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INTEGRATING GEOSTATISTICAL MAPS AND
INFECTIOUS DISEASE TRANSMISSION MODELS USING

ADAPTIVE MULTIPLE IMPORTANCE SAMPLING

By Renata Retkute∗,†, Panayiota Touloupou‡, Maŕıa-Gloria
Basáñez§, T. Déirdre Hollingsworth¶ and Simon E.F. Spencer‖

University of Cambridge†, University of Birmingham‡, Imperial College
London§, University of Oxford¶ and University of Warwick‖

The Adaptive Multiple Importance Sampling algorithm (AMIS)
is an iterative technique which recycles samples from all previous
iterations in order to improve the efficiency of the proposal distri-
bution. We have formulated a new statistical framework, based on
AMIS, to take the output from a geostatistical model of infectious
disease prevalence, incidence or relative risk, and project it forward
in time under a mathematical model for transmission dynamics. We
adapted the AMIS algorithm so that it can sample from multiple tar-
gets simultaneously by changing the focus of the adaptation at each
iteration. By comparing our approach against the standard AMIS al-
gorithm, we showed that these novel adaptations greatly improve the
efficiency of the sampling. We tested the performance of our algorithm
on four case studies: ascariasis in Ethiopia, onchocerciasis in Togo,
human immunodeficiency virus (HIV) in Botswana, and malaria in
the Democratic Republic of the Congo.

1. Introduction. Geostatistical modelling has been applied to map a
range of infectious diseases at high spatial resolution and multinational scale;
examples comprise: malaria (1), soil-transmitted helminthiasis (2), leishma-
niases (3), onchocerciasis (4), dengue (5), human African trypanosomiasis
(6), HIV (7), and diphtheria-pertussis-tetanus vaccine coverage (8). These
maps are made by averaging over many spatially continuous surfaces, which
are constructed using geo-positioned survey data, ecological covariates and
spatial correlations (9; 10; 11).

Transmission dynamic models have successfully been utilized to evaluate
the population dynamics of infectious diseases and assess the impact of in-
terventions (12). It is a common practice to estimate transmission model
parameters based on geographically-located data, but geostatistical maps
provide a unique opportunity to parameterize transmission models at na-
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tional or even continental scales. However, it is challenging to explore the
whole parameter space efficiently, especially when many possible parame-
ter combinations can produce similar values of model output. Generating
a large number of parameter sets and running simulations based on these
parameters would require substantial computational resources.

In this work we develop a statistical framework based on the Adaptive
Multiple Importance Sampling algorithm (AMIS; 13) for effective integra-
tion of geostatistical maps and infection transmission models. We investi-
gate the performance of AMIS on four case studies: the soil-transmitted
nematode Ascaris lumbricoides (causative of ascariasis, a soil-transmitted
helminth) in Ethiopia; the filarial parasite Onchocerca volvulus (causative
of onchocerciasis / river blindness) in Togo; HIV infection in Botswana, and
infection by the protozoan Plasmodium parasite (causative of malaria) in
the Democratic Republic of the Congo (DRC). The results show that the
proposed framework can successfully be applied for integrating geostatistical
maps and transmission models. The resulting combined output constitutes
a geographical projection illustrating how the map will evolve through time
as well as how the algorithm can be extended to sample parameters in the
presence of multiple sampling times or post-control data (i.e. data collected
once disease control interventions have been implemented).

2. Background and methods. Integrating high-resolution geostatis-
tical maps and disease transmission models requires exploring the whole
parameter space efficiently, especially when many possible parameter combi-
nations can produce similar values of model output. We propose a statistical
framework based on the Adaptive Multiple Importance Sampling (AMIS) al-
gorithm (13) to target important and under-explored areas of the parameter
space based on high-resolution nation-wide maps of infection prevalences.

2.1. Disease mapping. Model-based geostatistics allows the study of ge-
ographical variation in disease prevalence or incidence, even when the avail-
able data are limited to observations from a finite number of sampled lo-
cations. High resolution maps can be constructed using spatially referenced
data: including the number of individuals tested, the number who tested
positive for disease, and geographical coordinates of the sampled (14). By
modelling the spatial-autocorrelation between surveys it becomes possible
to interpolate the prevalence between sampled locations. Bayesian methods
are frequently employed to fit geostatistical models, and provide a poste-
rior distribution over the prevalence map. This is usually represented by M
sampled maps capturing the autocorrelation between locations. Further, we
will call this set of M maps as our “data”.
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2.2. Transmission modelling. Mathematical models of disease transmis-
sion are frequently employed to describe and understand infection dynamics,
provide predictions of the future burden of disease and to assess and com-
pare the effectiveness of intervention strategies (15; 16; 17; 18). To capture
the realistic disease dynamics, transmission models may need to describe a
range of biological factors and population structures such as community and
age structure, population heterogeneity in risk, vector dynamics, pathogen
lifecycles, seasonality, changes immunity or behaviour and public health in-
terventions. This can lead to very complex models with large numbers of
parameters. Fortunately, many of these parameters can be informed from ex-
isting scientific literature, laboratory studies or other data sources, e.g. cen-
sus data. The small number of model parameters remaining can then be
fitted to the low dimensional data on observed cases that is typically avail-
able. In this study our focus is on estimating a small number of transmission
model parameters that are likely to vary spatially, such as the infection rate,
vector-to-host ratio and heterogeneity or parasite aggregation parameters.

