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A B S T R A C T   

Microbiome data analysis and its interpretation into meaningful biological insights remain very challenging for 
numerous reasons, perhaps most prominently, due to the need to account for multiple factors, including 
collinearity, sparsity (excessive zeros) and effect size, that the complex experimental workflow and subsequent 
downstream data analysis require. Moreover, a meaningful microbiome data analysis necessitates the develop-
ment of interpretable models that incorporate inferences across available data as well as background biomedical 
knowledge. We developed a multimodal framework that considers sparsity (excessive zeros), lower effect size, 
intrinsically microbial correlations, i.e., collinearity, as well as background biomedical knowledge in the form of 
a cluster-infused enriched network architecture. Finally, our framework also provides a candidate taxa/Opera-
tional Taxonomic Unit (OTU) that can be targeted for future validation experiments. We have developed a tool, 
the term NFnetFU (Neuro Fuzzy network Fusion), that encompasses our framework and have made it freely 
available at https://github.com/VartikaBisht6197/NFnetFu.   

1. Introduction 

A myriad of microorganisms, bacteria, viruses, and fungi, are aban-
doned within an organism, comprising its so-called microbiome. 
Different organ systems are characterized by distinct microbiota pop-
ulations, which are now widely recognized as contributors to phenotypic 
manifestations across all organisms. Most notably, the microbiota host 
interactions of the gastrointestinal tract in humans are now understood 
to influence large aspects of the human biology repertoire [1]. 

Microbial imbalance, caused by a variety of factors, most prominent 
environmental ones, can have a significant effect on an organism’s 
pathobiology and pathophysiology [2,3]. It is now understood that 
microbiota-host interactions affect the manifestation, development, and 
progression of major diseases, including autoimmune disorders [4] 
respiratory diseases [5,6], inflammation disease [6,7] cancer [8–11], 
metabolic diseases [12–16], liver diseases [17,18], as well as behaviour 
related disease and disorders [19]. The microbiome of an organism in-
fluences its physiology, regulates several of its complex biological pro-
cesses and affects several important host functions, such as digestion, 

enzyme and vitamin production, as well as host immune system mod-
ulation via complex metabolic interactions [20,21]. Many studies re-
ported the complex interplay of the microbiome within the ‘omes puzzle 
[22,23] and the large-scale dynamics that govern it. In an effort to 
decipher them, several computational approaches and workflows have 
been proposed and developed in recent years [24,25]. 

These approaches can be broadly categorized in two types. The first 
one focuses on the processing and quality control of microbiome data 
resulting from either 16s rRNA gene sequencing [26,27] or meta-
genomics experiments [28,29]. Examples of such approaches include 
MetAMOS, a fully automated metagenomic analysis platform, which 
covers the whole spectrum that ranges from next-generation sequencing 
reads to functional annotations [30]. MetAMOS provides an automated 
platform for the analysis of metagenomic datasets providing systematic 
gene predictions outputs. Comeau et al., 2017 [31] developed a 
step-by-step custom gene sequencing protocol emphasizing on the fast 
and reliable microbiome analysis that will allow microbiome re-
searchers to focus more on potential future experiment designs. Other 
modular-based approaches, such as MicrobiomeAnalyst [32,33], form 
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standalone microbiome analysis web tools that contain modules for 
marker-gene data profiling, shotgun data profiling, and Taxon Set 
Enrichment Analysis (TSEA). 

The second type of approach revolves around the workflows typi-
cally designed for downstream analysis of taxonomic data. One such 
example is tmap, a network-based stratification tool using high- 
dimensional microbiome data [34]. tmap employs network-based to-
pological data analysis and caters the stratification of microbiome 
population, as well as microbiome data associations, based 
network-based representations. This method utilizes advanced 
large-scale data mining techniques to identify the association of taxa 
(Operational Taxonomic Unit, OTU. Other examples, such as the Linear 
Discriminant Analysis (LDA) effect size (LEfSe) method, concentrate on 
the metagenomic biomarker discovery [35]. LEfSe determines the var-
iables/taxa most likely to explain differences between classes (outcome 
variables) by using statistical tests and biological relevance. Finally, 
other methods, for example MetaBoot [36] exploit bootstrapping fre-
quency to discover taxonomical biomarkers for different microbial 
communities based on metagenomic data. 

Despite these recent developments though, microbiome data analysis 
and its interpretation into meaningful biological insights remains very 
challenging for several reasons, most prominently due to the complex 
experimental workflows and subsequent downstream data analysis the 
interpretation of such data necessitates. Some of the challenges that 
need to be addressed include the fact that microbiome data are highly 
sparse i.e., they contain many zeros across samples and taxa [37,38]. 
Thorsen et al. [39] developed a large-scale benchmarking tool which 
revealed that typically relative differential abundance tools are sensitive 
to sparsity. Another challenge relates to the microbial data multi-
collinearity generating complex covariance structures. Such multi-
collinearity leads to several challenges in model building as well as in 
the estimation over large numbers of unstable coefficients or weights 
that overfit the data and do not generalize over new datasets [40]. 
Moreover, microbes are intrinsically associated or linked as part of their 
interactions. Furthermore, the effect size of the microbiome’s data is 
relatively small compared to other types of omics datasets, for example 
gene expression or metabolomics data, that render their modelling 
complicated [41]. Finally, a meaningful microbiome data analysis ne-
cessitates the development of interpretable models that consider both 

compositional data as well as biomedical knowledge inferences. 
So as to address these challenges, we developed a novel downstream 

microbiome analysis framework that accounts for collinearity, sparsity 
and effect size. Our framework includes several modules, developed to 
address different microbiome data analysis challenges. Module 1 focuses 
on the sparsity and effect size, Module 2 addresses collinearity while 
Module 3 concentrates on network fusion i.e., the combination of the 
data and biological driven knowledge deriving an interpretable score. 
We used three different datasets to assess our workflow and we validated 
our approach using published literature discussing involvement of 
selected microbes with diseases. 

