

University of Birmingham

Cutting through the complexity of reverse
engineering embedded devices
Thomas, Sam; Van Den Herrewegen, Jan; Vasilakis, Georgios; Chen, Zitai; Ordean, Mihai;
Garcia, Flavio
DOI:
10.46586/tches.v2021.i3.360-389

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Thomas, S, Van Den Herrewegen, J, Vasilakis, G, Chen, Z, Ordean, M & Garcia, F 2021, 'Cutting through the
complexity of reverse engineering embedded devices', IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2021, no. 3, pp. 360-389. https://doi.org/10.46586/tches.v2021.i3.360-389

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.46586/tches.v2021.i3.360-389
https://doi.org/10.46586/tches.v2021.i3.360-389
https://birmingham.elsevierpure.com/en/publications/ea5d0946-6954-47a9-8aa9-fa3025c8f9ef

IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 3, pp. 360–389. DOI:10.46586/tches.v2021.i3.360-389

Cutting Through the Complexity of Reverse
Engineering Embedded Devices

Sam L. Thomas, Jan Van den Herrewegen, Georgios Vasilakis,
Zitai Chen, Mihai Ordean and Flavio D. Garcia

University of Birmingham, Birmingham, United Kingdom
{s.l.thomas,jxv572,gxv724,z.chen,m.ordean,f.garcia}@cs.bham.ac.uk

Abstract. Performing security analysis of embedded devices is a challenging task.
They present many difficulties not usually found when analyzing commodity systems:
undocumented peripherals, esoteric instruction sets, and limited tool support. Thus,
a significant amount of reverse engineering is almost always required to analyze such
devices. In this paper, we present Incision, an architecture and operating-system
agnostic reverse engineering framework. Incision tackles the problem of reducing the
upfront effort to analyze complex end-user devices. It combines static and dynamic
analyses in a feedback loop, enabling information from each to be used in tandem
to improve our overall understanding of the firmware analyzed. We use Incision to
analyze a variety of devices and firmware. Our evaluation spans firmware based on
three RTOSes, an automotive ECU, and a 4G/LTE baseband. We demonstrate that
Incision does not introduce significant complexity to the standard reverse engineering
process and requires little manual effort to use. Moreover, its analyses produce correct
results with high confidence and are robust across different OSes and ISAs.
Keywords: Reverse engineering · Embedded device firmware · Hardware-based
execution tracing

1 Introduction
When performing security analysis of end-user embedded devices, reverse engineering is
often required to gain a deep understanding of a device and its firmware. In general, this
is a challenging and time-consuming task, even for experts. The core difficulties stem
from how devices are composed and how tooling to simplify analysis can only go so far
in terms of what can be automated. Developing tooling that generalizes over multiple
devices is complicated and prone to scalability issues. Most moderately complex consumer
devices are composed of numerous peripherals and CPU cores that interact with each
other and their environment, often under hard real-time constraints, further complicating
the process.

Recent work has sought to address the challenges involved in performing analysis
by emulating firmware and peripherals [CGS+20, FML20, GMS+19, MFL+21]. These
approaches enable device firmware to be rehosted—either fully or partially—within a
commodity emulator and then analyzed without interacting with the physical hardware.
However, to rehost real firmware, it is often necessary to perform a non-trivial amount of
reverse engineering of the device, its peripherals, and its firmware. Such techniques are,
therefore, not always practical when time is a limiting factor in performing analysis.

Other techniques address the challenges by incorporating the device in the loop during
analysis [CCF18, CF20, MFB18, ZBFB14]. Though without careful harnessing, for real-
time constrained and complex bare-metal firmware, the timing overheads induced by these

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-10-15 Accepted: 2020-12-15 Published: 2021-07-09

https://doi.org/10.46586/tches.v2021.i3.360-389
mailto:s.l.thomas@cs.bham.ac.uk,jxv572@cs.bham.ac.uk,gxv724@cs.bham.ac.uk,z.chen@cs.bham.ac.uk,m.ordean@cs.bham.ac.uk,f.garcia@cs.bham.ac.uk
http://creativecommons.org/licenses/by/4.0/

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 361

approaches can lead to unpredictable behavior in the target device due to violations of
hard real-time constraints [KKM15] and interference with timers. To identify the source of
these violations and develop suitable harnesses, we must again resort to reverse engineering
the device and its firmware.

Table 1 lists a broad selection of recently published articles proposing techniques
for analyzing embedded firmware. Irrespective of the analysis goal or approach used,
when applied to real-world targets, all require a non-negligible amount of manual reverse
engineering to perform. Without this upfront reverse-engineering, we would not know how
to interact with the firmware or which parts of it to analyze. Thus, developing methods to
reduce this reverse engineering effort is essential to use such automated analysis techniques
to analyze end-user devices.

Table 1: Embedded firmware analysis approaches. Amount of prior reverse engineering
(R-E) measured by: : for identification of interrupts and handlers, stall states, and context
switches, :: for peripheral interaction, cross-core communication, and ::: for specific
functionality (for stubbing/harnessing). Requirements refer to target support needed:
(C)ompiler, (D)ebugger, (DI)sassembler, (E)mulator, (S)ource Code, (T)racer.

R-E Requirements Objective Enabling
mechanismC D DI E S T

Avatar [ZBFB14] :: Dynamic analysis Hybrid execution
BaseSAFE [MSP20] ::: Fuzzing Partial rehosting
DICE [MFL+21] : † Fuzzing Peripheral modeling
Frankenstein [RCGH20] ::: Fuzzing Partial rehosting
HALucinator [CGS+20] ::: Fuzzing HAL emulation
HardSnap [CF20] :: Symbolic execution Partial rehosting
Inception [CCF18] :: Symbolic execution Hybrid execution
Laelaps [CGML20] : Dynamic analysis Peripheral modeling
P2IM [FML20] : † Fuzzing Peripheral modeling
Pretender [GMS+19] : Rehosting Peripheral modeling
Surrogates [KKM15] :: Dynamic analysis Hybrid execution

Incision ‡ (this paper) Reverse engineering Trace comprehension

† DICE and P2IM require firmware to be compiled with a call to startForkserver for fuzzing [FML].
‡ Incision is used in the pre-analysis step to perform initial reverse engineering.

1.1 Our Contribution
In this paper, we address the challenge of reverse engineering complex embedded device
firmware to facilitate more straightforward manual analysis and application of automated
analyses. We present Incision, a device in the loop reverse engineering framework, based
on lightweight execution tracing and static firmware analysis. Our framework is both
Operating System (OS) and architecture agnostic. It complements the standard reverse
engineering workflow and approaches such as those listed in Table 1, by aiding functionality
identification, control-flow recovery, and correct disassembly of binary blob firmware.

Our approach operates in feedback loops that progressively improve the reverse-
engineered representation of the firmware analyzed. A single iteration consists of three
high-level steps: region inference, trace capture, and trace processing. Each iteration
identifies firmware regions containing functionality related to an input reverse engineering
policy. We use a machine encoding of the policy as input to a clustering algorithm to
perform region inference. We use the outputted regions to decide which portion of firmware
to focus on and what to trace. Due to interrupt processing and task switches, system-wide
traces often end up being fragmented. Therefore, to recover control-flow information, we
identify task switching logic and interrupt handlers and partition the traces based on

362 Cutting Through the Complexity of Reverse Engineering Embedded Devices

this information. Then taking the resulting sub-traces, we group those that follow the
same execution flow and combine them back into constituent traces. Finally, we refine our
firmware representation with recovered control-flow information from those traces. We
add new control-flow edges during refinement and use them to locate new functions, static
data references and rectify incorrect disassembly. The process leverages statically inferred
and dynamically witnessed control-flow information in tandem. At the end of the analysis,
Incision outputs the bounds of functionality corresponding to our reverse engineering
policies and a firmware representation suitable for further analysis.
In summary, our contributions are:

1. An analysis of the specific challenges faced when reverse engineering complex embed-
ded devices and their firmware.

2. Four techniques for automating aspects of the reverse engineering process: ¶
Firmware region inference. · Identification of OS primitives for task and con-
text switching from execution traces. ¸ Task-aware control-flow recovery from
system-wide execution traces containing multiple interleaved tasks and interrupts.
¹ A feedback mechanism that combines the results of the previous techniques to
improve our firmware representation and rectify disassembly errors.

3. An evaluation of Incision against two complex real device firmware (an LTE
baseband and an automotive Body Control Module (BCM)) and a set of firmware
simulating a range of device configurations. In full, our evaluation spans three
different Real-Time Operating Systems (RTOSes), VxWorks, FreeRTOS, and Zephyr,
a bare-metal OS, and two different instruction sets (ARM/Thumb2 and Renesas
V850ES).

To aid future research, we release our implementation and data sets as open-source at
https://github.com/UoBAutoSec/INCISION.git.

2 Background
In this section, we establish the scope of devices and firmware analyzed. We outline their
composition, the standard approaches to analyze them, and the challenges faced.

The target of our approach is hard to analyze embedded device firmware. We define
this as monolithic interrupt-driven software operating with or without an OS. For firmware
with an OS, we restrict the definition to firmware that operates under real-time constraints.
We refer to firmware without an OS as bare metal. We call the combination of a device
and its firmware a System Under Test (SUT).

The execution of interrupt-driven software is directed by handling and processing
interrupts. Interrupts are triggered by (on- and off-chip) peripherals, the OS, and system
tasks. A task represents the execution of a part of software or firmware responsible for
performing a specific function, such as input processing. Interrupt-driven software is
composed of one or many tasks, which together constitute its functionality. An RTOS
is a specific type of interrupt-driven software that operates under soft or hard real-time
constraints. Time-sensitive tasks orchestrated by the OS must be completed within
strict windows to adhere to these constraints. An RTOS manages the execution of many
concurrent tasks. Each task can be interrupted by one running at a higher priority, and
interrupts may be nested.

2.1 Reverse Engineering Embedded Firmware
Reverse engineering is the process of taking a SUT and determining properties about its
inner workings. The principal objective of reverse engineering is to understand the SUT to

https://github.com/UoBAutoSec/INCISION.git

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 363

explain how it works and extract specific implementation details. Therefore, the process
necessarily involves a high degree of human intervention—both during the analysis stage
and afterward.

