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Abstract
Lady Lovelace’s notes on Babbage’s Analytical Engine (1843) never refer to the 
concept of surprise. Having some pretension to ‘originate’ something—unlike the 
Analytical Engine—is neither necessary nor sufficient to being able to surprise 
someone. Turing nevertheless translates Lovelace’s ‘this machine is incapable of 
originating something’ in terms of a hypothetical ‘computers cannot take us by sur-
prise’ objection to the idea that machines may be deemed capable of thinking. To 
understand the contemporary significance of what is missed in Turing’s ‘surprise’ 
translation of Lovelace’s insight, one needs to distinguish between trivial surprises 
(which stem from our limited ability to store data and process it) and those events, 
propositions or encounters that lead us to question our understanding of ourselves 
or what surrounds us. Only some of these non-trivial surprises are the product of 
originality endeavours. Not only is it uncommon for surprises to track such endeav-
ours, the type of autonomy that would be required on the part of ‘digital comput-
ers’ for originality and surprise to intersect in that way goes far beyond the opera-
tional autonomy that can be achieved by ‘learning machines’. This paper argues that 
a salient translation of Lovelace’s originality insight—for contemporary and future 
‘learning machines’—is an upside-down version of Turing’s surprise question: can 
computers be surprised by us in a non-trivial, ‘co-produced’ way?

Keywords  Turing · Lady Lovelace · Surprise · Originality · Interpretive 
capabilities · Hermeneutics · AlphaGo

1  Introduction

We have devised machines that help us keep track of time, cultivate the earth, mend 
our bodies, survey the skies…the list goes on. Some aim to overcome specific physi-
cal limitations; other machines are designed to entertain. Many do both. Most have 
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had a profound impact on our understanding of the world, and the role we can play 
within it. None more so than one of our more recent inventions: computers.1

In that context, to ask whether computers are able to ‘take us by surprise’ may 
sound like a redundant question. When it is famously raised by Alan Turing (Turing, 
1950), nobody is in a position to predict the depth and extent of the socio-cultural 
upheavals brought about by their near-universal use today. Yet, this historical 
upheaval is not what Turing has in mind when he floats the ‘computers cannot take 
us by surprise’ proposition, only to dismiss it as unsubstantiated. Turing points out 
that computers do take him by surprise all the time, given their ability to fill the gaps 
in his incomplete (or deficient) calculations.

This ‘computers cannot take us by surprise’ idea is raised by Turing in the con-
text of his enquiry into whether machines can think. To dis-ambiguate this inquiry, 
Turing proposes to replace the ‘can machines think?’ with a different question: are 
there imaginable, ‘digital’2 computers that would do well in an ‘imitation game’? 
The purpose of that game is to fool a human observer, whose aim is to tell the com-
puter from the human in a question and answer game. Among the arguments that 
may be raised to dispute the idea that computers could ever do well at that game, 
one may point at various ‘disabilities’ of computers. Having surveyed the latter, 
Turing considers whether Lady Lovelace raises a different sort of argument when, 
describing Babbage’s ‘Analytical Engine’ (in 1843), she noted that the latter ‘has 
no pretension to originate anything. It can do whatever we know how to order it to 
perform’ (Turing, 1950, p. 12). Turing first translating the above insight—about the 
(in)ability to originate something—in terms of an (in)ability to surprise him is pecu-
liar. Interestingly, Turing switches to a rather different take on Lovelace’s original-
ity insight when, towards the end of his paper, he suggests that ‘learning machines’ 
could be another way of responding to her ‘computers lack the capacity to originate’ 
objection.

This learning-focused response had the potential to bring to light the relation-
ship between different learning processes and the kinds of autonomy enabled by 
such processes. The learning required to be capable of creative autonomy is dif-
ferent from that which underpins ‘mere’ operational autonomy. The relationship 
between these kinds of autonomy and the sorts of surprises they may generate 
is unpacked in §2, which distinguishes between first-, second- and third-person 
accounts of originality endeavours. Whereas third-person accounts tend to define 
originality in terms of purely epistemic criteria (such as whether a given output 
could have been anticipated), first-person accounts consider the capabilities and 
needs underlying originality endeavours. To understand the latter, one needs to 
differentiate between merely original outputs (a spontaneous toddler dance) and 

1  In the rest of this paper, the word ‘computer’ is meant to be understood loosely—as any device that 
can store and process information: thus, it is used to refer to machines such as Babbages’ ‘Analytical 
Engine’ all the way to speculative, autonomous artificial agents. The only meaning of ‘computer’ that 
is not included under this very loose definition is that which is used to characterise humans performing 
calculations.
2  ‘The idea behind digital computers may be explained by saying that these machines are intended to 
carry out any operations which could be done by a human computer’ (Turing, 1950).
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one’s purported ability to ‘originate’: one has not ‘originated’ anything if one’s 
‘original’ output does not have any future. The latter, diachronic aspect entails 
second-person accounts of originality. Such accounts are key to delineating the 
relationship between originality and surprise, which only occasionally overlap.