2.3. Adaptive Multiple Importance Sampling. Suppose that we need to
sample from a complex target distribution π. Importance sampling is based
on using weighted samples from a proposal distribution Φ, i.e. θj ∼ Φ. The

corresponding importance weights are wj =
ψ(θj)
φ(θj)

, where ψ(θ) and φ(θ) are,

respectively, the target and the proposal density functions (19).
Importance sampling has been previously used to obtain probabilistic pro-

jections of HIV prevalence (20) and to link geostatistical maps and transmis-
sion models of lymphatic filariasis (21). Veach and Guibas (22) proposed the
deterministic multiple mixture to pool together importance samples from dif-
ferent proposal distributions. In this case, the importance samples θij ∼ Φi,
(1 ≤ i ≤ I, 1 ≤ j ≤ Ni) and the corresponding importance weights are
calculated based on the mixture of weights (13) given by,

wij =
ψ(θij)

1
N1+···+Ni

∑t
l=1Nlφl(θ

i
j)
.(2.1)

This idea was extended by Cornuet and co-authors (13) and Raftery and
Bao (23), who proposed using the deterministic multiple mixture formula
to construct importance proposals sequentially and adaptively. Firstly, the
importance weights for current iteration, i, are calculated, while the impor-
tance weights for previous iterations 1 ≤ u ≤ i− 1 are re-calculated, based
on all proposals up to the iteration i. Second, samples from all iterations are
used to construct the next proposal distribution.
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Adaptive multiple importance sampling has been utilised in a variety of
research fields, including population genetics (24), environment illumination
computations (25), and signal communications (26).

The novelty of our study comprises: (i) applying the AMIS approach to
real-world geospatial data; (ii) applying AMIS to multiple targets simul-
taneously via the same proposal, and (iii) working with a ‘moving’ target
which changes with each iteration of AMIS. As there is a lack of studies on
integrating geostatistical maps and transmission dynamics epidemiological
models, we believe that the proposed framework will be a valuable addition
to the literature from both a theoretical and a practical perspective.

2.4. Iterative sampling based on a geostatistical map. We assume that a
map has I pixels (or grid cells), and each pixel has M draws of characteristics
in which we are interested, e.g. infection prevalences, annual incidence or
number of cases. From here onward, we will assume that we are dealing
with the prevalence of infection. Suppose we have an observed prevalence
matrix Q = (ql,m)L×M , where each row represents a pixel, and each column
represents a sampled surface from a geostatistical map.

Projections of infection prevalence can be quantified using a mathematical
model (15; 16; 17; 18). Suppose that we have a mathematical model which
we define as F (θ), and this model translates the parameter space onto the
prevalence space [0, 1] with individual parameter vector θj corresponding to
prevalence pj , i.e. F (θj) = pj .

At iteration i, Ni parameters are sampled from a proposal density φi and
denoted by θj , for j =

∑i−1
u=1Nu + 1, . . . ,

∑i
u=1Nu. In the first iteration we

use the prior as the proposal, so φ1(θ) = π(θ). Second, the transmission
model is used to calculate the prevalence corresponding to the sampled pa-
rameters, given by pj = F (θj). Next, parameter vector j is weighted by
its importance weight and then reweighted for every pixel l, so that the
weighted distribution of simulated prevalences resembles the distribution of
observed prevalences at that pixel. This reweighting is performed using an
empirical version of the usual change of measure formula (Radon-Nikodym
derivative), as described in (21). The weight for parameter vector j in pixel
l at iteration i is therefore given by,

wilj =
fl(pj)

g(pj)

π(θj)
1

N1+···+Ni
∑i
u=1Nuφu(θj)

,

where fl(pj) and g(pj) are proportional to the probability density of hav-
ing prevalence pj under the geostatistical model and the simulation model,
respectively, and so f/g is proportional to the Radon-Nikodym derivative.
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Both probability densities are unavailable and must be estimated using an
empirical alternative given by the height of the histogram bar of width δ
centred at pj (21),

fl(pj) =
1

δM

M∑
m=1

I (pj − δ/2 ≤ ql,m ≤ pj + δ/2) ,

g(pj) =
1

δU

N1+...+Ni∑
u=1

I (pj − δ/2 ≤ pu ≤ pj + δ/2)π(θu)
1

N1+···+Ni
∑i
w=1Nuφu(θw)

,

where U =
∑N1+···+Ni
u=1

π(θu)
1

N1+···+Ni

∑i

w=1
Nwφw(θu)

.

These weights are normalised to give ŵtlj =
wilj∑N1+···+Nu

u=1
wi
lu

for l ∈ {1, . . . , L}

and j ∈ {1, . . . , N1 + · · ·+Ni}.
We use Kish’s effective sample size (ESS; 27) as a measure of the quality

of representation of the pixel’s prevalence distribution by the simulations.
We denote the ESS for pixel l after iteration i as,

ESSil =

N1+...+Ni∑
j=1

(
ŵtli

)2−1 .
We set a required ESS for all of the pixels, denoted by ESSR. We call pixels
‘active’ if they have an ESS below the target, and use the weights for the
active pixels to design the proposal for the next iteration of the AMIS al-
gorithm. This targets sampling towards areas of the parameter space that
benefit pixels that have not yet reached the required ESS. Let the index set
of the active pixels be denoted by Ai = {l : ESSil < ESSR}.

More precisely we use the mean weight of each simulation over the active
set to determine the next proposal distribution. Let w̄ij = 1

|Ai|
∑
l∈Ai ŵ

i
l,j

be the mean weight in the active set for simulation j. A suitable proposal
can be found by fitting a density to the weight samples (θj , w̄

i
j), for j ∈

{1, . . . , N1+ · · ·+Ni}. The algorithm continues until all pixels meet the ESS
requirement or the maximum number of iterations, I, have been completed.
Pseudo code for the algorithm is shown in Algorithm 1.

2.5. Notes on Algorithm 1.

1. In practice, the normalising constants involving δ, M and K on the
densities fl(pj) and g(pj) in the empirical Radon-Nikodym derivative
do not need to be calculated as they disappear when the weights are
normalised in Step 5.
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Algorithm 1 AMIS for integrating geostatistical maps and transmission
models.
1: Set i = 1 and let A1 = {1, . . . , L} be the set of active pixels.
2: Sample Ni parameter vectors from proposal density φi(θ) and label them θj , for j =∑i−1

u=1
Nu + 1, . . . ,

∑t

u=1
Nu. If i = 1, φi is the prior distribution: φ1(θ) = π(θ).

