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Abstract

Background and Objective: Numerous studies have examined the influence of
pain on spinal reflex excitability, motor unit behaviour and corticospinal excitabil-
ity. Nevertheless, there are inconsistencies in the conclusions made. This systematic
review sought to understand the effect of pain on spinal and supraspinal projections
to motoneurons and motor unit properties by examining the influence of clinical or
experimental pain on the following three domains: H-reflex, corticospinal excitabil-
ity and motor unit properties.

Databases and Data Treatment: MeSH terms and preselected keywords relating
to the H-reflex, motor evoked potentials and motor unit decomposition in chronic
and experimental pain were used to perform a systematic literature search using
Cumulative Index of Nursing and Allied Health Literature (CINAHL), Excerpta
Medica dataBASE (EMBASE), Web of Science, Medline, Google Scholar and
Scopus databases. Two independent reviewers screened papers for inclusion and as-
sessed the methodological quality using a modified Downs and Black risk of bias
tool; a narrative synthesis and three meta-analyses were performed.

Results: Sixty-one studies were included, and 17 different outcome variables were
assessed across the three domains. Both experimental and clinical pain have no major
influence on measures of the H-reflex, whereas experimental and clinical pain ap-
peared to have differing effects on corticospinal excitability. Experimental pain con-
sistently reduced motor unit discharge rate, a finding which was not consistent with
data obtained from patients. The results indicate that when in tonic pain, induced via
experimental pain models, inhibitory effects on motoneuron behaviour were evident.
However, in chronic clinical pain populations, more varied responses were evident

likely reflecting individual adaptations to chronic symptoms.
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1 |

INTRODUCTION

Clinical and experimentally induced pain can change motor
output. Several theories of motor adaptations to pain describe
changes in motor output as a primary feature. The nature
and purpose of this change are unclear, with suggestions
that it can be either be compensatory or protective in na-
ture (Hodges, 2014; Lund et al., 1991; Sterling et al., 2001).
Motor adaptations to pain can occur at numerous levels and
in order to comprehensively understand the influence of pain
on motor output, it is necessary to investigate pain-related
changes at all levels of the motor pathway, including supra-
spinal and spinal projections to motoneurons and motor unit
properties (Heckman & Enoka, 2012; Mcneil et al., 2013).
Pain is defined as a ‘sensory and emotional experience’
which involves the processing of nociceptive stimuli at the
cortical level (Nathan et al., 1985; Woo et al., 2017). Within
studies which investigate changes in motor output, the term
pain is used in the context of nociception even with the ab-
sence of cortical processing, and this is the definition of pain
which will be used in this review.

Changes in corticospinal excitability represent the be-
haviour of the nervous pathway from the brain to the moto-
neuron (Chen, 2000). Although the measure of motor evoked
potentials (MEP) is not specific to motoneuron properties,
it can indirectly estimate the variations in motoneuron be-
haviour and has been used to investigate the mechanisms
underlying changes in motor output in the presence of pain.
At the spinal level, the Hoffman or H-reflex is the electrical
analogue of the monosynaptic stretcH-reflex and has been
used in a number of pain studies to test excitability of spi-
nal motoneurons (Dhand et al., 1991; Knikou, 2008; Kosik
et al., 2017; Le Pera et al., 2001). Additionally, the study of
motor units has provided insight into the influence of pain on
motor output, as motor units convert sensory and descending
inputs into muscle forces that generate movement (Heckman
& Enoka, 2012). Both central (e.g. discharge rate, discharge
rate variability) and peripheral (e.g. conduction velocity)
properties have been studied when examining neuromuscular
adaptations to pain. Taken together, these techniques provide
useful information about the neural changes occurring in re-
sponse to pain and hence have been extensively examined

culoskeletal disorders.

Significance: This is a comprehensive systematic review and meta-analysis which
synthesizes evidence on the influence of pain on spinal and supraspinal projections to
motoneurons and motor unit properties considering measures of the H-reflex, corti-
cospinal excitability and motor unit behaviour. The H-reflex is largely not influenced
by the presence of either clinical or experimental pain. Whilst inhibitory effects on
corticospinal excitability and motor unit behaviour were evident under experimental

pain conditions, more variable responses were observed for people with painful mus-

(Calder et al., 2008; Falla et al., 2010; Farina et al., 2008;
Yang et al., 2016).

In individual studies, there appears to be some consistency
with respect to pain-induced motor adaptations, for exam-
ple, decreased size of MEPs (Le Pera et al., 2001; Svensson
etal.,2003) or decreased motor unit discharge rate (Dideriksen
et al., 2016; Farina et al., 2008; Poortvliet et al., 2015; Tucker
et al., 2009a, 2012; Tucker & Hodges, 2010). However, other
studies report inconsistent or contradictory findings. For ex-
ample, an increased or unaltered MEP (Del Santo et al., 2007;
Rice et al., 2015; Schabrun et al., 2016) or increased or un-
changed motor unit discharge rates (Dideriksen et al., 2016;
Minami et al., 2013; Sohn et al., 2000, 2004) have also been
reported. It is relevant to discuss previous reviews which dis-
cuss the behaviour of aspects of the pathway, such as MEPs,
in clinical pain (Chang et al., 2018; Parker et al., 2016) and in
experimental pain (Burns et al., 2016b). However, these re-
views only consider one element of the motor pathway excit-
ability in a specific condition, and the results are conflicting
and differ between reviews. Deeper insight into the influence
of pain on these mechanisms would provide clearer direc-
tions for future research and would examine the viability of
current experimental pain techniques for simulating chronic
pain conditions.

This systematic review focuses on pain-induced changes
in motoneuron excitability including the H-reflex, transcra-
nial magnetic stimulation (TMS) induced MEP and motor
unit properties during voluntary contractions in humans.
The following specific questions were addressed: Does the
presence of pain (either experimentally induced or clinical)
change the (a) H-reflex; (b) corticospinal excitability; or (c)
motor unit firing and peripheral properties during voluntary
contractions?

2 | METHODS

The systematic review was conducted according to the
2009 Preferred Reporting Items for Systematic reviews and
Meta-Analyses (PRISMA) statement (Methods S1) and was
prospectively registered with PROSPERO (Registration
CRD42018095693) (Liberati et al., 2009; Moher et al., 2009).
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2.1 | Eligibility criteria

The selection criteria for study inclusion were informed by
the Population, Intervention, Comparison, Outcome (PICO)
framework (Shamseer et al., 2015; Smith et al., 2011).

2.1.1 | Inclusion criteria

Population (P)

e Men and women over 18 years old.

e Healthy participants experiencing experimentally induced
deep soft-tissue pain or patients experiencing musculo-
skeletal clinical pain.

e Asymptomatic participants not undergoing experimental
pain or experiencing clinical pain could be included in the
context of comparative controls.

Intervention (I)

e In experimental pain studies, the intervention was the in-
duction of pain in deep soft-tissue. In these studies, par-
ticipants must have pain induced in deep soft tissue by a
controlled stimulus, either thermal, mechanical, electrical
or chemical.

e In clinical pain studies, the intervention of interest was the
presence of chronic pain symptoms. Clinical participants
were eligible if they were diagnosed with chronic musculo-
skeletal pain, including but not limited to nonspecific neck
pain, nonspecific back pain, tendinopathy, fibromyalgia or
myofascial pain.

Comparator (C)

e In experimental pain studies, a comparator of either a sham
or nonnoxious stimulation may be included.

e For clinical pain studies, a comparator of either a healthy
control group or testing of the asymptomatic side could be
included.

Outcome (0)

e The use of neurophysiological methods such as electrical
stimulation and electromyography (EMG) to measure spi-
nal reflex circuit excitability via the H-reflex; the use of
TMS and EMG to measure corticospinal excitability and
the use of EMG (surface or intramuscular) and decomposi-
tion of signals to examine motor unit behaviour.

