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Abstract

Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative
medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are uti-
lised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote
wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have
determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is
important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation
conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and
blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms
which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported
to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that
R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen
species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude
that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clini-
cally support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify
appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.

Keywords Odontoblast - Bone - Tooth - Osteogenesis - Odontogenesis - Osteoblast

1 Introduction

Repair of hard tissue following trauma or disease remains
an essential therapeutic goal in rehabilitating patients back
to function. Many orthopaedic patients face the challenge of
delayed bone healing resulting in prolonged convalescence
and the additional burden on healthcare systems. In oral dis-
ease, there is a need to promote hard tissue repair in patients
suffering from diseases, such as periodontitis and caries, as
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well as following tooth extraction [1-3]. Regenerative thera-
pies which utilise mesenchymal stem cells (MSCs) provide
a promising therapeutic approach. MSCs can be harvested
from many bodily sites, including bone marrow, adipose
tissue, umbilical cord, and the dental pulp. These cells are
multi-potent, can self-renew, and are capable of differentiat-
ing into mineralised tissue lineages to generate osteoblasts
and odontoblast-like cells [4—6]. MSCs can proliferate to
enable repopulation of the injury site, as well as being able
to promote revascularization, innervation, and modulation
of immune responses [7, 8]. Photobiomodulation (PBM) or
low-level light therapy (LLLT) utilises light at relatively low
power; inducing tissue regeneration, as well as, modulating
pain and inflammation [9].

Radiant exposure (J/cm?) is dependent upon both, the
irradiance (mW/cm?) and, irradiation time in seconds (s).
The irradiance values vary according to the light source’s
output power, distance to target, and spot size [9]. As for
pulsed light, irradiance is also affected by the duty cycle and
pulse frequency [10]. PBM is known to exhibit a biphasic
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dose-dependent response and bio-stimulation for each spe-
cific cell type or tissue occurs only through a therapeutic
window of doses [11]. This defies the reciprocity laws;
meaning that if the radiant exposure was kept constant while
changing the irradiance and irradiation time, the end results
will not be similar [12, 13]. Consequently, the Arndt—Schulz
law has provided an appropriate model to describe the dose-
dependent effects of PBM. This law states that insufficient
stimuli exert no effects, relatively low stimuli exert a stimu-
latory effects, while higher stimulus causes inhibition. If
the radiant exposure is too high (higher irradiance or longer
exposure times) or too low; no response or an inhibitory
effect could occur. Furthermore, other irradiation parameters
can also affect cellular responses, such as the mode of opera-
tion, i.e., continuous wave or pulsed, and the wavelength
applied. It is important to understand that the energy of pho-
tons is dependent on the wavelength of light used, e.g., blue
light photons contain more energy per photon, compared
with red light. The absorption of blue light in most tissues
is higher, because fundamental tissue chromophores have
dominating absorption bands in the blue light region. It is
therefore important to fully understand the light irradiation
parameters applied to optimise the therapeutic outcomes and
avoid unwanted side effects. Benefits of PBM can include
regulation of the activity of growth factors, cytokines, and
inflammatory mediators [9, 12, 14].

Several investigations have reported that red
(620-660 nm) and near-infra-red (800-980 nm) (R/NIR)
light can enhance MSC proliferation [15, 16]. Other stud-
ies have now also reported on osteo- and odonto-genic dif-
ferentiation outcomes following irradiation by R/NIR light
[10, 17-22]. Blue light (400-500 nm) has recently been
shown capable of up-regulating the osteogenic potential
of MSCs [23-27]. Even though the PBM mechanisms are
not fully elucidated [9], the most widely accepted theory
for the R/NIR PBM effects is in response to light absorp-
tion by cytochrome ¢ oxidase (COX); which subsequently
leads to stimulation of the respiratory chain and associated
adenosine tri-phosphate (ATP) production [28]. The mode of
action of blue light is, however, reportedly primarily medi-
ated through a relatively small increase in reactive oxygen
species (ROS) levels; after the light has been absorbed by
cellular flavins [29, 30]. ROS are also secondarily gener-
ated as a result of stimulating the respiratory chain by R/
NIR light [31]. Notably, the redox state of MSCs is reported
as being an important modulator of both proliferation and
mineralisation processes [32, 33].