We perform reverse engineering using two complementary classes of analyses: static
and dynamic. Static analyses form conclusions about a SUT by analyzing it at rest. In
contrast, dynamic analyses allow us to reason about observations of its runtime behavior.
Interactive disassemblers such as IDA Pro [Hex] and Ghidra [Nat] are at the core of most
reverse engineering approaches. They enable an analyst to interact and manipulate a static
representation of firmware to gain a deep understanding of its functionality. Similarly,
debuggers and execution tracers fulfill that role for dynamic approaches by enabling us to
reason about the SUT’s execution at different points.

Interactive disassemblers represent programs using a database. This database typically
contains each executable segment’s disassembly, a control-flow graph, identified functions,
and cross-references between code and data. For commodity software, interactive disas-
semblers can automatically populate the database. However, for most embedded firmware,
database creation involves manual effort. RTOS-based and bare-metal firmware do not have
standard container formats and vary widely in their composition. The only commonality
is that their application logic, library code, static data, and OS (if present) all exist within
the same binary blob. Thus, to populate the database, we need to determine the firmware’s
memory mapping (i.e., where its regions are loaded) and Instruction Set Architecture (ISA).
As interrupt-driven firmware does not have a single entry-point, we must also identify
interrupt vector tables, addresses of callbacks for tasks, and other initialization routines.

Disassembly describes the process of translating raw bytes into architecture-specific
instructions. A disassembler requires viable instruction starting offsets within firmware to
perform correct disassembly. For embedded ISAs, locating these offsets is not a trivial task.
Many instruction sets are variable length encoded (VLE) with short instruction widths,
so plausible disassemblies exist at many offsets, of which only one is correct. For some
architectures, such as ARM/Thumb2, the correct instruction set to use for disassembly
is context dependent, further complicating the process. Identified function starts are a
common means to locate starting points. However, as non-standard calling conventions are
commonplace in embedded firmware, we cannot always rely on known instruction patterns
to determine starting points and often must identify the offsets manually.

To analyze the control-flow of firmware, we recover it from the disassembly. Control-flow
recovery algorithms reconstruct a Control Flow Graph (CFG) containing the transitions
between blocks of disassembled instructions. In this case, a block is a sequence of
instructions terminated by a control-flow altering instruction, e.g., a branch or a call. Since
interrupt-driven software contains a high degree of indirect control-flow, it is difficult to
statically estimate the destinations of many of these branches and calls (a well documented
problem [CKB17, DBXP20]). Therefore, static control-flow recovery for embedded firmware
often results in highly incomplete CFGs [Fri].

When reverse engineering large and complex software, such as firmware, we must
identify where to focus our analysis effort. Symbols (function names) are beneficial for this
purpose. However, they are often not present in embedded firmware. Static data (debug
strings) are also useful, as we can analyze code that references strings of interest under
the assumption that code will reference strings related to its functionality. When all of
the data exists in the same section, this is a trivial process. However, in firmware, it is
often embedded inside code segments to avoid expensive references to locations at offsets
exceeding what can be addressed by a single load instruction. Therefore, when disassembly
and control-flow recovery results in an incomplete program database, the amount of data
references to guide the reverse engineering process will be similarly limited.

To analyze a device dynamically, we cannot debug it live without interfering with how
it communicates with its peripherals. To obtain useful analysis results, we must faithfully

364 Cutting Through the Complexity of Reverse Engineering Embedded Devices

simulate a realistic external environment, e.g., by providing its peripherals with input.
Without this, the firmware will stall until it receives an expected input. Identifying stall
points and handling them is necessary to enable most kinds of dynamic analysis.

When available, execution tracing facilities allow us to work around the problems
associated with debugging. Execution tracing involves tracking part of the state of a SUT
over an execution. The granularity of this tracking is dependent on the tracing technology
available. Many devices offer hardware-based support for execution tracing [ARMa]. While
lightweight, this type of tracing has some limitations. Due to hardware constraints, traces
are often limited in size and can only capture certain types of events, such as the program
counter’s value at branches. Under certain conditions, e.g., when firmware executes a tight
loop or an interrupt handler, events may get dropped, resulting in fragmented traces. Some
tracing technologies support starting tracing on a particular condition. However, we must
specify these conditions before beginning tracing. As this kind of tracing is system-wide,
it captures events across multiple tasks. Traces, therefore, represent a temporal ordering
of events rather than real control-flow.

3 Overview
In this section, we detail the challenges tackled by our approach, Incision. We then list
the assumptions made in its design and provide an overview of how it operates. As detailed
in the previous section, embedded device firmware introduces significant complications
to the reverse engineering process. The challenges below represent the difficulties present
when reverse engineering embedded device firmware compared to commodity software:

1. State-of-the-art tools provide limited support for embedded architectures resulting
in disassembly errors that propagate through the analysis process.

2. Embedded device firmware is monolithic and often contains no symbol information.
When debug information is present, it is usually not located within a single section but
mixed with code and data, making it difficult to leverage for firmware comprehension.

3. Many end-user devices offer limited hardware tracing facilities. The available mecha-
nisms are often error-prone and limited in terms of the amount and type of events
they can capture.

4. Captured traces of interrupt-driven firmware do not reflect real control-flow and
instead represent a temporal ordering of events.

5. Combining static and dynamic analysis methods is difficult due to the strong coupling
of hardware and software. Analysis requires a human in the loop to orchestrate trace
capture, provide input to the SUT, and reset it in case of error.

We build Incision around Ghidra [Nat], an open-source interactive disassembler. We
integrate it into the standard reverse engineering workflow, where static and dynamic
analyses are used in conjunction to form conclusions about the SUT. We make the following
assumptions about the type of devices and firmware analyzed:

1. We know the ISA of the firmware, its memory mapping, and can identify at least
one entry-point.

2. We can trace the execution of the device (e.g., using hardware-based trace facilities).
The granularity of traces produced is at least at the basic block-level.

3. Captured traces may contain errors, i.e., dropped events, but no active measures
have been taken to restrict tracing. If present, these errors are reported.

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 365

¶ Region inference

SUT

DB

Trace config.

Policy Control-flow extraction

· Flow categorization

¸ Trace partitioning

¹ Feedback-driven
refinement

Trace

Figure 1: Overview of Incision. We indicate data-flow by block arrows for automatic
propagation and dashed arrows for manual propagation. Incision operates in four step
feedback loops. Region inference (step ¶) takes a policy and derives bounds to form a
trace configuration. We use the bounds to take a trace of the SUT. From the trace, we
perform control-flow extraction (steps · and ¸) to identify task-switching logic and obtain
task-level CFGs. Finally, we integrate the extracted CFGs into our DB and apply a static
analysis pass to propagate the newly added information (step ¹).

Figure 1 provides an overview of our approach. We first import the firmware into
Ghidra to produce a program database. We perform region inference (step ¶) based on
an initial reverse engineering policy (an encoding of our initial analysis goals) using the
database as input. Region inference identifies firmware regions corresponding to the policy.
We use these regions’ bounds to configure the SUT’s tracing mechanism and perform trace
capture. From this, we obtain a system-wide trace containing the interwoven control-flow
of multiple tasks. To extract each task’s control-flow, we analyze the trace in two stages. In
the first stage (step ·), we determine which parts of the trace correspond to task switching
logic and interrupt handling. In the second stage (step ¸), we split the trace based on the
first stage, by extracting sub-traces separated by task switching or interrupt handling logic.
We then recover each task’s control-flow by combining sub-traces into a dynamic CFG
per task. Finally, we update the program database using the extracted control-flow (step
¹) by performing disassembly of previously unexplored regions and adding control-flow
edges. We follow this with a static control-flow recovery pass over the updated program
database. This pass allows us to recover additional control-flow edges and data references
not identified in traces or the initial database and correct disassembly errors.

We apply steps ¶-¹ iteratively. On each iteration, we refine our database, while at the
same time, we zoom into the firmware regions corresponding to our reverse engineering
goals. Each iteration necessarily requires some human intervention for processes that
cannot be automated: to import the firmware into Ghidra, to perform trace capture (as
the mechanism for doing so is generally hardware-based), to provide input to our region
inference algorithm (which requires encoding of our reverse engineering goals), and to
resolve database conflicts we cannot address automatically. After several iterations, our
framework’s output (firmware database and traces) provides a basis for performing further
analyses, such as those listed in Table 1.

4 Methodology
In this section, we describe the technical details of our approach. We discuss each
component and the corresponding challenges it addresses.

4.1 Inputs
Incision takes three kinds of input, a program database, execution traces, and reverse
engineering policies. A program database corresponds to a Ghidra database. This database

366 Cutting Through the Complexity of Reverse Engineering Embedded Devices

is created by loading the firmware into Ghidra at the correct image-base and triggering
a basic auto-analysis pass. From this, we obtain an initial set of function starts, a call
graph, and an intra-procedural control-flow graph for each identified function.

We base our execution trace format on the ARM ETB format [ARMc]. It captures
block-level control-flow event packets and encodes two high-level trace errors. The first
kind of error is for trace capture toggles. We use this to flag that event packets are missing
because of a trace parameter. The other type of error is for trace mechanism errors. We
use it to flag when event packets are missing due to overflows. A common cause of this
type of error are events that occur too frequently to be processed by the trace hardware.

We encode reverse engineering objectives as reverse engineering policies. We specify
policies as a vector of one or more: keywords, symbol names, raw addresses, and instruction
patterns. Keywords match static data, symbol names match program database labels, raw
addresses match referents of database cross-references, and instruction patterns match
disassembled instructions that have specific syntactic properties. We write symbol and
keyword matchers as regular expressions. An instruction pattern may be suffixed with
+ to indicate that it should only yield a successful match when it repeatedly occurs in
a trace (e.g., as part of a loop). The policy 〈(mov ?, 0xcafe)+〉, for example, matches
instruction locations where the constant 0xcafe is used as a source operand in a mov
operation repeatedly over a trace. At the same time, 〈“Rrc”, “RrcSmc”, memcpy〉 encodes
the goal of locating memcpy usage within a region with references to static data containing
the strings “Rrc” and “RrcSmc”. Policies are used as input to our region inference and
feedback-driven refinement algorithms. They evolve across each iteration of Incision to
become finer-grained, reflecting our increased understanding of the SUT over time.