In order to articulate this relationship, §3 starts by unveiling the ambigu-
ity inherent in the term ‘surprise’ and draws two distinctions. Turing’s point-
ing out that his hurried calculations are frequently proven wrong, in a way 
that surprises him, highlights the importance of first distinguishing between 
trivial and non-trivial surprises: the term ‘surprise’ can be used quite prosai-
cally, to refer to any event or ‘input’ that we fail to anticipate. In that mun-
dane sense, we cannot but be surprised all the time, given our limited ability 
to store data and process it. Some surprises, on the other hand, are less triv-
ial: they come closer to what Fisher describes as an experience of ‘wonder’, 
which may lead us to question our understanding of ourselves or what sur-
rounds us (Fisher, 1998).

These non-trivial surprises can stem from a variety of things, from rainbows 
to artworks, via human encounters. Only some of these are the product of origi-
nality endeavours. This second distinction—between surprises that can be said 
to be ‘co-produced’, in that they are made possible in part by some originality 
endeavour, and those that are not—helps delineate what is missed in Turing’s 
‘surprise’ translation of Lovelace’s originality insight. Not only is it uncommon 
for surprises to track originality endeavours, the type of autonomy that would be 
required on the part of ‘digital computers’ for originality and surprise to inter-
sect in that way goes far beyond the operational autonomy that can be achieved 
by ‘learning machines’ (whether Turing’s or today’s).

Building upon the double distinction introduced in §3, §4 considers contem-
porary endeavours to optimise a system’s learning capacity on the basis of so-
called ‘surprise modulated belief algorithms’. As a tool to translate the need for 
a minimal degree of model uncertainty if a system is to keep adequately learn-
ing from its environment (hence retaining the ability to be surprised), a nar-
row, quantifiable concept of surprise is fairly harmless. Yet, when such ‘surprise 
modulated belief algorithms’ are presented as potential ways of modelling the 
way humans learn within dynamic environments, things start getting both prob-
lematic and interesting, given the magnitude of what is missed (or dismissed). It 
is precisely because human learning processes also aim at creative—rather than 
merely operational—autonomy that an account of those processes in terms of 
error-minimisation imperatives is unhelpful.

§5 concludes by re-considering the pertinence of Turing’s discussion of 
Lovelace’s insight in the context of his ‘can machines think’ discussion. Since 
our current ‘digital machinery’ arguably lacks the interpretive capabilities that 
underpin endeavours to originate something, Lady Lovelace is proven right. This 
does not make Turing’s question any less pertinent, especially if one is prepared 
to consider it upside down. The most helpful translation of Lovelace’s original-
ity insight turns out to be a reversed version of Turing’s surprise question: can 
computers be surprised by us in a non-trivial, ‘co-produced’ way?
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2 � From Third‑Person to First‑ and Second‑Person Accounts 
of Originality

Lovelace’s Notes on Babbage’s Analytical Engine not only included a fuller descrip-
tion of the way the Engine worked (compared to Menabrea’s French-language 
account). They also analysed the Engine’s potential and limitations, among which 
the passage quoted in (Turing, 1950):

The Analytical Engine has no pretensions whatever to originate anything. It can 
do whatever we know how to order it to perform… (note G). (Lovelace, 1843)

Turing’s translating Lovelace’s insight—that Engine’s (in)ability to originate 
something—in terms of an (in)ability to surprise him (or humans generally) is 
intriguing. Originality and surprise are distinct concepts which overlap only 
occasionally. I may deploy novel methods to generate outputs that challenge 
accepted norms but fail to surprise anyone (as is the case of many unrecognised 
artists), and conversely: my outputs may have been produced by following to the 
letter a set of instructions, and yet they may surprise many (the set of instruc-
tions may have been designed to maximise the chances of triggering ‘surprise’ 
in my audience).

Peculiar as it is, Turing’s ‘originality as capacity to surprise’ translation is sig-
nificant: it reflects methodological assumptions that still shape much of today’s 
cognitive sciences, including debates on artificial agency. This section highlights 
the contrast between these assumptions (unpacked in §2.1.) and the types of 
questions that arise from first- and second-person accounts of originality (§2.2. 
and §2.3.).

2.1 � Third‑Person Accounts of Originality

The year immediately following the publication of his 1950 ‘Computing Machin-
ery and Intelligence’, Turing gives a broadcast which focuses almost exclusively on 
Lovelace’s originality insight (Turing, 2004). This BBC broadcast helpfully spells 
out what I shall call the ‘downstream epistemic’ understanding of originality: 

If we give the machine a programme which results in its doing something 
interesting which we had not anticipated, I should be inclined to say that the 
machine had originated something, rather than to claim that its behaviour was 
implicit in the programme, and therefore that the originality lies entirely with 
us. (Turing, 2004, p. 485)

Such an account is ‘downstream’ in that the originality assessment is wholly 
dependent upon the recipient’s characterisation. The criteria at play are also over-
whelmingly epistemic: rather than dwell on when something might be deemed 
‘interesting’, Turing focuses on the anticipation criterion, or what is sometimes 
called the ‘epistemic limitation’ in the contemporary literature: ‘Satisfaction of 
the epistemic–limitation condition by a machine amounts to performance by the 
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machine in ways unforeseen by its creator (or someone with access to the resources 
its creator did)’ (Abramson, 2008, p. 160).3 On this account, originality would be 
conditional upon the impossibility of anticipating the agent’s behaviour, given what 
we know about the machine’s (or human’s) ‘initial state, and input’. Since such a 
definition departs from our everyday understanding of originality, one may seek 
to query the reasons behind it (if an attentive mother finds it impossible to antici-
pate the everyday behaviour of her toddler, the latter is not necessarily deemed 
‘original’).