If i > 1, φi is a density fitted to the weighted sample from the previous iteration:{
(θj , w̄

i−1
j ) : j = 1, . . . , (N1 + · · ·+Ni−1)

}
.

3: Simulate the transmission model for the new parameter vectors: pj = F (θj).
4: Calculate weights for parameter vectors j ∈ {1, . . . , N1 + · · ·+Ni}, for each pixel with

index l ∈ {1, . . . , L},

wilj =
fl(pj)

g(pj)

π(θj)
1

N1+···+Ni

∑t

u=1
Nuφu(θj)

,

where

fl(pj) =
1

δM

M∑
m=1

I (pj − δ/2 ≤ ql,m ≤ pj + δ/2) ,

g(pj) =
1

δK

N1+···+Ni∑
u=1

I (pj − δ/2 ≤ pu ≤ pj + δ/2)π(θu)
1

N1+···+Ni

∑i

w=1
Nwφw(θu)

.

Here I is the indicator function and K =
∑N1+···+Ni

u=1

π(θu)
1

N1+···+N1

∑t

w=1
Nwφw(θu)

.

5: Normalise weights for each pixel l ∈ {1, . . . , L},

ŵilj =
wilj∑N1+···+Ni

u=1
wilu

.

6: Calculate effective sample size (ESS) for each pixel l ∈ {1, . . . , L},

ESSil =

(
N1+...+Ni∑

j=1

(
ŵilj
)2)−1

.

7: Update the set of active pixels, Ai = {l : ESSil < ESSR}.
8: Calculate the average weight of parameter vectors based on individual weights of the

active pixels,

w̄tj =
1

|Ai|
∑
l∈Ai

ŵil,j .

9: Set i = i+ 1.
10: Repeat from step 2 until Ai is empty or I iterations have been completed.
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2. We have added a maximum number of iterations to the AMIS al-
gorithm because otherwise it is not guaranteed to finish, at least in
theory. As new simulations are added, it is possible for the ESS in a
particular pixel to go down, and so pixels may re-enter the active set
even after they have previously met the required ESS. This happens
when Kish’s ESS formula provides a poor estimate; for example, when
all of the simulations are given equally low weights. When new simu-
lations arrive in a high weight region, the ESS estimate drops sharply,
but these new simulations provide guidance for future proposals. In
practice we have not observed any problems in getting all of the pixels
to meet the ESS requirement.

3. For the algorithm to start successfully, it is desirable for the first itera-
tion to provide simulations covering the full support of the prevalence
distributions from the geostatistical mapping. Otherwise, there are re-
gions of the prevalence distribution that do not have simulations to
represent them. This limitation means that our approach will not suc-
ceed for high-dimensional parameter spaces.

4. Any attempt to represent a probability distribution by weighted sam-
ples is necessarily going to be an approximation. There are many pos-
sible choices for the form of the empirical Radon-Nikodym derivative
in Step 4 of the algorithm, and several options are discussed in (21), in-
cluding some variants that minimise certain measures of disagreement
and others that are faster to compute.

5. In most settings the largest computational cost associated with the
algorithm will be in simulating from the transmission model for each
parameter vector. Our algorithm is designed to reduce these costs, by
targeting simulations towards areas of the parameter space where they
will be most useful.

6. Although our algorithm is described in terms of a deterministic trans-
mission model F (θ), it can also be applied to stochastic models by sup-
plementing each parameter vector with an element ω from the prob-
ability space describing the stochasticity in the transmission model.
This leads to a deterministic relationship p = F (θ, ω). We illustrate
this in the supplementary Section C, with a stochastic transmission
model for malaria.

2.6. General implementation of Algorithm 1. To generate the adaptive
proposals in the examples that follow, we fitted a mixture of Gaussian dis-
tributions to the weighted samples. We then set the next proposal density
to be the equivalent mixture of t-distributions with 3 degrees of freedom.
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The t-distribution has heavier tails than the Gaussian distribution giving a
more robust importance proposal and providing capacity to capture a wider
range of targets (28). We used the R package mclust to fit the proposal dis-
tribution (29). The package uses an optimal number of cluster components
based on Bayesian Information Criterion (BIC; 30).

2.7. Incorporating data from multiple time points. Our proposed frame-
work can be naturally extended to the case where geo-statistical maps are
available at multiple time points s = 1, . . . , S. If we assume that the geo-
statistical maps from each time point are produced independently, weights
for pixel i ∈ {1, . . . , I} and parameter vector j ∈ {1, . . . , N1 + ...+Ni} will
be equal to,

wtl,j =

(
S∏
s=1

fl,s(pj,s)

gs(pj,s)

)
π(θj)

1
N1+..+Ni

∑i
u=1Nuφu(θj)

.

Again, these weights will favour parameter vectors producing simulated pro-
jections which are closer to observed prevalences at multiple time points.
This approach can be applied to multiple baseline prevalence maps as well
as to the incorporation of post-control maps.

Furthermore, if the geostatistical maps are not independent, but are fitted
to multiple time-points jointly, the original weighting formula can be used
to capture the spatial dependence between maps, simply by taking pj to be
the vector of prevalences from simulation j across time. However, produc-
ing transmission model simulations that match multiple time-points will be
extremely challenging and is likely to be an area for future research.

