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ABSTRACT 

Purpose of review 

This review summarised evidence on the role of carbohydrates in recovery from exercise 

within the context of acute and chronic effects on metabolism and performance. 

Recent findings 

Recent studies demonstrate that, in contrast to recovery of muscle glycogen stores, the 

recovery of liver glycogen stores can be accelerated by the co-ingestion of fructose with 

glucose-based carbohydrates. Three recent studies suggest this can extend time-to-

exhaustion during endurance exercise tests. However, periodically restricting carbohydrate 

intakes during recovery from some training sessions to slow the recovery of liver and muscle 

glycogen stores may, over time, result in a modest increase in the ability to oxidise fat during 

exercise in a fasted state. Whether this periodised strategy translates into a performance 

advantage in the fed state remains to be clearly demonstrated. 

Summary 

To maximise recovery of glycogen stores and the capacity to perform in subsequent 

endurance exercise, athletes should consider ingesting at least 1.2 g carbohydrate per 

kilogram body mass per hour - for the first few hours of recovery - as a mixture of fructose 

and glucose-based carbohydrates. However, if a goal is increased capacity for fat oxidation, 

athletes should consider restricting carbohydrate intakes during recovery from some key 

training sessions (Supplemental video abstract). 
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Introduction 

Carbohydrates are a major fuel during almost all exercise intensities, both with and without 

carbohydrate feeding [1-7]. Accordingly, each bout of exercise with training and competition 

is likely to result in at least some degree of whole-body carbohydrate depletion. Modest 

amounts of carbohydrates can be synthesised by gluconeogenesis, yet dietary carbohydrate 

intake is essential for rapid replenishment of carbohydrate stores, especially when the 

recovery timeframe is limited [8]. Recovery is multifaceted, encompassing many 

physiological (and other) factors such as rehydration, restoration of acid-base balance, and 

the repair of muscle damage. Whilst carbohydrate intake could influence many of these 

factors, this brief review will focus specifically on the acute restoration of glycogen stores 

and the associated recovery of acute physical performance. In addition, since the rate of 

repletion of endogenous carbohydrate stores may have the potential to influence longer-

term adaptations to training, the role of the replenishment of carbohydrate stores on acute 

intramuscular signalling events, and longer-term adaptations will be discussed. 

 

Post-exercise muscle glycogen synthesis is reliant more on the quantity, than the 

specific type of carbohydrate ingested 

In humans, carbohydrates are stored endogenously as glycogen, primarily in muscle, but 

also in the liver, with smaller amounts in other tissues such as the kidneys and brain. Muscle 

and liver glycogen are known to be quantitatively important for sustaining the energy 

demands of moderate-to-high exercise intensities [4,8-10]. However, as endogenous 

glycogen stores are relatively small, the availability of glycogen can limit exercise capacity 

when the duration is prolonged (>90 mins). Furthermore, when optimal performance is 

required repeatedly within a relatively short timeframe (i.e. within 24 hours), then the 

restoration of glycogen stores between bouts of exercise becomes a key factor dictating the 

capacity for subsequent performance [8]. Therefore, it is pertinent to consider how the 



quantity and the type of carbohydrates ingested can affect recovery of glycogen stores after 

exercise. 

 

Current sports nutrition guidelines, such as the joint position statement from the Academy 

of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports 

Medicine state that for “Speedy refuelling” athletes should aim for carbohydrate intakes of 

between 1-1.2 g per kg body mass per hour for the first four hours post-exercise [11]. There 

is no specific emphasis on the types of carbohydrates to be consumed other than 

combinations of drinks and foods to meet targets and that moderate-to-high glycaemic index 

carbohydrates may be useful [11]. This statement is in line with the evidence on 

carbohydrate ingestion for muscle glycogen repletion, whereby muscle glycogen repletion 

rates show linear increases with carbohydrate ingestion rates up to an ingestion rate of 1-

1.2 g per kg body mass per hour, thereafter, muscle glycogen repletion rates plateau [12]. 