A combined application of PBM and MSCs therefore
offers a prospective therapeutic modality for the promo-
tion of hard tissue repair and regeneration. However, to
optimise its clinical use, the mechanisms governing their
interactions need to be better understood. Indeed, it will be
important to determine how different wavelengths interact
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with different chromophores; and subsequently determine
how ROS responses may be generated resulting in the down-
stream molecular and cellular events. Furthermore, the accu-
rate characterisation and reporting of irradiation parameters
applied is also critical to enable optimisation of therapeutic
light delivery. This review article explores potential PBM
mechanisms involved in mediating MSC responses and
reports on in vitro studies investigating blue and R/NIR light
effects on cellular mineralisation capacity. Bibliographical
searches were performed using ScienceDirect and PubMed.
To identify in vitro studies reporting on the effects of blue
and R/NIR light on the mineralisation potential of MSCs, the
keywords used included combinations of: ‘PBM’, ‘LLLT’,
‘phototherapy’, ‘osteogenic/odonto-genic differentiation’,
and ‘MSCs’. Studies which only investigated light effects on
proliferation were excluded; while those investigating osteo/
odontogenesis were included. Subsequently, a methodologi-
cal quality check was performed; in which studies lacking
essential dosimetry and light characterisation parameters
were not included. Studies which were included contained
sufficient information for a radiant exposure to be calcu-
lated, and hence, the irradiation part of the experiment is
repeatable.

2 PBM signal transduction in the red/
near-infra-red spectrum

Following the absorption of photons, the resulting excited
molecule exerts biologic effects by modulating intracel-
lular metabolic pathways. Depending on the radiant expo-
sure, light absorption can either cause increases in ATP and
cyclic adenosine monophosphate (cAMP) levels resulting in
downstream bio-stimulation, or destruction of cytochromes,
which results in inhibitory effects. Both processes are pro-
posed to take place within mitochondria [34]. The primary
photoreceptor or chromophore which reportedly absorbs
light photons is COX which is a terminal enzyme in the
respiratory chain and plays a major regulatory role in the
process of oxidative phosphorylation. The enzyme consists
of two heme, two copper, one magnesium, and one zinc site.
COX transfers electrons from cytochrome ¢ to molecular
oxygen, and this leads to the oxidation of ferrocytochrome c
and the reduction of a di-oxygen molecule; inducing proton
pumps from the mitochondria to the cytosol. Ultimately, the
energy produced from this redox process leads to the genera-
tion of ATP [31, 35].