The rationale behind this ‘epistemic’ delineation of originality may be recon-
structed along the following lines: without presupposing what needs to be dem-
onstrated—the possibility of machine agency—some sort of ‘thinking’ autonomy 
could only be inferred from epistemic limitation conditions. The problem with this 
line of reasoning is that it allows methodological constraints to overly narrow down 
the definition of what needs to be demonstrated: autonomous agency. The latter 
comes in different kinds and degrees. While a pupil who has mastered long divi-
sions may be said to have ‘operational’ autonomy in that respect (just like a com-
puter that can play chess), creative autonomy presupposes the ability to question and 
change given rules or conventions (Boden, 1998). The latter is also different from 
what may be referred to as ‘fantastic’ autonomy: it is much more difficult to create 
something new from within a background of accepted norms and conventions (i.e. 
creative autonomy) than to do so in the absence of any prior constraint or interpre-
tive convention. Such ‘ex-nihilo’ creativity may be called ‘fantastic’ in that it is not 
the way we humans generate novelty. Yet, the third-person, epistemic perspectives 
on originality sometimes seem to presuppose this ‘radically unprecedented’ sort of 
autonomy.

These third-person perspectives are also unable to capture the diachronic dimen-
sion inherent in the term ‘originate’. While some inadvertent artistic output may 
be deemed original, for the artist to be deemed to have originated something, that 
output needs to have some future: unless it prompts the emergence of some intel-
lectual, artistic or socio-cultural practice, that output’s originality only captures its 
fleeting novelty in relation to existing practices. Whether an output’s saliency per-
dures beyond that fleeting assessment—in which case the output’s creator has ‘origi-
nated’ something—depends on both the qualities of that output (some posit the lat-
ter as conditions of ‘objective’4 or ‘inter-subjective’5 creativity’6) and its audience’s 
receptivity.

3  See also Bringsjord et al. (2001) for a similarly ‘downstream epistemic’ focus.
4  Jarvie (1981, p. 117)  distinguishes between subjective creativity, which is ‘a property of persons or 
their minds’, and objective creativity, which is ‘a property […] of created works’.
5  Inter-subjective creativity is an attribute of artifacts, whereas subjective creativity is an attribute of acts 
(D’Agostino 1986, p. 175).
6  Along this line, Gaut (2003, p. 270) argues that ‘Creativity in the narrower non-modal sense is the kind 
of making that involves flair in producing something which is original (saliently new) and which has 
considerable value.’.
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2.2 � First‑Person Accounts of Originality

Rather than focusing solely on what counts as ‘original’, a first-person perspective 
will seek to understand what drives originality as an effort. What needs or desires 
does a quest for originality seek to fulfil? What, if anything, might compromise a 
capacity to originate something? Might Lovelace’s ‘cannot originate anything’ ver-
dict ever apply to human agents? These questions fit within a wider, long-standing 
philosophical endeavour to understand human agency.

Our interactions with the world around us are structured by beliefs, norms or 
desires that are shaped by our socio-historical circumstances. Today, a large propor-
tion of philosophers will readily acknowledge this contingency,7 even if they will 
differ in their articulation of its epistemic and normative implications. Putting aside 
nihilistic, ‘anything goes’ accounts (whether in epistemology or ethics), one step 
forward is to de-dramatise this acknowledged contingency:

Because we are not unencumbered intelligences selecting in principle among 
all possible outlooks, we can accept that this outlook is ours just because of the 
history that has made it ours; or, more precisely, has both made us, and made 
the outlook as something that is ours. (Williams, 2000, p. 491)

To be genuinely relaxed about the latter conclusion is not without its challenges: 
from an epistemological perspective, it requires abandoning any striving to know 
the world as it is in itself (independently of our representations of it). From an ethi-
cal perspective, one must be able to account for the possibility of change: that some 
contingent history has made us so does not mean we cannot set in motion a chain 
of events that will change its trajectory. It is less easy to show how we do that, if all 
we have to trigger the movement of critical scrutiny are our culturally conditioned 
habits of evaluation, rather than some Archimedean point safely removed from the 
contingent mess of human affairs.

Whether in the domain of aesthetics, epistemology or ethics, it is only once one 
takes on board the ‘encumbered’ nature of our intelligence that the full significance 
of originality as an imperative—rather than nicety—comes into light. If that is so, 
some may wonder why originality should be of any relevance as an indicator of 
artificial intelligence? If what drives originality as an effort (and perhaps a sign of 
intelligence) is the need to be able to challenge and enrich the web of socio-cultural 
expectations that shapes us from birth, then there must be room for sophisticated 
learning machines that have no such need for originality. Unlike humans, surely such 
machines could be in a position to control what they let themselves be ‘shaped’ by?