Furthermore, the current evidence suggests that as long as a readily available source of 

substrate for muscle glycogen synthesis is provided which elicits a robust insulin response, 

the type of carbohydrate plays little role in muscle glycogen repletion rates, at least when 

the total amount of carbohydrate ingested meets recommendations [13]. 

 

Understanding liver glycogen metabolism cannot be simply extrapolated from 

evidence collection on muscle glycogen metabolism 

In contrast to the substantial evidence base on carbohydrate ingestion and post-exercise 

recovery of muscle glycogen stores, there is much less evidence on the role(s) of the 

quantity and type of carbohydrates for post-exercise recovery of liver glycogen stores. 

Moreover, the responses of liver glycogen resynthesis in the acute post-exercise period are 

markedly different to that of muscle glycogen resynthesis, and thus the evidence on muscle 

glycogen recovery cannot be immediately generalised to liver glycogen recovery [13]. For 



example, muscle glycogen repletion rates are known to show the most rapid resynthesis 

rates in the early (<2 h) post-exercise period – sometimes referred to as the insulin-

independent phase - and substantially slow down thereafter (Figure 1A; data from [13]). 

Furthermore, this pattern is consistent whether the carbohydrates ingested in recovery are 

glucose-based carbohydrates alone, or a combination of glucose and fructose-based 

carbohydrates. In contrast, liver glycogen repletion rates demonstrate a reverse pattern, 

whereby liver glycogen repletion rates are slower in the first 2 hours post exercise than they 

are in hours 2-5 post-exercise (Figure 1B; pooled data from [13,14]). The mechanisms 

underlying this reverse pattern compared to muscle glycogen repletion are not immediately 

clear, especially as both muscle and liver glycogen are thought to display autoregulation 

(i.e. glycogen synthesis is stimulated by low glycogen concentrations, and glycogenolysis is 

stimulated by high glycogen concentrations). However, it is possible that the post-exercise 

hormonal milieu, at least in part, explains why liver glycogen concentrations recover more 

slowly in the earlier versus later post-exercise period. 

 

Liver glycogen concentrations are determined by the net balance between glycogen 

synthesis and glycogenolysis. In humans, both glycogen synthesis and glycogenolysis occur 

simultaneously and therefore glycogen turnover rates can be substantial. These processes 

are in turn, regulated by a variety of factors including the availability of key hormones (e.g. 

insulin, glucagon and epinephrine), and metabolites (e.g. glucose, non-esterified fatty acids, 

lactate). Insulin and glucagon display counter-regulatory effects, whereby insulin stimulates 

glycogen synthesis and suppresses glycogenolysis, and glucagon stimulates 

glycogenolysis whilst inhibiting glycogen synthesis. Interestingly, during a hyperglycaemic 

(10.4 mmol/L), clamp where peripheral insulinaemia was held at 192 pmol/L (likely to result 

in basal or mild hyperinsulinaemia at the portal vein), restoring glucagon concentrations 

within a physiological range from a suppressed ~30 pg·mL-1 to a basal ~65 pg·mL-1 resulted 



in a suppression of net glycogen synthesis from ~20 mmol·L-1·h-1 to ~12 mmol·L-1·h-1, which 

was explained by both a suppression of glycogen synthesis and a stimulation of 

glycogenolysis [15]. Therefore, liver glycogen concentrations seem to be regulated in some 

ways differently to muscle glycogen concentrations which would not be expected to be 

influenced by circulating glucagon. Therefore nutritional (and other) recommendations for 

liver glycogen recovery need to be based on evidence from the measurement of liver 

glycogen concentrations in humans. 