4.2 Region Inference
To determine what to trace and which part of the firmware to focus on, we perform region
inference. This process locates firmware region boundaries corresponding to functionality
specified by the input reverse engineering policy. We perform inference in two steps: region
identification and region grouping (shown in Algorithm 1, Appendix A). Region identifica-
tion locates disparate regions (functions) corresponding directly to the input policy, while
region grouping locates the boundaries of encompassing regions and includes transitively
related functionality. Grouping is required as many embedded tracing mechanisms are
limited in the number of tracing regions (inclusions or exclusions) that can be specified.
By locating larger encompassing regions, we, therefore, ensure traces are complete and
specific and minimize overheads due to entering and leaving trace regions, which can cause
trace errors.

4.2.1 Region Identification

(a)

NAS

(b)

Figure 2: (a): Region identification applied to LTE firmware using a policy of 〈“NAS”〉.
(b): Region grouping applied to the result of (a) for R = 4.

We perform region identification by identifying functions containing elements or refer-
ences to elements matching the input policy. We then group the functions by their locality
and rank them based on the number of times each group matches each input policy element.
We consider references to be in the same group if they occur within δ bytes of each other;
we set δ as twice the database’s median function size. We rank policy elements associated

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 367

¶

·

¸

¹

Figure 3: Visualization of control-flow extraction for two tasks. We first identify contiguous
regions of viable control-flow in the input trace (step ¶), then identify task switching and
interrupt handling logic (shown in blue in step ·), identify the control-flow for each task
(task 1 shown in green and task 2 in yellow in step ¸), and finally, perform task-level CFG
extraction (step ¹).

with each region by the number of times they are referenced or occur, forming a ranking of
all referencing regions of an element based on their relative frequency. This ranking metric
is based on the observation that the functionality of a region which heavily references a
particular element is likely to be closely related to that specific element. Since we match
static data and symbols based on both full and partial matches, we treat strongly related
referenced data as a single entity. By doing so, we limit the amount of static data, such as
debug strings, considered in isolation due to being embedded near the code that uses it
and only references it once.

4.2.2 Region Grouping

Region identification locates sections of firmware containing functionality specific to a
given policy. However, we may identify more regions than our trace mechanism can handle
if the functionality is split over non-contiguous regions separated by more than δ bytes.
We show such a scenario in Figure 2a, which depicts region identification applied using
the policy 〈“NAS”〉 to an LTE baseband firmware. To overcome this, we combine the
identified regions by grouping them into R larger regions.

To perform grouping, we use hierarchical agglomerative clustering [War63] with prox-
imity as the distance metric. This type of clustering works by iteratively merging regions
based on their proximity until R remain. We base our grouping method on the observation
that functions with related functionality (i.e., that are used together in the same module
to provide some higher-level functionality) are generally located close together in program
binaries. We stipulate that this is due to how software is developed—the standard practice
is to put related code into the same module, and this grouping gets preserved during
compilation. Figure 2b shows region grouping applied to the result of region identification
with R = 4. The clustering groups the disparate regions in Figure 2a into four larger
regions containing related functionality.

4.3 Control-Flow Extraction
System-wide traces contain a mix of application-level code (i.e., task code), interrupt
handling, and OS-level task switching logic. To extract the control-flow for each of these
sub-traces, we use the CFG representation from the program database to follow the
execution of the trace. We first identify continuous flows of blocks such that there exist
real control-flow transitions between each contained block. We then categorize blocks we
could not determine viable transitions to or from, using the following labels: breaks for
context-switch like behavior, unresolved for feasible transitions we could not yet resolve
due to an incomplete database (e.g., indirect flows), and errors for blocks that do not

368 Cutting Through the Complexity of Reverse Engineering Embedded Devices

exist within the database. Based on this categorization, we split the trace into flows that
correspond to either task code and context switching logic. This enables us to isolate
the control-flow of each trace part, and extract each task’s control-flow. We visualize the
complete process in Figure 3.

4.3.1 Flow Identification

We identify flows (visualized by step ¶ in Figure 3) by performing a single pass over the
input trace. We process each block pairwise with its successor. For each pair of blocks,
we use Algorithm 2 (Appendix A) to categorize the transition between them as either
viable, an error, or unresolved. We use the error label for transitions where either block
failed to disassemble. We use viable when there exists an irrefutable flow between the
blocks due to a branch, call, or return. To handle returns, we maintain a call stack by
pushing the address following a call onto the stack and popping the top of the stack on
each return. We consider a return between two blocks viable if the address at the top of
the call stack matches the second block’s address. Since a trace may contain events for
several tasks, we cannot rely on it to help us resolve indirect control-flow. Thus, at this
stage, we conservatively handle indirect calls. To do so, we propagate constants referenced
in the function enclosing the first block. If this enables us to resolve the call-site target to
the second block’s address, we label the transition viable. We handle additional cases later
when performing control-flow graph extraction (Section 4.3.3).

When we encounter a tracer-induced error between two blocks, it indicates that at
least one block is missing from the trace. If context switching occurred between the blocks,
then the second will not be reachable from the first by regular control-flow. However, if
there should be a viable transition between the blocks, then there will be some path in
the program-wide CFG connecting them in some bound N of intermediate blocks. To
capture this, as we process traces, we construct a dynamic CFG containing transitions
between blocks across untraced regions. We then use this CFG to approximate viable
transition targets when errors are present. As this may lead to unsoundness when we label
error transitions as viable, to minimize false positives, N must be small; for all firmware
analyzed herein, we set N = 3. When no viable flow can be identified based on the current
database, we terminate the current flow and classify the transition as unresolved.

4.3.2 Flow Classification

To determine which flows correspond to task code or context-switching, we identify which
unresolved transitions are from task-switching logic and to interrupt handlers that should
be re-classifed as breaks. This process enables us to find out where task code starts and
ends. To perform re-labelling, we analyze how the prefixes and suffixes of flows repeat
across the entire trace. We base this on the observation that task switching and interrupt
handling code exhibits execution patterns distinct from regular code. We use a suffix
array to represent the input trace and an Longest Common Prefix (LCP) array to locate
repeated prefixes and suffixes, constructed using Algorithm 3 (in Appendix A). An LCP
array enables us to determine the length of the common prefix between two sub-sequences
(or flows).

Neither suffix arrays nor LCP arrays are directly amenable for representing trace data.
Thus, we perform some adaptations. Suffix arrays operate on sequences taken from a
fixed alphabet Σ. For traces, we use an alphabet derived from block start addresses. We
consider two blocks with the same address distinct if a trace error precedes or follows them.
Suffix arrays also require us to signify the end of an input sequence, a so-called sentinel
character Σ⊥. For traces, we select this character as max(Σ) + 1. By design, an LCP array
enables us to find all repeated sub-sequences of an input sequence, including those that
overlap. However, for execution traces, only those that do not overlap are meaningful. We

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 369

¶ ·

¶ Does not end in indirect call

· First block is a function entry-point

(a)

¸ ¹

¸ Ends in indirect call/branch

¹ First block is not a function entry-point

(b)

Figure 4: (a) When there is no viable control-flow between two flows (e.g., where ¶ does
not end on an indirect call and ·’s first block is a function start), we classify the second
flow as an ISR (· in blue). (b) When there is viable control-flow between two flows, but
it is not regular (e.g., where ¸’s last block ends on an indirect call and ¹’s first block is
not a function start), we classify the first as task-switching logic (¸ in blue).

thus compute the length of the common prefix between two sequences as the minimum of
the reported LCP length and the difference between their indices in the suffix array.

Identifying Transitions to Interrupt-Handling Logic We identify the starting points of
context-switching code by identifying transitions to ISRs. Our intuition for this is based
on the fact that task switches as well as other kinds of context-switching are typically
preceded by an Interrupt Request (IRQ) (e.g., a timer interrupt preempting a certain
task). IRQs are then handled by an ISR or interrupt handler, which determines how the
interrupt will be processed.

To locate ISRs in a generic way, we first identify pairs of neighboring flows, where
¶ the last block of the first flow does not end in an indirect call or branch, and · the
first block of the second flow is the entry-block of a function, as shown in Figure 4a. To
distinguish transitions to ISRs from other unresolved transitions matching this criteria, we
filter them by only considering those that have execution patterns that appear frequently
in the trace (which we identify using the LCP array). We detail the complete procedure in
Algorithm 4 in Appendix A.

Identifying Transitions from Task-Switching Logic Similar to interrupt-handling logic,
we locate task-switching code by identifying pairs of neighboring flows with specific
properties, visualized in Figure 4b. Before task-switching happens, a task context will
be set-up or restored from a global structure; then, control will transition to the newly
created or resumed task using an indirect branch or call. We can distinguish these calls
and branches from regular indirect calls and branches by their targets. For task-switching
logic, the set of possible targets is unbounded, and they are unrestricted in their locality.
Further, they can be function starts, block starts, and the middle of basic blocks. The
number of firmware locations for performing task switching is small (usually one) and
frequently appears within traces.

Thus, to identify task-switching logic, we construct an ordering over the last block of
each identified flow. We consider the highest-scoring block to be part of the flow performing
task-switching. We score the blocks based on the following criteria: ¶ (greater) if the
block occurs at the end of more than one flow and is followed by blocks that are function
starts and blocks within functions, · (greater) if there is no trace error between the block
and the next, ¸ the total number of times the block occurs at the end of a flow, ¹ the
number of unique blocks that follow the block, and º the length of the longest common
suffix of the flows terminated by the block (computed using the LCP array). Criteria º
reflects that set-up code for task switching is mostly branch free.

370 Cutting Through the Complexity of Reverse Engineering Embedded Devices

4.3.3 Task-Aware Control-Flow Extraction

To extract task-level control-flow, we first merge flows of the same kind (task-switching
logic or task code). To do this, we use the labels applied to flows and transitions in the
previous phases. We then merge non-adjacent flows to build flows for each task. Finally,
we output the task-level control-flow graphs derived from the merged flows.

We always elect to merge adjacent flows that are both labeled as task-switching logic,
which occurs when the task-switch code is itself interrupted (nested interrupts). We
merge adjacent task flows separated by unresolved transitions if the first flow ends with a
computed call (e.g., call [R0, #offset]). We also merge flows if the second flow starts
at the entry of a function or if the first flow ends on a return and the second starts at a
block whose predecessor ends on a computed call target.

