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1. Introduction
The hydrological cycle response in a warming climate will be a major driver of future socio-economic im-
pacts (Hoegh-Guldberg et al., 2018). Projections from general circulation models (GCMs: the most detailed 
and physically based models of the global climate system) consistently predict a warmer future almost 
everywhere, but precipitation projections are much more divergent, especially in the tropics (Allen & In-
gram, 2002; Chadwick et al., 2016; Kent et al., 2015; Rowell et al., 2016).

Much of the uncertainty in future precipitation change is related to processes associated with clouds and 
convection. In reality these physical processes occur over spatial scales up to 10s of km. In contrast, most 
GCMs have a resolution of around 150–200  km. Processes such as convection must therefore be para-
metrized, but all parametrizations are approximations, and the structure of many parametrizations is un-
avoidably far simpler than reality, leaving no way to choose a parameter value a priori or directly from 
observations (e.g., Stensrud, 2007)

Paleoclimate changes can provide valuable “out-of-sample” tests for modeling the climate system (Harrison 
et al., 2015; Schmidt et al., 2014; Tierney et al., 2020; Valdes, 2011; Zhu et al., 2020). This is because past 
climate states provide examples of both fast and gradual changes that are larger in amplitude than histor-
ical climate changes and are therefore more comparable in amplitude to expected future climate change. 

Abstract During the early to mid-Holocene vegetation expanded to cover much of the present-day 
Sahara. Although driven by a well-understood difference in the orbital configuration, general circulation 
models have generally failed to simulate the required rainfall increase. One possible explanation is 
the presence of systematic biases in the representations of atmospheric convection which might also 
impact future projections. We employ a Bayesian method to learn from an ensemble of present day and 
mid-Holocene simulations that vary parameters in the convection, boundary layer and cloud schemes. 
The model can reproduce the “Green Sahara” rainfall if mixing between convective plumes and the 
environment is increased in the upper troposphere relative to lower down. This does not appreciably 
impact the present day simulation, meaning that the paleoclimate reconstructions are able to narrow 
constraints on suitable parameter ranges. This suggests that other uncertain components of climate 
models could be targeted in this way.

Plain Language Summary General circulation models are complex computational 
representations of the Earth's climate system. Run on supercomputers, these can be used to predict future 
climate change. Past climate changes can also be used to test climate models. One example of this is the 
“greening” of the Sahara around 11,000–4,000 years ago. Almost all models fail to capture the amplitude 
of the so-called “Green” Sahara. One possible reason for this is that small scale features such as clouds 
and storms in the atmosphere must be approximated using parametrizations. These parametrizations 
are poorly constrained by available climate observations and they thus potentially introduce errors in 
predictions of past or future climate changes. In this work we show that the “greening” can be simulated 
accurately when the parametrizations are tuned not only with present day observed climate fields, but 
additionally with the past “green” Sahara state. This suggests that climate model parametrizations may 
be significantly improved and uncertainties reduced if climate states from the past are used in developing 
climate models.
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To be useful in this way, a paleoclimate state or transition must be associated with a good understanding of 
both the underlying forcings (e.g., a change in greenhouse gas levels or a change in orbit) and the resultant 
impacts in the climate system.

The early to mid-Holocene (around 11,000–4,000 years before present) is frequently highlighted as such 
a period (Biasutti et al., 2018; Braconnot et al., 2012; Harrison et al., 2015). This is because the ultimate 
forcing during this time was a very well-understood change in the configuration of Earth's orbit (Berger & 
Loutre, 1991). The resulting increase in northern hemisphere summer insolation drove enhanced monsoon 
circulation and precipitation (Kutzbach & Street-Perrott, 1985). This led to a so-called “Greening” of the Sa-
hara (e.g., Claussen et al., 2017). This is evidenced by the development of savanna or steppe-like vegetation 
(Hély et al., 2014), expansion of lakes and rivers (Kohfeld & Harrison, 2000; Skonieczny et al., 2015), a re-
duction in dust deposited over the Atlantic (de Menocal et al., 2000; Williams et al., 2016) and the presence 
of neolithic settlements and domesticated animals (Manning & Timpson, 2014).