 

Adding fructose to glucose-based carbohydrates accelerates post-exercise recovery 

of liver glycogen stores without compromising muscle glycogen recovery 

In addition to the liver demonstrating a different time course of glycogen repletion compared 

to muscle, liver glycogen resynthesis rates also respond differently to muscle with respect 

to the types of carbohydrates consumed. Whereas muscle glycogen repletion rates seem to 

be insensitive to the presence or absence of fructose, liver glycogen resynthesis rates are 

potently enhanced when fructose (or galactose) are mixed with glucose-based 

carbohydrates [13]. Accordingly, for maximal recovery of both muscle and liver glycogen 

stores, athletes should consider including fructose (and/or galactose) within their recovery 

strategies.  

 

Adding fructose to glucose-based carbohydrates in post-exercise recovery enhances 

subsequent time-to-exhaustion 

Optimized recovery of both muscle and liver glycogen stores by combined post-exercise 

feeding of glucose-fructose based carbohydrates could be expected to enhance subsequent 

exercise performance. This has been investigated in a limited number of studies which are 

summarised in Table 1. Combined glucose-fructose post-exercise - as compared to 

glucose-only based carbohydrate feeding - has been reported to improve subsequent 



endurance time-to-exhaustion in three studies [3,16] . In one of these studies carbohydrate 

oxidation rates during subsequent fixed-intensity exercise were sustained for longer with 

post-exercise glucose-fructose feeding, providing some evidence that higher carbohydrate 

availability underpinned the endurance benefit [3]. No differences in whole-body 

carbohydrate oxidation between conditions were observed in two cycle ergometer-based 

studies, despite post-exercise glucose-fructose feeding resulting in enhanced subsequent 

endurance time-to-exhaustion [3]. The similar substrate oxidation response may be 

explained by a higher exercise intensity (80% vs. 70% VO2max) and much shorter time-to-

exhaustion (i.e., 23-36 vs. 61-81 min) in the cycle ergometer studies. It had been suggested 

that improved gastro-intestinal comfort could be a feature of the ergogenic benefit of post-

exercise glucose-fructose feeding although the cycle ergometer-based studies did not 

support this [3]. Overall, it seems clear that post-exercise glucose-fructose feeding can 

improve endurance time during subsequent exercise.   

 

In contrast, after high-intensity intermittent cycle ergometer exercise performed until 

voluntary exhaustion, subsequent time-to-complete a pre-loaded cycle time trial 

commenced 4 h later was similar regardless of post-exercise carbohydrate type [17]. 

Notably, carbohydrate oxidation rates appeared higher during a 60 min moderate intensity 

(50% Wmax) steady state exercise bout performed immediately prior to the time trial with 

post-exercise glucose-fructose feeding as compared to glucose only. This could have 

negated any potential benefit of enhanced carbohydrate storage in recovery from exercise 

with glucose-fructose feeding. In another study, combined glucose-fructose provision after 

small-sided rugby training matches did not enhance markers of performance in subsequent 

training matches performed 3 h later [18]. Post-exercise glucose-fructose feeding was 

provided at sub-optimal ingestion rates (i.e., 0.8 g.kg-1.h-1) and also combined with protein 

co-ingestion; a strategy that has not yet been demonstrated to result in superior liver and 



muscle glycogen synthesis. Both of these studies involved performance assessments that 

required participants to self-regulate their exercise intensity, whereas those studies where 

a benefit of post-exercise glucose-fructose feeding was observed employed fixed-intensity 

exercise performed until voluntary exhaustion. Whether this explains the varying outcomes 

of the studies or indeed other aspects of study design such as the overall duration or 

intensity of the subsequent exercise bout, the carbohydrate dose ingested, or the 

presence/absence of other nutrients remains to be tested. Collectively, while from a limited 

number of studies, the data suggests that post-exercise glucose-fructose feeding is at least 

as effective as glucose-only based carbohydrate for subsequent exercise performance, and 

in some situations glucose-fructose may provide further advantages.  