2.1.2 | Exclusion criteria

In the clinical pain sample, studies including participants with
cancer, autoimmune diseases, visceral pain, central nervous
system pathologies (i.e. spinal cord injury or stroke or brain
injury), surgical pain, neuropathic pain, complex regional

pain or chronic fatigue syndrome were excluded to ensure the
focus of studies on musculoskeletal pain (Vos et al., 2017).
As the primary focus of the review was the effect of soft tis-
sue pain, studies focused on arthritis related pain were also
excluded. Additionally, any study that included participants
under the age of 18 years was excluded, as were animal
studies.

In the experimental pain sample, studies including cutane-
ous pain induced by laser, electrical or chemical stimulation
or other means were excluded to ensure a focus on subcuta-
neous soft tissue pain (Stecco, 2014). Muscle pain induced
by eccentric exercise and ischemic pain induced by deaffer-
entiation were excluded to eliminate muscle pain with the
presence of local muscle damage. Experimental studies with
pain induced by mental imagery, observation and mirror pain
were excluded.

Studies measuring the effects of interventions or training
were excluded. Studies involving magnetic resonance imag-
ing, functional magnetic resonance imaging, electroencepha-
logram (EEG), Mono-ethylene glycol (MEG) were excluded.
Because the focus of this review is on motoneuron prop-
erties for the limb and trunk muscles, studies focussing on
the trigemino-facial system were excluded. StretcH-reflexes
were also not included due to the measurement of sensory
afferent activity and peripheral receptor involvement during
the evoked stretcH-reflexes (Kandel et al., 2000).

The literature focus was on published and peer-reviewed
journal articles; therefore, published abstracts, nonpublished
studies (e.g. graduate theses), nonprimary literature (e.g. sys-
tematic and narrative reviews), letters, editorials, commentar-
ies, case studies, unpublished manuscripts, books and book
chapters, conference proceedings, cost analyses and clinical
practise guidelines were excluded.

2.2 | Search strategy and data sources

A search strategy was constructed using a combination of
medical subject heading (MeSH) terms and keywords re-
lated to pain, motor behaviour and neurophysiological meth-
ods (Table 1). Searches were conducted by a single author
(SFW) using the following electronic databases: Cumulative
Index of Nursing and Allied Health Literature (CINAHL)
(EBSCO interface), Excerpta Medica dataBASE (EMBASE)
(Ovid interface), Web of Science, Medline, Google Scholar
and Scopus. A complete list of search terms is included in
Methods S2, and example terms for one database are listed in
Table 1. Studies published in English prior to 1 March 2019
were searched initially, and the search was updated up to 13
October 2020. Search terms from each column in Table 1
were entered using the Boolean operator ‘OR’. The Boolean
operator ‘AND’ was then used to combine these searches
across columns.
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Outcome

Motor neuron*

TABLE 1 Key words used to inform the search strategy
Population Intervention
Pain Magnetic Stimulation
Acute pain Electrical stimulation

Chronic pain

Acute Cranial

Chronic Transcranial

Nocicept* Cervicomedullary
TMS
Transcranial

Magnetic stimulation

H reflex

Rest
Voluntary

Isotonic contraction

Isometric contraction
Isokinetic

Dynamic

Repetitive
Concentric

Eccentric

Sustained

Movement

*Wildcard searches are indicated by an asterisk.

2.3 | Study selection

Alpha
Motoneuron*
Motor unit*
Muscle unit*
Muscle fib*
Neural drive
Muscle activit®
Synerg*

Antagon*

Motor cortex

Brain

Motor adaptation
Neural adaptation

Neuromuscular
adaptation

Motor control
Muscle function
Motor output

Motor behaviour

Movement strategy

All potentially eligible studies were retrieved and stored on
Endnote software (X7.7.1). Duplicates were identified and
removed by a single reviewer (SFW). Two independent

Comparisons

EMG

Electromyograph*

MEP

Motor evoked potential
Cervicomedullary evoked potential
CMEP

Transmastoid

Brainstem

Corticospinal tract stimulation
Pyramidal tract

Spinal excitability

Spinal inhibition

Cortical inhibition

Cortical excitability

Motor excitability
Corticospinal excitability

Discharge rate

Firing rate

Firing frequency

ISI variability

Inter-spike interval
Recruitment threshold
Conduction velocity

IPSP

Inhibitory postsynaptic potentials
Oscillation

Coherence

Force variability

Force steadiness

Coefficient of variation
Synchronization

Spatial resolution

Motor unit recruitment
Neurophysiological recruitment
TMS recruitment curves

TMS intensity

MEP amplitude

reviewers (SFW, EMV) screened the studies based on the
title and abstract for eligibility. Subsequently, full texts of
the remaining studies were reviewed, and inclusion was de-
termined independently (SFW, ESS). Where discrepancies
occurred, a consensus meeting was held with an additional
reviewer (DF) to determine inclusion. The updated search
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was conducted in the same manner and using the same crite-
ria by two reviewers (AS and EEC). In line with the PRISMA
guidelines, information on excluded studies and the reasons
for exclusion are collated and reported (Figure 1) (Liberati
et al., 2009; Moher et al., 2009).

2.4 | Data extraction

Data extraction was completed by one reviewer per search
(SFW/AS) and checked for accuracy by secondary review-
ers (ESS/EEC). A standardized, prepiloted form was used to
extract data including patient demographics, methodology,
all outcome measurement information and results of meas-
urement properties. The outcome variables which were ex-
tracted have been listed in Table 2.

2.5 | Methodological quality assessment
The methodological quality of each study was assessed inde-
pendently by two reviewers (SFW, ESS). A custom quality
checklist (Methods S3) (Burns et al., 2016b) adapted from
the Downs and Black Quality Index (Downs & Black, 1998)
was used to incorporate the specific needs of the objectives of
this review into the quality assessment process. Amongst the
17 items, selection bias, performance bias, attrition bias, re-
porting bias and detection bias were assessed. The quality of
each of the references included is reported as the total score
by combining the score of each item (Table 3).

Inter-rater reliability between the assessors rating the meth-
odological quality of each study was calculated in Statistical
Package for the Social Sciences (SPSS) statistics 24 and

Records identified Additional records

through database identified through
searching other sources
(n=4246) (n=35)

l | |

Records after duplicates removed

(n=3139)

Records Identified
during Search
Update (n = 1482)

| =

Records after duplicates removed
(n=643)

Screening

Records excluded Records screened
(n=3709) ¢ (n=3782)
J
= !
Full-text articles excluded, )
z with reasons Full-text arn.c\.es. .assessed
s (n=12) — for eligibility
B (n=73)
W No motor unit recording (1)
No measure H reflex (1) l

) (

Observing other pain (2) studies included in

qualitative synthesis
(n=61)

Cutaneous pain (2)

Joint pain (1)

No shared outcomes (3)

Included

Non-chronic Pain (2)

CJ

FIGURE 1 Study selection process

Pain

TABLE 2 Outcomes of interest for studies included in the
systematic review, arranged by the type of measurement

Measurement
type Outcome of interest Abbreviation
H reflex H-reflex amplitude HA
Amplitude of the MA
M-wave
H-reflex/M-wave ratio H/M
Latency of the H-reflex HL
Threshold of the HT
H-reflex
Corticospinal Amplitude of MEP MEPA
excitability/  MEP Jatency MEPL
MEP:
s Resting motor threshold RMT
Active motor threshold AMT
Duration of the silent SP
period
Spatial distribution of MEP area
the MEP
Spatial volume of the Map volume
MEP map
Number of discrete Cortical peaks
cortical peaks
Motor unit Discharge rate Discharge rate
behaviour

Coherence of cumulative ~ Coh
spike trains

Conduction velocity CvV

Action potential
amplitude

Amplitude

Abbreviation: MEP, motor evoked potential.

presented as a k Statistic (Cohen's Kappa) (McHugh, 2012).
Accordingly, inter-rater reliability was interpreted as follows,
poor (<0.0), slight (0.00-0.2), fair (0.21-0.4), moderate
(0.41-0.6), substantial (0.61-0.8) or almost perfect (0.81—
1.0) (Landis & Koch, 1977).