In its pragmatism, the above rejoinder however confuses needs and imperatives, 
and in doing so misses the heuristic value of Lovelace’s insight, which has only 
grown since Turing first sought to capture it. For better or worse, many efforts to 

7  For a paper brilliantly outlining why there is no plausible way of vindicating the critical genealogist’s 
inference from alethic indifference (‘our beliefs are said to be produced by a causal mechanism that we 
have no independent reason to believe will tend to produce true beliefs’) to lack of knowledge, see Srini-
vasan (2019).
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build learning agents are premised upon the validity (and helpfulness) of a (young) 
human–machine analogy: ‘We believe that to truly build intelligent agents, they 
must do as children do’ (Kosoy et al., 2020, p. 4). So far this analogy has been inter-
preted narrowly. Efforts to understand children’s learning processes often proceed 
from the assumption that these learning processes are mostly aimed at building a 
model of the world that minimises prediction errors. A good fit for many problems 
involving perception and motor control, the latter goal certainly makes for smoother, 
more efficient interactions with one’s environment. Yet, it arguably ‘leaves out much 
that really matters for adaptive success’.8

To understand the value of other goals like play—or originality—an evolutionary 
narrative (of the type associated with the prediction error minimisation framework9) 
will only go so far if it is not associated with a study of socio-cultural imperatives. 
At an individual level, originality as a goal is likely entangled with identity forma-
tion (as a process that tends to take a more dramatic turn in teenage years10). At a 
collective level, endeavours to originate something will be tied to the mechanisms 
that underlie socio-moral change. This collective aspect calls for a second-person 
account of originality.

2.3 � Second‑Person Accounts of Originality

Few twentieth century philosophers can claim to have been more preoccupied by 
the factors that may compromise our capacity for ‘new beginnings’11 than Hannah 
Arendt. Animated by a concern to see us retain our capacity for political action, 
which ‘marks the start of something, begins something new’, Arendt feared the con-
sequences of its atrophy under the weight of everyday ‘thoughtlessness’ (Arendt, 
2007, p. 113).12 At stake is not just the possibility of ethical or political change 
(‘viewed objectively and from outside, the odds in favour of tomorrow unfolding just 
like today are always overwhelming’) (Arendt, 2007, p. 112). The loss of our capac-
ity for originality would also undermine what is distinctive, and perhaps dignified, 

8  Clark (2013, pp. 12-13) raises this in an attempt to address the ‘very general worry that is sometimes 
raised in connection with the large-scale claim that cortical processing fundamentally aims to minimize 
prediction error’.
9  ‘Change, motion, exploration, and search are themselves valuable for creatures living in worlds where 
resources are unevenly spread and new threats and opportunities continuously arise. This means that 
change, motion, exploration, and search themselves become predicted—and poised to enslave action and 
perception accordingly’ (Clark, 2013, p. 13).
10  From an evolutionary perspective, one can imagine narratives that tie originality as a goal to the value 
inherent in variance.
11  In The Human Condition, Arendt (1998)  draws an important distinction, based on St Augustine, 
between ‘the beginning which is man (initium)’ and ‘the beginning of the world (principium)’. As a way 
of illustrating the importance of this distinction, Arendt for instance argues that if the French revolu-
tionaries had not understood their task as an absolute, godlike beginning (principium, beginning of the 
world), which is by definition beyond their capacities (and required a new calendar), they would probably 
have been able to avoid many of the perplexities (and ensuing violence) they were confronted with.
12  Arendt (1971, p. 445) refers to the peril inherent in those times ‘when everybody is swept away 
unthinkingly by what everybody else does and believes in’.
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about the way we are always in the process of constructing human selfhood. Never 
settled in advance, ‘we are not anything definite until we reveal our “who” [to oth-
ers] in speech or deed’ (Hinchman & Hinchman, 1984, p. 202).

Because the beliefs and norms that preside over the receptivity of those ‘others’ 
are themselves shaped by contingent circumstances, each endeavour to originate 
something presupposes the judicious combination of both ‘reproductive’ and ‘pro-
ductive’13 imagination (Ricoeur, 1975):

Any transformative fiction – any utopia, any scientific model, any poem – must 
have elements of reproductive imagination, must draw from existing reality 
sufficiently so that its productive distance is not too great. (Taylor, 2006, p. 98)

It is this emphasis on originality’s dependence upon the interpretive articulation 
of what Turner calls the ‘unoriginal structures that inform originality’14 that mat-
ters for our purposes. The difference between ‘mere’ output novelty and efforts to 
originate something cannot be grasped unless one acknowledges this second-person 
aspect of originality. As a hermeneutic effort, originality is not dependent upon suc-
cess: what matters is that there be an endeavour to judiciously combine the produc-
tive and reproductive imagination(s) referred to earlier. Without this second-person 
dimension, originality could be solely a matter of productive imagination. While the 
latter could be argued to be within the reach of today’s machines,15 the interpre-
tive capabilities required for reproductive imagination are still peculiarly human.16 
Arendt is far from the only philosopher to emphasise the importance of these inter-
pretive capabilities,17 yet she articulates them in a way that brings home what is 
strikingly absent in both Turing’s and contemporary emphases on unforeseeability 
as a (downstream) criterion for originality.