Pollen and macro-fossil evidence suggests that annual mean precipitation increased by 1.1 mm day−10.1 
(Bartlein et  al.,  2011) relative to the present day (meanstandard error for 15- 30 N). There is some un-
certainty on the spatial pattern of change, with earlier compilations of pollen suggesting a relatively uni-
form vegetation change (Hoelzmann et al., 1998), while more recent datasets suggest greater changes in 
vegetation in the South compared with further North (Hély et al., 2014). The pollen samples have been 
integrated with a vegetation model to infer climate, showing the same overall precipitation increase (Wu 
et al., 2007). A larger rainfall increase of around 1.5 (0.9–2.8) mm day−1 has been inferred from marine core 
leaf-wax hydrogen isotope ratios (Tierney et al., 2017). A recent isotope-enabled modeling study suggests 
these isotope changes are consistent with a slightly smaller precipitation increase (Thompson et al., 2021). 
Despite these uncertainties, all lines of evidence agree on a minimum increase in precipitation of at least 
0.7 mm day−1 (Joussaume et al., 1999) that enabled vegetation to grow across much of the present-day Sa-
hara (Jolly et al., 1998; Pachur & Holzmann, 1991; Peyron et al., 2006; Ritchie & Haynes, 1987; Street-Perrott 
et al., 1990).

All GCM simulations driven with the orbital configuration for 6,000 years before present (6 ka BP), sim-
ulate an increase in precipitation, but almost always much smaller than these pollen observations imply 
over the Sahara itself (Braconnot et al, 2007, 2012; Brierley et al., 2020; Joussaume et al., 1999). This is also 
true when dynamic vegetation and/or dynamic dust processes are enabled (Harrison et al., 2015; Hopcroft 
& Valdes, 2019; Perez-Sanz et al., 2014). In contrast, when significant changes in the land surface albedo 
and/or significant reductions in dust aerosols are specified, sufficient rainfall can be simulated (e.g., Levis 
et al., 2004; Pausata et al., 2016; Skinner & Poulsen, 2016).

Saharan dust particles are less absorbing than is prescribed in most climate models which tend to use out-
dated radiative properties (Albani & Mahowald, 2019; Hopcroft & Valdes, 2019). A significant dust reduc-
tion during the mid-Holocene probably did not appreciably enhance convective precipitation (Hopcroft & 
Valdes, 2019). Moreover, the reduction in dust loading would have altered cloud formation through dust-
cloud interactions, and this has been shown to reduce stratiform precipitation (Thompson et al., 2019). 
Land-surface feedbacks can efficiently drive the monsoon northwards (Levis et al., 2004; Skinner & Pouls-
en, 2016; Texier et al., 2000) but there is little agreement on how the “greening” of the Sahara should be con-
figured in models (Chen et al., 2020; Hopcroft et al., 2017; Lu et al., 2018; Street-Perrott et al., 1990; Texier 
et al., 2000). It is thus not trivial to judge whether or not a sufficient precipitation enhancement is achieved 
for the right reasons in model simulations of the mid-Holocene. The model-data disparity over North Africa 
has persisted for several decades across multiple GCMs (Biasutti et al., 2018). This suggests systematic bias-
es that either require more detailed physical representations or a different approach to parameter choices.

In this work, we use the atmospheric component of the coupled GCM HadCM3 (Gordon et al., 2000; Pope 
et al., 2000; Valdes et al., 2017) which also does not simulate a “greening” of the Sahara under mid-Holocene 
boundary conditions (Braconnot et al., 2007). We use this GCM to evaluate what the model failure may 
reveal about the representation of precipitation in GCMs and to compare the parametric constraints from 
present-day and mid-Holocene climatic conditions.
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2. Methods
2.1. General Circulation Model and Boundary Conditions

We use the Met Office Hadley Center atmosphere model 3 (HadAM3) with the MOSES 2.1 land surface 
scheme and prescribed vegetation cover (Essery et al., 2003; Pope et al., 2000), specifically HadAM3B-M2.1aN 
(Valdes et al., 2017). This GCM has horizontal resolution of 3.75 × 2.5° (longitude-latitude) with 19 vertical 
levels. HadAM3 uses the mass-flux convection scheme by Gregory and Rowntree (1990) which is compa-
rable in complexity to schemes used in several other GCMs (Maraun & Widmann, 2018; Stensrud, 2007). 
Relative to the published configuration of the model (here labeled ORIG), a revised (REV) model version 
was developed here that includes a humidity-dependence of the mixing and forced detrainment from con-
vection following Derbyshire, et al. (2011), as implemented in more recent Hadley Centre models.