2.6 | Data synthesis and meta-analysis

Previous systematic reviews of the influence of pain on
the results of individual methodologies (e.g. MEPs) have
included detailed quantitative meta-analyses of the results
(Burns et al., 2016b; Chang et al., 2018). To fully ex-
plore the potential for meta-analysis, two reviewers (AS/
EEC) performed subgrouping of included studies into ho-
mogenous groupings. These groupings were completed in
terms of the type of pain (experimental/clinical), location
of pain (muscle group), pain mechanism or condition, out-
come muscle group and then finally the variables consid-
ered. In order to be considered for further meta-analysis,
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TABLE 3 Risk of Bias scores and key outcomes for each included study

Experimental pain

Author and year
Schabrun et al. (2013)
Park and Hopkins (2013)
Svensson et al. (2003)
Le Pera et al. (2001)

Matre et al. (1998)
Summers et al. (2020)
Alhassani et al. (2019)
Seminowicz et al. (2019)
Summers et al. (2019)
Larsen et al. (2018)
Schabrun et al. (2016)
Burns et al. (2016)

Rice et al. (2015)
Schabrun et al. (2013)

Schabrun and
Hodges (2012)

Tsao, Tucker,
etal. (2011)

Del Santo et al. (2007)
Martin et al. (2008)
Svensson et al. (2003)
Le Pera et al. (2001)

Martinez-Valdes
et al. (2020)

Dideriksen et al. (2016)
Yavuz et al. (2015)
Poortvliet et al. (2015)
Tucker et al. (2012)

Tucker and
Hodges (2010)

Tucker et al. (2009)
Hodges et al. (2008)
Farina et al. (2008)
Farina et al. (2005)
Farina et al. (2004)

Outcome
H-reflex
H-reflex
H-reflex
H-reflex

H-reflex
MEP
MEP
MEP
MEP
MEP
MEP
MEP

MEP
MEP

MEP

MEP

MEP
MEP
MEP
MEP
MU

MU
MU
MU
MU

MU

MU
MU
MU
MU
MU

Score

R1IR2
11110
13113
11111
11110

919
13113
13113
11114
14113
15114
10110
9110

12111
11110

13110

11110

10111
514

11111
11110
14114

15110
14110
14111
14110

9110

10110
10110
10111
10110
11110

Clinical pain

Author and year

Pazzinatto et al. (2019)
Thompson et al. (2019)
Kosik et al. (2017)

De Oliveira Silva
et al. (2016)

Wang et al. (2011)
Ginanneschi et al. (2007)
Mazzocchio et al., 2001
Salerno et al. (2000)
Leroux et al. (1995)
Dhand et al. (1991)
Humphreys et al. (1989)

Hoehler and
Buerger (1981)

Cardinal et al. (2019)

Elgueta-Cancino
et al. (2019)

Te et al. (2017)

Massé-Alarie
et al. (2017)

Burns et al. (2017)
Kosik et al. (2017)
Schabrun et al. (2017)
Rio et al. (2016)

Massé-Alarie
et al. (2016)

Burns et al. (2016)
Schabrun et al. (2015)
Ngomo et al. (2015)
Massé-Alarie

et al. (2012)

Tsao, Tucker,
etal. (2011)

Mhalla et al. (2010)
Tsao et al. (2008)
Strutton et al. (2005)
Salerno et al. (2000)
Gallina et al. (2018)
Yang et al. (2016)
Falla et al. (2010)
Calder et al. (2008)

Kallenberg and
Hermens (2006)

Abbreviations: MEP, motor evoked potential; MU, motor unit firing rate; R1, reviewer 1; R2, reviewer 2.

Outcome
H-reflex
H-reflex
H-reflex
H-reflex

H-reflex
H-reflex
H-reflex
H-reflex
H-reflex
H-reflex
H-reflex
H-reflex

MEP
MEP

MEP

MEP

MEP
MEP
MEP
MEP
MEP

MEP
MEP
MEP
MEP

MEP

MEP
MEP
MEP
MEP
MU
MU
MU
MU
MU

Score

R1IR2
12112
13113
911
13112

13111
811
12111
9111
10112
7111
811
9112

16115
12114

11111

13110

10111
911
9110
15112
12111

9114

12110
12111
13111

11110

11112
11111
919
911
12112
12111
13111
12111
12112



SANDERSON ET AL.

these groupings must contain a significant number of stud-
ies; in this instance, grouping of five or more studies was
considered significant. Where these subgroups were iden-
tified, specific data for the outcome of interest were ex-
tracted and if data were in graphical format, values from
published figures were estimated using ‘WebPlotDigitizer
4.2’ by AS and checked by EEC. Where specific data were
not reported or plotted, the study was excluded from the
meta-analysis grouping. Mean and standard deviation (SD)
for each study were used to calculate an odds ratio (OR)
and indicate homogeneity in the form of an r using Review
Manager (RevMan 5.4; The Cochrane Collaboration)
(Egger et al., 1997; Higgins et al., 2003).

Where subgroupings included less than five homoge-
nous studies, qualitative analysis was instead conducted.
Findings were separated into experimental or clinical pain
studies considering the three aspects of motoneuron be-
haviour evaluated (H-reflex, corticospinal excitability,
motor unit behaviour) that fulfil the aims of this review.
Due to the variability in both the measurement of out-
comes and the tasks completed to elicit the outcomes, a
vote-counting system of qualitative analysis was used for
synthesis (McKenzie & Brennan, 2019). Thus, for analysis
purposes, all measurement outcomes were distilled down to
an ‘Increase’, ‘No Change’, or a ‘Decrease’ in comparison
to a measured pain-free condition.

In order to collate results, a representative result each of
an increase, no change or decrease per outcome was identi-
fied for each study. If this was not possible, for example, if the
same study found increases in one muscle but decreases in a
different muscle for the same outcome, the study was marked
as Unclear/Mixed.

3 | RESULTS

3.1 | Study selection

The search identified 5,763 studies. After removal of du-
plicates, screening of titles and abstracts, 73 studies were
eligible for full-text review (Figure 1). Of the 73 studies,
12 were excluded after full text review, and three additional
studies were excluded at the data extraction stage, as no pre-
viously stated outcomes of interest were identified within
the reported results. Therefore, 61 studies were included
within the final review. In total, 28 studies considered ex-
perimental pain paradigms and 33 studies investigated clini-
cal pain. Of these studies, five investigated more than one
outcome measure, three in the clinical pain group and two
in the experimental group. The results of these replicated
studies have been included in each group independently;
however, their reviewer scores were not included twice for
risk of bias analysis.

3.2 | Methodological quality assessment

The quality assessment scores for each study and the out-
comes of interest from the two reviewers are listed in Table 3.
The percentage agreement between reviewers of the method-
ological quality assessment for the included studies (17 items
for each of the 61 studies =1,037 items) was 77.5% of agree-
ment between individual reviewers. The k Statistic (Cohen's
Kappa) was 0.51, which is considered to be moderate.

The average score for methodological quality within eli-
gible studies was 11.24 + 1.9 out of a maximum score of 18,
which equates to 62.8% + 10.4%. Possible reasons for this
low score include that only eight (R1) or zero (R2) of the
61 studies indicated that the subjects who participated were
representative of the entire population from which they were
recruited, and only seven (R1) or one (R2)/61 studies blinded
the investigator during data collection and analysis.