3. Applications. We applied AMIS to four case studies: ascariasis in
Ethiopia, onchocerciasis in Togo, HIV infection in Botswana, and malaria
in the DRC. The framework of the AMIS approach, and the description and
objectives of each case study are shown in Figure 1. To set up a case study,
three components are required in order to run the AMIS framework: geosta-
tistical map, parameter prior distribution and transmission model. We used
survey data (31) to produce a series of prevalence maps of Ascaris lumbri-
coides infection with different spatial resolutions and numbers of samples of
the observed prevalences at each pixel. For onchocerciasis, HIV and malaria,
we used publicly available maps (4; 7; 1). We have sampled parameters using
the AMIS framework and simulated projections for interventions: mass drug
administration (MDA) with ivermectin for onchocerciasis in Togo, and the
use of insecticide-treated nets (ITNs) for malaria in the DRC. For the latter,
we focused only on ITNs because the coverage of artemisinin combination
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Fig 1. (a) AMIS framework. (b) Description of case studies. The results of the ascariasis
and onchocerciasis analyses are presented in the main text; those for HIV and malaria are
in the online supplement.

therapies (ACTs) was very low in the DRC (1; 32). The analyses for HIV
and malaria are presented in the online supplement Sections B and C.

For all four case studies we set δ = 0.05, Ni = 1000, I = 30, and ESSR =
2000. Therefore the maximum number of sampled parameter vectors was
30,000.

3.1. Ascariasis in Ethiopia. Ascaris lumbricoides is an intestinal nema-
tode, also known as roundworm (33). It is estimated that 819 million people
worldwide are infected by A. lumbricoides (31).

3.1.1. Model and data. In this study we assumed that the mean number
of parasites is a parameter, and we use a simple mathematical relationship
between the prevalence and the mean intensity of infection, based on fitting
a negative binomial distribution to observed data on worm burdens (15),

(3.1) P = 1−
(

1 +
W

k

)−k
,

where W is the mean number of worms per host, and k describes the de-
gree of clumping of parasites within a population of hosts (meaning that
the distribution of worms per host is overdispersed compared to a Poisson
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distribution, with k being an inverse measure of overdispersion: the smaller
its value, the greater the aggregation of parasites among hosts (34)).

Data on Ascaris surveys for Ethiopia were downloaded from the Global
Atlas of Helminth Infection (London Applied & Spatial Epidemiology Re-
search Group, LASER; 31). The data consisted of longitude, latitude, num-
ber of school-aged children (SAC; 5–14 years old) examined, number of posi-
tives (for adult worm presence and prevalence prior to wide-spread deworm-
ing programmees (31). Entries with missing geo-location or prevalence values
were excluded from further analysis, leaving 290 survey values. We used the
INLA-R package (35) and a stochastic partial differential equation approach
(36) to produce national level prevalence maps. We incorporated spatial cor-
relation (non-stationary locally isotropic stochastic partial differential equa-
tion/Gaussian Markov random field model) and included elevation as an
environmental covariate (37) downloaded from the raster package (38).

We mapped Ascaris prevalence in Ethiopia at resolutions 5km×5km (L =
37, 695 pixels) and 10km×10km (L = 11, 369 pixels) and sampled 100, 500,
1000 and 2000 individual maps from the posterior distribution for both
resolutions. A map showing communities sampled in Ethiopia (31) and tri-
angulated mesh used to build a geostatistical model of Ascaris prevalence
in Ethiopia (35) are shown in Supplementary Figure S1.

3.1.2. Implementation of AMIS. A consistent relationship between mean
worm burden and prevalence of Ascaris lumbricoides infection has been ob-
served in a dataset collated from a range of geographically distinct human
communities (39). Therefore, we have tested the performance of the AMIS
framework when the prior of the parameters incorporates the dependence
between mean worm burden, W , and degree of parasite aggregation, k. We
have estimated the relationship between k and W using paired prevalence
and mean intensity data from (39). This has led to the following joint prior
for the parameters: uniform prior for log of the mean number of worms
log(W ) ∼ U [log(0.01), log(60)] and a Gaussian distribution for the degree
of clumping k|W ∼ N(0.3337 + 0.0171×W,σ(W )2) (Supplementary Figure
S2). Although typical values for mean worm burden are 10-20 (40), much
higher numbers have been observed in field conditions (15; 39). For details on
fitting procedure see Appendix A in the online supplement. The estimated
relationship between mean worm burden and degree of parasite aggregation
is shown in Supplementary Figure S2.

3.1.3. Results. Details of the map and the parameters sampled for reso-
lution 5km×5km and M = 2000 are shown in Figure 2. Firstly, we plotted a
map of mean prevalence for each pixel (fig. 2(a)), which ranged between 0.1
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Fig 2. Results for Ascaris lumbricoides in Ethiopia. (a) Map of mean prevalences con-
structed from survey data in Ethiopia (31). The resolution is 5km×5km and M = 2000.
Sampled communities and prevalences are shown in Figure S1. (b) Scatter plot of sam-
pled model parameters and corresponding prevalence. (c) Density of sampled parameters.
Prevalence and density distributions are shown as a function of log mean number of worms,
log(W ), and degree parasite aggregation, k.

and 0.55. Second, a histogram of sampled prevalences, colour coded accord-
ing to a proportion sampled at each iteration, is shown in Supplementary
Figure S3(a). Here, iterations 2 and above targeted prevalences mostly be-
tween 0 and 0.5, as this is the range of mapped prevalences of Ascaris (Sup-
plementary Figure S1(b)). Third, Fig. 2(b) shows prevalence as a function of
log mean number of worms, log(W ), and degree of parasite aggregation, k;
this function has a complex dependence with prevalences ranging from 0 to
1 as log(W ) or k increase. Finally, when we look at the density of sampled
parameters, the algorithm targeted areas which show the largest variability
in terms of simulated prevalences, i.e. along this contour (fig. 2(c)).

Supplementary Figure S4 shows how sampled values of log(W ) change
with each iteration. Prevalences corresponding to sampled parameters have
good agreement with observed values from (39).