To merge non-adjacent flows and hence detect task-resumption, we maintain a stack
of flows while merging. At each point following an identified task switch, we attempt to
merge the next flow with one of the unmatched flows in our stack. We consider two flows
to match when the second starts (or resumes) in the same block as the first ends on, or
when the second starts in a block reachable within a single transition from the block that
the first ends on, modeling resumption into a successor block. When a trace mechanism
drops events, identifying task resumption is generally not possible because the ends and
starts of flows may miss intermediate blocks. Further, due to code-sharing between tasks,
and as traces only contain basic block starts, it is not always possible to discern which
task resumed if the task-switch occurred when executing shared code (e.g., library code).
We detail the complete procedure in Algorithm 5 in Appendix A.

4.4 Feedback-Driven Refinement
At the end of each iteration performed by Incision, we add control-flow edges to the
program database based on extracted task-level CFGs, correct disassembly errors, and
propagate that information across the entire database. We detail the full procedure in
Algorithm 6 in Appendix A.

We apply Ghidra’s auto-analysis to perform propagation, which identifies new function
starts and code/data cross-references. Propagation acts as a feedback-mechanism. It
enables us to incorporate reverse engineering policy-specific information extracted from
the input trace (such as control-flow edges) and use it to drive further static analysis-based
refinement, which will discover additional functions and cross-references.

To handle disassembly errors identified while processing the trace, we re-disassemble
blocks using alternative disassembler options. For ARM, for example, we switch to/from
Thumb mode. To ensure that incorrect disassembly does not propagate across the database,
we re-disassemble blocks transitioning into “error blocks” and force Ghidra to rebuild their
enclosing functions to correct the function-level control-flow. This automated process can
fail when there is a conflict in the database. For example, when an incoming edge forces
disassembly to be performed incorrectly with a specific set of options, or when a function
is incorrectly labeled as non-returning causes disassembly to stop and miss code following
calls to that function. To remedy this, we require human intervention to correct the error.
In practice, the frequency this is required is low, and the intervention is usually minor
(Section 5.4).

Following propagation, to locate repeated instruction patterns from our input policy,
we label each function with any instruction patterns it matches. To find them, we use the
LCP array from the previous phase to locate repeated sequences containing each matched
instruction’s enclosing block. Upon completion of an iteration, we terminate Incision
when our reverse engineering objectives have been satisfied (e.g., we identified the firmware
region responsible for a given behavior). Otherwise, we update our reverse engineering
policy and perform another iteration of Incision’s feedback loop.

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 371

5 Evaluation
In this section, we evaluate the effectiveness of Incision. We first assess each of its
components separately: region inference (RI), task-based control-flow extraction (CE),
and feedback-driven refinement (FD). Then, we apply Incision in full by performing real
reverse engineering tasks. Our evaluation assesses correctness, real-world usability, and
human effort using the following criteria:

C.1: Correctness. ¶ For CE, the extent to which Incision extracts correct control-flow
of input traces, its ability to discern between task and context-switching logic, and the
correctness of the identified flow bounds. · For RI, the extent to which the tracing bounds
reported by Incision correspond to functionality relevant to the input policy. ¸ For
FD, the extent to which Incision improves the firmware database. ¹ For FD, whether
Incision correctly rectifies disassembly errors.

C.2: Real-world usability. ¶ The extent to which input policies reflect real reverse engi-
neering goals. · How effectively Incision applies to real-world SUTs.

C.3: Human effort. For FD, the proportion of errors that require manual intervention
compared to what Incision can fix automatically, how many changes to the database that
equates to and the complexity of those changes.

5.1 Firmware Data Set
We conduct our evaluation using firmware extracted from end-user devices and firmware
adapted from open-source projects. Our end-user devices consist of a VxWorks (RTOS)
based Huawei LTE baseband targeting ARMv7 and a Renault BCM targeting Renesas
V850ES. We use ARM CoreSight to trace the baseband, as detailed in Appendix B. For
this particular device, CoreSight’s trace capture buffer is limited to 1MB. For the BCM, we
perform tracing using Renesas CubeSuite+ [Ren]. Both SUTs are of moderate complexity
and interact with numerous peripherals. To establish a ground truth, we evaluate Incision
using two open-source RTOSes, FreeRTOS, and Zephyr. To do so, we select existing
example firmware from each project and expand its functionality by adding: encryption
and decryption operations, sorting and searching operations using custom predicates (as
a means to introduce many indirect calls, which represent an adversarial setting when
performing control-flow extraction), and various data encoding and decoding schemes, each
running as different OS tasks. In total, we construct ten firmware images, five for each OS.
To capture execution traces, we use QEMU.

5.2 Correctness (C.1)
5.2.1 Control-Flow Extraction (C.1.1)

For this criterion, we evaluate using our FreeRTOS- and Zephyr- based firmware. We
construct a ground-truth by manually identifying task code and the ISR responsible for
triggering task switches from the firmware source code. We then match these locations to
regions in the compiled firmware. In the Zephyr-based firmware, the context switching
starts with the clock interrupt z_clock_isr and for FreeRTOS-based firmware it starts with
xPortSysTickHandler. In both OSes, the context switch ends with a PendSV exception.
For each firmware, we vary the number of concurrent tasks from two to ten. We also
configure the scheduling mechanism of each OS to vary the frequency of task switches
from 1ms to 6ms.
Experiment: We trace each firmware and sample five non-overlapping sub-traces of 50k
blocks from each trace with a different task switch frequency. Then, we compare the
identified tasks, resumes, and switching logic to our ground truth.

372 Cutting Through the Complexity of Reverse Engineering Embedded Devices

0

0.2

0.4

0.6

0.8

1

2
ta
sk
s

4
ta
sk
s

6
ta
sk
s

8
ta
sk
s

10
ta
sk
s

P
ro
po

rt
io
n
of

co
rr
ec
tl
y
id
en
ti
fe
d
ta
sk
s

Zephyr RTOS Firmware

0

0.2

0.4

0.6

0.8

1

2
ta
sk
s

4
ta
sk
s

6
ta
sk
s

8
ta
sk
s

10
ta
sk
s

Switching
frequency
1 ms
2 ms
4 ms
6 ms

FreeRTOS Firmware

Figure 5: Left: Correctly identified tasks for Zephyr firmware; Right: Correctly
identified tasks for FreeRTOS firmware. We group the results by task-switching frequency
(1ms, 2ms, 4ms, and 6ms). We calculate the resulting correctness for each group as the
average correctness over five trace samples of 50k blocks.

Results: Figure 5 shows the proportion of correctly identified tasks averaged over five
traces for each firmware. In over 80% of the cases, Incision correctly identifies the task
switching logic. Furthermore, when it correctly identifies the task switching behavior,
Incision can correctly discern between task starts and task resumes. The incorrectly
identified task switches stem from a limited number of switches in the trace samples. The
application-level indirect control-flow outnumbers the number of task switch targets, thus
inducing false positives. This would not be an issue in practice, as traces from real-world
devices have a higher prevalence of task-switching due to peripheral interaction.

5.2.2 Region Inference (C.1.2)

For this criterion, we assess the quality of the region bounds output by Incision using
the policies shown in Table 2. We use the Huawei LTE baseband for this experiment, as
it is the most complex SUT in our data set. We construct a ground truth by manually
identifying regions based on symbols and debug strings in the firmware. We further support
this evaluation in Section 5.3.2 by taking traces using the identified bounds for a real
reverse engineering task.

Experiment: We measure quality by calculating the overlap between the regions identified
in our ground truth and to those output by Incision. For each policy, we limit the number
of regions to find to four to match the number of regions traceable using the SUT’s
CoreSight configuration.

Results: Table 2 shows that all of the ground truth bounds fall within regions output
by Incision, with at least 79% overlap. As demonstrated later in Section 5.3.2, these
bounds enable us to acquire traces containing functionality matching the specified input
policies. Further, those traces enable us to perform practical reverse engineering. In this
way, Incision remedies some of the limitations of hardware-based tracing mechanisms,
such as trace buffer limits. It can narrow the number of regions to trace while still enable
the capture of relevant functionality.

5.2.3 Database Improvement (C.1.3)

To assess this criterion, we compare the increase in identified function starts after each
iteration of Incision to a baseline of Ghidra’s auto-analysis. We use our real-world
firmware for this experiment. To establish a ground truth of function starts for the
baseband, we use leaked firmware symbol information. For the BCM, we establish a
ground truth by manually reverse engineering its firmware.

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 373

Table 2: Comparison of size and ratio of overlap of manually identified regions compared
to regions identified by Incision for policies used in Section 5.3.2.

Policy Area of ground
truth region

Area of overlap with
identified region

Ratio of
overlap

〈“USIMM”〉 95009 91677 96.49%
〈“WAS”〉 1412691 1116338 79.02%
〈“NAS”〉 946908 904951 95.57%
〈“RRC”〉 792107 722861 91.26%

〈“RRC_SMC”〉 9086 8524 93.81%

50000

52000

54000

56000

58000

T1 T2D
B

im
pr
ov
em

en
t
in

fn
.
st
ar
ts

Traces from VxWorks baseband

4000

4200

4400

4600

4800

5000

S1 S2 R S3 S4 E
Traces from Renault BCM

Ghidra Baseline
Improvement (CE)

Improvement (FD)

Figure 6: Left: Database improvement for VxWorks baseband firmware; Right: Database
improvement for Renault BCM firmware. Improvement measured in correct function starts;
categorized by: Ghidra’s auto-analysis (Ghidra Baseline), improvement due to control-flow
extraction (CE), and improvement due to feedback-driven refinement (FD).

Experiment: We capture traces for each SUT and process them using Incision. We use
two traces for the baseband (Figure 6, left) and six traces for the BCM (Figure 6, right).
Results: For both firmware databases, the use of Incision results in an increase in the
number of identified functions over Ghidra. For the baseband, the increases are due to
adding task-level CFGs into the database and the subsequent feedback process. The
task-level CFGs trigger further discovery of functions not found in either the processed
traces or original database. For the BCM, all increases are due to the extracted CFGs.
Notably, by combining static and dynamic analyses in a feedback loop, Incision recovers
more function starts than present in either the traces or the baseline Ghidra database.