3.3 | Participant characteristics
Of the included experimental pain studies, five (Le Pera
et al., 2001; Matre et al., 1998; Park & Hopkins, 2013;
Schabrun et al., 2013; Svensson et al., 2003) measured
the H-reflex; 15 measured corticospinal excitability via
MEP (Alhassani et al., 2019; Burns et al., 2016¢; Del
Santo et al., 2007; Larsen et al., 2018; Le Pera et al., 2001;
Martin et al., 2008; Rice et al., 2015; Schabrun et al., 2013,
2016; Schabrun & Hodges, 2012; Seminowicz et al., 2019;
Summers et al., 2019, 2020; Svensson et al., 2003; Tsao,
Tucker, et al., 2011), and 11 recorded motor unit behaviour
outcomes (Dideriksen et al., 2016; Farina et al., 2004, 2005,
2008; Hodges et al., 2008; Martinez-Valdes et al., 2020;
Poortvliet et al., 2015; Tucker et al., 2009b, 2012; Tucker &
Hodges, 2010; Yavuz et al., 2015). Within the clinical group,
12 measured the H-reflex (De Oliveira Silva et al., 2016;
Dhand et al., 1991; Ginanneschi et al., 2007; Hoehler &
Buerger, 1981; Humphreys et al., 1989; Kosik et al., 2017;
Leroux et al., 1995; Mazzocchio et al., 2001; Pazzinatto
et al., 2019; Salerno et al., 2000; Thompson et al., 2019;
Wang et al., 2011); 18 recorded corticospinal excitability via
the MEP (Burns et al., 2016a, 2017; Cardinal et al., 2019;
Elgueta-Cancino et al., 2019; Kosik et al., 2017; Massé-
Alarie et al., 2012, 2016, 2017; Mhalla et al., 2010; Ngomo
et al., 2015; Rio et al., 2016; Salerno et al., 2000; Schabrun
et al., 2015, 2017; Strutton et al., 2005; Te et al., 2017; Tsao
etal., 2008; Tsao, Danneels, et al., 2011) and five investigated
motor unit behaviour (Calder et al., 2008; Falla et al., 2010;
Gallina et al., 2018; Kallenberg & Hermens, 2006; Yang
et al., 2016). Full information on included studies can be
found in Tables 4-9 and Figure 2a—c.

Hypertonic saline was the most frequent pain induction
mechanism used in the experimental pain studies (n = 29),
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TABLE 4 Characteristics and summary of the results of the included studies examining changes in the H-reflex following experimentally

induced pain. R- or L- prior to the name of a muscle denotes laterality

Outcome Sample size
Pain stage parameter Author and year (n)
During pain H/M reflex Park and 13
ratio Hopkins (2013)
Matre 13
et al. (1998)
H-reflex Le Pera 11
amplitude et al. (2001)
H-reflex Le Pera 11
latency et al. (2001)
Post pain H-reflex Le Pera 11
amplitude et al. (2001)
H-reflex Le Pera 11
latency et al. (2001)
M-wave Schabrun 12
amplitude et al. (2013)
Svensson 10

et al. (2003)

Abbreviations: hyperS, hypertonic saline; NGF, nerve growth factor.

one used ascorbic acid (Del Santo et al., 2007) and three
use nerve growth factor to create persistent pain (Schabrun
et al., 2016; Seminowicz et al., 2019; Summers et al., 2019).
Muscle was the most common site of injection (n = 24), with
some studies injecting more than one muscle, followed by
the infrapatellar fat pad (n = 6) and the interspinal ligament
(n = 1). The muscles in which pain was induced were the first
dorsal interosseous (n = 7), tibialis anterior (n = 5), extensor
carpi radialis brevis (n = 5), abductor digiti minimi (n = 3),
biceps brachii (n = 2), trapezius (n = 1), flexor carpi radialis
(n = 1), soleus (n = 1), gastrocnemius (n = 1) and flexor
pollicis longus (n = 1).

The clinical chronic musculoskeletal pain disorders in-
vestigated (n = 33) included low back pain (n = 12), pa-
tellofemoral dysfunction (n = 5), tendinopathy (n = 3), lateral
epicondylitis (n = 3), fibromyalgia (n = 3), neck pain (n = 3),
chronic ankle instability (n = 2), nonspecific arm pain (n = 1)
and chronic pain (n = 1).

3.4 | Meta-analyses

Meta-analyses were not possible in most instances due to ex-
treme heterogeneity between studies and within the reporting
of results of the included studies. Five subgroups of between
five and six studies each were identified for potential meta-
analyses, two subgroups investigated outcomes in the experi-
mental pain paradigms and three investigated clinical pain
outcomes, specifically low back pain (LBP). However, one

Pain Pain induction Outcome
mechanism location muscle Result
HyperS 5% Infrapatellar fat Vastus Decreased
pad medialis
HyperS 5% Soleus Soleus No change
Tibialis anterior Tibialis No change
anterior
HyperS 5% R-flexor carpi R-flexor carpi ~ No change
radialis radialis
HyperS 5% R-flexor carpi R-flexor carpi ~ No change
radialis radialis
HyperS 5% R-flexor carpi R-flexor carpi ~ Decreased
radialis radialis
HyperS 5% R-flexor carpi R-flexor carpi ~ No change
radialis radialis
HyperS 5% R-first dorsal R-first dorsal No change
interosseus interosseus
HyperS 5% R-flexor carpi R-flexor carpi ~ No change

radialis radialis

study in two of these groupings was later excluded at the ad-
ditional data extraction stage because participants with neu-
ropathic pain were included which might have influenced the
result. In both of these instances, the remaining four studies
in the grouping did not reach the meta-analysis threshold.
Therefore, three meta-analyses were performed, considering
MEP amplitude in experimental pain, motor unit discharge
rate in experimental pain and active motor threshold in clini-
cal LBP.

3.5 | Experimental pain

3.5.1 | H-reflex

Measures of the H-reflex identified included amplitude and
latency of the H-reflex, amplitude and latency of the M-wave
and the H-reflex/M-wave (H/M) ratio. These five studies
demonstrated no change in the measures of H-amplitude or
H-latency during the pain induction period; however, fol-
lowing this period, one study supported a reduction in H-
amplitude (Le Pera et al., 2001). Conflicting evidence was
reported for the H/M ratio; one study identified a decrease in
the H/M ratio following the injection of hypertonic saline into
the infrapatellar fat pad (Park & Hopkins, 2013), whereas no
changes were identified in other studies that measured this
outcome following hypertonic saline injections into the so-
leus and tibialis anterior muscles (Matre et al., 1998). Two
studies considered the M-amplitude during the postpain
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(Continued)

TABLE 6

Pain Pain induction
location

Sample size

(n)

Notes

Result

Outcome muscle

mechanism

Author and year

Outcome parameter

Pain stage

Decreased

Infrapatellar fat Vastus Medialis

HyperS 5%

Tucker et al. (2009)

Vastus Lateralis

pad

Decreased

Flexor pollicus longus

Flexor pollicus

longus

Decreased

HyperS 5% Gastrocnemius Gastrocnemius

10

Hodges et al. (2008)

Soleus

lateral

Decreased

Tibialis anterior Tibialis anterior

HyperS
5.8%

16

Farina et al. (2008)

Tibialis anterior right Decreased

Tibialis anterior

HyperS
5.8%

11

Farina et al. (2005)

No change

Tibialis anterior Left

(NP)

right

Tibialis anterior right Decreased

Tibialis anterior

HyperS
5.8%

12

Farina et al. (2004)

phase (Schabrun et al., 2013; Svensson et al., 2003); how-
ever, these studies did not identify any differences in this out-
come (Tables 4 and 10 and Figure 2a).