We tested two alternative methods: based on sampling from the prior
only, and based on AMIS with |Ai| = L for all iterations. The numbers of
samples required to meet the ESS target for all pixels are given in Table
1. It can be seen that the adaptive version of AMIS (i.e. with set of active
pixels updated every iteration) outperformed other two methods and re-
quired around a third of sampled parameters. The two alternative methods
produced samples from different regions of parameter space (Supplementary
Figure S5). When sampling from the prior, we found that a histogram of
posterior prevalences had a “U-shape”, i.e. very low and very high values
of prevalences are over-sampled, which does not correspond to the mapped
prevalences (Supplementary Figure S1(b)). When sampling with the set of
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active pixels equal to all pixels, the algorithm targeted parameter regions
similar to those of Algorithm 1, but still required twice as many iterations.

Table 1
Number of iterations to achieve min(ESS) ≥ ESSR, with ESSR = 2, 000. Here P stands

for sampling from the prior only, S stands for standard AMIS with |Ai| = L for all
iterations, and A is based on Algorithm 1. Each iteration samples 1000 parameter sets.

M = 100 M = 500 M = 1, 000 M = 2, 000

L P S A P S A P S A P S A

11, 369 19 26 9 19 25 9 18 26 9 17 26 8

37, 695 20 26 9 19 25 9 18 26 9 18 27 9

3.2. Extending the algorithm for higher dimensions. We used a modified
A. lumbricoides model defined in Section 3.1 to investigate how the AMIS
algorithm performs when the number of parameters increases. We assumed
that the parasite has p−1 developmental stages or different phenotypes, and
that this has an additive effect on disease prevalence, i.e. the mean number
of worms per host is equal to a sum of the mean number of worms in each
developmental stage per host:

(3.2) P = 1−
(

1 +

∑p−1
i=1 Wi

k

)−k
.

This gives a total of p parameters (i.e. the mean number of worms for each
group p− 1, and the degree of clumping of parasites within a population of
hosts, k). To keep this illustrative example as close to a real application as
possible, we have run the analysis on a map of Ascaris prevalence in Ethiopia
(10km×10km resolution, L = 11, 369 pixels). We used the following joint
prior for the parameters: log(Wi) ∼ U [log(0.01), log(60)] and a Gaussian
distribution for the degree of clumping

k|(W1, . . . ,Wp−1) ∼ N

0.3337 + 0.0171×
p−1∑
i=1

Wi, σ

( p−1∑
i=1

Wi

)2
 .

We have run the AMIS algorithm with two fixed sample sizes: Ni = 1, 000
and Ni = 10, 000; and a sample size which increases with dimension Ni =
d × 1, 000. Table 2 shows how the number of iterations and total compu-
tational time (in hours) changed when the number of parameters d was
increased from 2 to 10. Calculations were run on a single Macbook Pro with
3.5 GHz 6-core Intel Processor. For this particular model, running simula-
tions is computationally cheap – to run 1000 simulations it takes approx-
imately 2 seconds. However, each iteration requires calculating weights for
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L = 11, 369 pixels across all sampled parameter sets. The number of itera-
tions required to achieve ESS≥ 2, 000 increased from 9 to 75 for Ni = 1, 000,
while run times increased from roughly half an hour to 52 hours. When we
increased the sample size to 10, 000 parameter sets per iteration, the num-
ber of iterations and computation time decreased significantly. Increasing
the number of simulations with increasing parameter dimension led to an
increasing number of iterations, with a greater than linear increase with di-
mension. For example, when running the algorithm for the model with 10
parameters, the number of iterations was reduced from 75 to 9, while the
total timing was reduced from 52 hours to 6 hours.

This case study indicates that the algorithm can be run successfully in
higher dimensions, but doing so requires more than linear increases in the
number of simulations. In this example the model simulations were very fast
to compute, and so most of the computational burden came from weight-
ing the simulations and calculating the ESS. For more complex and time-
consuming simulation models, a smaller Ni will be needed to minimise com-
putation time.

Table 2
Results the modified A. lumbricoides model with p parameters: number of iteration

required to achieve ESS> 2000, and total computational time.

Ni No.param. 2 3 4 5 6 7 8 9 10

1,000
Iterations 9 11 14 15 36 41 52 63 75
Simulations 9000 11000 14000 15000 36000 41000 52000 63000 75000
Time (h) 0.65 0.99 1.60 1.78 10.97 14.44 23.4 35.6 52.4

10,000
Iterations 2 2 3 5 6 6 7 7 9
Simulations 20000 20000 30000 50000 60000 60000 70000 70000 90000
Time (h) 0.46 0.47 0.94 2.44 3.46 3.47 4.61 4.61 6.01

d× 1000
Iterations 5 4 5 8 8 7 9 9 9
Simulations 10000 12000 20000 40000 48000 49000 72000 81000 90000
Time (h) 0.42 0.42 0.83 2.57 3.19 2.95 5.54 6.34 6.01

3.3. Onchocerciasis in Togo. Onchocerciasis is a filarial infection caused
by Onchocerca volvulus and transmitted among humans via the bites of
female Simulium blackflies. Onchocerciasis is responsible for skin disease,
visual impairment including blindness, and excess mortality, which may be
associated with epilepsy (41). Programs for the control and elimination of
onchocerciasis have been targeted to the areas most affected and great strides
have been made, but challenges remain to achieve elimination of transmis-
sion (41). Some of these include the lack of efficacious drugs to kill the adult
worms (which can live, on average, 10 years, but may live up to 15-20 years;
42). Annual or bi-annual mass drug administration (MDA) with ivermectin
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is the main intervention strategy, but vector control (treating the vector
breeding sites in fast flowing rivers) has also been used with success (43).
Targeting vector control activities effectively would necessitate an in-depth
knowledge of vector breeding site ecology, as well as a better understanding
of hydrological conditions in rivers (44; 45; 46).

