-type” or “Mayu-Yama” (Ui, 1989). Again, effusive
eruptions of large volume may occur in mafic edifices, in a
similar way to those observed in more evolved systems. A good
example of this type of collapse may be that of the basaltic
Planchón volcano (SAVZ; Chile-Argentina) about 90–20 ky BP,
which produced a new volcano (Planchón II) fundamentally
formed by basaltic lava flows, some of them up to 19-km-
long, right on top the collapsed edifice (Naranjo et al., 1999;
Naranjo and Haller, 2002).

Several processes have been recognized as indicators of
a response of a magma plumbing system to decompression
following lateral collapse (cf. Watt, 2019), including shifts
toward more mafic erupted compositions, the eruption of
anomalous magma compositions, changes in eruption rates and
the migration of vents. Some of these factors may be expected to
be less recognizable in mafic systems, given their more restrictive
compositional ranges and that they are generally associated
with a less well-developed shallow crustal storage and plumbing
system (which is the part of a plumbing system likely most
strongly influenced by surface loading and unloading associated
with edifice growth and destruction; cf. Pinel and Jaupart, 2005;
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Pinel and Albino, 2013). Nevertheless, examples such as those
at Ritter Island (Watt et al., 2019) and Stromboli (Petrone
et al., 2009), cited above, indicate that mafic systems may be
just as susceptible as more evolved systems to being modulated
by surface loads.

The reorganization of the plumbing system after lateral
collapse has been associated with main vent migration and a new
arrangement of dikes. Even before collapse, a single outward-
creeping flank is sufficient to modify the entire rift architecture
of a volcano (Walter and Troll, 2003). In mafic volcanoes,
new intrusions will tend to be oriented parallel to the collapse
scar following the un-buttressed flank (Figure 9; Tibaldi, 2004;
Acocella and Tibaldi, 2005); the dikes outside the ridge generally
dip outward, while in the collapse scar and along the scar side,
there is an important deviation from the ridge trend where dikes
are found en échelon and strike oblique to the scar wall (Walter
and Troll, 2003; Delcamp et al., 2012, 2018). The location of
the main vent usually changes toward the collapse depression
(Figure 9; Tibaldi et al., 2008; Maccaferri et al., 2017) by deflecting
the pathways of magmatic intrusions underneath the volcano,
which results in the formation of a new eruptive center within
the collapse embayment. Evidence reported from Sajaka, Kanaga,
Great Sinkin (all of them in the Aleutians), Planchón (SAVZ),
Fuego (Guatemala), and Stromboli (Italy), shows that the shift
in the location of the main vent after the sector collapse is
commonly in the order of a few hundred meters to a few
kilometers (1–3 km) (Supplementary Table 2). However, this
pattern depends on the local tectonic stress, which may be large
enough to mask the unloading effect of the collapse (Maccaferri
et al., 2017). Particularly, the Neostromboli cone shows summit,
flank and satellite vents and sheet intrusions with different
geometry and location through time, reflecting the interplay of
regional tectonics, precursory instability processes and volcano
load, in addition to petrogenetic changes after its sector collapse
(Vezzoli et al., 2014).

In terms of changes to erupted compositions, post-collapse
shifts in activity may imply compositional changes driven by
magmatic processes related to decompression (Supplementary
table 2) which result from: (1) renewed replenishment of the
reservoir (i.e., its initiation or increase in the supply rate) from
a deeper source, or (2) the eruption of denser, and hence
primitive, magma which otherwise would have stalled at shallow
depth (Pinel and Jaupart, 2005). The effusion of compositionally
anomalous lavas (e.g., Ritter Island or Antuco; Watt, 2019; Watt
et al., 2019) is explained by mixing between pre-existing melts
and renewed mafic inputs. Moreover, a rapid regeneration of the
edifice has been reported (0.6–10 km3/k.y) in mafic volcanoes and
is accompanied by more mafic products lasting 103–104 years,
as in Stromboli, Antuco, Ritter Island, and Oshima-Oshima
(Yamamoto, 1988; Tibaldi, 2004; Martínez et al., 2018; Watt,
2019; Watt et al., 2019). Other volcanoes do not show apparent
compositional changes, as Planchon II, the products of which are
very similar in composition compared to that of Planchón 1 (pre-
collapse). As for other types of edifice, there is not an entirely
consistent pattern that has emerged in terms of the magmatic
response to collapse in mafic edifices. This response is likely
dependent on the spatial organization of the plumbing system

and the status of the system at the time of collapse (e.g., whether
shallow, eruptible magma is present), although a similar array of
behaviors has been observed across all volcano types.