3.5.2 | Corticospinal excitability

The outcomes derived from studies investigating corticospi-
nal excitability included the resting motor threshold, MEP
amplitude and MEP latency. Twelve studies measured the
MEP amplitude following pain induction through injections
to muscle; however, there was no clear result for the effect
of experimental pain on MEP amplitude across all muscles
considered. Only one study reported an increase of the ab-
solute MEP amplitude compared to the value before experi-
mental pain was induced; however, this study involved the
pretreatment of the muscle with nerve growth factor prior to
an experimental pain injection (Schabrun et al., 2016). Two
other studies also used nerve growth factor (NGF) as a sus-
tained pain mechanism and reported MEP amplitudes which
were the same (Seminowicz et al., 2019) or indeed showed
a decrease (Summers et al., 2019) in this measure compared
to baseline measurements. The majority of studies reported
mixed results both in the target muscle and the nontarget
muscles, with three results indicating ‘No Change’, four sup-
porting a decrease and four with unclear or mixed results in
the target muscle. Two of these unclear studies reported an
increase in MEP amplitude; however, these studies involved
the injection of hypertonic saline into the infrapatellar fat pad
(Rice et al., 2015) or the interspinous ligament (Tsao, Tucker,
et al., 2011), in contrast to the muscular injection sites of the
other studies considered. There was a similar range of results
in the postpain condition for the target muscle; however, the
control muscle appeared to show a majority of changes in
studies which assessed this outcome. A meta-analysis was
performed on studies which measured MEP amplitude in the
postpain period after inducing pain with hypertonic saline
in the Foreign Direct Investment (FDI). Seven studies were
included in this grouping, but data could not be extracted
from two studies, so the resulting analysis is of five stud-
ies (Figure 3) (Alhassani et al., 2019; Larsen et al., 2018;
Schabrun & Hodges, 2012; Schabrun et al., 2013; Svensson
et al., 2003). The results of this analysis indicated significant
heterogeneity in the sample (I = 0%) so a standardized mean
difference model was used which indicated that MEP ampli-
tude significantly decreased in this muscle (p = 0.003).

No consistent changes from baseline/control conditions
were reported in studies examining the MEP latency or
Resting Motor Threshold. One study reported mixed results
for the MEP latency; however, this study measured a variety
of muscles and had many more outcomes than other included
studies (Tsao, Tucker, et al., 2011). One study measured the
MEP area, in an experimental pain condition, and reported



SANDERSON ET AL.

TABLE 7 Characteristics and summary of the results of the included studies examining changes in the H-reflex in clinical pain conditions

Outcome
parameter

H/M ratio (%)

H-reflex amplitude
(mA)

H-reflex latency
(ms)

H-reflex threshold
(mV)

Author and year
Thompson

et al. (2019)
Kosik et al. (2017)

De Oliveira Silva
et al. (2016)

Wang et al. (2011)

Ginanneschi
et al. (2007)

Mazzocchio
et al. (2001)

Salerno
et al. (2000)
Dhand et al. (1991)

Humphreys
et al. (1989)

Hoehler and
Buerger (1981)

Pazzinatto
et al. (2019)

Ginanneschi
et al. (2007)

Leroux et al. (1995)

Ginanneschi
et al. (2007)

Mazzocchio
et al. (2001)
Salerno

et al. (2000)

Leroux et al. (1995)

Dhand et al. (1991)
Humphreys
et al. (1989)
Hoehler and
Buerger (1981)
Ginanneschi

et al. (2007)

Mazzocchio
et al. (2001)

Sample size (n)

Patients

12

18
15

14
14

26

13
9

23
12

30

14

14

26

23
12

14

26

Control

12

16
15

14
14

40

13
13
20
30

30

14

14

40

13
13

20
30

14

40

Pain condition

CAI

CAI
PFP

TEND
LBP

LBP

Fibromyalgia

LBP
LBP

LBP

REE

LBP

PFD

LBP

LBP

Fibromyalgia

PFD

LBP
LBP

LBP

LBP

LBP

Outcome muscle

Soleus

Fibularis longus

Vastus medialis

Soleus

Soleus

Soleus

Soleus
Flexor carpi radialis
Soleus

Soleus

Soleus

Vastus medialis

Soleus

Rectus femoris
Vastus lateralis
Vastus medialis

Soleus

Soleus

Soleus

Flexor carpi radialis
Rectus femoris
Vastus lateralis
Vastus medialis
Soleus

Soleus

Soleus

Soleus

Soleus

Abbreviations: CAI, chronic ankle instability; LBP, low back pain; PFD, patella-femoral dysfunction; TEND, tendinopathy.

Result

No change

No change

Decreased

No change
No change

No change

No change

No change

Increased

Increased

Decreased

Increased

No change

No change

No change

No change

No change

No change
No change

No change

Increased

Increased
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(Continued)

TABLE 8

Sample size (n)

Outcome muscle Result

Pain condition

LE

Control
14

Patients
14

Author and year

Outcome parameter

No change

Extensor carpi radialis

Burns et al. (2016)

Resting motor threshold (%)

brevis

Increased

First dorsal interosseus

Fibromyalgia

21

46
11
13

Mhalla et al. (2010)
Tsao et al. (2008)

No change

Transversus abdominus

LBP
Fibromyalgia

11

Increased

First Dorsal Interosseus

13

Salerno et al. (2000)

Tibialis anterior

Decreased

First dorsal interosseus

Multifidus
Multifidus

Fibromyalgia

41

17
19
16
11
11

24

Cardinal et al. (2019)

SP duration (ms)

No change

cLBP (right)
cLBP (left)

LBP
LBP

13
13
11

Massé-Alarie et al. (2017)

No change

No change

Paraspinal muscles

Burns et al. (2017)

No change

Multifidus (bilateral)

Erector spinae

13
11

Massé-Alarie et al. (2016)
Strutton et al. (2005)
Salerno et al. (2000)

No change

cLBP

Decreased

First dorsal interosseus

Fibromyalgia

13

13

Tibialis anterior

Abbreviations: cLBP, chronic low back pain; LBP, low back pain; LE, lateral epicondylitis; PFP, patellofemoral pain; Ptend, patella tendinopathy; RCT, rotator cuff tendinopathy.

P

an increase in biceps brachii and abductor digiti minimi mus-
cles; however, this result was not sustained in the postpain
period (Del Santo et al., 2007). A range of results were iden-
tified for the map volume in the three studies which identified
this outcome in experimental pain with results during pain
showing a decrease no change and mixed results. However, in
the postpain period, all studies consistently identified a return
to the baseline value for map volume (Schabrun et al., 2016;
Seminowicz et al., 2019; Summers et al., 2019), (Tables 5
and 11 and Figure 2b).

3.5.3 | Motor unit properties

The outcome measures of motor unit behaviour included
discharge rate, conduction velocity, coherence of cumula-
tive spike trains and the action potential amplitude. Of the
10 studies that measured motor unit discharge rate, pain was
induced in muscle in seven and in nonmuscular tissue in four
(pain was induced in more than one location for one study).
Amongst the studies that induced pain into muscle, six re-
ported a decrease in motor unit firing rate and the remaining
study recorded regional differences in the firing rate within
the muscle. Amongst the four studies that injected nonmus-
cular tissue to induce pain (Poortvliet et al., 2015; Tucker
et al., 2009b, 2012; Tucker & Hodges, 2010), outcomes re-
corded for five muscles demonstrated a decrease in discharge
rate (three studies), and one muscle showed no change in
discharge rate (one study). Within these results, one study
induced pain within both muscular tissue and nonmuscular
tissue; therefore, in total, eight studies showed a decrease in
the discharge rate and two showed unclear/mixed results. A
meta-analysis was performed considering studies which in-
duced pain and measured discharge rate in muscles of the
lower limb. Five studies considered this outcome, and the re-
sultant OR plot is shown in Figure 4 (Farina et al., 2004, 2005,
2008; Hodges et al., 2008; Martinez-Valdes et al., 2020).
There was some significant heterogeneity between studies
with an I* value of 49%; however, the pooled evidence indi-
cates that experimental pain causes a significant decrease in
discharge rate when low-force contractions were examined
(p = 0.0001).