2. Results 

We have developed a framework, NFnetFu, for microbiome data 
analysis that accounts for sparsity, microbiome features’ small effect size 
and collinearly and then enables microbiome based enrichment analysis. 
One of NFnetFu’s novel features lies with its transformation of micro-
biome profiles into a network representation that captures and priori-
tises microbes and their interactions. The framework is divided into 
different modules, outlined in Fig. 1, and discussed in detail in the 
methods section. 

2.1. Module 1: application of adaptive neuro-fuzzy inference system 
(ANFIS) to overcome sparsity and small effect size 

Sparsity is a frequent feature of 16s rRNA and metagenomics data-
sets. This module applies a supervised adaptive neuro-fuzzy inference 
system (ANFIS) [42] algorithm to learn the input matrix and outputs a 
rule-based inference matrix. The resulting matrix is then processed for 
further downstream analysis. The conversion to a rule-based matrix 
preserves the intra-feature correlation. Table 1 describes the application 
of the ANFIS application on different datasets. The learning algorithm 
not only takes into account different effect sizes but also considers po-
tential feature associations with the output labels (for example PSC-UC, 
UC, and Healthy Controls, Dataset 1). The rows in the inferred matrix 
correspond to the inference rules (referred to as “effective samples’’) as 
opposed to the input matrix, which corresponds to the patient samples. 
The number of entries in the Dataset 2 input matrix is higher than the 

Fig. 1. A schematic diagram of the framework modularisation to address sparsity, collinearity, effect size, and finally the fusion of the data and experimentally 
derived biological networks. 
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ones in Dataset 3. Counter intuitively, in Dataset 3, a reduction from the 
number of samples to the number of effective samples is observed, even 
though the Dataset 1 samples number is higher than the Dataset 3 one. 
Since the algorithm relies on a neural network-based approach, the 
interpretation of the cause of a decision is not possible. The resulting 
matrix (Module 1) is centered and scaled (i.e., auto-scaled) for further 
analysis. Supplementary Table 1a depicts the correlation matrix of the 
abundance matrix and the Supplementary Table 1b presents the corre-
lation matrix of the rule based matrix for Dataset 1. Similar matrices for 
Datasets 2 and 3 can be found in the Supplementary Tables 2a, 2b and 
3a, 3b respectively. Comparing each entry in these matrices, based on 
the corresponding feature pair, the absolute difference of correlation 
values at each point was calculated. We then compared the differences 
between correlation values calculated before and after the application of 
ANFIS for each feature pair. Supplementary Fig. 1 represents the abso-
lute difference between the features for Dataset 1. The minimum and 
maximum absolute difference between feature pairs is 0 and 0.11 
respectively. Similar plots for Datasets 2 and 3 can be found in the 
Supplementary Figs. 2 and 3. The maximum absolute difference for 
Dataset 2 and 3 was 0.098 and 0.167 respectively. This indicates that the 
correlation structure of the matrix before and after the ANFIS applica-
tion was conserved. 

2.2. Module 2: reducing collinearity using the density-based clustering 
(DBSCAN) method 

This module clusters highly collinear microbiome features in the 
rule-based matrix (Module 1). A density-based clustering method, 
DBSCAN [43], is applied to cluster these microbiome features. The 
DBSCAN algorithm requires two parameters, namely the value of 
epsilon, to define a neighbourhood (eps), and the minimum number of 
features in the epsilon neighbourhood (minpt), to cluster the features. 
The module computes an appropriate epsilon value for the input 
rule-based matrix and clusters together features in the overlapping 
epsilon neighbourhoods. Table 2 presents the different numbers of 
clusters and values of epsilon across the different datasets. Supplemen-
tary Tables 1b and 1e shows the correlation matrix for Dataset 1 input 
rule-based matrix and resultant matrix following the application of 
Module 2. Supplementary Tables 1c and 1f shows the p values for 
respective matrices. Groups of significant highly collinear features (p 
cutoff 0.05) along the diagonal (Supplementary Table 1b) are clustered 

together, resulting in a matrix with low collinearity (Supplementary 
Table 1d). Similar tables for the Datasets 2 and 3 can be found in the 
Supplementary Tables 2b,2c,2e,2f and 3b,3c,3e,3f respectively. 

2.3. Module 3: adaptive LASSO (Least Absolute Shrinkage and Selection 
Operator) based feature score calculation 

The microbiome features scores are then calculated, which eventu-
ally aid the microbe prioritization. The scores are calculated using 
adaptive LASSO. Adaptive LASSO (Least Absolute Shrinkage and Se-
lection Operator) [44] is a variation of the original LASSO technique 
[45] with oracle properties i.e. simultaneous, consistent variable selec-
tion [46] and optimal variable estimation. Fig. 2 presents the different 
microbe feature scores (Dataset 1). Microbe f__Prevotellaceae, corre-
sponding to family Prevotellaceae, is assigned with the highest feature 
score. The distribution of feature score is skewed towards f__Pre-
votellaceae (Skewness: 6.601666 and Kurtosis: 44.605896). Supplemen-
tary Fig. 5 presents a bar plot for the Dataset 3 feature scores. Dataset 3 
results reveal that the distribution of feature scores is skewed (Skewness: 
9.649418 and Kurtosis: 95.4272) towards the OTU corresponding to the 
genus Lactobacillus (OTU00001) with the highest feature score. Sup-
plementary Fig. 4 presents a bar plot of Dataset 2 feature scores. The 
feature scores vary from 3.9 to − 3.6 and the distribution is fairly sym-
metric (Skewness: − 0.450515 and Kurtosis: 5.268463). These scores 
correspond to the feature and outcome variable association. The skew-
ness allows for a better prioritization of microbes while catering the 
selection of potential microbes that can be used for designing future 
microbiome targeted therapeutics studies. Fig. 2. A bar plot depicting 
the Dataset 1 microbiome feature scores. The feature score for microbe 
f__Prevotellaceae corresponding to the Prevotellaceae family is 5 while the 
s__distasonis score corresponding to the species Distasonis score is − 2. 
These scores indicate an association of the microbiome features with the 
outcome variable. These scores are used to prioritize microbes in the 
network which can then be used for potential targeted research. 