 

Restricting carbohydrate in post-exercise recovery can augment intramuscular 

signalling in relation to exercise adaptation 

Due to the importance of carbohydrates for sustaining exercise performance, a traditional 

view has been that athletes should optimise carbohydrate availability for all training sessions 

in order to maximise the capacity for training volume. This view has evolved into a periodized 

carbohydrate availability paradigm, whereby athletes may specifically choose to restrict 

carbohydrates at key times in the season, or even at key times within a day (before, during, 

or in recovery from a bout of exercise) [19,20]. Therefore, some athletes may aim not to 

recover endogenous carbohydrate stores as quickly as possible post-exercise, either to 

prolong the time-period on which the muscle is exposed to a low-glycogen state, and/or to 

produce a lower-glycogen status when commencing the next training session. The 

physiological evidence supporting this approach comes from studies demonstrating that 

restricting carbohydrates before, during, or after a single bout of exercise can result in 

greater exercise signalling within skeletal muscle and adipose tissue, such as increased 

mRNA expression and or protein content/phosphorylation status of genes involved in energy 



sensing, mitochondrial biogenesis, fatty acid and glucose metabolism [21,22]. However, it 

should be noted that enhanced intramuscular mRNA signalling responses have not always 

been observed under conditions of differing glycogen concentrations or with altered 

carbohydrate availability [21,23-25].  

 

Periodically restricting carbohydrates in recovery can augment intramuscular 

adaptations and whole-body fat oxidation in response to exercise training 

When carbohydrate availability is manipulated in recovery over a period of training in order 

to commence some training sessions with low muscle and/or liver glycogen availability, a 

number of enhanced muscular adaptations have been observed, including increased activity 

of mitochondrial enzymes [26], increased basal muscle glycogen and GLUT4 content 

[21,22], and increased whole-body fat oxidation rates [26,27]. Evidence suggests that these 

augmented adaptation with restricting carbohydrate availability may be due to the higher 

fatty acid availability as well as the lower carbohydrate availability per se, with implications 

for glucose feeding during exercise [22]. In support of this, an overnight fast prior to exercise 

- which does elevate plasma NEFA availability but does not drastically alter muscle glycogen 

concentrations – is sufficient to augment skeletal muscle adaptations in AMPK and GLUT4 

protein content following exercise training [21], although a high-fat meal does not augment 

skeletal muscle exercise signalling acutely [28]. Another approach which may hold promise 

for augmenting adaptations to training whilst also supporting the carbohydrate requirements 

of exercise could be delayed feeding, i.e. commencing exercise in a state of relative 

glycogen depletion and only beginning to ingest carbohydrates after the first hour of exercise 

[20]. Nevertheless, to-date, this has only been tested in the context of acute exercise and 

training studies are required to establish if the strategy does augment adaptation or 

performance responses to training. 

 



Whilst there seems to be a relatively small but consistent response of higher fat oxidation 

rates with periodising carbohydrate intakes, the performance effects in athletes are still 

equivocal. A handful of studies have assessed the performance effects of training with 

consistently high versus periodised carbohydrate intake for at least 3 weeks [26,27,29-32]. 

These span cycling, triathlon, and race-walking. When the data from these studies are 

pooled, fat oxidation rates are increased with periodised carbohydrate availability compared 

with high-carbohydrate availability from ~5 mg·kg-1·min-1 to ~8 mg·kg-1·min-1 (Figure 2; 

weighted means across studies). For context, in the same studies, a chronically low-

carbohydrate, high-fat diet increased fat oxidation rates to ~23 mg·kg-1·min-1. In contrast, 

the change in performance was +6% with both high-carbohydrate and periodised 

carbohydrate availability, whereas the change in performance was -2% with a low-

carbohydrate, high-fat diet; and this performance decreases can persist in even in the 

presence of glycogen restoration [33]. Notably, the majority of these studies examined fat 

oxidation rates during a fasted state. Therefore, it remains to be clearly established whether 

periodising carbohydrate intake alters substrate metabolism during exercise in a fed state. 