In contrast to such unforeseeability criterion, Arendt’s account highlights pre-
cisely the opposite:

The very originality of the artist (or the very novelty of the actor) depends 
on his making himself understood by those who are not artist (or actors). 
(Arendt, 1989)

Arendt’s emphasis on the second-person perspective is crucial: to be capa-
ble of originating something requires interpreting18 a shared web of socio-cultural 

13  Referred to in Taylor (2006).
14  ‘Originality, far from being autonomous, is contingent at every point upon the unoriginal structures 
that inform it’ (Turner, 1991, p. 51).
15  See §5.
16  These interpretive capabilities are sometimes referred to as ‘a degree of understanding’. See for 
instance: ‘if, as I will argue shortly, creative activity requires some degree of understanding, then, if 
computers cannot exhibit understanding (Searle), they cannot be creative’ (Gaut, 2010).
17  One may speculate about what might have happened had Turing and Arendt met and discussed (an 
unlikely proposition, despite being both already world-renowned in their respective fields). Chronologi-
cally, Arendt presented an early version of her Kant Lectures in Chicago in 1964, and was likely working 
on the material leading to these lectures a mere decade after Turing’s BBC podcast.
18  This interpretation need not be deliberate: ‘not all radically creative acts involve deliberate attempts to 
transform conceptual spaces’ (Novitz, 1999, p. 72).
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expectations in such a way as to remain intelligible19 while at the same time chal-
lenging those expectations. This challenge may result in an experience of novelty 
and/or surprise. The next section articulates the relationship between originality 
endeavours and surprise, which only occasionally overlap (and which third-person 
perspectives unhelpfully blur).

3 � The Relationship Between Kinds of Surprises and Originality

Consider two contemporary uses of machine learning techniques, and the kind of 
surprises they might generate:

1.	 A system trained to explore possible configuration spaces and predict the 
atomic structure of crystals (according to the equations of quantum mechan-
ics) will come up with lots of atomic structures, some of which might be stable 
enough, energy-wise, to constitute a ‘plausible’ crystal (Deringer et al., 2018). 
Aside from filling the gaps in our incomplete knowledge, the generation of 
such atomic structures could also surprise scientists in a non-trivial way if it 
leads them to reconsider some of their hypotheses about the properties of some 
crystals.

2.	 When AlphaGo came up with a ‘new’ move (Silver et al., 2016), one that 
had never been considered before, did it ‘originate’ anything? The move 
itself was merely one of the x-many moves compliant with the rules of Go. 
Its significance stemmed from its challenging strategic assumptions widely 
shared among Go experts. The extent of AlphaGo’s operational autonomy 
(which stemmed from a sophisticated learning process) combined with the 
vast search space (something like 10^170) increased its ability to chal-
lenge the expectations of even the most learned Go experts. None of them 
had anticipated the value of ‘move 37’. This anticipation failure forced Go 
experts to reconsider their understanding of the game. In that sense, it was a 
‘generative’ move, not a move that should count as ‘original’: it only required 
operational autonomy, and none of the hermeneutic effort described earlier. 
Were other members of the public surprised by this new move itself? No. 
If they were surprised, it was by that system’s ability to surprise human 
experts: this forced them to reconsider their understanding of what ‘digital 
machinery’ could do.

Both of the above machine learning systems merely ‘make available what we 
are already acquainted with’, to use Lovelace’s own words (Lovelace, 1843). 
We—or at least experts—are well acquainted with both the equations of quan-
tum mechanics and the rules of Go. Those systems thus ‘make available’ atomic 
structures or moves, within the established realm of possible structures or moves. 

19  See also ‘Creativity involves coming up with something novel, something different. And this new 
idea, in order to be interesting, must be intelligible’ (Boden, 2010, p. 164).
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To refer back to the two distinctions mentioned in the introduction: the surprises 
that stem from those structures or moves are not ‘co-produced’ in that they are not 
partly made possible by an originality endeavour at the upstream. To the extent 
that such structures or moves lead experts to re-consider the assumptions underly-
ing their understanding of crystals (or Go), those surprises may also be said to be 
non-trivial.

Neither humans nor algorithms are capable of 100% accurate predictions in real-
life applications. Prediction (or calculation) failures are expected. Yet some events 
or propositions (whether they were anticipated or not) do give rise to surprises in 
a way that goes beyond the ‘banal’,20 ‘unanticipated’ sense. They do so when they 
lead us to reconsider our understanding of ourselves, the world, or things like crystal 
structures or Go.21

On the basis of these two distinctions, there will be a continuum between each 
of the four characteristics of surprises: just as the transition from ‘mere’ predic-
tion failure to model disruption will be blurry, so is the distinction between a sur-
prise that is co-produced v. a surprise that is solely made possible by ‘downstream 
interpretation’. What matters, for our purposes, is that only one type of surprise 
is meaningfully related to both Lovelace’s originality insight and Turing’s inquiry 
into the plausibility of machines ever ‘thinking’: co-produced surprises that prompt 
some model change (‘4’ in Fig.  1 below). Trivial surprises (‘1’ and ‘3’), which 
merely highlight a failed calculation or prediction, are neither here nor there when 
it comes to a machine’s purported ‘thinking abilities’. We have had mechanical 
devices capable of highlighting mistakes in our calculations since Antiquity. The 
same goes for surprises that are made possible solely by the recipient’s interpreta-
tion (‘1’ and ‘2’): Nabokov’s ‘white parallelogram of sky being unloaded from the 
van’ turns out to be a dresser (with mirror) (Nabokov, 2001). Neither the dresser 
nor the person carrying it had any originality ambitions—or thinking pretensions 
(the dresser could have been unloaded by a mechanical robot)22 yet that object trig-
gers a surprise that sits somewhere between ‘mere’ prediction failures and model 
changing encounters.23