2.4. Module 4: cluster-infused TSEA based network fusion 

A TSEA-derived biological network is subsequently computed, based 
on a Taxon Set Enrichment Analysis (TSEA) [32]. The resulting matrix 
mixed level microbiome feature names (Module 1) are converted into 
microbe names used by TSEA (Metaboanalyst). Various microbe data-
sets are integrated based on their converted microbe name. For instance, 
microbe Myxococcales (Dataset 1) is the result of the combination 
f__Myxococcales.0319.6G20 and s__Myxococcales.sp, belonging to the 
order Myxococcales [47]. These microbiome features were clustered 
together (Module 2), using an independent method, which caters for a 
density-based clustering. TSEA takes as input a list of converted microbe 
names and uses them for enrichment over published literature data. The 
node size corresponds to the frequency of occurrence of a microbe and 
the thickness of the edges corresponds to the frequency of occurrence of 
the two associated nodes. For example, Fig. 3a shows that the iterations 
of node 1 with nodes 2 and 3 respectively differ due to the width of the 
edges joining them (Dataset1). The thickness of the edges 1–2 is greater 
than that of 1–3 indicating that the number of times nodes 1 and 2 
appeared together is higher than the number of nodes 1 and 3. The node 
size represents the frequency of node occurrence. This value reveals the 
association of microbes with specific diseases. Fig. 3a (Dataset 1) shows 
node 2 has the highest node size suggesting that there is more evidence 
in the literature supporting the association of the microbe with colonic 
cancer. Similar plots for Datasets 2 and 3 are provided in the Supple-
mentary Figs. 6a and 7a. 

A new network structure is then derived by infusing the clusters 
(Module 2) with the TSEA-computed network. The scores for each node 
in the network are then calculated by using the feature scores (Module 
3). Fig. 3b shows the derived network’s structure. The green edges 
indicate the associations between nodes which were found in the 

Table 1 
ANFIS application on the different datasets. For each dataset, the change in the 
number of samples before and after ANFIS is different. For Dataset 1 and 2, 
unlike Dataset 3, there is no difference between the number of samples.  

Dataset No. of samples before 
ANFIS 

No. of sample after 
ANFIS 

Output rule based 
matrix 

1 30 30 Supplementary 
Table 4a 

2 490 490 Supplementary 
Table 4b 

3 422 355 Supplementary 
Table 4c  

Table 2 
Groupings (or clustering) differences across the different datasets. A higher 
number of Dataset 1 highly collinear features groups is observed in relation to 
the Dataset 2 and 3 ones.  

Dataset No. of 
groups 

Maximum no. 
of features in a 
group 

Value of 
epsilon 

No. of 
features in 
the input 
dataset 

No. of 
features in 
the resulting 
dataset 

1 13 4 3.5 47 26 
2 1 3 11 100 98 
3 1 2 5.5 100 99  
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network (Fig. 3a). The red edges represent associations due to the 
clusters identified for Dataset 2 (Supplementary Figure 6b). The nodes 
1,2 and 3 (Fig. 3b) form a single cluster and hence the edges 1–2, 2–3 
and 3-1 are highlighted in red. The microbe with the highest node score 
doesn’t necessarily have the highest node size. The node size captures 
the association of microbes with a particular disease; it does not, how-
ever, correspond to a direct correlation between them. The node score, 
on the other hand, corresponds to the association of the microbe with 
the output label. The two scores together aid the selection of microbes 
for targeted analysis. Similar plots for Datasets 2 and 3 are provided in 
the Supplementary Figs. 6b and 7b. It is easier to choose microbes in the 
case of Dataset 1 since the variance (σ2 = 2.35) of the node score allows 
for the identification of one helping microbe (Prevotellaceae). We note 
that this is not always the case. For example, the node scores for the 
Dataset 2 (Supplementary Figure 6b) exhibit limited variation (σ2 =
0.22) when compared to the Dataset 1 ones. For such cases, considering 
the node size along with node score, can potentially help the micro-
biome selection. 

2.5. Performance comparison 

2.5.1. NFnetFU’s performance comparison across different datasets 
For both Datasets 1 and 2, we obtained a multi class AUC value of 0.5 

and an AUC value of 0.477 was achieved for Dataset 3. Across the 
Datasets 1 and 2, the model predicts a constant value or response. We 
then performed binary class AUC for Dataset 3 but none of the combi-
nations resulted in an AUC value more than 0.5. 

2.5.2. Microbe selection 
For the Datasets 1 and 2, no differentially abundant features were 

found in the first step at alpha 0.05 for the factorial Krushkal Wallis test 
among classes and threshold of 2.0 for the logarithmic LDA score. For 
the Dataset 3 however, the only potential biomarker selected wasLac-
tobacillus. Similar to LEfSe no variables were selected using SuRF for 
Dataset 1 and 2. For the Dataset 3 however, SuRF selected 15 microbes 
with p values less than 0.05. Among the ones selected by SuRF, Lacto-
bacillus, Bifidobacterium and Alistipes were the most significant mi-
crobes (p values close to zero), all 3 of which have appeared in NFnetFU 

Fig. 2. A bar plot depicting the feature scores of the Dataset 1 microbiome features. The feature score for microbe f__Prevotellaceae corresponding to Prevotellaceae 
family is 5 while the s__distasonis corresponding to species Distasonis score is − 2. These scores indicate the association of the microbiome features with the outcome 
variable. The scores are employed to prioritize microbes in the network which can then be applied for potential targeted research. 
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priority list with Lactobacillus being prioritised above all the other mi-
crobes in the dataset by NFnetFU. Apart from the 3 microbes mentioned, 
6 other microbes found in the results by SuRF were also found in 
NFnetFU results. Fig. 4a shows the overlap between the three methods. 