3.3.1. Model and data. We simulated onchocerciasis transmission in com-
munities using the deterministic version of the EPIONCHO model (47). This
model includes: age and sex structure of the human population; age- and
sex-specific exposure to blackfly bites; dynamics of the mean number of fer-
tile and non-fertile female worms per host; mean number of microfilariae
per mg of skin in the human host and mean number of infective larvae per
blackfly vector. All parameters, except the annual biting rate (the number
of bites per person per year), abr, and k, the aggregation of adult worms,
were set as in the supplementary material of (47). The annual biting rate
determines the intensity of transmission and therefore the prevalence and
intensity of infection.

We used maps of baseline (pre-control) microfilarial prevalence (by skin
snip microscopy) for ages 5+ years at 5km×5km spatial resolution developed
in (4) for the area of the Onchocerciasis Control Programme in West Africa
(OCP). The data for Togo consist of M = 2, 000 samples for each pixel, with
each individual prevalence map consisting of I = 9, 360 pixels.

3.3.2. Implementation of AMIS. We set a uniform prior for the log of
the annual biting rate: log(abr) ∼ U [log(100), log(30, 000)] and a uniform
prior for the aggregation of adult worms k ∼ U [0, 3].

Regular distribution of ivermectin treatment in the form of MDA cam-
paigns is the main current strategy for onchocerciasis control. Although
vector control was also implemented in Togo during the OCP (1974-2002)
and in Special Intervention Zones (after OCP’s closure in 2002), we have fo-
cused on ivermectin MDA because no large-scale vector control is currently
implemented. As ivermectin is mostly microfilaricidal, and the microfilariae
(the adult parasite larval progeny) are responsible for morbidity and trans-
mission to vectors, this type of intervention reduces disease progression in
treated individuals and reduces transmission in the population. For each
sampled parameter vector, we have run projections for 15 years under two
levels of therapeutic coverage using the EPIONCHO model (47). In par-
ticular, we have simulated a coverage of 65% of the total population (the
minimum coverage recommended by the World Health Organization), and
an enhanced coverage of 80% (as an alternative treatment strategy (48), the
latter meaning that treatment is reaching nearly the entirety of the eligible
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Fig 3. Results for onchocerciasis in Togo. (a) Map of mean baseline prevalence (4). (b)
Scatter plot of sampled model parameters and corresponding prevalence. (c) Density of
sampled parameters. In (b) and (c), prevalence and density distributions are shown as a
function of log annual biting rate, log(abr), and the aggregation of adult worms, k.

population. In both cases, the proportion of systematic non-adherers was
set at 5%.

3.3.3. Results. Similar to the case of ascariasis (Section 3.1), there is a
strong heterogeneity in the spatial distribution of onchocerciasis prevalence
in Togo (Figure 3(a)). The mean microfilarial prevalence can reach levels
of up to 80% in holoendemic areas with high vector biting rates. Figures
3(b)-(c) show sampled parameter vectors and simulated prevalences. The
AMIS framework required 10 iterations to achieve ESS≥ ESSR in all pixels
(Supplementary Figure S3(b)). We can see that AMIS sampled most of
the parameters along a contour resembling an “L-shape” with quite narrow
regions corresponding to the largest variation of prevalences. A histogram
of simulated prevalences has a high frequency for values close to zero and
two peaks at around 0.25 and 0.8 (Supplementary Figure S3(b)).

We compared the impact of 15 years of annual ivermectin MDA with total
population coverage 65% and 80%. Figure 4 shows the reduction in micro-
filarial prevalence in the endemic areas 5, 10 and 15 years after the start
of MDA. Pre-control endemicity levels (i.e. pre-intervention infection preva-
lence and intensity) have been indicated as a crucial factor determining the
success of intervention strategies to achieve elimination of transmission (48),
with areas of higher baseline endemicity indicative of intense transmission
(higher basic reproduction ratio) due to high blackfly vector density, where
elimination is more difficult (in the absence of vector control). Furthermore,
a modelling study using the stochastic version of the model, EPIONCHO-
IBM, found that the resilience of the parasite population to MDA (i.e. the
ability to bounce-back following treatment) was markedly higher for stronger
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Fig 4. Comparison of the impact of ivermectin coverage levels on elimination of onchocer-
ciasis in Togo. The interventions compared are mass drug administration of ivermectin at
65% coverage, and mass drug administration at 80% coverage. Projections run using the
EPIONCHO model (47).

levels of exposure heterogeneity, i.e. lower values of k (49). Figure 5 shows
the temporal dynamics of microfilarial prevalence under annual ivermectin
MDA for three pixels corresponding to different levels of mean baseline mi-
crofilarial prevalence (0.8 for a hyperendemic/holoendemic situation; 0.5 for
a mesoendemic setting, and 0.3 for a hypoendemic scenario). First, it can
be seen that there is a good agreement between the mapped and simulated
baseline prevalences. Second, uncertainty is propagated with time and simu-
lations produce a wide range of projected prevalences after 15 annual rounds
of MDA, especially for the hyperendemic scenario. This is due to equal sam-
pling from different regions of the parameter space, where sets of {abr, k}
match similar levels of baseline prevalence but have their own characteristic
resilience to MDA. Uncertainty can be reduced by utilizing external data to
restrict parameter priors (as has been done in Section 3.1) or using post-
control maps within the AMIS algorithm (as was done in the HIV example
described in Section C of the supplementary information).
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Fig 5. Comparison of two strategies: minimum recommended 65% coverage of total pop-
ulation (top row), and enhanced 80% coverage as an alternative treatment strategy (bot-
tom row) for onchocerciasis control and elimination at three levels of baseline endemicity:
hyper-endemicity (left column), meso-endemicity (middle column) and hypo-endemicity
(right column). Projections were simulated using the EPIONCHO model (47). Mapped
modelled prevalences are shown in black (4). Figures show mean and 95% inter-quantile
range.