5.2.4 Database Error Correction (C.1.4)

We assess this criterion using the same firmware and traces as the previous section
(Section 5.2.3), as shown in Figure 6.
Experiment: We process each trace using Incision and assess how it rectifies reported
disassembly errors. For each “error block” our tool reports it can fix automatically, we
verify that the proposed correction is in line with how a human analyst would proceed.
Results: For the BCM firmware, we encounter no disassembly errors for any of the traces.
For the baseband firmware, we encounter errors for both traces; trace T1 yields 53 errors
out of 88k blocks, and T2 yields 188 out of 200k blocks. Our results are in line with our
expectations. The BCM firmware uses the V850ES instruction set, which has a single
configuration. Therefore if our traces contain correct block starts, then no disassembly
errors should be introduced by processing them. In contrast, the baseband firmware uses
both the ARM and Thumb2 instruction sets. As reported by Friebertshäuser [Fri], most
tools perform relatively poorly for firmware that mixes these instruction sets since the
correct disassembly context is often only apparent at runtime.

374 Cutting Through the Complexity of Reverse Engineering Embedded Devices

For trace T1, Incision reports a fix for 33 out of the 53 errors. Of these, only one
is incorrect. On investigation, we find that this is because Ghidra reverts Incision’s fix.
Ghidra performs a “Non-returning Function Detection” pass as part of its auto-analysis,
which Incision triggers as part of its feedback process. The result is that the thunk
function inserted by Incision gets removed by Ghidra. For trace T2, Incision proposes
fixes for 135 out of the 188 errors, all of which are correct. Overall, we find that disassembly
errors rarely occur. However, when present, Incision can apply automatic fixes that
handle the majority of cases.

5.3 Real-World Usability (C.2.1, C.2.2)
Despite the large number of automated firmware analysis techniques proposed in the
literature, it is rare to find any evaluated using firmware extracted from end-user devices.
In practice, it is often the case that these techniques operate under specific assumptions,
which are target-dependent and may not always hold. To apply these techniques to end-user
devices, we must almost always perform preliminary manual reverse engineering to make
necessary adaptations.

In this section, we show how Incision can complement techniques by supporting
that preliminary reverse engineering effort. To that end, we evaluate the firmware of two
end-user devices. These devices and their firmware share several properties that make them
challenging to analyze. ¶ Both firmware coordinate various complex layers and protocols
(RRC for the baseband and an immobilizer [WdHG+20] and diagnostics [dHG18] for the
BCM). · Even with JTAG access, acquiring representative execution traces from either
device remains a challenging task. Due to a lack of tracing hardware on the BCM, as it is
not real-time constrained, we resort to emulation to acquire traces. For the baseband, we
reverse engineer and configure the on-chip tracing hardware for trace acquisition. However,
our traces are often incomplete and limited in size. Thus, we must carefully select which
regions to trace in order to perform practical analysis. ¸ Both devices rely on various
on- and off-chip peripherals. The baseband incorporates an RF component for LTE radio
communication. While the BCM includes an immobilizer base station, a low-frequency
antenna, and peripherals to communicate over automotive buses (e.g., CAN).

5.3.1 Identifying Stall States to Emulate Renault BCM Firmware

In this experiment, we use Incision to aid in locating stall states in the BCM firmware
that prevent us from successfully emulating the device.

0

1000

2000

3000

4000

5000

6000

SYS.1: 29B
lo
ck
s
tr
ac
ed

un
ti
ls

ta
ll

Stall point

SYS.1
SYS.2
REP.
SYS.3
SYS.4
EMU.

Figure 7: Traced block coverage (unique blocks) for BCM firmware for each stall point;
tracing halted when buffer capacity (1MB) reached. After providing stimulus at each stall
point (SYS.N, REP.), we are able to emulate the device firmware (EMU).

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 375

Set-up: As read/write protection is disabled on the BCM, we can obtain its firmware
over JTAG. We use Renesas CubeSuite+ IDE to emulate the firmware and acquire traces.

Objective: We assess the effectiveness of Incision to aid firmware emulation by detecting
stall states in traces. An emulated firmware instance should be as true to the on-target
execution as possible. However, emulation often runs into problems where the code hangs
on a peripheral status register [FML20]. Thus, we need to handle such states to facilitate
emulation. We can identify such states in an execution trace by locating repeated flows
that saturate the trace buffer. They might manifest as long repeated flows of code or short
tight loops on particular blocks, e.g., when polling a peripheral register.

Experiment: We attempt to emulate the firmware by applying Incision iteratively. In
each iteration, we execute the firmware from the reset vector and halt when the trace
buffer (limited to 1MB) is full. Since our objective is emulation, we do not restrict traces
by a policy. Instead, we use policies to detect stall states; we define the following policies:
〈(tst1 ?, DAT_fffff*)+〉, to detect any repeated instructions which poll for a register
bit in the memory region where peripherals reside, and 〈(cmp r0, r*)+〉, to detect if
emulation stalls on the return value of a specific function.

Results: Figure 7 shows how Incision gradually improves emulation over successive
traces. The first trace makes little progress and stalls on an instruction that polls a bit in
the SYS register. Since Incision can identify the flow responsible for the stall, we can
clear the corresponding bit in the register to advance the emulation past this point. Over
all iterations, Incision enables us to identify four stall-states waiting on the SYS register
and one longer repeated sub-flow, which saturates the trace buffer. In the latter case, the
repeated flow consists of two function calls. The emulation only proceeds if the second
returns successfully. Even though approaches such as P2IM [FML20] reportedly handle
tight polling loops, such as those on the SYS register, it is unclear how they would identify
the latter stall state. In our last trace, where we achieve emulation (EMU.), we observe a
dramatic increase in the number of unique blocks executed after passing the initial states.

5.3.2 Analysing the Key Usage of the Huawei R216h

In this experiment, we use Incision to aid in analyzing how the baseband handles sensitive
key material.

Set-up: We obtain the baseband firmware over JTAG and configure tracing as detailed in
Appendix B. We also use JTAG to obtain RAM dumps. As mentioned previously, for this
device, the CoreSight trace capture buffer is limited to 1MB, and the number of regions we
can specify as inclusions or exclusions is limited to four. We provide input to SUT using an
Ettus USRP B210 Software Defined Radio (SDR). We detail the complete experimental
set-up in Appendix C.

Objective: Our analysis goal is to identify how the firmware uses cryptographic keys
and check that it sanitizes them correctly. We use Incision to perform the first stage of
analysis: to identify crucial functions and obtain relevant traces. We then use the improved
database to help identify the buffers storing key material and analyze how the firmware
uses them.

Experiment: To improve our initial database, we first attempt to capture traces of
LTE layers known to handle cryptographic keys using the following policies: 〈“NAS”〉
and 〈“RRC”〉. From this we obtain traces T1 and T2, as shown in Figure 6 (left).
These traces improve the quality of (relevant) information in our database (identified
global buffers, static data references, resolved control-flow). They also enable us to form
bounds to exclude task-switching behavior in subsequent traces. Next, we take traces
excluding the task-switching region and the bounds obtained using the following (more

376 Cutting Through the Complexity of Reverse Engineering Embedded Devices

0

1

10

100

1000

10000

AA N1 N2 R1 R2 U1
B
uff

er
re
fs
.
(l

og
10

sc
al
e)

Filter policy

0.5 · MaxEntropy
0.75 · MaxEntropy
0.9 · MaxEntropy

Figure 8: Number of key buffers to analyze. AA: initial database; Nn, Rn, Un: database
after processing a trace with references kept if referenced by a block in the trace. We
identify viable buffers as those with high entropy. We compute thresholds for keeping
buffers as a proportion of their Max. (Shannon) Entropy (ME) relative to their size.
Without Incision, max. number of buffers to analyze is 4451 (AA, 0.5·ME), after using
Incision, max. number of buffers is 49 (R1, 0.5·ME). We use log10 scale for readability.

specific) policies (traces shown in Figure 8): 〈“RRC”, “RRC_SMC”〉 (traces R1 and
R2), 〈“NAS”, “NAS_EMM”, “NAS_LMM”〉 (traces N1 and N2), and 〈“USIMM”〉 (trace
U1). Using the extracted sub-flows from the traces captured, we identify firmware regions
responsible for each protocol layer. Next, we use those regions and database cross-references
to locate global buffers accessed by the code blocks present in identified sub-flows. The key
material we are interested in (AES keys) should be at least 16 bytes in size and have high
entropy. We use this as a filtering criterion: keeping only references to buffers with these
properties that are referenced by code from our identified sub-flows. Finally, we perform a
manual analysis of the key usage using the identified buffers and the improved database.

Results: In traces containing task-switching logic (i.e., T1 and T2), Incision correctly
identifies its bounds. It identifies the entry-point of intEnt as the ISR and a block in
reschedule as the point responsible for task switching. In the remaining, finer-grained
traces, we observe no switching logic as we can exclude its bounds. We find that all of our
traces correspond to the policies used to take them. In this way, Incision enables us to
perform a reverse engineering task, which requires both static and dynamic analyses with
minimal manual effort (see Section 5.4). It integrates information acquired dynamically into
the firmware database, which allows us to form finer-grained reverse engineering policies.
Further, it enables us to restrict taken traces to contain policy-relevant information by
automatically locating the bounds of task switching/handling logic.

When performing the next stage of analysis (to identify key buffers), our improved
database and traces enable us to reduce the number of buffers requiring manual analysis.
The decrease is by two orders of magnitude—from thousands of buffers to tens, as visualized
in Figure 8. Through our analysis, we locate the following keys: knasi , knase , kenb, krrci ,
krrce , kupe , ck, ik, and kasme. After analyzing the code processing them, we find that,
though all identified keys are considered session keys by the standard, only ck, ik, and
kasme are correctly sanitized.