2.5.3. NFnetFU and SuRF OTU ranking 
SuRF generated a list of ordered predictors that the LASSO variable 

selection has picked up with high frequency over observations sub-
samples. This list was then compared with the ranked list of most 

Fig. 3. The cluster-infused TSEA based 
network architecture. a) The node size cor-
responds to the frequency of occurrence of 
individual microbes in the TSEA results. The 
thickness of edges corresponds to the fre-
quency of occurrence of the associated pair 
of microbes in TSEA results. Nodes 1 to 12 
can be found within the TSEA results. This 
network represents microbial iterations 
documented in the literature. b). New nodes 
and edges are added to the biological 
network, based on the earlier modules’ out-
puts. The network connections are presented 
in green. The new iterations, resulting from 
the infusing data-driven results, are depicted 
in red. The white nodes correspond to the 
newly added nodes. The node score priori-
tises microbe Distasonis (Dataset 1).   

Fig. 4. A Venn diagram elucidating the 
NFnetFU’s (blue) performance analysis when 
compared to SuRF (pink) and LEfSe (yellow). 
a) A venn diagram showing overlapping mi-
crobes for all three methods for Dataset 3. 
Out of 39 microbes selected by NFnetFU, 15 
were selected by SuRF and 1 was selected by 
LEfSe. Only one microbe was common 
amongst all methods. NFnetFU and SuRF 
adopt a similar approach for microbe selec-
tion which results in a larger overlap (9 mi-
crobes) between the two methods. SuRF also 
produces a rank list while performing the 
LASSO subsampling. The ranked OTUs were 
compared with the results from NFnetFU to 
gauge the overlap between the two methods 
for each dataset. b) SuRF and NFnetFU share 
5 OTU and each also have 7 unique ones. c) 
SuRF and NFnetFU share 32 OTUs but SuRF 
ranks 32 additional OTUs whereas NFnetFU 
ranks 16 more apart from the 32 shared 
OTUs. d) SuRF and NFnetFU share 36 OTUs.   
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frequent microbes selected by NFnetFU. For Dataset 1 (Figure 4b), 5 out 
of the 12 OTUs, selected by both SuRF and NFnetFU, were common. 
Distasonis, which was prioritised by NFnetFU was also among the top 5 
most frequent microbes depicted by the SuRF algorithm. For Dataset 2 
(Fig. 4c), out of the 48 OTUs selected by the NFnetFu algorithm, 32 were 
also found in the SuRF selection. Peptostreptococcus was found, by SuRF, 
to be most frequently occurring amongst the other microbes and it was 
also assigned the highest priority by NFnetFU. For Dataset 3 (Figs. 4d), 
36 of the 39 microbes selected by NFnetFU, were also selected by SuRF. 
Among these 36 microbes, Lactobacillus was dominantly prioritised by 
NFnetFU with the highest node score of 2.9 among the list of microbes. It 
was also selected as a viable biomarker by LEfSe. 

3. Discussion 

Microbiome data is inherently compositional, a characteristic that 
needs to be accounted for during any analysis so as to avoid misleading 
interpretations [37]. Sparse features can result in issues, such as over-
fitting, which affect the results of learning models. Such features, typi-
cally, increase the space and time complexity of the model, resulting in 
more fitted coefficients for regression models. Small effect sizes result in 
low signals which are difficult to detect. One of the major goal of 
regression analysis is to consolidate the relationship between dependent 
and independent variables. The regression coefficient, calculated as a 
resultant, represents the mean change in the dependent variable with 
respect to the independent variable. Collinearity weakens the statistical 
power of regression models by reducing the coefficient’s precision. 
These problems render microbiome data analysis arduous. NFnetFU is a 
modularised, integrative pipeline that caters both microbiome data 
analysis, as well as a disease-specific microbe feature prioritization, that 
can potentially form the basis for hypothesis free research. It utilizes a 
number of modules that address inherent microbiome data analysis 
challenges. One of the novelties of NFnetFU lies with its adaptation of a 
neurofuzzy approach to convert the abundance dataset into a rule based 
matrix, emulating the behaviour of the original dataset with high ac-
curacy. Commonly used analysis methods, such as the PhILR(Phyloge-
netic ILR) transform [47], allow for off-the-shelf statistical tools to be 
safely applied to microbiota surveys. However, data transformation as 
well as working within a ratio space are impeded due to the prevalence 
of zeros across 16S data (sparsity problem/excessive zero problem). We 
implemented a neuro-fuzzy inference system and employed a 
density-based clustering method to address the problems surrounding 
sparsity, collinearity, and effect size. Rigorous approaches, for example 
SparCC (Sparse Correlations for Compositional data) [48], applied to 
analyse correlation in microbiome datasets, also adopt a sparse data 
matrix. SparCC identifies correlations between taxa within ecological 
communities but the estimated correlation measures the linear rela-
tionship between log-transformed abundance. NFnetFU, on the other 
hand, captures non-linear patterns in microbiome datasets. Other 
methods, such as the LEfSe (Linear discriminant analysis Effect Size) 
[35], determine the features which are the most likely to explain the 
differences between classes. It combines standard tests for statistical 
significance with tests encoding biological consistency and effect rele-
vance. Unlike NFnetFU, LEfSe adopts hard selection criteria for the 
features used in the analysis. It applies the Kruskall-Wallis test [49] so as 
to analyse all features and to assess whether the values are differentially 
distributed in different classes. Features violating the null hypothesis are 
subsequently analysed. The method is designed to identify differentially 
abundant features, as opposed to NFnetFU, which aims to prioritize 
microbes of interest. We use adaptive LASSO to approximate prioriti-
zation scores (referred to as “node scores”) for the microbes considered 
within our analysis. These scores capture the association of each 
microbe with the outcome variable. The algorithm also provides 
enrichment scores (referred to as “node sizes”, relating to the frequency 
of occurrence of a microbe (see method section)) indicating the associ-
ation of the microbe with the specified disease. Together these scores 

provide an informative overview of the results and aid the selection of 
microbes for potential further targeted studies. They also provide a 
ranking for OTUs/microbes within a node, further enriching the results’ 
interpretability. One of the biggest disadvantages of using NFnetFU lies 
with using ANFIS to produce a rule based matrix. As ANFIS primarily 
aims to reduce the error rate, it is very computationally expensive. 
Hence, it is necessary to employ a size reduction method and preprocess 
the data before using ANFIS. In this paper we use random forest-based 
feature selection method [50] but more sophisticated methods like 
Prototype Selection by Clustering (PSC) algorithm [51,52] would result 
in a more robust size reduction. Also, compared to methods such as the 
SPIEC-EASI (SParse Inverse Covariance Estimation for Ecological Asso-
ciation Inference) [53] which has been applied to predict previously 
unknown microbial associations, NFnetFU will only prioritize microbes 
from a given input list of known microbial interactions and hence cannot 
reveal previously unknown associations. 