Karu et al. established a direct link between optical radia-
tion, in the ultraviolet and infra-red spectrum (300-900 nm),
and stimulation of both DNA and RNA synthesis in HelLa
cells. DNA synthesis stimulation peaks were recorded at wave-
lengths of 400, 630, 680, and 760 nm, while those for RNA
synthesis were detected at 400, 615, 680, 780, and 820 nm.
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Data indicated that light was not absorbed directly by the
nucleic acids but that light regulated their synthesis indirectly
[36]. To elucidate the photo-absorber, they used a light source
of a narrower spectrum (580-860 nm). Four peaks for DNA
and RNA synthesis were identified; two within the red spec-
trum (613-623 nm and 667-683 nm), and two within the NIR
spectrum (750-772 nm and 812-846 nm). These results sup-
ported the hypothesis that COX was the main endogenous
chromophore; as the 613—623 nm absorbance wavelength
was within the same absorbance maxima for reduced COX,
while the 667- 683 nm wavelength also conformed to one of
the COX intermediates, compound A (fluoromethyl-2,2-dif-
luoro-1-trifluoromethyl vinyl ether). Moreover, peaks recorded
at 750-772 nm correlated with the absorption coefficient of
mitochondria; and the 812—-846 nm wavelengths corresponded
with oxidized COX [28]. Further studies demonstrated that cell
exposure to nitric oxide (NO), a COX inhibitor, eliminated
the bio-stimulatory effects of R/NIR light and this was also
accompanied by significant changes in COX absorption. NO
is known to compete with oxygen for binding at the COX cop-
per (CuB) nuclear center. Notably, light reportedly dissociates
the binding of NO from COX, which can then enable cellular
respiration and oxygenation by reversing the hypoxic condi-
tions in stressed cells. In turn, this increases electron transfer
and ATP production, subsequently inducing transcription fac-
tors which can enhance cellular migration, proliferation, and
differentiation responses [37—-39]. Further studies by Wong-
Riley et al. investigated the effects of five different irradia-
tion wavelengths (670, 728, 730, 830, and 880 nm) following
pre-treatment of neuronal cells with potassium cyanide; an
inhibitor of COX that also binds to the CuB nuclear center.
The delivered light demonstrated an ability to restore COX
activity and ATP levels; with outcomes being dose-depend-
ently related to the potassium cyanide levels applied. The most
efficient wavelengths applied were 630 and 830 nm, and these
correlated with the absorbance spectrum of oxidised COX. As
potassium cyanide could have been bound to other proteins
within the cell, such as catalase, NO synthase, cytochrome
b, and cytochrome c; these data therefore did not rule these
molecules out as prospective chromophores [40]. Interestingly,
it has been reported that PBM effects in the R/NIR spectrum
also occur due to the simultaneous production of relatively
low amounts of ROS; alongside increases in ATP production.
This takes place due to the shift in the cellular redox state
towards higher oxidation levels, by simultaneously increasing
mitochondrial ROS and decreasing cytosolic ROS [10, 31]
(see Fig. 1).

3 Blue light PBM signal transduction

Several mechanisms have been reported to mediate blue
light absorption and activation of downstream signal-
ling pathways. Indeed, it is possible that more than one
pathway is activated by blue light simultaneously or that
sequential signalling may occur. Furthermore, differences
in cell type, metabolic state, and chromophore levels likely
play a pivotal role in determining the response detected.
Early hypotheses have proposed that shorter wavelengths
of blue light (400 nm) were absorbed by porphyrins, lead-
ing to the release of ROS; mainly in the form of singlet
oxygen. Cellular mitosis is subsequently triggered via
stimulation of the respiratory chain and calcium influx
into the cytoplasm. Notably, however, at higher radiant
exposure, molecular and cellular damaging effects could
also occur due to the high reactivity of the singlet oxygen
generated [36, 41].

Due to their key roles in the respiratory process, redox
chain molecules are candidates for blue light signal trans-
duction. Indeed, the flavin constituents have been proposed
as chromophores; and this includes molecules such as
Nicotinamide adenine dinucleotide phosphate (NADPH)
dehydrogenase [35] and NAPDH oxidase. Studies have
shown that hydroxyl radicals were induced in sperm cells
following irradiation using blue spectrum light. Results
suggested that the endogenous photosensitizer was fla-
vin-bound; and was prevalent in the cytosol [29]. Other
studies have detected increased mitochondrial ROS pro-
duction after irradiating sperm cells, fibroblasts, cardiac,
and skeletal muscle cells. The addition of an extracellular
scavenger led to a reduction in hydroxyl radicals; findings
which supported the hypothesis that ROS is produced at
the cell membrane level potentially due to the sensitization
of NADPH oxidase [42].