The preindustrial setup follows that of Valdes et al. (2017) with prescribed observed present-day vegetation 
coverage (Loveland et al., 2000) and preindustrial levels of greenhouse gases ( 2CO , 4CH  and N2O). We use 
1981–2010 climatological sea-surface temperatures (SSTs) and sea-ice from HadISST (Rayner et al., 2003, 
updated to 2010). For the mid-Holocene, the orbital parameters are modified for the conditions of 6 ka 
before present (BP) (Berger & Loutre, 1991). Sea surface temperatures (SST) and sea-ice are modified by 
adding the 6 ka minus preindustrial difference as simulated with the coupled model HadCM3B-M2.1aD, to 
the preindustrial HadISST climatology. The simulations setup is summarized in Table S1.

Today, the Sahara has a surface albedo of around 0.35 (Loeb et al.,  2012). A reduction in albedo would 
strengthen the monsoon (Boos & Storelvmo,  2016; Charney,  1975; Street-Perrott et  al.,  1990; Texier 
et al., 2000). The mid-Holocene “greening” involved the northwards expansion of grasses and shrubs (Jolly 
et al., 1998; Hély et al., 2014). Satellite observations show that these biomes have an albedo of 0.17–0.25 
when precipitation is in the range reconstructed for the “greening” (i.e., 1.1 mm day−1 Bartlein et al., 2011), 
see supporting information S1 and Figure S1. The Sahel which is at the periphery of the present-day West 
African monsoon is in the upper part of this range (0.2–0.3). This may present the best analogue for the 
mid-Holocene “greening.” This higher end is also consistent with mid-Holocene simulations with dynamic 
vegetation and soils (e.g., Claussen & Gayler, 1997; Vamborg et al., 2011). Many model studies have pre-
scribed a value at the very lower end of 0.15 (Chandan & Peltier, 2020; Levis et al., 2004; Pausata et al., 2016; 
Skinner & Poulsen, 2016), which is typically seen in regions of higher rainfall of 2.0–3.0 mm day−1.

We do not use the HadCM3B-M2.1aD dynamic vegetation scheme as it is overly sensitive to arid conditions 
(Hopcroft et al., 2017). Instead bare soil in the Sahara region (from 10-35°N, 30°W-50°E) is replaced with 
grasses and shrubs with a total fractional coverage of 50%. This produces a surface albedo of 0.27 relative 
to 0.31 in the preindustrial simulation. This a relatively conservative change for the period since it is at the 
upper end of the range discussed above.

2.2. Perturbed Parameter Ensemble

We introduce a new variable E into HadAM3 which controls the vertical dependence of entrainment and 
mixing detrainment—the mixing of environmental air into the convecting air, and of convecting air into 
its environment. By default, the entrainment rate decays with altitude in proportion to pressure. This was 
intended as an ad-hoc representation of larger clouds, which proportionally mix less with their surround-
ing, reaching higher (Gregory & Rowntree, 1990). With the new parameter E we relax this assumption. In-
creasing E increases the upper troposphere entrainment values and reduces those near to the land surface. 
A value of zero returns the default proportional dependence on pressure (see supporting information S2).

We configured a 150-member perturbed parameter ensemble using the REV configuration of HadAM3. 
Eleven GCM parameters within the convection, boundary layer or large-scale cloud schemes were sampled. 
This includes three new parameters: E which controls the vertical profile of entrainment and detrainment, 
rdet which sets the sensitivity of forced detrainment to the buoyancy gradient (Derbyshire et al., 2011), and 
det which sets the sensitivity of detrainment to relative humidity (Derbyshire et al., 2011). The 11 model 
parameters are assigned different values globally leading to 150 paired ensemble members of preindustri-
al and mid-Holocene simulations. The parameter definitions and ranges used are given in Table S2 and 
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illustrated schematically in Figure S2. The evaluations are selected using 
a Latin hypercube method (McKay et  al.,  1979), which distributes the 
parameter samples optimally across the 11-dimensional state space.

2.3. Statistical Modeling and Parameter Tuning

We used a Gaussian process emulator (e.g., Kennedy & O'Hagan, 2001) 
to construct a statistical representation of the perturbed parameter en-
semble of GCM simulations. Emulators have been extensively used in 
analyzing complex numerical models like GCMs (Edwards et al., 2019; 
McNeall et al., 2016; Rougier et al., 2009; Sexton et al., 2012). The emu-
lator represents some output as a linear function of the input parameter 
values combined with a Gaussian process (Roustant et al., 2012). In this 
way, the emulator interpolates in multidimensional parameter space to 
predict the GCM response at any combination of input parameter values. 
further details are given in supporting information Text S3.