In this study, we used three datasets (Table 3) to analyse the per-
formance of NFnetFU and we interrogated published literature for evi-
dence to support our findings. For the first dataset we explored (Dataset 
1), following the application of NFnetFU, we selected, based on the 
highest node score, Prevotellaceae. We found various reports in the 
literature indicating enrichment of the microbial community of the 
group, Prevotellaceae. Sun et al., 2016 [54] revealed a family enrichment 
of Porphyromonadaceae and Prevotellaceae within the inflammatory 
group, with a significant decrease in the hyperproliferation and ade-
noma groups (p < 0.01). Yang et al., 2019 [55], in an effort to elucidate 
the connection between gut microbiota, diet, and CRC, carriage of 
Pseudomonadaceae, Moraxellaceae, Prevotellaceae, and Pasteurellaceae 
reported significantly lower concentrations in the colorectal cancer pa-
tient group than that in the healthy control group at a family level (p <
0.05). For the second dataset we assessed (Dataset 2), we found Erysi-
pelotrichaceae and Clostridium to be very closely ranked, based on their 
node score. Chen et al., 2012 [56] investigated intestinal microbiota, to 
capture the involvement of gut microbiota in the progression of colo-
rectal cancer, and reported increased abundance levels of Erysipelo-
trichaceae in the lumen of colorectal cancer patients as compared to 
healthy controls. Kaakoush, 2015 [57] also documented the important 
role of Erysipelotrichaceae in human host physiology and/or disease. 
Roberts et al., 2014 [58] and Theys and Lambin, 2015 [59] discussed the 
ability of species of Clostridium bacteria to lyse tumor cells growing in 
hypoxic environments. Similarly, for the third dataset we employed 
(Dataset 3), Lactobacillus was ranked as the feature with the highest node 
score among the given microbes. Lactobacillus is a gut-resident probiotic 
beneficial to the host’s health [60]. Zhuo et al., 2019 [60] discussed the 
association of Lactobacillus acidophilus, a member of the Lactobacillus 
genus of bacteria, to the development of colorectal cancer, and it’s 
involvement in enhancing anti-tumor immunity in a mouse colon cancer 
model[61] 

LEfSe has a hard selection criteria in the first step (Krushkall - Wallis 
Test) which removes many OTUs considered as noise [35]. Although, 
LEfSe takes into account a dataset’s sparsity and effect size, it overlooks 
high correlations across it. The relative difference, among classes 
depicted from the linear discriminant analysis model in LEfSe, is used to 
rank the features. Finally, a list of features discriminative with respect to 
the classes is generated. These features are further ranked according to 
the effect size with which they differentiate classes. The aim of the 
method is different when compared to that of NFnetFU. LEfSe focuses on 
ranking based on how efficiently features discriminate with respect to 
the classes whereas NFnetFu aims to rank features with respect to their 
association with the outcome variable. SuRF [62] is more advantageous 
in comparison to the existing methods for variable selection in terms of 
dealing with model inference and sparsity of selected models. Since its 
variable selection is based on a LASSO based approach, similar to the 
approach NFnetFU adopts, the results across the two tools are more 
comparable. NFnetFU was able to capture activity of many microbes 
shortlisted as important by SuRF. It also enriched the results with 
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literally evidence supporting the involvement of microbes with the 
disease. Even though the AUC values indicate that the model is not 
predictive, addition of enrichment analysis makes the results biologi-
cally relevant. 

Unlike previously discussed methods, NFnetFU takes into account a 
weighted cluster infused enriched network architecture to facilitate data 
interpretability, which in turn allows for an appropriate microbe se-
lection, depending on the scope of potential microbiome targeted ther-
apeutics studies. To demonstrate the NFnetFU’s utility, we analysed the 
association of gut microbiota with inflammatory bowel diseases and 
colorectal cancer. Gut microbiome has recently been used as a 
biomarker for disease prognosis, phenotype based stratification, and 
response to treatment [62]. For instance, in the case of inflammatory 
bowel diseases, microbiome analysis has revealed important biomarkers 
for response to treatment and disease dysbiosis [63]. Other examples 
have revealed microbial metabolites (or enzymes) that play a role in 
disease progression, including pre-diabetes and type 2 diabetes [64], 
breast cancer [65] pancreatic cancer, etc. It remains fairly unclear how 
exactly the microbial community interacts with the host and how it 
participated in particular phenotype manifestations in diseases, such as 
cancer [66]. The application of NFnetFU allowed for the identification of 
specific microbiota catering for the opportunity of targeting and vali-
dating them in larger cohorts which forms a promising step for 
personalized medicine approaches. 

In the future, we would like to explore the application of NFnetFU in 
longitudinal microbiome studies in an effort to identify microbes 
responsible for different time points. We would also like to enrich 
Module 4 by introducing directed networks or causal graphs. This will 
allow us to identify causal microbes and hence aid their prioritization for 
potential future translational microbiome research. 

4. Conclusions 

We developed a microbiome analysis framework that takes into ac-
count sparsity, collinearly and microbiome based enrichment analysis. 