4. Discussion. Our proposed framework allows the distribution of preva-
lences from high-resolution maps to be projected forward into the future
under the transmission dynamics of complex infection transmission mod-
els. We have selected case studies that span from viruses (HIV), protozoan
parasites (malaria), to metazoan parasites with direct (ascariasis) and indi-
rect, vector-borne, life-cycles (onchocerciasis) to illustrate the applicability
of the approach in major infectious diseases of humans. Below we discuss
the benefits and limitations of the methodology.

4.1. Parameter estimation based on prevalences at a national level. The
diversity of infectious diseases studied and the range of mathematical models
used, allowed us to explore the performance of our framework under different
conditions. As the results showed, the AMIS framework performed well for
all four case studies. The proposed algorithm, utilizing the combination of all
the samples from multiple proposals, was suitable for the task of parameter
estimation based on geospatial maps, as it allowed us to explore complex
dependencies between parameters and modelled prevalences with relatively
small numbers of transmission model simulations. An alternative strategy,
in which parameters are sampled for each individual pixel independently,
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would require much higher numbers of simulations, as the number of pixels
in a map can be very large. We used the same simulations for each pixel,
with extra computational time required to calculate weights and ESS at
each iteration.

4.2. Using weights of active pixels. The algorithm we propose has an
additional step of calculating the average weight of parameter vectors based
on individual weights of active pixels. In Section 3.1 we compared this ap-
proach with two alternative methods, namely: based on sampling from the
prior only, and based on AMIS with all pixels in the active set (|A| = L) for
all iterations. As can be seen from Table 1, the method based on weights
of active pixels required 2-3 times fewer iterations than the algorithm based
on sampling from the prior only or based on AMIS without removing pixels
from the active set. The latter algorithm targets simulations towards the pix-
els that have already been well served by earlier iterations of the algorithm,
and not towards the required posterior prevalences for all of the pixels, for
example simulated prevalences between 0.5 and 0.75 (Supl. Fig. S5).

4.3. Influence of size of geospatial maps. In Section 3.1 we found that
the number of pixels (i.e. L = 11, 369 pixels and L = 37, 695 pixels for the
prevalence of Ascaris in school-aged children in Ethiopia) had little influence
on the performance of AMIS in terms of the number of iterations required
(Table 1). The number of individual prevalence maps used for parameter
sampling also had a minor influence, with the number of AMIS iterations
equal to 8 or 9 when the number of sampled maps varied from 100 to 2,000.
A slightly lower increase in minimal ESS was observed for M = 100, but this
did not translate into any additional iterations. This suggests that having a
higher number of sampled maps will not require more model simulations, but
in fact can decrease this number in comparison to a smaller number of maps.
Having a smaller number of sampled maps for each pixel can make it harder
to match the sampled prevalences to the distribution of observed prevalences
which translates into extra iterations. This may be because there is a spatial
correlation between neighbouring pixels, so simulated prevalences close to
some observed prevalences at particular pixels will be similar to those in
neighbour pixels.

4.4. Setting priors of parameters. The AMIS framework applied to trans-
mission models involves defining a prior distribution for model parameters.
In most case studies, we used a uniform distribution with parameter ranges
informed by the available literature on biological processes governing infec-
tion transmission or previous analysis of mathematical models. Our frame-
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work allows incorporating specific knowledge of the parameter space, for
example excluding particular areas/combinations of parameters that have
been deemed biologically infeasible, or introducing dependencies between
parameters and can be informed by additional data. Practical application of
this has been demonstrated for A. lumbricoides in Section 3.1, where param-
eters for the degree of parasite aggregation were sampled from the Gaussian
distribution conditioned on the values of mean number of worms.

4.5. Impact of intervention programs. In Section 3.3 we have sampled
parameters for onchocerciasis in Togo, simulated the transmission model
further forward in time under two levels of therapeutic coverage, and applied
the weights to obtain the spatial distribution of the projections. We found
a good agreement between the mapped and simulated baseline prevalences.
However, the uncertainty was propagated with time via the simulations and
produced a wide range of future projected prevalences. Uncertainty can be
reduced by utilizing post-control maps within the AMIS algorithm.

4.6. Comparison with Importance Sampling. Previously, importance sam-
pling was applied to investigate the impact of intervention programs for lym-
phatic filariasis in seven countries in Africa (21). The model for lymphatic
filariasis transmission had four parameters; 100,000 model simulations were
generated with parameters drawn from prior distributions. The prevalence
map had 114,667 pixels in study area. The importance sampling method
led to ESS values in a range between 1 and 3,500, i.e. a fraction of pixels
had very low ESS values. Our work extends the methodology introduced
in (21), in a sense that both studies use the same form of the empirical
Radon-Nikodym derivative, i.e. how to reweight the simulations to match
pixel prevalence distributions. However, the aim of this study is to apply
a version of the AMIS algorithm to greatly reduce the overall number of
simulations required, while achieving sufficient ESS values for all pixels.

4.7. Comparison with Bayesian melding. A probabilistic approach, called
Bayesian melding, combines via logarithmic pooling two priors: one implicit
and one explicit, on each output (59). Bayesian melding has been proposed
and used to account for uncertainty in parameters and model projections for
HIV (20) and filarial infections (60). In the case of the HIV study, the initial
stage of the algorithm required 200,000 combinations of the input parame-
ters from their prior distribution and produced 373 unique epidemic curves
fitted to aggregated data on HIV prevalence in urban clinics (20). These
data would would be equivalent to a single pixel in our case. As shown in
Section B in the online supplement, the AMIS algorithm offers improved
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computation efficiency and higher resolution in comparison to this applica-
tion of Bayesian melding. In the case of filarial infections, the initial stage
of the algorithm used prior distributions to generate 200,000 parameter vec-
tors, and 500 parameter sets were sampled with probabilities proportional
to their relative log-likelihood values for each of 15 endemic sites in Uganda
and Nigeria (60). Our results for onchocerciasis in Togo, presented in Sec-
tion 3.3, showed that 11,000 parameters sets were enough to guarantee ESS
values above 2000 for the map consisting of 29,274 pixels.