We use a Bayesian method (see supporting information Text S3.2) to up-
date the model parameters based on the mid-Holocene paleoclimate re-
constructions. In a Bayesian method we compute a posterior probability 
distribution function (PDF) on the model parameters based on the prior 

PDF and the likelihood (e.g., Rougier, 2007). The prior is taken as the current model version and the likeli-
hood quantifies the performance of the GCM for selected climate outputs such as simulated precipitation. 
Thus we condition the model parameters with the present-day observed climate variables and optionally 
the mid-Holocene rainfall increase.

The posterior PDF must be approximated using a Markov chain Monte Carlo method (Gilks et al., 1995) 
and since the MCMC algorithm requires many thousands of iterations, we use the emulator in place of 
the full GCM. We perform this process twice. First including four observational targets for the present day 
(Table S3) and second adding to this the mid-Holocene absolute precipitation over North Africa inferred 
from pollen data (Bartlein et al., 2011). Thus we derive a new parameter set suitable for both present and 
mid-Holocene conditions, which is different to Su and Neelin (2005) who used different parameter sets for 
the two time periods.

3. Results
3.1. Sampling Convection, Clouds and Boundary Layer within a Global Model

The resultant precipitation anomalies for the 112 simulations that completed 50 model years are averaged 
over North Africa ( 20 W-30°E by 15-30°N) in Figure 1. This region of North Africa includes many of the fos-
sil pollen sites. All model simulations overestimate present-day precipitation in Africa and in North Africa 
in particular. This is a systematic bias in HadAM3 (Valdes et al., 2017). Part of which is due to an underes-
timation of the soil albedo in the Sahara region in the model. The simulated difference for mid-Holocene 
minus preindustrial in precipitation in this region ranges from 0.7 mm day−1 to 2.6 mm day−1 for JJAS, 
when most precipitation falls. Many ensemble members with the preindustrial precipitation similar to the 
original (around 0.5 mm day−1), have much higher increases of about 2.0 mm day−1 for the mid-Holocene. 
The weak correlation between the two axes in Figure 1 shows that different factors influence precipitation 
in the preindustrial compared with the precipitation difference between the two time periods.

The parameter dependence of the mid-Holocene precipitation anomaly is shown in Figure S3. The most 
obvious relationship is with E, for which higher values result in larger changes. E controls the vertical pro-
file of entrainment and detrainment, which is the rate of mixing of convective clouds with the surrounding 
air masses. In many models entrainment decays with altitude. High values of E increase the upper level 
entrainment and reduces it near the land surface. This produces a wetter mid-Holocene in North Africa.

The Gaussian process emulator is used to calculate influence of varying each parameter value individually 
on the simulated precipitation change over North Africa for the mid-Holocene. The result of this is shown 
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Figure 1. ORIG (red), REV (blue) and ensemble (gray) simulated JJAS 
precipitation in North Africa (20°W–30°E, 15°N–30°N) against the 
simulated mid-Holocene minus preindustrial precipitation (mm day−1) 
change. The observed precipitation in this region from CRU (Harris 
et al., 2014) based on years 1961–1990, is indicated by the shaded gray 
bar. The impact of using present-day versus preindustrial precipitation 
observations is likely to be small and less important than differences due to 
model biases and due to significant spatial gaps in the early instrumental 
observations.
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in Figure 2 and the emulator skill is evaluated in Figure S4. We find that E is the dominant parameter. We 
examined the parameter dependence of the West African monsoon in the preindustrial ensemble members 
(over 5- 15 N) (Figure S5). This shows that the parameters which exert the strongest control on precipitation 
in this monsoon region (qini, ct and det) are not the same as for the mid-Holocene anomaly relative to the 
preindustrial simulation (E, F, Tini and qini).

3.2. Mechanisms of Enhanced Mid-Holocene Precipitation

Given the profound effect of changing E on the mid-Holocene North African precipitation, we ran a sim-
ulation with only one change from REV: increasing E from its default value of 0 to 0.25. Figure 3a shows 
the percentage difference in the mid-Holocene minus preindustrial (6 kaGS–0 ka) precipitation anomalies 
for the pair of simulations with E = 0.25 compared to the pair with E = 0. With E = 0.25 the precipitation 
anomaly is generally larger across North Africa and is nearly twice as large in the North West (Figure 3a). 
The latitude of the precipitation maximum moves northwards by around 2.5- 5  compared to the E = 0 sim-
ulation (not shown). It produces a more diffuse precipitation band during JJAS which pushes the periphery 
of the monsoon further into the dry interior.