5. Materials and methods 

5.1. Data description 

We used three experimental datasets in our analysis. Dataset 1, 
published by Quraishi et al., 2020 [67], contains data related to colonic 
biopsies collected from patients with PSC-IBD (n = 10), UC (n = 10), and 
healthy controls (n = 10). In this study, the phenotypic differences be-
tween PSC-IBD and UC were assessed by applying an integrative 
approach over gut microbiota, immune infiltration and colonic gene 
expression data. Dataset 2, published by Sze et al., 2017 [68], is 
comprised of a collection of microbiota data related to a study 
comparing a 67 patient cohort diagnosed with carcinoma, adenoma and 
advanced adenoma before treatment. The study tested the alteration in 
the bacterial populations associated with normal and disease colon due 
to the treatment for adenoma or carcinoma. Finally, Dataset 3, published 
by Zackular et al., 2015 [69], involves data derived from studies that 
were conducted using adult male mice to observe perturbation in the 
microbiota with different combinations of antibiotics. Mice were treated 
with all of the possible combinations of metronidazole (0.75 g/liter), 
streptomycin (2 g/liter), and vancomycin (0.5 g/liter) to create the 
following eight treatment groups: no antibiotics (n = 12), all of the 
antibiotics (metronidazole, streptomycin, and vancomycin; n = 9), 
Δmetronidazole (streptomycin and vancomycin; n = 5), Δstreptomycin 
(metronidazole and vancomycin; n = 5), Δvancomycin (metronidazole 
and streptomycin; n = 5), metronidazole only (n = 5), streptomycin only 
(n = 5), and vancomycin only (n = 3). This study explored the role of the 
gut microbiota in colon tumorigenesis by using an inflammation-based 
murine model. After performing a 16S rRNA analysis for microbial 
profiling in each case, we employed our framework to process the 
microbiome abundance data. A summary of the published experimen-
tally derived datasets used in this study is presented in Table 3. These 
datasets not only differ in size but also in terms of the feature types they 
contain as well as the species they refer to. For example, Dataset 1 
contains mixed level microbial taxa as feature names as opposed to the 
operational taxonomic unit (OTU) used in Datasets 2 and 3. The Dataset 
1 features are of the form x__ABC, where x represents the taxonomic rank 
and ABC represents the name of the classification. For example, 
c__Gammaproteobacteria corresponds to a class of bacteria Gammapro-
teobacteria. Contrary to this, Datasets 2 and 3 consist of features of the 

Table 3 
Published datasets used for the NFnetFU analysis. The datasets are all related to colonic cancer studies but vary in size, feature type, and species.Table 3a discusses the 
studies and outcomes related to the different datasets and Table 3b discusses different dataset attributes, such as no. of samples, no. of features, feature type, etc.  

3a) 

Dataset Published dataset 
used 

Outcome Comparison Sample Pubmed ID 

1 Quraishi et al., 
2020 [67] 

Colonic biopsies were collected from patients with PSC-IBD, UC, and healthy controls PSC-IBD (N = 10), UC 
(N = 10) and healthy controls (HC; 
N = 10) 

PMID: 
32016358 

2 Sze et al., 2017 
[68] 

Before and after treatment for adenoma, advanced adenoma, and carcinoma Adenoma (N = 22), 
Advanced adenoma (N = 19), and 
Carcinoma (N = 26). 

PMID: 
29145893 

3 Zackular et al., 
2015 [69] 

Adult (8–12 week old) male mice were treated with all possible combinations of 
metronidazole (0.75 g/L), streptomycin (2 g/L), and vancomycin (0.5 g/L) to create eight 
treatment groups 

no antibiotics (N = 12), 
all antibiotics (n = 9), 
metronidazole (n = 5), 
streptomycin (n = 5), 
vancomycin (n = 5), 
metronidazole only (N = 5), 
streptomycin only (N = 5), and 
vancomycin only (N = 3). 

PMID: 
27303681  

3b) 

Dataset No. of samples No. of features Feature Type Species Data Type No. of outcome categories 

1 30 47 OTU Human Processed 3 
2 490 6393 Microbes taxa Human Raw Count 3 
3 422 2606 OTU Mice Raw Count 8  
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form OTUxxx, which correspond to a particular taxonomic unit. For 
example, Otu000001 (Dataset 2) corresponds to the taxonomic charac-
terization: domain:Bacteria(100), phylum:Firmicutes(100), class: Clos-
tridia(100), order:Clostridiales(100), family:Lachnospiraceae(100) and 
genus:Blautia(100). The numbers in brackets indicate the number of 
individual organisms in a particular category. Also, our framework is 
compatible with both preprocessed and raw count data. For example, 
Dataset 1 contains preprocessed data with positive float entries whereas 
Datasets 2 and 3 encompass microbiome abundance data with positive 
integer entries. 

5.2. Data pre-treatment 

The various datasets that were analysed differ in size (Table 3). To 
reduce the computational time required for their analysis, we derived 
pre-filtered features from Datasets 2 (containing 6393 features) and 3 
(containing 2606 features) by applying a random forest-based feature 
selection method (51). Subsequently, the top 100 features, from a list of 
decreasing feature importance in each case, were selected so as to reduce 
the overall time complexity. The random forest-based feature selection 
was processed using the caret (v6.0.76) R package and the results are 
available at https://github.com/VartikaBisht6197/NFnetFu. 