Variable results were also demonstrated for changes in
coherence between groups of motor unit spike trains, with
one study reporting a reduction in coherence in the painful
condition (alpha [5-13 Hz] and beta [15-30 Hz] bands for
the abductor digiti minimi muscle) and in the other study no
changes were identified compared to pre pain condition in all
assessed bandwidths. No changes of motor unit action po-
tential amplitude (n = 2) or conduction velocity (n = 3) was
described (Tables 6 and 12 and Figure 2c¢).
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10 A

Number of Studies

(b)

B Decrease HEEM Decrease (PP)
I No Change [ No Change (PP)
Increase Increase (PP)
1 Unclear [ZZA Unclear (PP)

HA HL HM HT MA HA HL H/M HT MA

Experimental Pain Clinical Pain

Outcome
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FIGURE 2 The various different outcomes used to measure

(a) reflex activity, (b) corticospinal excitability and (c) motor unit
behaviour with an indication of whether the measure was decreased,
unchanged, increased or had inconsistent results in the experimental
pain and clinical pain conditions. Results from control groups and
muscles have been excluded for clarity, and results from pain studies
in the recovery or postpain period are denoted by dashed columns. (a)
HA, Amplitude of the H-Reflex; HL, Latency of the H-Reflex; H/M,
H-Reflex/M-Wave Ratio; HT, H-Reflex Threshold; MA, Amplitude
of the M-Wave; PP, Post Pain. (b) MEP, Motor Evoked Potential;
MEPA, MEP Amplitude; MEPL, MEP Latency; RMT, Resting Motor
Threshold; AMT, Active Motor Threshold; SP, Duration of the Silent
Period; PP, Post Pain. (c) DR, Discharge Rate; CV, Conduction
Velocity; PP, Post Pain

3.5.4 | Pain mechanisms

The majority of studies used hypertonic saline as the exper-
imental pain mechanism, with the exception of four studies
which used other pain paradigms to assess MEP outcomes.
One study used ascorbic acid (Del Santo et al., 2007);
however, this study shared no outcomes with other stud-
ies, so it is not clear if these results differ to those induced
with hypertonic saline. Two studies used NGF over a sus-
tained period as the primary pain mechanism (Seminowicz
et al., 2019; Summers et al., 2019), and one study used
a combination of NGF over a sustained period and then
hypertonic saline (Schabrun et al., 2016). Results from
MEP amplitude during and following the painful period,
and the resting motor threshold following the painful pe-
riod, could all be compared against results from hypertonic
saline (Table 13). All results from studies which induced
sustained pain using NGF tended to report ‘No Change’
in MEP amplitude and the resting motor threshold in both
painful and postpain conditions. Conversely, studies which
induced pain using hypertonic saline tended to report a de-
crease in MEP amplitude in a majority of cases but was
consistent with NGF in reporting no change in the resting
motor threshold. Only one study which used hypertonic sa-
line reported an increase in MEP amplitude; however, this
study used hypertonic saline after 14 days of NGF infu-
sions (Schabrun et al., 2016).

3.6 | Clinical pain

3.6.1 | H-reflex

Seven out of 10 studies reported no change in the H-reflex/M-
wave (H/M) ratio in people with painful musculoskeletal dis-
orders compared to healthy controls. Two studies reported an
increase in the H/M ratio, and the remaining study reported
a decrease in this value. Studies reporting H-latency (n = 7)
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Induced Pain
Mean SD Total

Baseline/Pain Free

Study or Subgroup Mean SD_ Total Weight

Std. Mean Difference

Std. Mean Difference

IV, Random, 95% CI IV, Random, 95% CI

0.3804 02488 10
048 03648 11
4057 535204 12
124 08735 13
0.68 064 20

05795 04548 10 15.3%
085 07628 11 16.0%
100 385555 12 16.6%
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FIGURE 3 Motor evoked potential (MEP) amplitude reported in the first dorsal interosseus in studies which induced pain in this muscle using

hypertonic saline

FIGURE 4 Motor unit discharge rate

Study or Subgroup Mean

Induced Pain

Baseline/Pain Free Mean Difference Mean Difference

Farina et al., 2004
Farina et al., 2005 10.65
Farina et al., 2008 8
Hodges et al., 2008 617
Martinez-Valdes etal., 2020 11,53

in muscles of the lower limb following pain
induction with hypertonic saline

Total (95% Cl)

Heterogeneity: Tau? = 0.13; Chi = 7.90, df = 4 (P = 0.10); I = 49%
Test for overall effect: Z = 3.89 (P = 0.0001)

showed unchanged outcomes in people with musculoskeletal
pain compared to the control group. Two studies examined
the threshold of the H-reflex, and both reported an increase in
the presence of pain. Measures of H-amplitude in three stud-
ies showed inconsistent results, with one study describing an
increase, one a decrease and the other reporting no change
(Tables 7 and 10 and Figure 2a).

3.6.2 | Corticospinal excitability

Parameters recorded included the MEP amplitude, MEP
latency, resting motor threshold, active motor threshold,
silent period duration, MEP area, volume of cortical map
and number of cortical discrete peaks. The MEP latency
showed no change compared to the value of the control
group across the four studies which measured this outcome
(Salerno et al., 2000; Strutton et al., 2005; Tsao, Danneels,
et al., 2011; Tsao et al., 2008). No change in MEP ampli-
tude was demonstrated in six studies; however, one study
showed an increase and two reported a decrease of the MEP
amplitude. One study investigated MEP area and identified
no changes in the presence of pain (Strutton et al., 2005).
Resting motor threshold was measured in four studies and
the results indicated an increase in two studies (Mhalla
etal., 2010; Salerno et al., 2000), and no changes in a further
two studies. Map area was considered in only two studies;
one found no change from a pain-free condition (Elgueta-
Cancino et al., 2019), and the other identified a decrease
(Kosik et al., 2017).

Variable results were identified across studies which
measured MEP active motor threshold. Nine studies re-
ported this outcome with the majority (n = 5) supporting
no change; however, two studies showed an increase in this
value, one showed a decrease, and the final study reported
unclear/mixed results. Five studies assessed this outcome in
the muscles of the trunk in individuals with LBP allowing a

9.96 0.7621

SD Total Mean _ SD Total Weight IV, Random,95% CI IV, Random, 95% CI
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112 10 702 142 10 120%  -0.85[-197,027] —1
0.83 15 127 1.1 15 21.4% -1.17 [-1.87,-0.47] —
64 64 100.0%  -0.91 [1.37, -0.45] -

2 2
Reduced Discharge Rate  Increased Discharge Rate

meta-analysis to be performed; these studies were shown to
be homogenous with an I* score of 74% (Massé-Alarie et al.,
2012, 2016, 2017; Strutton et al., 2005; Tsao et al., 2008).
The resultant OR is shown in Figure 5. In this instance, the
cumulative evidence indicated that LBP appeared to have
no influence on the active motor threshold in the muscles of
the trunk (p = 0.75). This effect was sustained if the studies
which investigated trunk flexors were excluded (p = 0.99) or
the muscles which considered the extensors were excluded
(» =0.64).

The silent period duration was not altered in the presence
of pain in four studies but was reported to decrease in two
studies. There was no clear response to pain in studies inves-
tigating the cortical map volume, with two studies reporting
an increase, three reporting no change and three, a decrease.
There was, however, three studies which provided evidence
for a decreased number of discrete cortical peaks; however, a
further study reported unclear/mixed results for this outcome
in people with musculoskeletal pain (Schabrun et al., 2017)
(Tables 8 and 11 and Figure 2b).

3.6.3 | Motor unit properties

There were fewer consistent variables across the studies in-
vestigating motor unit activity in clinical pain populations.
Thus, despite identifying five relevant studies, it was only
possible to collect data on the discharge rate and the motor
unit action potential amplitude outcomes. There was no con-
sistent evidence for a change in motor unit discharge rate; all
five studies investigated this outcome and one reported an
increase, one identified no change, one a decrease and the
final two studies reported unclear/mixed results. Two studies
investigated motor unit action potential amplitude and both
studies reported unclear results, with increases, decreases and
no changes identified within the individual muscles and con-
ditions (Tables 9 and 12 and Figure 2c).
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TABLE 12 Summary of compiled results for changes in motor unit behaviour in both experimental and clinical pain conditions

Clinical pain

Experimental pain

Number

Number

Unclear/
mixed

of studies
(muscles)

Unclear/
mixed

of studies
(muscles)

Decrease

No change

Increase

Outcome

Decrease

No change

Increase

Conditions

Outcome

1

5(5)

Discharge rate

10 (19)

Painful

Discharge

muscle

rate

1(1)

Control

muscle
Painful

CV

303)

CV

muscle

1 (1)

Control

muscle

Coherence

2(2)
2(2)

Coherence

2(2)

Amplitude

Amplitude

Note: Grey shading indicates that the variable was not measured in that condition.