In the one study that has assessed substrate metabolism in the fed state, no differences 

between high carbohydrate versus periodised carbohydrate were detected [29]. 

 

Conclusions 

Exercise is a potent challenge to endogenous carbohydrate stores. Muscle and liver 

glycogen stores are depleted with typical endurance training and competition. Rapid 

recovery of these stores is a key goal during competition and in some training blocks, yet to 

achieve some training goals, the recovery of muscle and/or liver glycogen stores may be 

consciously delayed. When aiming to maximise the recovery of both muscle and liver 

glycogen stores, current evidence would suggest that athletes should aim to ingest at least 

1.2 g carbohydrate per kg body mass per hour for the first four hours of recovery; and using 



a mixture of fructose and glucose-based carbohydrates will further accelerate the recovery 

of liver glycogen stores and can improve subsequent time-to-exhaustion during some 

endurance tasks. Specifically restricting carbohydrate in recovery from some training 

sessions can be used as an approach to augment some intramuscular adaptations to 

training, and can also modestly increase whole-body fat oxidation rates during exercise in a 

fasted state. However, whether periodically restricting carbohydrates in this way can 

increase either fat oxidation rates or endurance performance in the fed-state is currently 

unclear. 

 

Key points 

 Restoration of endogenous carbohydrate (glycogen) stores is a key component of 

short-term recovery from endurance exercise 

 The replenishment of glycogen stores can be accelerated when fructose is co-

ingested alongside glucose-based carbohydrates 

 Fructose co-ingested with glucose-based carbohydrates in recovery from exercise 

can also enhance subsequent time-to-fatigue 

 Periodically restricting carbohydrates in recovery from some training sessions can 

modestly increase the capacity for fat oxidation during exercise in a fasted state 

 Whether periodically restricting carbohydrates in recovery from some training 

sessions can increase fat oxidation or exercise performance in a fed state is currently 

unclear. 
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Figure 1.  Post-exercise muscle (A) and liver (B) glycogen repletion rates with ingestion of 

large amounts (>0.9 g·kg-1·h-1) of carbohydrates as either glucose-based carbohydrates, or 

glucose-fructose (sucrose) mixtures. Data are all means ± 95%CI, and in panel A are 

redrawn from reference 8; data in panel B are pooled from references 13 and 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 



 

 

Figure 2. Data from studies in endurance athletes undergoing training with either 

continuously high carbohydrate availability (High-CHO), periodised-carbohydrate availability 

(Periodised-CHO), or chronically low-carbohydrate availability (High-Fat, Low-CHO). Data 

presented as the means ± SD from each study (A) and also as the weighted-mean and 

weighted-SD (weighted based on sample size) for fat oxidation rates (B) and performance 

(C). Data from references 28, 30, 33-35. 

 



Table Legends 

Table 1. Effects of isocaloric post-exercise feeding of glucose plus fructose-based versus glucose only-based carbohydrates on subsequent 

exercise performance. 

Table 1. Effects of isocaloric post-exercise feeding of glucose plus fructose-based versus glucose only-based carbohydrates on 
subsequent exercise performance.  
Study Participants Design / Protocol Post-exercise 

carbohydrate 
feeding 
interventions 

Performance outcome 

Maunder 
et al 
(2018)  

8 endurance-
trained runners 
or triathletes 
(6M, 2W) 

Randomized, cross-over study. On two 
separate occasions participants completed 
two bouts of treadmill running to exhaustion 
at 70% VO2max, separated by 4 h passive 
recovery with post-exercise carbohydrate 
feeding. 

Maltodextrin + 
glucose or 
maltodextrin + 
fructose, ingested at 

90 g.h-1 in a 1.5:1 ratio 
for 4 h. 