CONCLUDING REMARKS AND FUTURE
RESEARCH

In this review, we have provided evidence on the susceptibility
volcanoes with mafic composition to collapse, with the particular
focus on systems dominated by mafic (basaltic and basaltic
andesite) products. Small monogenetic volcanoes (i.e., <1 km3)
are unstable due to their rapid building and can produce small
landslides affecting their structure, producing characteristic
horseshoe-shaped morphologies. In the case of large polygenetic
volcanoes (>1 km3), particularly stratovolcanoes, they
experience a comparatively short-lasting evolution (104–
106 years) compared to counterparts of intermediate-to-silicic
compositions, and produce both interbedded effusive and
explosive deposits with overall homogeneous composition which
rapidly accumulate near the vent to produce gravitationally
unstable materials. These conditions facilitate the occurrence
of small landslides (<0.1 km3) involving valleys clogged by
volcaniclastic materials and unstable carapaces of recently
erupted volcanics in the upper part of the cone.

Key characteristics to increase volcanic instability at mafic arc
stratovolcanoes are:

1 Frequent sheet-like intrusion of magmas in the form of
dikes and sills, accompanied by intense deformation and
seismicity (up to Mw 7) to increase pore fluid pressure
causing strength drop.

2 Hydrothermal systems at shallow levels (∼1 km) in the
edifice, especially at volcanoes with sporadic magma flux
and/or geothermal manifestations (e.g., active acid lakes
and/or solfatara fields) producing alteration of basaltic
rocks with mineral assemblages including smectites,
zeolites, calcium silicates, calcite, pyrite, and quartz.

3 Large volcanic edifices with slopes near the critical
angle (30–40◦), built on a weak substratum, with
evidence of spreading.

4 Volcanoes lying over active tectonic fault systems,
especially in transtensional settings, subject to internal
extension and magma intrusion through sigmoidal
faults, producing unstable flanks normal to the
strike of these dikes.

5 Volcanic edifices subject to the effects of glacial retreat,
tropical storms or intense seismicity.

All of these factors of instability may be also observed in
other non-mafic edifices, thus we suggest that these conditions
are enhanced by rapid construction in mafic volcanoes, but
are not exclusive of mafic volcanoes. In fact, we are not able
to say that mafic volcanoes are more prone to collapse than
other intermediate or silica rich volcanoes at arc settings, as
it will require a detailed research on the relation between
sector collapse and the full spectrum of magma compositions.
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In this sense, at least a dozen historical cases of sector collapse
have been provided for andesite volcanoes by Voight (2000).
However, we can conclude that both historical accounts and
geological evidence provide convincing proofs of recurrent (and
sometimes repetitive) large-scale (>0.5 km3) lateral failure of
mafic stratovolcanoes, even in short time-scales. Some of these
sector collapses involved a volume of tens of km3, and produced
notable collapse scars of few km wide. The related VDADs are
similar in terms of internal architecture, size and mobility to
those sourced from intermediate or silicic volcanoes; however,
a few continental examples are outstanding in terms of their
extension and volume: (1) one of the longest run-outs reported
in the literature achieved by the Planchón Teno VDAD (Chile,
95 km; McPhail, 1973; Naranjo et al., 1999) which is an example of
a confined debris avalanche (Tost et al., 2015) in Andean Valleys;
and (2) two mafic VDADs from Sangay volcano (Ecuador)
which are among the most significant in the world, and they
reached up to 60 km from the source despite they are unconfined
(Valverde et al., 2021). Therefore, it is necessary to assess sector
collapse hazard from rapidly growing mafic volcanoes, using
field mapping of ancient VDAD deposits, implementing detailed
geotechnical evaluations (Voight, 2000; Apuani et al., 2005; del
Potro and Hürlimann, 2009; Schaefer et al., 2013, 2015) and
carrying out instability monitoring and landslide prediction, as
it has been developed for some active mafic volcanoes in the
world (Solaro et al., 2010; Intrieri et al., 2013; Nolesini et al., 2013;
Poland et al., 2017; Schaefer et al., 2019).

During and after sector collapses, the decompression
of volatile-rich basaltic melts may trigger a sequence of
paroxysmal explosive eruptions, which may often sample more
differentiated products; these deposits have been reported but
rarely documented in detail. Comprehensive stratigraphic and
geochronologic studies are necessary to better constrain the
relationship between these large sector collapses and subsequent
explosive eruptions at mafic volcanoes. In addition, coupled
petrological observations, numerical and analog models may
greatly contribute to assess the decompression effect of basaltic
melts under natural conditions modulated by lateral collapses
(Di Muro et al., 2021a). Moreover, post-collapse activity is
generally related to rapid edifice regeneration by renewed
replenishment of the reservoir, accompanied in some cases by
changes in the architecture of the plumbing system. Improving
the knowledge about these short and long-term reactions of

shallow magmatic systems is fundamental for post-collapse
volcano hazard assessment. Comparing these findings with
the existing knowledge about sector collapses at oceanic mafic
volcanoes may provide a solid framework to understand the
logics behind edifice instability, lateral collapse and post-collapse
evolution at all mafic volcanoes, with applications even at a
planetary scale.
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