Intracellular ROS induced by light are mainly super-
oxide anions, hydrogen peroxide (H,0,), and hydroxyl
radicals [43, 44], and these can be formed due to type I or
type Il reactions. In type I reactions, electron transfer from
the excited sensitizer to oxygen produces a superoxide
anion and H,0,, which in turn is transformed to hydroxyl
radicals through Harber—Weiss or Fenton reactions. A
type II reaction results in the production of singlet oxy-
gen. Interestingly, it has been hypothesised that the type I
reaction conforms closely with the ascending part of the
Arndt—Schultz curve when light irradiation, up to a certain
radiant exposure, results in the bio-stimulation of ROS.
Longer periods of irradiation, or higher radiant exposure,
correlates with the descending part of the curve; due to
the elevated ROS production and activation of the cel-
lular scavenging system which causes an imbalance in the
redox state of the cell. A concomitant rise in intracellular
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Fig. 1 Schematic diagram showing blue and red/near infra-red (R/
NIR) light potential bio-modulatory mechanisms. At the stimula-
tory dose (i.e., radiant exposure), blue light (absorbed by flavins in
both mitochondria and cytosol) induces the production of stimula-
tory levels of hydrogen peroxide, causing an elevation in intracellu-
lar calcium levels through transient receptor potential (TRP) chan-
nels. These effects are accompanied by decreased crytochrome-1
(CRY1) activity. R/NIR light dissociates nitric oxide (NO) bound

calcium levels accompanies the ROS increase. Thus, it
has been proposed that a transient increase in calcium,
induced by H,0,, may be responsible for the bio-stimula-
tory effects, while more rapid increases in calcium cause
inhibitory effects which are consistent with the descending
part of the Arndt—Schultz curve [30] (see Fig. 1).

In addition to NADPH-dependent enzymes, flavin ade-
nine dinucleotide (FAD) containing cryptochromes (CRY1
and CRY?2) have also been proposed as blue light absorbers
in humans [45]. CRY proteins are circadian rhythm regula-
tors which modulate cell and tissue haemostasis [46, 47] (see
Fig. 1). CRY1 and CRY?2 specifically act as negative feedback
regulators of the circadian clock and decreased levels of these
molecules can increase bone formation. Increased ROS can
also reset the cellular circadian clock as well as optimising
cellular survival mechanisms [48-50].

@ Springer

to cytochrome ¢ oxidase (COX) inside the mitochondria, enhancing
cyclic adenosine monophosphate (cAMP), mitochondrial membrane
potential (MMP), and adenosine tri-phosphate (ATP) production. At
higher doses, blue light can cause inhibition due to the up-regulation
of the scavenging system (catalase/peroxidase). Inhibitory effects
of a higher dose of R/NIR light can occur due to the destruction of
cytochromes. Nevertheless, both spectral ranges can cause inhibition
due to the excessive production of ROS

4 Intracellular ROS levels regulate MSC
haemostasis and fate

As has previously been highlighted, ROS can be gener-
ated within mitochondria during electron transport by a
range of enzymes, including NADPH oxidase, NO syn-
thase, mono-amide oxidase, heme oxygenase, lipoxyge-
nase, myeloperoxidase, cyclooxygenase, and cytochrome
P450 [51-53]. Other cellular locations for ROS generation
include the cytosol (NO synthase/lipoxygenase), plasma
membrane (NADPH oxidase/lipoxygenase) [54-57],
endoplasmic reticulum (NAPDH oxidase) [58, 59], and
peroxisomes [60]. In MSCs, ROS play a pivotal role in
determining cell fate as well as regulation of their self-
renewal. Notably, several studies have reported that the



Photochemical & Photobiological Sciences (2021) 20:699-714

703

application of exogenous ROS can stimulate mineralising
marker expression in both dental pulp stem cells (DPSCs)
[61] and adipose tissue-derived MSCs (ADMSCs) [62].

During homeostasis, ROS levels are regulated by a range
of antioxidant/scavenging enzymes including catalases,
superoxide dismutase, glutathione reductase, and glutathione
peroxidase. If ROS levels reach certain thresholds; beyond
the point which the scavenging enzymes can modulate, cel-
lular injury occurs due to oxidation of several molecules,
including nucleotides, lipids, and proteins [63]. Undifferenti-
ated MSCs contain relatively low levels of ROS, and express
high levels of antioxidant enzymes; however, the opposite
state exists for MSCs during their proliferation and differen-
tiation phases [32, 33, 64, 65]. During MSC differentiation,
the main sources of ROS are complex I (NADH coenzyme
Q oxidoreductase), complex III (ubiquinol cytochrome c oxi-
doreductase), and NADPH oxidase [66]. Similar to other
cellular processes, excessive levels of ROS inhibit both pro-
liferation and osteogenic differentiation [67].