Abbreviation: CV, conduction velocity.

4 | DISCUSSION

This is a wide-ranging systematic review, which is the first
to synthesize the effects of both experimental and clinical
pain on spinal and supraspinal projections to motoneurons
and motor unit properties. The results indicate that both ex-
perimental and clinical pain appear to have no major influ-
ence on measures of the H-reflex. Secondly, experimental
and chronic, clinical pain appeared to have differing effects
on corticospinal excitability. Finally, experimental pain con-
sistently reduced motor unit discharge rate, a finding which
was not consistent with data obtained from patients with
musculoskeletal pain. The results of this review indicate that
clinical and experimentally induced pain appears to induce
differing effects on motoneurons, highlighting the need for
the development of new experimental pain paradigms to sim-
ulate clinical pain.

The majority of studies reported no change in H-reflex
outcomes following experimentally induced pain. This
finding indicates that experimental pain appears to cause
no changes in the monosynaptic reflex pathway in the spi-
nal cord and that changes are induced through other means.
These results were slightly more varied in the clinical pop-
ulation, with both increases and decreases identified for the
H/M ratio. However, one study which reported a significant
change in the H/M ratio was potentially influenced by the
likely inclusion of patients with neuropathic pain as these
participants were not specifically excluded, potentially ac-
counting for this result and precluding a meta-analysis on
this outcome (Hoehler & Buerger, 1981). The measures of
H-threshold increased in both studies which measured this
outcome in a clinical population. However, both studies con-
sidered the same muscle and the same clinical condition so
it is unknown if this result would be observed in other clin-
ical conditions or other muscles (Mazzocchio et al., 2001;
Salerno et al., 2000). Nevertheless, the majority of studies
provided evidence indicating that the H-reflex is not modi-
fied in clinical pain conditions.

For measures of corticospinal excitability, across the ma-
jority of outcomes examined, studies considering clinical
pain conditions reported conflicting results, whereas more
consistent findings were reported under experimental pain
conditions (Rohel et al., 2021). This result was however re-
versed for the measurement of MEP amplitude, where exper-
imental pain led to mixed and unclear results and the majority
of clinical pain studies demonstrated no change in this out-
come. Previous reviews have individually assessed cortico-
spinal excitability in response to acute and chronic clinical
pain conditions (Burns et al., 2016b; Chang et al., 2018;
Parker et al., 2016). In the experimental pain condition, meta-
analyses indicated moderate evidence to support a reduction
in MEP amplitude during rest, which concurs with effects of
tonic pain (Rohel et al., 2021), but not during a contraction
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TABLE 13 A comparison of pain induction methodologies on the individual MEP outcomes where possible. Studies which induced pain in

the muscles of the wrist have also been included in ‘pain induced in target muscle’ grouping

Pain
induction
location
Combined and
Number of sample size Pain outcome
Condition Outcome studies (n) mechanism muscle Increase No change Decrease Mixed
During pain MEP 3 60 NGF 5 pg Muscles of - 2 1 -
amplitude (0.2 ml) the wrist
3 66 HyperS Muscles of - 1 2 -
5%-5.8% the wrist
7 161 HyperS Pain - 1 3 3
5%-5.8% induced
in target
muscle
tissue
Post pain MEP 3 60 NGF 5 pg Muscles of = 3 = =
amplitude (0.2 ml) the wrist
4 78 HyperS Muscles of 1 1 2 -
5%-5.8% the wrist
9 174 HyperS Pain 1 1 5 2
5%—5.8% induced
in target
muscle
tissue
RMT 1 12 NGF 5 pg Muscles of - 1 - -
(0.2 ml) the wrist
2 21 HyperS Pain = 2 = =
5%-5.8% induced
in target
muscle
tissue
Abbreviations: NGF, nerve growth factor; RMT, resting motor threshold.
Low Back Pain Gi Control Gi M Diffi L Diffi :
Study or Subgroup ;I:Ianac as“:l‘) m"’r‘;tal Mea:" " S:Jnugotal Weight Ivfzqamlloer:;;:k Cl v, ;aar;d‘or:,’;g‘:fcl F I G U R E 5 AC[IVC motor threShOId
Strutt t al., 2005 4291 6.2217 24 36 6.9981 1 222% 6.91[2.08, 11.74] — e 3 1
Tsr:o l:(‘ :I.TZOUB 4929 37213 11 51.61 7.1747 11 22.3% -2.32[-7.10, 2.46] i T (AMP) mn the muSC1eS Of the trunk m
el Sa M pEoEd D Gednis G individuals with chronic low back pain
Massé-Alarie et al., 2017 48.1182  8.3407 33 508 8 13 21.5% -2.68 [-7.88, 2.52] = (LBP)
Total (95% Cl) 88 61 100.0% 0.81 [-4.22, 5.83] ?
Heterogeneity: Tau? = 23.61; Chi* = 15.41, df = 4 (P = 0.004); I* = 74% %5 g 3 s %

Test for overall effect: Z = 0.32 (P = 0.75)

(Burns et al., 2016b); the results from clinical populations
were found to be inconclusive for this outcome following
meta-analyses in two reviews (Chang et al., 2018; Parker
et al., 2016). In this review, experimental pain appeared to
induce a decrease of corticospinal excitability; however, dif-
ferent methodologies for pain induction did produce some
contrasting results. For example, in the study by Schabrun
and colleagues (Schabrun et al., 2016), the target muscle
was sensitized by treatment with nerve growth factor 2 and
4 days before a hypertonic saline injection was used to induce

Reduction in AMT Increase in AMT

experimental muscle pain. In this study, the results obtained
on days where pain was sustained with the nerve growth fac-
tor supported no changes in most outcomes, including MEP
amplitude, a result mirrored in one of two other studies which
used this pain mechanism (Seminowicz et al., 2019). In clin-
ical pain conditions, no significant changes were identified
in measures of the MEP amplitude or latency, indicating that
the NGF model may potentially more closely emulate these
sustained clinical pain conditions; however, as these studies
represented just three of the included studies, further studies
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are required to confirm this effect. The experimental meth-
odology presented significant heterogeneity in these studies,
and the point at which measurements were taken may explain
some of the variability between studies measuring corticospi-
nal excitability since some measurements were taken during
the transition to pain (Schabrun et al., 2016), during pain
(Del Santo et al., 2007), postpain (Svensson et al., 1998) and
after recovery from pain (Le Pera et al., 2001; Schabrun &
Hodges, 2012).

Changes could be seen in cortical maps in the presence
of clinical pain (Burns et al., 2017; Kosik et al., 2017;
Schabrun et al., 2015, 2017; Te et al., 2017; Tsao, Danneels,
et al., 2011; Tsao et al., 2008), possibly indicating pain-
induced cortical reorganization. Two studies (Schabrun
et al., 2015; Tsao et al., 2008) reported an increase in the
map volume and two, a decrease in map volume (Kosik
et al., 2017; Te et al., 2017); thus, the results were con-
flicting. Three experimental pain studies examined the map
volume (Schabrun et al., 2016; Seminowicz et al., 2019;
Summers et al., 2019), and all used the same pain mech-
anism, muscle and similar measurement timepoints.
Despite this, there were contrasting results presented with
an increase, a decrease and no change in map volume all
reported across the three studies. Additionally, further anal-
ysis within the pain group in the study by Seminowicz and
colleagues identified two distinct patterns of pain adapta-
tion within participants, terms ‘facilitation’ and ‘depres-
sion’ with diverging responses in map volume and resting
motor threshold, presenting an important area for further
investigation (Seminowicz et al., 2019).