4.8. Using post-control maps. For the malaria case study in Section C,
our results demonstrate that when sampling parameters using baseline as
well as post-control maps, care has to be taken that the simulated epidemi-
ological curves are able to support the observed dynamics. We assumed
that 15% coverage of insecticide treated nets (ITNs) was achieved by 2010
(Table S1), but this coverage would not reduce mean prevalence from 0.75
to 0.25, as seen in Figure S10. The AMIS framework produced a trade-off
between fitting to maps in 2005 and 2010. However, the schedule of ITN cov-
erages used within the model was better suitable for pixels with low baseline
endemicity. Therefore, pixels should be divided into regions with different
histories of control. The AMIS framework can then be applied within each
region.

4.9. Time requirements for the algorithm. The computational cost of
the AMIS algorithm has the following components: (i) performing model
simulations for a parameter vector; (ii) sampling parameters from the prior
or the mixture; and (iii) calculating the weights for each pixel across all
parameter sets, and the corresponding ESS.

We have investigated models with wide range of timings for individual
runs: to produce 1,000 simulations it takes approximately 2 seconds for the
ascariasis model, 35 minutes for the HIV model, 4.6 hours for the onchocer-
ciasis model, and up to 12 hours for the malaria model.

In Section 3.2 we found that computational time increased quadratically
with every iteration (Table 2). For the ascariasis case study with the fastest
computational time for the model simulations, nine AMIS iterations could
be done in about half an hour, while 36 iterations would take 11 hours.
Therefore minimising the number of samples and number of iterations will
be crucial when simulating from the model is computationally demanding.
However, producing the model simulations within each AMIS iteration is
easily parallelisable. An alternative version of the empirical Radon-Nikodym
derivative which is faster to compute for large numbers of samples is dis-
cussed in (21).
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4.10. Tuning of algorithm parameters. The proposal distribution adapts
to the target by locally fitting a mixture component to areas which corre-
spond to pixels with low effective sample sizes (ESS). Therefore, the per-
formance of the algorithm depends on the choice of threshold ESSR. In our
case studies we have set ESSR = 2000. When calculating the weight is com-
putationally expensive, lower values of ESSR might be required.

We have sampled from prior distribution only in the first AMIS iteration.
In (24), the authors set half of the parameters to be sampled from the
prior. In our case, we do not know in advance how many iterations will be
required to have enough parameter sets to satisfy the condition min(ESS)≥
ESSR. However, our results for all case studies indicate that sampling 1,000
parameter sets was enough to gauge important regions of parameter space
for further analysis, at least in 2 to 4 dimensions. We also fixed the number
of samples per iteration Ni = 1000. We anticipate that decreasing the value
of Ni could lead to a lower number of parameter sets required to achieve
min(ESS)≥ ESSR, but at a cost of increasing the number of iterations,
which will add an additional computational cost due to the requirement to
recalculate the weights and ESS after each iteration.

The stability of the algorithm requires that the parameter space has been
sufficiently explored in the initial iteration. Low values of ESS would show
that there are many parameter samples which carry relatively low weight.
However ESS can be deceptively high when all the simulations fall in regions
with equally low weight. We avoid this by ensuring that the initial iteration
comprises sufficiently many samples so that at least some of them fall in
regions with high weight, but this would get increasingly difficult as the
dimension of the parameter space increases. Depending on mapped preva-
lences and model behaviour, the distribution of ESS can have a range of
values after the first and subsequent iterations. For example in the case of
Ascaris, we had that min(ESS) = 67.4 and max(ESS) = 435.1 after the first
iteration, which are high in comparison to a number of sampled parameters,
i.e. 1,000.

4.11. Alternative AMIS procedures. Recently, a modified AMIS has been
proposed, where an importance sampling distribution at iteration i is built
based on samples from iteration i−1 but weights for all iterations are recal-
culated after the last iteration (61). A simpler recycling strategy could offer
computational savings, but this would lose the advantage of the adaptive
nature of the AMIS framework we proposed, i.e. to utilize information on
the ESS based on all sampled parameter vectors rather then only the subset
from the latest iteration.
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A further class of adaptive importance samplers has been proposed, in
which the adaptation is driven by independent parallel or interacting Markov
chain Monte Carlo chains (62). Parallelisation might be a promising route;
for example, by sampling Ni/d parameter vectors and running the model and
projections on d parallel units, then combining them into a single iteration
and using aggregated parameter vectors to sample next Ni/d parameter
vectors.

5. Conclusions. Infectious diseases remain an important health prob-
lem worldwide. We have introduced a novel method to sample parameters
of infectious disease transmission models given high-resolution prevalence
maps. Our strategy of using an adaptive mixture of importance proposals
based on a transmission model’s similarity to mapped prevalence distribu-
tions leads to an efficient exploration of the parameter space, at least in low
dimensions. We have extended the methodology to include maps for multiple
time points. In future work, applications of the methodology that account
for routine surveillance data would allow greater epidemiological insight into
providing tools for policy at a local level, bringing infectious diseases under
control, or even setting out the pathway for elimination of transmission.

The code in the form of R package AMISEpi is available at https://

github.com/rretkute/AMISEpi.
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SUPPLEMENTARY MATERIAL

Supplement: Integrating geostatistical maps and transmission
models using adaptive multiple importance sampling
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