A key diagnostic of the convection scheme is the updraught mass-flux. The simulated mean convective 
updraught over North Africa decreases fractionally much more with height than the mean over the wet 
regions of the tropics as a whole. This is presumably because of dilution by the extremely dry environment 
in North Africa, which makes it harder for moist convective plumes to persist. In all model versions the 
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Figure 2. Emulator prediction of JJAS mean precipitation change (mid-Holocene minus preindustrial) over 15°N–30°N by 20°W–30°E. Dependence of the 
JJAS precipitation difference on each individual model parameter. In each panel that parameter is varied across the range, whilst the remaining 10 parameters 
are held at their default values. The uncertainty ranges ( 1 standard deviation and the 95% intervals) are as reported by the emulator and collapse to zero at 
the point in parameter space at which the climate model has been run before. These single parameter sampling evaluations are from the emulator based on 
all members of the ensemble simulations performed with the GCM. The error bars are a function of distance from points in state-space that have already been 
evaluated with the GCM. GCM, general circulation model.
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increase in rainfall over North Africa at 6 ka BP is accompanied by the updraught mass flux weakening 
lower down and strengthening aloft (Figure 3b), becoming more like tropical moist convection elsewhere in 
the tropics. The mid-Holocene boundary conditions lead to less dilution of convective plumes low down, so 
that those that reach their lifting condensation level (LCL: indicated by vertical lines in Figure 3b) are more 
vigorous and end up penetrating higher overall.

The direct effect of increasing the parameter E, that is, decreasing the entrainment rate near the surface and 
increasing entrainment rate higher up, is to amplify these mass flux changes for the mid-Holocene relative 
to the preindustrial (Figure 3b), so that the REV (E = 0.25) case has a lower mass-flux near the surface than 
the REV model version, and a stronger updraught mass flux above the lifting condensation level (LCL: in-
dicated by vertical lines in Figure 3b). Interactions between convection and its environment mean the net 
effect can be very different in other regions (Figure 3a), but over North Africa these changes reinforce each 
other to produce larger amplitude mass flux changes, and a stronger rainfall increase at 6 ka BP (Figure 3d).

In tandem with this, the circulation (zonal wind) and humidity anomalies associated with heavier down-
pours in the Sahara are different when E is given a higher value (Figures 3c and 3d). For E = 0, wetter days 
north of 15 N are associated with a strengthened tropical easterly jet (TEJ) and a slightly weakened Africa 
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Figure 3. (a) relative difference in the mid-Holocene JJAS precipitation anomaly (6kaGS-0ka) for REV model version 
E = 0.25 minus E = 0. (b) Mid-Holocene minus preindustrial (6 kaGS-0 ka) JJAS mean vertical profiles of updraught 
mass flux (hPa s−1). Horizontal lines show the lifting condensation level for an undilute parcel of surface air for the 
mid-Holocene averaged over the same domain. (c) and (d) The REV JJAS zonally averaged daily mean anomalies of 
humidity (shading: kgkg−1) and zonal wind (contour lines: ms−1) for wetdays (4.0 mm day−1) for E = 0 and E = 0.25 
respectively.
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easterly jet (AEJ), as observed (Nicholson, 2009). African Easterly Waves 
(AEWs) move along the jet and contribute precipitation to the North 
(Claussen et al., 2017) and this is well represented in HadAM3 (Taylor 
et  al.,  2002). For E  =  0.25, the same precipitation increase is achieved 
with a 20% smaller increase in the TEJ. This suggests that convection is 
more effective in this model configuration and this partly explains the 
increased precipitation response for E = 0.25. Some of these downpours 
are also associated with tropical plumes (Knippertz, 2003), especially in 
the months of August–October (Dallmeyer et al., 2020; Skinner & Pouls-
en, 2016). When E is increased to 0.25, plumes contribute more precipita-
tion in the region from 20- 35 N despite relatively similar mean climatol-
ogies of large-scale circulation and humidity.