5.4 Human Effort (C.3)
We evaluate this criterion using traces T1 and T2 for the baseband firmware. We compute
the proportion of errors corrected automatically to those needing manual intervention. For
each error requiring manual intervention, we measure its complexity (∝ human effort) by the
type and number of changes required to fix it in the database. We consider adding/removing
a control-flow edge, label, or function start to be low-effort and performing multiple changes

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 377

0

0.2

0.4

0.6

0.8

1

T1 T2

P
ro
po

rt
io
ns

of
fix

ty
pe

s

Trace ID

Automatic
Low Effort
High Effort

0

50

100

150

200

250

300

T1 T2

N
um

be
r
of

er
ro
rs

Trace ID

All
Low Effort (CS)
Low Effort (RF)

High Effort

Figure 9: Number of disassembly errors resulting from baseband traces T1 and T2. Left:
proportion of errors fixed automatically, errors fixed manually that are low effort, errors
fixed manually that are high effort. Right: breakdown of errors; all errors reported, errors
fixed: low effort where we create a function start (CS), where we force Ghidra to re-create
a function (RF); high effort.

or other changes as high-effort.
Experiment: Using the same methodology as Section 5.2.4, we manually analyze each
un-fixed error. We then apply a suitable fix manually and record the complexity of the fix
performed in terms of database changes.
Results: We show the results in Figure 9. For trace T1, we encounter 53 disassembly
related errors, and for T2, 188. The majority of errors could be corrected automatically by
Incision. Of those requiring manual intervention, all were “low-effort” fixes, requiring a
single change. The majority consisted of creating a missing function start, and the rest,
re-creation of a function.

Overall, Incision dramatically improves the standard reverse engineering workflow for
complex device firmware. Although its analyses are not entirely automated, it reduces
human effort in almost all cases. Where manual intervention is needed (e.g., to perform
tracing), it is unavoidable and not a limitation of our approach. Moreover, the manual
effort required to use Incision is minimal, consisting of minor changes to the database.

5.5 Discussion and Limitations
In this section, we discuss the possible limitations of our approach.

Firmware Composition In a scenario where several tasks within a trace heavily share
code, Incision may incorrectly merge their flows. The may occur if one task resumes to
a location where another was preempted (e.g., in library code). In this case, given the
limited information available in our traces, there would be no way to distinguish between
the flows without additional context.

Reverse Engineering Policy Granularity While a policy can encode realistic target-
specific reverse engineering objectives, it cannot encode all possible goals. In particular,
a policy cannot express relations between elements. While this could be considered a
limitation, we do not consider it a limitation in the context of the tasks Incision is
intended to perform, i.e., the initial reverse engineering effort to enable other analyses.

Soundness and Completeness To handle trace mechanism errors, we estimate viable
control-flow to make analysis possible. Therefore, we cannot guarantee soundness or
completeness for analyses that build upon Incision’s outputs where such errors are present.
We consider this an acceptable trade-off as trace analysis would not otherwise be possible.

378 Cutting Through the Complexity of Reverse Engineering Embedded Devices

Quantification of Human Effort When assessing C.3, to avoid biases based on prior
human experience, we measure human effort as a function of the number of manual tasks
performed and their complexity. This comes at the cost of not directly measuring the
time taken to perform tasks (as that would depend on the subject’s expertise). We argue
that this metric is a reasonable alternative. The time taken to complete tasks is generally
proportional to their complexity and amount, irrespective of prior human experience.

Tracing Mechanisms While many end-user devices provide tracing facilities, some ven-
dors remove such features altogether. While it may be possible to alter a device’s firmware
to add instrumentation to provide a trace mechanism [Sel18], the effort to do so is com-
parable to many everyday reverse-engineering tasks. Hence, removal of these facilities
acts as a countermeasure against performing reverse-engineering using execution traces.
Therefore, we consider devices without tracing features out of scope. For other devices,
high-end or expensive equipment can overcome some of the problems we describe, such as
limited trace buffers. However, for many end-user devices, these tools are often unavailable.
We, therefore, exclude analysis scenarios involving them from our evaluation.

6 Related Work
Dynamic firmware analysis Avatar [MFB18, ZBFB14] and Surrogates [KKM15]
introduced the concept of hardware in the loop analysis. This methodology allows dynamic
analysis to be performed without handling many of the complexities of the device being
analyzed. It enables hybrid analyses where a fast host can emulate most of the firmware
and defer to the device only for I/O and interrupts. While these approaches reduce
some of the complexities of analysis, interaction with the underlying device may introduce
unacceptable overheads. For example, as Avatar relies on state transfer between the device
and host, the pause introduced during the transfer may lead to the analyzed core being reset.
Furthermore, when using this kind of analysis, due to the way devices are interacted with, it
is often not possible to achieve reproducible executions. PANDA [DHH+15] addresses this
problem by shifting firmware execution to an emulator that can record and replay execution
traces. Many approaches attempt to completely rehost the firmware using a generic
emulator and provide peripheral models and simulated interrupts to mimic the hardware.
To a greater [FML20, MFL+21, CGML20] and lesser extent [GMS+19, HVP+20, CGS+20],
techniques can generate these models automatically. Sun et al. [SGZ19] propose a domain-
specific reverse engineering framework to extract the high-level semantics of control-
logic from Internet of Things (IoT) device firmware. In contrast to Incision, they
require high-quality CFG reconstruction and fine-grained execution traces that include
memory loads and stores, making their technique challenging to apply to the devices
and firmware analyzed in this work. In order to test firmware for vulnerabilities, many
approaches use symbolic execution. Davidson et al. [DMRJ13], for example, demonstrate
how for very small firmware, it can be used effectively to achieve complete coverage.
Both Inception [CCF18] and HardSnap [CF20] focus on how to handle the nuances of
complex firmware and devices with multiple peripherals under symbolic execution. They
leverage the fact that source code is sometimes available for portions of firmware, which
contains significantly more information about high-level constructs and data-types and
can thus make symbolic execution more tractable. Other approaches use fuzz testing to
assess devices for vulnerabilities. A naive approach to this has significant drawbacks, as
highlighted by Muench et al. [MSK+18]. Therefore, for most approaches, the firmware
is first manually reverse engineered, and then select parts are fuzzed under an emulated
environment [MSP20, RCGH20, SPL+19, ZDY+19]. Aside from academic work, both
SystemView [SEG] and Tracealyzer [Per] support developers in debugging their
firmware through trace analysis. However, they require access to the source code for the

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 379

firmware, so that it can be compiled with software-based instrumentation. As such, the
use of these tools for reverse engineering or analysis of end-user devices is limited.

Static Firmware Analysis While the majority of focus has been on dynamic techniques,
a small number of approaches have used static analysis. However, almost all of these
have not been applied to bare-metal or monolithic firmware. Costin et al. [CZFB14]
perform a large-scale assessment of downloadable device firmware (mostly Linux-based)
and apply simple static analyses to discover several vulnerabilities. Shoshitaishvili et
al. [SWH+15] demonstrate how symbolic execution with human guidance can be used to
discover authentication bypass vulnerabilities in a various firmware, including binary blob
firmware. Cojocar et al. [CZV+15] use static analysis and machine learning to locate parsing
routines in device firmware automatically. Similarly, Thomas et al. [TCG17, TGC17], use
a static approach to locate undocumented functionality in Linux-based firmware.

Control-Flow Recovery and Disassembly A significant body of research has contributed
to the state-of-the-art in binary analysis. Much of this work has been towards improving
control-flow recovery and disassembly. We refer the reader to the work of Shoshitaishvili
et al. [SWS+16] for a more complete exposition. We summarize the contributions most
relevant to our work in what follows. IDA Pro [Hex] and Ghidra [Nat] provide solutions
to aid manual reverse engineering. They perform function start identification, disassembly,
control-flow recovery, and cross-referencing. However, for complex firmware the quality of
their analyses is highly dependent on human intervention. Andriesse et al. [ACvdV+16]
provide an in-depth analysis of the problems faced when performing disassembly on real-
world x86/x64 binaries. They attempt to remedy the situation with a compiler agnostic
approach to control-flow recovery [ASB17]. Muhui et al. [JZL+20] perform a similar
analysis for ARM-based binaries. The authors of Polypyus [Fri] propose an approach
leveraging past reverse engineering efforts on firmware from the same vendor to aid in
control-flow and function start recovery. Their tool provides a step forward in addressing
a problem which dramatically affects the correctness of disassembly for VLE instruction
sets such as Thumb2.

7 Conclusion
Complex embedded devices present many challenges when performing a security analysis:
undocumented peripherals, uncommon instruction sets, and limited tool support. Perform-
ing any kind of automated analysis, in particular, generally requires a non-trivial amount
of upfront manual reverse engineering. In this paper, we present Incision, a framework
that reduces the manual effort required to perform these preliminary reverse engineering
tasks. We design and implement four novel approaches that automate aspects of the
typical reverse engineering workflow: firmware region inference, OS primitive identification,
task-aware control-flow recovery from system-wide execution traces, and feedback-driven
refinement. The latter combines static and dynamic control-flow recovery to improve our
overall understanding of the firmware.

We demonstrate the effectiveness of Incision on the firmware of two end-user devices, a
VxWorks-based LTE baseband and an automotive BCM, as well as a set of firmware based
on widely used RTOS: FreeRTOS and Zephyr. We demonstrate Incision’s effectiveness by
performing real reverse engineering tasks. We use it to identify stall-points that prevent
emulation and assess cryptographic key usage. Both tasks greatly benefit from the use of
Incision. Further, we show that Incision does not introduce significant complexity to the
standard reverse engineering process and requires little manual effort to use. Incision’s
analyses produce correct results with high confidence and are robust to different OSes,
ISAs, and trace mechanisms.

380 Cutting Through the Complexity of Reverse Engineering Embedded Devices

References
[ACvdV+16] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert

Bos. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 583–600.
USENIX Association, 2016.

[ARMa] ARM. CoreSight Program Flow Trace. http://infocenter.arm.com/help/
topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_
spec.pdf. Accessed: 2020/06/29.

[ARMb] ARM. CoreSight Trace Memory Controller. http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0461b/DDI0461B_tmc_r0p1_trm.pdf. Ac-
cessed: 2020/06/29.

[ARMc] ARM. Embedded trace buffer technical reference manual. https://
developer.arm.com/documentation/ddi0242/b/. Accessed: 2020/11/05.

[ASB17] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-agnostic
function detection in binaries. In 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017,
pages 177–189. IEEE, 2017.

[CCF18] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. Inception:
System-wide security testing of real-world embedded systems software. In
William Enck and Adrienne Porter Felt, editors, 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pages 309–326. USENIX Association, 2018.