Exercise performance improved with 
glucose-fructose-based carbohydrates.   
Time to exhaustion in subsequent exercise 
bout was 81.4 ± 22.3 min vs. 61.4  ± 9.6 
min (P = 0.02) with  maltodextrin + fructose 
and maltodextrin + glucose, respectively  

Gray et al 
(2020) 

Study 1: 8 
endurance-
trained cyclists 
(8M) 
 
 
 
 
Study 2: 8 
endurance-
trained cyclists 
(5M, 3W). 

Study 1: Randomized, cross-over study. On 
two separate occasions participants 
completed a prolonged intermittent cycle 
ergometer exercise protocol until exhaustion 
followed by 4 h passive recovery with post-
exercise carbohydrate feeding. Participants 
then cycle ergometer exercise to exhaustion 
at 70% Wmax.  
 
Study 2: Randomized, cross-over study. On 
two separate occasions participants 
completed a prolonged intermittent cycle 
ergometer exercise protocol until exhaustion 
in the afternoon followed by 4 h passive 
recovery with post-exercise carbohydrate 
feeding. Participants then returned after an 
overnight period and performed cycle 

Study 1: Maltodextrin 
or sucrose ingested at 
1.5 g.kg-1.h-1 for 4 h. 
 
 
 
 
 
Study 2: Maltodextrin  
or sucrose  ingested 
at 1.5 g.kg-1.h-1 for 4 
h. 

Study 1: Exercise performance improved 
with glucose-fructose-based 
carbohydrates. Time to exhaustion in 
subsequent exercise bout was 28.0 ± 8.4 
min vs. 22.8  ± 7.3 min (P = 0.039) sucrose 
and maltodextrin, respectively 
 
 
Study 2: Exercise performance improved 
with glucose-fructose-based 
carbohydrates. Time to exhaustion in 
subsequent exercise bout was 35.9 ± 10.7 
min vs. 30.6  ± 9.2 min (P = 0.039) sucrose 
and maltodextrin, respectively 



ergometer exercise to exhaustion at 70% 
Wmax. 

Podlogar 
& Wallis 
(2020) 

8 endurance-
trained cyclists 
(7M, 1W) 

Randomized, cross-over study. On two 
separate occasions participants completed 
a prolonged intermittent cycle ergometer 
exercise protocol until exhaustion followed 
by 4 h passive recovery with post-exercise 
carbohydrate feeding. Participants then 
performed 1-h of steady state exercise at 
50% Wmax followed by a ~40-min 
simulated cycle time trial. 

Maltodextrin + 
glucose or 
maltodextrin + 
fructose, ingested at 

1.2 g.kg-1.h-1 in a 1.5:1 
ratio for 4 h. 

Exercise performance was not improved 
with glucose-fructose-based 
carbohydrates. Time trial performance was 
37.96 ± 5.20 min vs. 37.41 ± 3.45 min (P = 
0.55) with  maltodextrin + fructose and 
maltodextrin + glucose, respectively 

Hengist et 
al (2020) 

9 professional 
senior academy 
Rugby Union 
players (9 M) 

Randomized, cross-over study. On two 
separate occasions participants completed 
small-sided rugby training matches, 
separated by 3 h passive recovery with 
post-exercise carbohydrate + protein 
feeding. 

Maltodextrin + 
dextrose or 
maltodextrin + 
fructose, ingested at 

0.8 g.kg-1.h-1 in a 1.5:1 
ratio for 3 h. whey 

protein (0.3 g.kg-1.h-1) 
was co-ingested in 
each trial.  

Exercise performance was not improved 
with glucose-fructose-based 
carbohydrates. Mean running speed during 

sessions 1 and 2 were 117 ± 4 m.min-1 and 

116 ± 5 m.min-1 maltodextrin + fructose, 

and 118 ± 6 m.min-1 and 117 ± 4 m.min-1 
for maltodextrin + dextrose (time x trial 
interaction, P = 0.61) 

M – men, W – women; data are means ± standard deviations; VO2max – maximal oxygen uptake; Wmax – maximal power output; g.kg-

1.h-1 – grams per kilogram body mass per hour. 
 