20  Skorin-Kapov (2015) distinguishes between what she calls ‘irreducible’ and ‘banal’ surprise, the lat-
ter denoting an event that was initially and ‘accidentally’ experienced as surprising. This contrasts with 
my proposed ‘anticipation failure’ criterion, which leads to surprises that can but need not be accidental.
21  Margaret Boden (2016, pp.70-71) draws a related distinction when she contrasts the improbable, ‘sta-
tistical surprise’ generated by ‘combinational creativity’ with the ‘deeply surprising ideas’ generated by 
what she calls ‘exploratory creativity’. She highlights that these deeply surprising ideas are ‘often ini-
tially unintelligible, for they can’t be fully understood in terms of the previously accepted way of think-
ing’. 
22  Conversely, I may fail to notice (let alone be surprised by) a creative act that is deemed original by 
many others.
23  ‘The unloaded mirror shares with Novalis’s romantic aesthetic the central goal of recovering what we 
already know, rather than discovering, the goal of bringing into consciousness, the conditions of daily 
life, the repressed, the habitual or the forgotten script in which events take place. None of these cases 
leads to learning, and they are not, in Descartes’s sense, an attention to something new.’ (Fisher, 1998, p. 
28).
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That AlphaGo was capable of generating a move that triggered some model 
change for GO experts is a feat that reflects that system’s degree of operational 
autonomy, itself resulting from a sophisticated learning process. Among the 
10^170 possible moves, ‘move 37’ was a generative move, in that it prompted a 
fundamental shift in GO experts’ understanding of the game. Yet, that move did 
not ‘originate’ anything. The Go experts did. They could have seen AlphaGo’s 
unprecedented move as just one more ‘new’ move and leave it at that (in that case 
it would have been located in ‘1’ in Fig. 1 above). Instead they saw that this move 
called into question commonly held strategic assumptions. They were surprised. 
This surprise was made possible by the experts’ own interpretation, which not 
only required a sophisticated understanding of the assumptions that were ques-
tioned by that move. It also required a readiness to ‘see’ that move as surprising.

That readiness cannot be taken for granted, and points at two contrasting aspects 
of the relationship between learning and surprise. In the absence of—or prior to—
learning processes, ‘everything [is] unexpected because there [is] not yet in place 
that fundamental feature of mature experience, the idea of an ordinary world’.24 Yet 
once learning has shaped our expectations, it can end up preventing us from seeing 
the ‘truly unexpected’:

Since wonder declines with age, as Descartes pointed out, it is a basic experi-
ence of youth, but only of youth far enough along into the familiarity of the 
ordinary world to be able to see against this background the truly unexpected, 
the truly beautiful. (Fisher, 1998, p. 19)

Interestingly, a compromised ability to ‘see’ something as surprising—let 
alone experience wonder25—is one of the key obstacles to the successful deploy-
ment of systems that are designed to learn to navigate unknown or changing 
environments. In order to preserve such systems’ ‘ability to be surprised’, com-
puter scientists have sought to quantify the notion of surprise. These quantifica-
tion endeavours tend to overlook two important limitations. First, they become 
inept when it comes to co-produced, non-trivial surprises. The second, unac-
knowledged limitation is related to the first: the concept of surprise is not value-
neutral. While certain types of surprises (such as the ‘1’, prediction failure type 
in Fig. 1) tend to be associated with a negative valence, other types (such as the 
non-trivial surprises in ‘3’ and ‘4’) tend to be positive events whose value need 
not be solely epistemic. A world without the co-produced, non-trivial surprises 
encompassed in ‘4’ would also be poorer aesthetically and ethically speaking 
(Morton, 2014). The next section problematises current endeavours to quantify 
surprises.

24  ‘Our first experiences, our first sight of the sun, snow, fire, the stars at night took place in infancy or 
early childhood at a time when everything was unexpected because there was not yet in place that funda-
mental feature of mature experience, the idea of an ordinary world’ (Fisher, 1998, p. 19).
25  Because wonder, as Fisher puts it, ‘does not depend on awakening and then surprising expectation, 
but on the complete absence of expectation’, it is qualitatively distinct from the experience of surprise, 
whether trivial or not.
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4 � Optimising a System’s Learning Capacity Through Artificial 
Curiosity or ‘Surprise’ Constraints

The difficulty inherent in preserving a system’s ability to recognise the extent to 
which some input challenges a given model is commonly associated with Bayes-
ian learning methods: as the number of data samples increases, model uncertainty 
can reach close to zero, in turn compromising the learning capacity of the system. 
The latter indeed requires a balance to be found between the plasticity necessary to 
being able to draw upon new knowledge-generating experiences and the stability 
without which learned memories get forgotten. This insight is far from new. Yet, its 
re-discovery within the field of Machine Learning is invigorating surprise-focused 
research.26