6. Methods 

6.1. Module 1: ANFIS (adaptive neuro-fuzzy inference system) 

In order to address the sparsity and different effect sizes in micro-
biome datasets, a supervised learning method employing the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) [42], which is an artificial neural 
network [70], based on Takagi–Sugeno fuzzy inference system [71], is 
applied. The Takagi–Sugeno fuzzy inference system is based on a 
five-layered network architecture and benefits from an inference system 
corresponding to a set of fuzzy IF-THEN rules that approximate 
nonlinear functions. The algorithm outputs produce a rule-based integer 
matrix retaining intra-feature correlations [72]. The ANFIS algorithm 
processes the data using the frbs (v3.2-0) R package [73], which im-
plements various learning algorithms based on fuzzy rule-based systems. 
The package is applied to learn a model using input data with labels (for 
example, the PSC-IBD, UC, and healthy controls samples available in the 
Dataset 1) using fuzzy rule-based systems. NFnetFU uses the default 
parameter settings for the near fuzzy learning algorithm. The algorithm 
uses a gaussian membership function which uses two parameters, 
namely the mean and variance parameters. It uses the least square 
method to perform the parameter learning. The ANFIS learning input 
matrix is an augmented matrix computed by concatenating the micro-
biome abundance matrix and numeric labels. The string labels for each 
dataset are first converted into numeric factors and then appended to the 
abundance matrix. After ANFIS learning, the resulting matrix corre-
sponds to the numerical counterpart of the linguistic inference rules. 
Each row represents an inference rule involving all features as well as 
the outcome variable. Each of these rules are termed as effective samples 
and the resulting matrix is called an inferred matrix. The last column of 
the inferred matrix, termed effective label, indicates the inferred numeric 
values for each of the outcome variables. The features in the resultant 
matrix are called effective features. The columns of the inferred matrix 
are then centered and scaled (also called auto scaled). The output of the 
module is a set of effective labels and updated inferred matrices with 
effective samples in rows and effective features in columns. 

6.2. Module 2: DBSCAN (Density-Based Spatial Clustering of 
Applications with noise) based clustering on microbiome data 

DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise) [43], a density-based nonparametric data-clustering algorithm, is 
then applied to cluster highly collinear features together. The algorithm 

processes the data using the dbscan (v1.1-5) R package [74], which is a 
faster reimplementation of several other DBSCAN density-based algo-
rithmsdescribed by Ester et al. (1996) [43]. A user-specified epsilon 
(eps) neighbourhood is then generated and a user-specified minimum 
number of points (minpts) in a neighbourhood threshold is applied so as 
to identify the core, border and noise points estimating the density 
around each data points. The core points are then joined into clusters 
and each of the clusters is assigned to border points. 

The algorithm requires two parameters, namely the epsilon (eps) and 
the minpts parameters. Epsilon is used to define a neighbourhood while 
the minpts parameter forms the minimum number of features required 
in a epsilon defined neighbourhood to form a cluster. We specify a 
minimum of two features required in a neighbourhood for the DBSCAN 
algorithm. To calculate the appropriate eps value, a list of possible eps 
values ranging from 1 to the maximum entry value of the inferred ma-
trix, with a step size of 0.5, is passed as a parameter to a grid search. For 
a selected eps value, the algorithm computes the clustered matrix and 
fits a logistic regression to estimate the regression coefficients. It then 
checks for null values among the computed coefficients, which are 
indicative of a strong association between the matrix’s features. When 
no further NAs are identified, for a given eps value, the process is 
terminated. Once the DBSCAN parameters are set, multiple sets of fea-
tures, grouped together, are generated, termed as clusters. The features 
of the matrix can either correspond to a combination of features or a 
single feature. For each cluster, the module replaces the features of the 
input matrix’s cluster with a new feature, which is a linear combination 
of the cluster features. The first PCA [75] loading, calculated for each 
feature in the cluster, is used as coefficient in the linear combination. 
The resulting matrix is termed a clustered matrix. 

6.3. Module 3: adaptive LASSO (Least Absolute Shrinkage and Selection 
Operator) cluster scores 

Scores are then calculated for all the features using the clustered 
matrix output. We use adaptive LASSO so as to calculate scores for all the 
clustered matrix’s features, termed cluster scores. These cluster scores 
are then used to calculate the feature scores corresponding to individual 
features. Adaptive LASSO (Least Absolute Shrinkage and Selection 
Operator) [44] is a variation of the original LASSO technique [76] with 
oracle properties i.e. simultaneous, consistent variable selection [45] 
and optimal variable estimation. This is achieved by assigning 
data-driven weights to different coefficients, while penalizing them by a 
ℓ₁ penalty, according to the original LASSO method. These weights 
represent the absolute value of the coefficients derived by fitting a 
generalized linear model to scaled input data. The data is subsequently 
scaled again, with respect to these calculated weights, so as to calculate 
initial betas. The initial betas are calculated via a k-fold cross-validation 
using glmnet. Glmnet (v4.0-2) [77] is an R package that fits the entire 
lasso or elastic-net regularisation path for various regression models. 
The following formula is applied to calculate adaptive LASSO co-
efficients. Here, w corresponds to weights and β corresponds to the 
initial betas associated with the respective features. 

argminβ ‖ y −
∑p

j=1
xjβj‖

2 + λ
∑p

j=1
wj|βj|

The coefficients or cluster scores are associated with either individ-
ual features or a combination of features. To calculate the feature score, 
based on a given cluster score for a particular combination of features, 
we use the loading values derived by Module 2. 