[CF20] Nassim Corteggiani and Aurélien Francillon. Hardsnap: Leveraging hard-
ware snapshotting for embedded systems security testing. In 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2020, Valencia, Spain, June 29 - July 2, 2020, pages 294–305. IEEE,
2020.

[CGML20] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-agnostic firmware
execution is possible: A concolic execution approach for peripheral emulation.
In ACSAC ’20: Annual Computer Security Applications Conference, Virtual
Event / Austin, TX, USA, 7-11 December, 2020, 2020.

[CGS+20] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen,
David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and
Mathias Payer. Halucinator: Firmware re-hosting through abstraction layer
emulation. In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, pages
1201–1218. USENIX Association, 2020.

[CKB17] Lucian Cojocar, Taddeus Kroes, and Herbert Bos. JTR: A binary solu-
tion for switch-case recovery. In Eric Bodden, Mathias Payer, and Elias
Athanasopoulos, editors, Engineering Secure Software and Systems - 9th
International Symposium, ESSoS 2017, Bonn, Germany, July 3-5, 2017,
Proceedings, volume 10379 of Lecture Notes in Computer Science, pages
177–195. Springer, 2017.

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0461b/DDI0461B_tmc_r0p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0461b/DDI0461B_tmc_r0p1_trm.pdf
https://developer.arm.com/documentation/ddi0242/b/
https://developer.arm.com/documentation/ddi0242/b/

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 381

[CZFB14] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti.
A large-scale analysis of the security of embedded firmwares. In Kevin Fu
and Jaeyeon Jung, editors, Proceedings of the 23rd USENIX Security Sym-
posium, San Diego, CA, USA, August 20-22, 2014, pages 95–110. USENIX
Association, 2014.

[CZV+15] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert Bos, Aurélien Francil-
lon, and Davide Balzarotti. PIE: parser identification in embedded systems.
In Proceedings of the 31st Annual Computer Security Applications Confer-
ence, Los Angeles, CA, USA, December 7-11, 2015, pages 251–260. ACM,
2015.

[DBXP20] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. Retrowrite:
Statically instrumenting COTS binaries for fuzzing and sanitization. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 1497–1511. IEEE, 2020.

[dHG18] Jan Van den Herrewegen and Flavio D. Garcia. Beneath the bonnet: A
breakdown of diagnostic security. In Javier López, Jianying Zhou, and Miguel
Soriano, editors, Computer Security - 23rd European Symposium on Research
in Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7,
2018, Proceedings, Part I, volume 11098 of Lecture Notes in Computer
Science, pages 305–324. Springer, 2018.

[DHH+15] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan
Whelan. Repeatable reverse engineering with PANDA. In Jeffrey Todd
McDonald, Mila Dalla Preda, and Natalia Stakhanova, editors, Proceed-
ings of the 5th Program Protection and Reverse Engineering Workshop,
PPREW@ACSAC, Los Angeles, CA, USA, December 8, 2015, pages 4:1–4:11.
ACM, 2015.

[DMRJ13] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha.
FIE on firmware: Finding vulnerabilities in embedded systems using symbolic
execution. In Samuel T. King, editor, Proceedings of the 22th USENIX
Security Symposium, Washington, DC, USA, August 14-16, 2013, pages
463–478. USENIX Association, 2013.

[FML] Bo Feng, Alejandro Mera, and Long Lu. P2IM documentation. http:
//archive.is/ydJ6x. Accessed: 2020/07/30.

[FML20] Bo Feng, Alejandro Mera, and Long Lu. P2IM: scalable and hardware-
independent firmware testing via automatic peripheral interface modeling.
In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020, pages 1237–1254.
USENIX Association, 2020.

[Fri] Jan Friebertshäuser. Polypyus – The Firmware Historian. https://github.
com/seemoo-lab/polypyus/. Accessed: 2020/07/25.

[GMS+19] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind
Machiry, Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon,
Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna. Toward the
analysis of embedded firmware through automated re-hosting. In 22nd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses,
RAID 2019, Chaoyang District, Beijing, China, September 23-25, 2019,
pages 135–150. USENIX Association, 2019.

http://archive.is/ydJ6x
http://archive.is/ydJ6x
https://github.com/seemoo-lab/polypyus/
https://github.com/seemoo-lab/polypyus/

382 Cutting Through the Complexity of Reverse Engineering Embedded Devices

[Hex] Hex-Rays. IDA Pro. https://www.hex-rays.com/products/ida/. Ac-
cessed: 2020/07/27.

[HVP+20] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, and
Michael Grace. PARTEMU: enabling dynamic analysis of real-world trustzone
software using emulation. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, pages 789–806. USENIX Association, 2020.

[JZL+20] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren.
An empirical study on ARM disassembly tools. In Sarfraz Khurshid and
Corina S. Pasareanu, editors, ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July
18-22, 2020, pages 401–414. ACM, 2020.

[KKM15] Karl Koscher, Tadayoshi Kohno, and David Molnar. SURROGATES: en-
abling near-real-time dynamic analyses of embedded systems. In Aurélien
Francillon and Thomas Ptacek, editors, 9th USENIX Workshop on Offen-
sive Technologies, WOOT ’15, Washington, DC, USA, August 10-11, 2015.
USENIX Association, 2015.

[MFB18] Marius Muench, Aurélien Francillon, and Davide Balzarotti. Avatar2: A
multi-target orchestration platform. In BAR 2018, Workshop on Binary
Analysis Research, colocated with NDSS Symposium, 18 February 2018, San
Diego, USA, San Diego, 2018.

[MFL+21] Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and William Robertson.
Dice: Automatic emulation of dma input channels for dynamic firmware
analysis. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy, 2021.

[MSK+18] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society, 2018.

[MSP20] Dominik Maier, Lukas Seidel, and Shinjo Park. Basesafe: baseband sanitized
fuzzing through emulation. In René Mayrhofer and Michael Roland, editors,
WiSec ’20: 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, Linz, Austria, July 8-10, 2020, pages 122–132. ACM, 2020.

[Nat] National Security Agency (NSA). Ghidra. https://ghidra-sre.org/.
Accessed: 2020/07/27.

[Per] Percepio. Tracealyzer. https://percepio.com/tracealyzer/. Accessed:
2020/07/25.

[RCGH20] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. Franken-
stein: Advanced wireless fuzzing to exploit new bluetooth escalation targets.
In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX Secu-
rity Symposium, USENIX Security 2020, August 12-14, 2020, pages 19–36.
USENIX Association, 2020.

[Ren] Renesas. CubeSuite+ (CS+) . https://www.renesas.com/us/
en/products/software-tools/tools/ide/csplus.html. Accessed:
2020/07/31.

https://www.hex-rays.com/products/ida/
https://ghidra-sre.org/
https://percepio.com/tracealyzer/
https://www.renesas.com/us/en/products/software-tools/tools/ide/csplus.html
https://www.renesas.com/us/en/products/software-tools/tools/ide/csplus.html

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 383

[SEG] SEGGER. SystemView. https://www.segger.com/products/
development-tools/systemview/. Accessed: 2020/07/25.

[Sel18] Denis Selianin. Researching Marvell Avastar Wi-Fi: From zero Knowledge to
Over-the-air zero-touch RCE. https://2018.zeronights.ru/wp-content/
uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf,
2018. Accessed: 2020/07/30.

[SGZ19] Pengfei Sun, Luis Garcia, and Saman A. Zonouz. Tell me more than just
assembly! reversing cyber-physical execution semantics of embedded iot
controller software binaries. In 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2019, Portland, OR,
USA, June 24-27, 2019, pages 349–361. IEEE, 2019.

[SPL+19] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard E. Shrobe,
and Mathias Payer. Firmfuzz: Automated iot firmware introspection and
analysis. In Peng Liu and Yuqing Zhang, editors, Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-of-
Things, IoT S&P@CCS 2019, London, UK, November 15, 2019, pages 15–21.
ACM, 2019.

[SWH+15] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. Firmalice - automatic detection of authentication
bypass vulnerabilities in binary firmware. In 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015. The Internet Society, 2015.

[SWS+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Krügel, and Giovanni Vigna. SOK: (state of) the art of war: Offensive
techniques in binary analysis. In IEEE Symposium on Security and Pri-
vacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 138–157. IEEE
Computer Society, 2016.

[TCG17] Sam L. Thomas, Tom Chothia, and Flavio D. Garcia. Stringer: Measuring the
importance of static data comparisons to detect backdoors and undocumented
functionality. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, Computer Security - ESORICS 2017 - 22nd European Symposium
on Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part II, volume 10493 of Lecture Notes in Computer Science,
pages 513–531. Springer, 2017.

[TGC17] Sam L. Thomas, Flavio D. Garcia, and Tom Chothia. Humidify: A tool
for hidden functionality detection in firmware. In Michalis Polychronakis
and Michael Meier, editors, Detection of Intrusions and Malware, and Vul-
nerability Assessment - 14th International Conference, DIMVA 2017, Bonn,
Germany, July 6-7, 2017, Proceedings, volume 10327 of Lecture Notes in
Computer Science, pages 279–300. Springer, 2017.

[War63] Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal
of the American Statistical Association, 58(301):236–244, 1963.

[WdHG+20] Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David F. Os-
wald, Benedikt Gierlichs, and Bart Preneel. Dismantling dst80-based immo-
biliser systems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):99–127,
2020.

https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/products/development-tools/systemview/
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf

384 Cutting Through the Complexity of Reverse Engineering Embedded Devices

[ZBFB14] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti.
AVATAR: A framework to support dynamic security analysis of embedded
systems’ firmwares. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.
The Internet Society, 2014.

[ZDY+19] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. FIRM-AFL: high-throughput greybox fuzzing of iot firmware
via augmented process emulation. In Nadia Heninger and Patrick Traynor,
editors, 28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, pages 1099–1114. USENIX Association,
2019.

A Algorithms

Algorithm 1: Region inference.
In: D: program database, P : policy, R: max. number of regions, δ: grouping

distance.
Out: Mr: at most R region bounds for P .