This includes renewed attempts to quantify surprises. A Bayesian approach 
focuses on the difference between prior and posterior beliefs about model param-
eters (the greater that difference, the more ‘surprising’ the data is), whereas Shan-
non’s version takes a model as given and aims to capture the inherent unexpect-
edness of some data (the latter has also been called ‘surprisal’) (Tribus, 1961, pp. 
64–66). The two approaches are complementary and are increasingly relied on to 

Fig. 1   Types of surprises

26  While there are clear (and interesting) links between the two, one has to distinguish between surprise-
related literature that is focused on improving the learning performance of the system (discussed above) 
and research that is concerned with maintaining the interest of the system’s end-users by introducing 
‘serendipitous’ outputs, as in recommender systems. For a survey, see Kotkov et al. (2016).
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devise mathematical tools to optimise the extent to which a learning algorithm suit-
ably learns (and keeps learning) from available—or emerging—data points (Faraji, 
2016; Faraji et al., 2016). These tools are mostly designed to ensure that ‘a small 
model uncertainty remains even after a long stationary period’, thus ensuring 
improved learning performance in changing, dynamic environments (Faraji, 2016, 
p. 39).27

Because it is designed to rely on the information that is gathered at each stage to 
adapt or fine-tune its parameters, a learning algorithm is by necessity only as good 
as the data it has been fed. If it has to function in a dynamic environment, or at least 
one that is not as stable as anticipated, the learning algorithm is likely to produce 
sub-optimal results. The problem is that the algorithm itself is unlikely to be able to 
grasp the instability of the environment within which it is made to function, unless 
extra, ‘artificial curiosity’ constraints are introduced Ngo et al., 2012; Storck et al., 
1995). The latter are meant to prompt the system to actively extend the range of 
instances over which it has data (‘1’ in Fig. 1). By looking for uncommon, ‘black 
swan events’28 that might demand some model alteration (‘2’ in Fig. 1), these curi-
osity constraints are meant to counter-balance the Bayesian tendency towards near-
zero model uncertainty.

This concern to maximise information gain typically underlies the design of 
systems designed to navigate dynamic environments. The latter may improve their 
learning performance if they ‘plan to be surprised’, according to Sun et al. (2011). In 
that case, the type of surprise involved will congregate towards ‘1’ (in Fig. 1 above), 
including also some model changing surprises of type ‘2’. When a particular appli-
cation demands that uncertainty be minimised, however, one may devise what Faraji 
et al. (2016) call a ‘surprise-minimisation rule’, to refer to a ‘learning strategy which 
modifies the internal model of the external world such that the unexpected observa-
tion becomes less surprising if it happens again in the near future’. This is something 
humans tend to do quite a lot: when encountering a highly unexpected event, we 
tend to give a lot of weight to the latter, often discounting past knowledge (some-
times overly so). This parallel is not lost on Faraji et  al. (2016), whose ambitions 
go beyond the design of mathematical tools to optimise a system’s learning perfor-
mance. They believe that their ‘surprise-modulated belief update algorithm […] can 
be used for modelling how humans and animals learn in changing environments’.

At this point, those philosophers who had merely raised their eyebrows at the 
idea that one may sensibly seek to quantify surprises may shift to genuine alarm. 
It is one thing for a rich concept such as surprise to be used narrowly by computer 
scientists—mostly ignoring type ‘4’ in Fig. 1—for their own purpose. An endeav-
our to improve the learning performance of an algorithm designed to navigate some 
maze, or to play some game, need not—at this stage at least—be overly concerned 

27  This remaining uncertainty ensures that an organism can still detect a change even after having spent 
an extensive amount of time in a given environment (Faraji, 2016, p. 39).
28  The data-mining literature that focuses on the detection of anomalies within noisy data-sets (Eskin, 
2000) proceeds from a different starting point (in that the data is given) but the underlying logic is simi-
lar.
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with the fact that human life could be severely impoverished if the likelihood—or 
‘amount’—of surprise were to come close to zero (thanks to a very efficient ‘belief 
update algorithm’).

Yet it is another thing altogether to overlook the fact that in many domains of 
human life, error-prediction minimisation only plays a marginal role among the 
goals that structure our learning to find our way around the world. Among other rel-
evant goals, §2.2. emphasised the drive to originality. The kind of autonomy presup-
posed by the latter depends on different learning processes from those which enable 
error-prediction minimisation. Unlike operational autonomy, creative autonomy 
entails the ability to imagine how things could be different (including the norms 
that structure one’s environment). To be capable of originality, this creative auton-
omy needs to be supplemented with the interpretive capabilities outlined in §2.3.29 
Today’s systems (just like Turing’s) are still far from achieving such a degree of 
interpretive sophistication.

5 � Conclusion: Why Lovelace’s ‘Originality Insight’ Is Still Valid 
Today—Just as Much as Turing’s ‘surprise’ Translation

The above heading should not be confused with some misplaced diplomatic effort: 
while Lovelace’s originality insight remains correct, the way Turing translated that 
insight is both odd and fascinating in equal measure.