6.4. Module 4: network fusion using enrichment analysis and 
visualization 

6.4.1. Cluster-infused TSEA based network architecture 
The Taxon Set Enrichment Analysis (TSEA) module of 
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MicrobiomeAnalyst [32,33] is a web-based platform that analyse com-
mon data outputs from current microbiome studies comprehensively. 
Further it is used to test whether there are enrichments of taxon sets for a 
list of microbes of interest. MicrobiomeAnalyst, including its underlying 
R code, is freely accessible as a web-based application [78]]. Metab-
oAnalyst is part of a suite of metabolomics databases that includes the 
Human Metabolome Database (HMDB) [79–81] DrugBank [82–84], 
Toxin and Toxin-Target Database [85], as well as [86]. Given a list of 
microbes of interest, TSEA is applied to assess whether there are 
enriched mixed-level taxon sets that have been identified to be signifi-
cantly associated with particular developmental, physiological, or dis-
ease conditions. Table 3 lists the datasets, and the different types of 
information associated with them, used. For example, the Dataset 1 
features correspond to mixed level taxons whereas the Dataset 2 and 3 
features are taxon specific (OTUs). These features are converted into the 
exact microbe names used in the TSEA database. This part of the analysis 
is not automated and depends on the input file, i.e., whether the feature 
names are mixed level taxa or OTUs with associated taxonomical files. 
Various microbes are joined together based on their converted microbe 
name. For example, the TSEA name Myxococcales (Dataset 1) is based on 
the combination of two features, namely f__Myxococcales.0319.6G20 and 
s__Myxococcales.sp. These features are combined together in a cluster 
(Module 2), using an independent method which also validates the 
combination. The immediate parent level classification is used for the 
features of an unclassified taxonomic level. For example, Otu00002 
(Dataset 3), corresponding to the taxonomy domain:Bacteria(100), 
phylum:Proteobacteria(100), class:Gammaproteobacteria(100), Enter-
obacteriales(100), order:Enterobacteriaceae(100), genus:unclassified 
(100), was converted to Enterobacteriaceae since its genus level was 
unclassified. TSEA interrogates a database library and lists instances of 
associations for a given set of mixed taxon level microbes for particular 
diseases. The TSEA results include a reference to associated diseases, 
studies, as well as to other associated microbes, their taxonomic classi-
fication, etc. The results are then filtered based on a disease of interest. 

The module considers two criteria, namely the frequency of occur-
rence of individual microbes and the frequency of a pair of microbes co- 
occurrence within a study, for the construction of a network. An adja-
cency matrix [87], accounting for these criteria, was then calculated and 
used to compute the network. The adjacency matrix is a square matrix 
with the rows and columns corresponding to the microbes. The diagonal 
entries of the adjacency matrices indicate the frequency of occurrence of 
individual microbes and the other entries indicate the frequency of 
occurrence of the associated pair of microbes in a study together. For 
computing the network, only the microbes which appeared at least once 
within the results subset were considered. The size of the nodes in the 
network corresponds to the occurrence of individual microbes, whereas 
the thickness of edges corresponds to the co-occurrence of the associated 
pair of microbes in a study. The microbes included in the network are 
termed microbial nodes. Features associated with microbial nodes are 
combined, based on their taxonomic similarities. 

We then first derive a new network structure by incorporating 
identified clusters (Module 2) in the existing structure and then we use 
the feature scores (Module 3) to compute the node scores for each node 
in the network. All of the identified clusters (Module 2) are assessed in 
terms of their validity and then added to the network. A cluster is 
considered valid if any one of the features belonging to the cluster is 
associated with the microbial nodes. For instance, Fig. 3a represents a 
biological network (Dataset 1) with the microbial node 7 (Lentisphaeria) 
corresponding to c__Lentisphaeria, clustered with p__Lentisphaerae and 
o__Victivallales (identified by Module 2). Thus, the Module 2 derived 
cluster, namely the c__Lentisphaeria, p__Lentisphaerae and o__Victivallales, 
is considered as a valid cluster. Additional nodes, for all the valid 
considered clusters, p__Lentisphaerae, and o__Victivallales in this case, are 
then added to the existing network and the new nodes are assigned a 
node size of 1. All the edges joining the nodes of valid clusters are 
presented in red. Fig. 3b represents an example of such a cluster-infused 

TSEA based network architecture. Nodes 1, 2 and 3, corresponding to 
class:Gammaproteobacteria, family:Enterobacteriaceae and order:Enter-
obacteriales, form a cluster (Module 2). This is a valid cluster since one or 
more members of the cluster are present in the network. Hence, the 
edges joining the node are depicted in red. Other valid clusters identified 
within the same dataset, for example the f__Myxococcales.0319.6G20 and 
s__Myxococcales.sp cluster, are not shown explicitly since their combi-
nation forms the microbial node Myxococcales. The g__Rothia and 
s__mucilaginosa cluster (Dataset 1) is an example of an invalid cluster as 
none of the members of the cluster are present in the network. 

The node scores for each microbial node is calculated sum over xi 
and divided by “n” where xi represents the feature score for the ith 
feature in the set of n features associated with the microbial node. 

For example, so as to calculate the node score for Myxococcales 
(Dataset 1), we use the feature scores of f__Myxococcales.0319.6G20 and 
s__Myxococcales.sp. The node score and node size together help the 
microbe prioritization within the network. 

6.4.2. Comparison of NFnetFU with other methods 
We compared the performance of NFnetFU with the performances of 

SuRF (Subsampling ranking forward selection) and LefSe (Linear 
discriminant analysis Effect Size). The comparison was made based on 
three criteria, namely performance measure using the area under curve 
(AUC), QUTs automatic and third, OTUs ranking. 

6.4.3. SuRF 
This method includes subsampling and forward-selection methods 

which primarily focus on microbiome analysis. The SuRF [62] frame-
work consists of mainly two steps. Firstly, an ordered list of predictors, 
using the LASSO variable selection method, is generated over sub-
sampled observations. A forward selection, along with ANOVA, is then 
applied to the variable list. Finally, using likelihood ratios, the signifi-
cance of each variable is calculated in the forward selection. 

6.4.4. LefSe (linear discriminant analysis effect size) 
LEfSe (Linear discriminant analysis Effect Size) [35] is an algorithm 

for high-dimensional biomarker discovery primarily employed in 
microbiome research studies. LEfSe first identifies features that are 
statistically different among the outcome variable (for example: control 
vs. CRC patients). It then performs additional tests to assess whether 
these differences are consistent with respect to the expected biological 
behaviour. A Krushkal Wallis test is then performed followed by a wilcox 
test. Finally, a linear discriminate model is generated which ranks the 
features based on their relative differences between classes. 

6.4.5. R scripts and functions 
We used the R (https://www.r-project.org) v4.0.0.0 software for 

statistical computing and all related scripts and all the algorithms that 
are part of our framework are freely available at. https://github. 
com/VartikaBisht6197/NFnetFu. An Rmarkdown manual describing 
inputs and outputs for each module can be found at https://rpubs. 
com/Vartika/760624 (Dataset 1). 
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