1 Rs← staticAndSymbolRefs(D), M ← {}
2 foreach r ∈ Rs do // region identification
3 if match(D, P , r) then
4 k ← matched(D, P , r)
5 f ← enclosingFn(D, r)
6 Mk ←Mk ∪ {(r, f)}
7 Mr ← rankFnRefs(D, M , δ)
8 if |Mr| > R then // region grouping
9 Mr ← agglCluster(D, Mr, R)

10 return Mr

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 385

Algorithm 2: Transition classification.
In: D: program database, G→: dynamic ICFG, bi: first block, bj : successor of bi,

S: call stack, N : reachability bound, T : execution trace.
Out: C: classification, G→: new dynamic ICFG, S: new call stack.

1 G← ICFG(D), C ← unresolved
2 if disasmError(D, bi) ∨ disasmError(D, bj) then
3 C ← error
4 else if traceError(T , bi, bj) then
5 if reachableIn(G→, bi, bj, S, N)
6 ∨ reachableIn(G, bi, bj, S, N) then
7 C ← viable
8 else if directFlow(G, bi, bj, S) then
9 C ← viable

10 else if isIndirectFlowOut(G, bi) then
11 f ← enclosingFn(D, bi)
12 fbi

← propagateConstsAndBounds(D, f)
13 if indirectFlow(G, fbi

, bi, bj, S) then
14 C ← viable
15 if C 6= error ∧¬traceError(T , bi, bj) then
16 G→ ← updateDynamicICFG(G→, bi, bj)
17 else if C = viable then
18 S ← updateCallStack(G, bi, bj , S)
19 return 〈C,G→, S〉

Algorithm 3: Suffix and LCP array construction.
In: T : execution trace, d: prefixes or suffixes.
Out: S: suffix array, L: LCP array w/o overlaps, MT : address to suffix array

mapping.
1 Σ← makeAlphabet()
2 foreach b ∈ T do
3 if address(b) /∈ Σ ∨ hasError(b) then
4 k ← next(Σ)
5 Σb ← k

6 Σ⊥ ← next(Σ) // compute sentinel
7 if computeBackwards(d) then
8 MT ← makeReverseMapping(T , Σ, Σ⊥)
9 else

10 MT ← makeMapping(T , Σ, Σ⊥)
11 S ← SuffixArray(MT , Σ⊥)
12 L← removeOverlaps(LCPArray(MT , S))
13 return 〈S,L,MT 〉

386 Cutting Through the Complexity of Reverse Engineering Embedded Devices

Algorithm 4: Task switch start identification.
In: D: program database, Lp: LCP array for prefixes, Cu: unresolved transitions,

N : min. prefix length, k: max. ISRs, δ: min. proportion of satisfying
transitions.

Out: C : transitions into the ISR.
1 G← ICFG(D)
2 M ← {}, P ← {}, T ← {}
3 foreach (bi, bj) ∈ Cu do
4 f ← enclosingFn(D, bj)
5 if isFnStart(D, bj) ∧ ¬reachable(D, bi, f) then
6 Mbj

← succ(Mbj
)

7 Tbj ← succ(Tbj)
8 foreach bj ∈M do
9 if Mbj

/Tbj
> δ then

10 v ← repeatedPrefixes(Lp, N , bj)
11 if |v| = 1 then
12 Pbj ← v

13 C ← take(k, sort(P))
14 return C

Algorithm 5: Control-flow extraction.
In: D: program database, F : identified flows, C: transition classifications, P :

policy, L: LCP array, η: merge threshold.
Out: F→: flows grouped by tasks, G⇒: map of tasks to dynamic CFGs with

policy labels.
1 F→ ← {}, G⇒ ← {}, prev ← ⊥, pKind ← ⊥
2 foreach f ∈ F do
3 bs ← startBlock(D, f), be ← endBlock(D, f)
4 if ¬isTask(pKind)
5 ∧ isBreaks(C, endBlock(D, prev))
6 ∧ isBreaks(C, bs) then

// contiguous switching logic
7 prev ← mergeFlow(prev, f)
8 else if isBreaks(C, bs) ∧ isBreaks(C, be) then
9 updateFlow(F→, G⇒, L, P , prev, pKind)

10 prev ← f , pKind ← context-switch
11 else
12 updateFlow(F→, G⇒, L, P , prev, pKind)
13 f ′ ← findMatchingFlow(F→, f , η)
14 if f ′ 6= ⊥ then
15 pKind ← task-resume
16 else
17 pKind ← task-start
18 prev ← f

19 updateFlow(F→, G⇒, L, P , prev, pKind)
20 return 〈F→, G⇒〉

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 387

Algorithm 6: Feedback-driven refinement.
In: D: program database, G⇒: map of tasks to
dynamic CFGs, Ce: error transitions.
Out: D: new program database.

1 foreach G ∈ CFGS(G⇒) do
2 D ← mergeDatabaseCFG(D, G)
3 foreach e ∈ Ce do
4 blocks ← disassembleFrom(D, e)
5 if blocks = ⊥ then
6 blocks ← updateViaOracle(D, e)
7 D ← updateDatabase(D, blocks)
8 D ← autoAnalyse(D)
9 return D

388 Cutting Through the Complexity of Reverse Engineering Embedded Devices

B Huawei R216h 4G/LTE CoreSight Configuration

ETF

RAM

ETF

RAM

CSTF

PTM
Core0

PTM
Core1

ETR

Processor
System
RAM

System bus (AXI)

JTAG

Debug
Interface

Figure 10: CoreSight configuration as used on the Huawei R216h 4G/LTE modem. Trace
data from the two PTMs which monitor cores 0 and 1 of the ARM CPU is initially stored
in the local memory of the Embedded Trace FIFO (ETF) module. From there trace data
is fetched via the CoreSight Trace Funnel (CSTF) by the Embedded Trace Router (ETR)
module and transferred to the system RAM. Finally, the trace data in RAM is accessed
externally through the JTAG interface.

The HiSilicon ARM processor on the Huawei R216h 4G/LTE baseband has tracing
capabilities provided by ARM CoreSight [ARMb]. We can configure and access the tracing
peripherals through the JTAG interface. Figure 10 depicts the configuration for our device.
In our setup, we configure the trace data to flow from the Program Trace Module (PTM),
which traces the VxWorks core, through the Embedded Trace Funnel (ETF) and CoreSight
Trace Funnel (CSTF), to the Embedded Trace Router (ETR), which finally writes the data
to a buffer we specify in the RAM. We can then halt the device and access the trace data in
the buffer through JTAG. The hardware also contains a Trace Port Interface Unit (TPIU),
which outputs the trace as a stream. However, since we did not know the pin-out for this
trace port, and capturing the stream would require specialized (and expensive) hardware,
we did not attempt to trace the device in this way.

Our setup facilitates two types of traces: ¶ complete traces which contain trace data
for all the code blocks starting from a specific given start address to either a given stop
address or to when the trace buffer is exhausted, and · address range traces which contain
trace data for code blocks that fall within a specified range, similarly capped to the size
of the storage space. A combination of ¶ and · is also possible where · is used as an
exclusion range such that trace data can be obtained for everything that is not contained
inside the excluded range(s).

C Analyzing the Huawei R216h Baseband with Incision
In this section, we provide a break-down of the steps taken to reverse engineer the Huawei
R216h baseband firmware using Incision. We visualize the analysis set-up and data-flow
in Figure 11, which expands on Figure 1 to show the additional manual intervention
required to use Incision with this particular device.

As described in Section 5.3.2, the hardware set-up consists of an Ettus USRP B210
SDR (SDR in Figure 11), the Huawei R216h configured as detailed in Appendix B (SUT
in Figure 11), and a laptop with Ghidra and Incision installed. The analysis process
is orchestrated by a human-in-the-loop, depicted by the purple face in Figure 11. As in
the standard workflow to reverse engineer devices of this kind, we proceed by obtaining a
dump of the device firmware and bootstrap the reverse engineering process by loading the
dump into Ghidra and triggering its auto-analysis pass (step ¶ in Figure 11). Following

S.L. Thomas, J.V.d. Herrewegen, G. Vasilakis, Z. Chen, M. Ordean and F.D. Garcia 389

¸ Region inference¶ DB

¹ Trace config.

· Policy
½ Feedback-driven

refinement

º Trace

Control-flow extraction

» Flow categorization

¼ Trace partitioning

SUTSDR

Regions

Goals

Figure 11: Overview of Incision applied to analyze the Huawei R216h baseband firmware.
We indicate the human-in-the-loop by a purple face. We depict data-flow by block arrows
where propagation is automated by Incision, and dashed arrows where manual intervention
is required.

this set-up stage, we proceed to reverse engineer the device firmware by applying Incision
in feedback loops.

In the next step, we form an initial reverse engineering policy based on our goal to
analyze how the device handles cryptographic keys (step ·). We encode this policy using a
simple Python-based API provided by Incision, and use it as input to the region inference
algorithm (step ¸). As the device’s trace hardware is limited in the number of regions that
can be traced, we supply the algorithm with an upper bound on the number of regions to
output (a value of 4). We depict the data-flow of this stage in blue.

The result of applying region inference is a set of region bounds, which we use to
configure the CoreSight-based tracing mechanism on the device (step ¹). Since the analysis
goal is to capture traces where the device performs operations using cryptographic keys, we
configure the SDR to provide suitable triggering inputs to the device (data-flow depicted
in purple). Following this, we perform trace capture (data-flow in red), which we terminate
upon observing sufficient I/O interaction between the SDR and device. This provides
us with a trace (step º), which we use as input to Incision’s control-flow extraction
procedures (steps » and ¼).

The final step in the loop (step ½) integrates the extracted control-flow information
back into the firmware database (data-flow in green). For the first two loop iterations, this
process requires manual intervention, as described in Section 5.4. We continue to apply
Incision, as outlined in Section 5.3.2 to capture additional traces which further refine the
firmware database and provide a basis for analysis of the key usage in the firmware.

	Introduction
	Our Contribution

	Background
	Reverse Engineering Embedded Firmware

	Overview
	Methodology
	Inputs
	Region Inference
	Control-Flow Extraction
	Feedback-Driven Refinement

	Evaluation
	Firmware Data Set
	Correctness (C.1)
	Real-World Usability (C.2.1, C.2.2)
	Human Effort (C.3)
	Discussion and Limitations

	Related Work
	Conclusion
	Algorithms
	Huawei R216h 4G/LTE CoreSight Configuration
	Analyzing the Huawei R216h Baseband with Incision