3.3. Learning from the Model-Data Mismatch

The mid-Holocene pollen quantitative precipitation reconstruction over 
North Africa gives an annual-mean precipitation increase of 1.1  0.1 mm 

1day  (Bartlein et al., 2011) relative to the present day. We use the annual 
mean reconstruction and model outputs in a probabilistic formulation to 
optimize the GCM so that it is consistent with the pollen-based precipita-
tion reconstructions and hence the widespread environmental evidence 
for an invigoration of the hydrological cycle.

The posterior PDFs on the 11 parameters are shown in Figure S6. Two 
cases are considered where the second only differs with the inclusion 
of the mid-Holocene precipitation target. For the mid-Holocene the al-
gorithm favors high E because as discussed above, it has an extremely 
strong impact on the response to the mid-Holocene insolation. The emu-
lator predicted mid-Holocene precipitation increase is very different be-
tween the two cases, showing sensitivity of the system to parameter com-
binations and also that the optimization against present-day observations 
does not guarantee an improvement for the mid-Holocene.

3.4. New Model Version

One optimized parameter set derived from the PDFs on the model parameters (Figure S6 and Tables S4 and 
S5) was used in new preindustrial and mid-Holocene GCM simulations and is denoted REVopt. In this we 
only changed parameters from their original GCM values where there is stronger preference posterior PDF. 
Whilst the choice of parameters which underline REVopt is based on the posterior PDF sampling, it would 
be more consistent with the Bayesian paradigm to think in terms of the probability distribution on the pa-
rameters, rather than to focus on any single parameter set. However, given computational limitations and 
to simplify the presentation of the results we mostly focus on the REVopt parameter set.

This simulation is compared with the ORIG and REV models in Figure 4. The difference between the two 
controls (ORIG and REV) is due to changes to the detrainment parametrization following Derbyshire 
et al. (2011). Figure 4c shows that in REVopt the precipitation anomaly over North Africa is approaching 
double that in the ORIG simulations for JJAS, and the annual mean anomaly is also 67% larger. There is a 
large region of precipitation increase across North Africa and Arabia and Northern India. This shows that 
the statistically-inferred parameter changes are effective when introduced into the GCM. Crucially, the 
present-day performance of REVopt is very similar to ORIG and REV for both temperature and precipi-
tation (supporting information Text S4 and Figures S7 and S8). This means that the improvement for the 
mid-Holocene has not significantly altered the present-day simulation.
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Figure 4. Simulated Northern Hemisphere summer (JJAS) precipitation 
anomalies (mm day−1): (a) ORIG (Valdes et al., 2017); (b) REV: the 
modified version used as a starting configuration in this study; and (c) 
REVopt, the optimized version based on the probabilistic approach. The 
mean simulated difference in JJAS precipitation (mm day−1) for North 
Africa in the area of the box is given above each panel.
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4. Discussion
The strong precipitation increase during the early- to mid-Holocene in North Africa presents a unique 
challenge to climate simulations of tropical precipitation. In this perturbed parameter study we find that 
parameters controlling the preindustrial climatology of precipitation are different from those that deter-
mine the anomaly under a climate change scenario. The Bayesian approach demonstrates that a modified 
vertical profile of convective entrainment can significantly improve the simulation of the mid-Holocene 
North Africa despite having little impact on the simulation of the present day.

Like any model, HadCM3 has biases and simplifications. For example, HadCM3 suffers from having too 
little, too optically bright cloud cover (Massey et al., 2015), a common problem in CMIP5 models (Nam 
et al., 2012). It also has too much precipitation over Africa and too little over South America, but does not 
suffer from a double ITCZ bias or weak ENSO variability, which are common problems in many GCMs. 
Overall its performance compared to observations is typical of GCMs used in recent intercomparisons (Val-
des et al., 2017).

Structural limitations mean that many biases could be corrected by varying model parameters, and there are 
many more than the 11 we varied. Also, the existence of compensating errors means that tuning that im-
proves one bias can actually exacerbate another. Despite this, in the REVopt case we significantly improved 
the mid-Holocene precipitation in comparison with reconstructions, without affecting the simulation of the 
present day state. It is possible that with a more comprehensive list of parameters, for example, of the order 
of 20–50, some of these other biases may be reduced.

Tropical precipitation in GCMs has recently been improved through the use of adaptive convective en-
trainment, whereby local entrainment rates reduce following convective activity. On a local scale this could 
produce a similar effect as in our study, reducing entrainment in the lower troposphere, following precursor 
convective plumes (Mapes & Neale, 2011; Willett & Whitall, 2017). Future work should consider how such 
dynamic entrainment parametrizations (e.g., Hohenegger & Bretherton, 2011; Mapes & Neale, 2011) could 
similarly improve modeling of the mid-Holocene and whether this is consistent with our statistically de-
rived model changes.