Why odd? Lady Lovelace never refers to the concept of surprise. Having some 
pretension to ‘originate’ something—unlike the Analytical Engine—is neither nec-
essary nor sufficient to being able to surprise someone: a rainbow may surprise me. 
Conversely, I may not be surprised at all by the fact that my friend has just come 
up with an original theorem. So, why does Turing translate Lady Lovelace’s point 
about the lack of pretension to originate anything into a claim about the ability to 
surprise? Was he influenced by his 1943’s discussions with Shannon? Perhaps. But 
‘Shannon surprises’ are not even remotely connected to Lovelace’s point about the 
pretension to ‘originate’ something (and at any rate it is unclear whether Shannon 
was even considering using the term ‘surprise’ in the 1940s).

Why fascinating? Because what is ‘lost in translation’ in Turing’s odd interpre-
tation of Lovelace happens to be a key hurdle in the design of systems capable of 
navigating the world we live in. Unlike games, the norms that structure our quotid-
ian lives are necessarily dynamic. As our needs and aspirations change, so do the 
social, cultural and moral norms that govern our interactions with our world and 
its inhabitants. As we marvel at the ingenuity—and unexpectedness—of AlphaGo’s 
‘move 37’, or the Rembrandt-like appearance of assembled pixels, it is easy to lose 
sight of the limits inherent in different types of learning processes, and the kinds of 
autonomy they facilitate (Nudd, 2016).

29  Without an understanding of the ‘the unoriginal structures that inform originality’, creative autonomy 
can remain ‘sterile’, out of reach of second-person perspectives.
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To ‘do as children do’, the systems we build would not only need the kind of 
operational autonomy brilliantly displayed by AlphaGo, or the apparent30 creative 
autonomy31 encapsulated in systems meant to generate art (Kosoy et  al., 2020, p. 
4). They would also need ‘hermeneutic autonomy’: an ability to interpret and re-
appropriate the fabric of socio-cultural expectations that can be (and regularly is) 
transformed through creative intervention. In short, they would need a grasp of the 
significance of what §2.3 discussed as the ‘second-person dimension’ of originality. 
Such a grasp should not be confused with mastery: for children and adults alike, the 
conditions that preside over the receptivity and understanding of our fellow humans 
are largely opaque. The extent to which they remain so depends in part on our vary-
ing hermeneutic skills, as well as a willingness to engage with (and sometimes test) 
this receptivity through originality endeavours. When the latter fail to generate any 
reaction (surprise or otherwise), the originality effort was not necessarily in vain. 
Not only does the absence of reaction bring some insight into our fellow humans’ 
receptivity, that originality endeavour is also of value in and of itself, given its role 
in the process of identity formation and collective transformation.

The latter considerations bring to the fore the question first raised in §2.2.: if 
what drives originality as an effort is the need to challenge the web of socio-cultural 
expectations that shapes us from birth, one may query its relevance as a criterion for 
machine intelligence. If, unlike us, machines are able to control what they let them-
selves be ‘shaped’ by, the most helpful translation of Lovelace’s originality insight 
turns out to be an upside-down version of Turing’s surprise question: can comput-
ers be surprised by us in a non-trivial, ‘co-produced’ way? Aside from its doubtful 
desirability, a positive answer would require a leap in our digital machinery’s inter-
pretive capabilities.32  Such a leap is unlikely to be adequately captured in any game-
based test, whether Turing’s or otherwise.

30  When a system that has been ‘fed’ large numbers of Rembrandts produces an assemblage of pixels 
that looks like it could have been painted by Rembrandt, are we faced with art? Or are we ‘merely’ faced 
with some artefact that can be used by human artists as a starting point in their exploration of differ-
ent ways of re-interpreting some past heritage to originate something new? Du Sautoy (2019) rightly 
resists the temptation to adopt an entirely ‘downstream’ definition of art, according to which artistic sta-
tus solely depends on emotional responses. Yet, to insist that art has to be about ‘exploring what it means 
to be a conscious emotional human being’ probably goes too far the other way. A less anthropocentric 
criterion considers whether some output is the product of an effort of interpretation of some shared past 
(or present), as discussed above. None of the current, ‘AI generated art’ is. It might be beautiful, intrigu-
ing or a useful source of inspiration to human artists. But to count as art, the algorithm producing it 
would have to be able to claim that it has sought to interpret its surrounding world, inhabited as it is by 
both humans and machines.
31  The term ‘creative autonomy’ is favoured over ‘creativity’ in part because the question of whether 
‘learning machines’ may ever experience the processes that lead to the generation of an original output 
in such a way as to warrant the use of the term ‘creativity’ is beyond the scope of this paper: see Nanay 
(2014), who emphasises the superiority of ‘experiential’ accounts of creativity over their functional/com-
putational counterparts.
32  Along this line, Gonzalez and Haselager (2005) emphasise that what they ‘take to be great cause for 
caution in speaking about surprise in artificial systems (computer programs, robots) is that they appear 
to be extremely limited in both the type of disturbances they can notice and the experiential effects these 
disturbances can have on them’.
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