The changes in corticospinal excitability as a result of
experimental muscle pain appear to differ depending on
the type of musculoskeletal tissues stimulated. For exam-
ple, when pain was induced within a muscle, the majority
of studies reported either a decrease or a combination of a
decrease and no change in corticospinal excitability of the
targeted muscles (Burns et al., 2016¢; Le Pera et al., 2001;
Martin et al., 2008; Schabrun & Hodges, 2012; Svensson
et al., 2003). This effect may serve the purpose of protecting
the painful muscle, whereby excitability is reduced in order to
prevent movement which may exacerbate symptoms. Several
pain theories have identified motor adaptations in response
to pain, either as a form of protection to avoid moving the
painful area or as an adaptation to function around the painful
area (Hodges & Tucker, 2011; Lund et al., 1991). However,
this finding is speculative, and whilst a reduction in excitabil-
ity was identified, the underlying reasons for this reduction
remain unknown. When pain was induced in noncontractile
tissues, such as the infrapatellar fat pad and interspinal liga-
ment, corticospinal excitability increased within local mus-
cles. This phenomenon might be related to a compensatory
increased excitability of the muscles to protect the painful
noncontractile tissue. This argument is supported by studies

within the clinical pain cohort (Schabrun et al., 2015; Tsao,
Danneels, et al., 2011; Tsao et al., 2008).

The largest disparity in results was found for the effects
of experimental and clinical pain on motor unit behaviour.
Whilst numerous outcomes were reported in the clinical pain
studies, these outcomes were largely study specific, and very
few variables were common between studies or across patient
groups. Additionally, of the studies that did measure the same
outcomes, there was no clear majority supporting the effect
of clinical pain on any outcome. These results are in contrast
to experimental pain studies in which common adaptations
of motor unit behaviour were described. In general, the re-
sults from this systematic review and meta-analysis support
the observation of an inhibition on motoneuron firing rate
during tonic experimental pain since 8 out of 10 studies
supported a decrease in motor unit discharge rate, with the
remaining two studies showing a combination of no change
and decrease. Nevertheless, it is important to mention that
these studies mainly analysed the behaviour of low-threshold
motor units during low-force contractions. Indeed, only one
of the reviewed studies measured motor unit behaviour at
forces higher than 20% of the maximum voluntary contrac-
tion. Martinez-Valdes et al. (2020) measured the influence
of pain on motor unit behaviours at both low forces (20%
MVC [maximum voluntary contraction]) and high forces
(70% MVC). As expected, the motor unit discharge rate de-
creased at low forces during the painful condition; however,
the discharge rate was either maintained or even increased at
high forces during pain. Further future studies are needed to
examine motor unit behaviour during experimentally induced
pain at higher forces, as this study indicates that it is possible
that high-threshold motor units adapt differently under pain-
ful conditions. Despite the clear inhibitory effects observed
across studies, it is important to highlight that the firing
behaviour of motoneurons can differ across the motor unit
pool, with possible recruitment of new units and excitation of
high threshold motor units, compensating for the inhibition
of low-threshold units (Martinez-Valdes et al., 2020); this
behaviour allows force to be maintained during painful sub-
maximal contractions. In clinical pain conditions, reports of
changes in motor unit discharge rate were less consistent. In
some instances, the motor unit discharge rate was lower, for
example, for the extensor carpi radialis brevis in people with
nonspecific arm pain (Calder et al., 2008). In contrast, ster-
nocleidomastoid motor unit discharge rate was unchanged
(Falla et al., 2010) or was higher in people with in chronic
neck pain (Yang et al., 2016).

This difference in responses in clinical and experimen-
tal pain indicates that current experimental pain models
do not appear to emulate the motor adaptations to chronic
pain. The disparity between experimental and chronic clin-
ical pain results for all the techniques used to measure mo-
toneuron excitability and motor unit properties can likely be
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explained by a number of factors. Importantly, experimental
pain models induce short-term pain, whereas clinical stud-
ies have been conducted in people with chronic symptoms
which can impact on multiple systems with the potential to
influence motor responses (e.g. cognition, tissue structure/
morphology). Whilst it is not expected that the responses to
tonic experimental pain would be identical to chronic clinical
paradigms, as these experimental pain mechanisms are often
used to emulate chronic conditions the disparate results in
many outcomes may indicate that further research is required
to identify how suitable these paradigms are for investigating
responses to pain in chronic pain conditions. A small number
of results from this review indicate that sustained pain caused
by NGF may more closely emulate chronic pain; however,
further research is required to confirm this. It is important to
consider however that within clinical pain, different condi-
tions are likely to produce differing effects on motor output
(Chang et al., 2018; Parker et al., 2016). However, it can also
be seen in these results that within clinical conditions, be-
tween study, and indeed between subject differences can be
identified. For example, in two similar studies which assessed
the MEP amplitude in the extensor carpi radialis brevis in
individuals with Lateral Epicondylalgia, one study identified
an increase in amplitude and one identified a decrease (Burns
et al., 2016a; Schabrun et al., 2015). The current results indi-
cate that current experimental pain approaches do not provide
an optimal model of the adaptations associated with clinical
chronic pain; however, further research is required in popu-
lations experiencing both clinical and experimental pain to
identify novel approaches to emulating motor adaptations to
clinical pain.

4.1 | Strengths and limitations

The agreement of the risk of bias assessment by the reviewers
is over 75%, and as such is considered to be a moderate agree-
ment with kappa value of 0.51 (Landis & Koch, 1977). The
methodological quality for all studies included was approxi-
mately 63%. The items of the bias assessment demonstrating
low scores included small sample sizes, no a priori sample
size calculation, recruitment via convenience sampling and
no experimenter blinding during data analysis (Downs &
Black, 1998). Most included studies were cross-sectional in
design; however, standardized measurement methods, such
as H-reflex and motor unit decomposition from intramuscular
and surface EMG signals, have well-established validity and
reliability (Chen et al., 2010; Martinez-Valdes et al., 2016),
which decreases measurement errors.

It is relevant to note that there are limitations within
the studies which must be considered for a full interpreta-
tion of these results. As identified in Table 3, some studies
showed significant risk of bias including in the sample size

and selection, such as incomplete reporting of recruitment
means and pain characteristics. Furthermore, whilst hyper-
tonic saline injection was the most common mechanism for
pain induction, the methodologies surrounding the tasks and
the duration of monitoring were not fully standardized and
so this complicates direct comparison. It is relevant also to
discuss the limitations of the neurophysiological techniques
employed. The H-reflex is not the only measure of spinal ex-
citability and has been shown to be influenced by external
factors (Misiaszek, 2003). There are studies which use alter-
native techniques including F-Waves and V-Waves to assess
this outcome. However, in scoping studies for this review, the
H-Reflex was the most consistently reported outcome, so this
metric was chosen for inclusion. It may therefore be benefi-
cial for further research on other measures of spinal excitabil-
ity to strengthen this evidence base.

Finally, whilst attempts were made to include meta-
analysis of the results of individual studies, these efforts were
affected by significant heterogeneity. The included studies
reported a diverse range of outcomes; pain was induced in 12
locations and aligned with 9 clinical pain presentations, and
outcomes were measured from the intrinsic muscles of the
hand through to gross muscles of the trunk. Due to differences
in function, it would not be appropriate to compare muscles
which flex a finger to those which move the knee, and as such
the localization of outcome measures is an important area to
consider for further research. Where homogeneity was found
between studies, meta-analyses were further obstructed by
the nonreporting of data and inclusion of participants which
could affect the study results. As a result, one of the primary
recommendations of this review surrounds increasing con-
sistency in measurements within individual methodologies.

In conclusion, this systematic review is the first to pro-
vide a wide synthesis of evidence describing the influence
of pain on spinal and supraspinal projections to motoneurons
and motor unit properties. In general, motoneuron inhibition
was evident under experimentally induced pain conditions;
however, the changes observed in clinical populations were
much more variable, likely reflecting the complexity and
variability of clinical pain disorders. Further research using
more consistent and comparable methodologies is required to
elucidate the influences of clinical and experimental pain on
spinal and supraspinal projections to motoneurons.
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