Convection-permitting atmospheric model simulations, with high resolution and no convection para-
metrization, have highlighted further significant improvements when convection parametrizations are 
deactivated (Berthou et  al.,  2019; Birch et  al.,  2014; Finney et  al.,  2019; Kendon et  al.,  2019; Marsham 
et al., 2013; Pante & Knippertz, 2019). This includes a more realistic diurnal cycle of precipitation (Marsham 
et al., 2013), improved simulation of wet spells (Berthou et al., 2019; Kendon et al., 2019) and of cloud cover 
and humidity (Pante & Knippertz, 2019). Making this transition is not without drawbacks and substan-
tial model errors can emerge (Pante & Knippertz, 2019) that are difficult to eliminate because of the high 
computational cost of test simulations. Future work could compare convection-permitting simulations and 
ensembles of GCM simulations like those studied here for both present day and paleoclimate conditions to 
identify further ways to improve GCM parametrization schemes.

Some have argued that the Green Sahara modeling problem may be resolved by altering model boundary 
conditions such as vegetation coverage or dust loading (Chandan & Peltier, 2020; Pausata et al., 2016). Here, 
we have shown that it is also possible to improve the simulation of precipitation through changes to the 
model parametrizations, many aspects of which are subject to significant uncertainty. This focus on the 
model itself would strengthen the rationale for evaluating the relationship between past and future climate 
change, given that very different boundary conditions characterize the past and future (orbital changes 
for the mid-Holocene, vs. greenhouse gases and land use for the near future). Some earlier (Claussen & 
Gayler, 1997) and more recent model studies (Dallmeyer et al., 2020) have successfully simulated the Green 
Sahara without prescribing large changes to the land-surface. We speculate that this shows that for a limit-
ed number of GCMs the convection schemes are compatible with these paleoclimatic states. In most other 
models including HadCM3 used here, the convection scheme may need to be specifically tuned. It would 
be informative to test the impacts of similar entrainment changes in other models, in transient Holocene 
simulations and under future climate scenarios.
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5. Conclusions
Most climate models are developed and calibrated against modern climate. We have shown that there are 
multiple parameter sets which allow for a good simulation of the present day conditions, but that only a 
subset of these are also able to satisfy past criteria. This example provides a new quantitative demonstra-
tion of how a paleoclimate state may provide information of relevance to uncertainty in simulating future 
precipitation change. Paleoclimate may therefore be a significantly undervalued source of additional in-
formation for informing the parameter values and parametrization choices in GCMs as it has rarely been 
used in this way, see examples by Hopcroft and Valdes (2015) and DiNezio et al. (2016). Well documented 
climate states in the past thus may have the potential to be used in model development and this approach 
can include other important paleoclimate changes.

Data Availability Statement
The Met Office released the HadCM3 source code via the Ported Unified Model release (https://www.me-
toffice.gov.uk/research/approach/collaboration/unified-model/partnership, and um_collaboration@me-
toffice.gov.uk). Code modifications required to produce the ORIG version of HadAM3/HadCM3 are avail-
able from https://doi.org/10.5194/gmd-10-3715-2017. The HadAM3/HadCM3 code changes for the REV 
and REVopt model versions and the parameter namelist files required to configure these simulations are 
available from figshare: https://doi.org/10.6084/m9.figshare.12311360. The ensemble simulation output 
analyzed in the study are available from www.paleo.bristol.ac.uk/ummodel/scripts/papers/. The netcdf cli-
matologies of the preindustrial and mid-Holocene ORIG, REV and REVopt simulations are available from 
figshare https://doi.org/10.6084/m9.figshare.12505259. The statistical emulator is available in the R pack-
age DiceKriging. The Bartlein et al. (2011) mid-Holocene pollen-based climate reconstruction is available 
from pmip3.lsce.ipsl.fr. The Tierney et al. (2017) precipitation reconstruction is available from http://www.
ncdc.noaa.gov/paleo/study/21091. CRU precipitation is available from https://crudata.uea.ac.uk/cru/data/
hrg/. CERES land surface albedo is available from https://ceres.larc.nasa.gov/data/. GPCP precipitation is 
available from dx.doi.org/10.7289/V56971M6.
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