Further evidence highlighting the role of the redox status
in regulating MSC activity is highlighted by the importance
of the master regulator of anti-oxidative responsive tran-
scription factor, nuclear factor erythroid related factor-2, in
the process. Its knockout increases cellular differentiation
processes and bone formation [62]. Combined, these data
indicate the fine balance the redox state plays in regulat-
ing cellular events and identifies a potential mechanism by
which light can indirectly influence MSC fate.

5 PBM promotes MSC mineralisation
processes in vitro

5.1 Red light

Red light (620-660 nm) irradiation has been reported to sig-
nificantly increase the proliferation of bone marrow MSCs
(BMMSCs) [17-19] and periodontal ligament stem cells
[20] at radiant exposures of 1,2, and 4 Jiem?, Notably, osteo-
genic differentiation was also promoted after 2 and 4 J/cm?,
as demonstrated by up-regulation of alkaline phosphatase
(ALP), osteocalcin (OCN), bone gamma-carboxyglutamic
acid-containing protein [17-20], runt-related transcription
factor-2 (RUNX?2) [18-20], bone morphogenic protein-2
(BMP2) [19, 20], collagen-1a (Col-Iar) [18], and insulin-like
growth factor-1 [19]. Importantly, data also demonstrated
concomitant increases in mineral deposition [18-20] (see
Table 1).

Enhanced bio-stimulatory effects in MSCs have also been
observed when cultures were irradiated either once daily
[20, 21] or every other day [18, 19]. Higher irradiance values
and multiple exposures resulted in enhanced mineralising
outcomes compared with single exposure controls [18]. It

is notable that PBM effects were inhibited by culture sup-
plementation with SQ22536, an adenylyl cyclase inhibitor;
supporting the role of cAMP and respiratory chain signalling
in the photo-transduction process [21].

5.2 NIRirradiation

NIR diode irradiation (810—850 nm) was reported to stimu-
late the proliferation [10, 21] and osteo-/odonto-genic poten-
tial of BMMSCs [21, 68], ADMSCs [22], DPSCs [10], and
stem cells from human exfoliated deciduous teeth [69], at
radiant exposures ranging from 77 mJ/cm? to 4 J/cm?. Irradi-
ated cell cultures exhibited higher levels of mineralisation
markers, including ALP [10, 21, 22, 69], Col-Ia, Dentin
matrix phosphoprotein-1 (DMP-1), and dentin sialophos-
phoprotein (DSPP) [69]. At relatively high radiant exposure
(64 J/cm?), diode laser (808 nm) irradiation also significantly
increased mineral deposition in BMMSC cultures via the up-
regulation of ALP, RUNX2, transforming growth factor-feta
1 and Osterix (OSX) [68] (see Table 1).

5.3 Bluelight

The bio-modulatory effects of blue light have only relatively
recently been reported, and there has been considerable
diversity in the light sources used, irradiation parameters
applied, and outcomes. Yuan et al. reported that blue light
(470 nm LED) adversely affected the proliferation and min-
eralisation potential of BMMSC:s at a relatively wide range
of radiant exposures from 1 to 72 J/cm? [70]. When gingival
MSCs were treated with 420480 nm LED irradiation at 1,
2, 4, or 6 J/cm?, results indicated a significant reduction in
proliferation rates but increases in both ALP levels and calci-
fied nodule formation. The same light source promoted the
osteogenic differentiation of stem cells from apical papilla
after irradiation at 1, 2, 3, and 4 J/cm?. These effects report-
edly occurred due to up-regulation of DSPP, OCN, and
DMP-1 [26, 27].

Notably, the increase in calcified nodule formation at
28 days after irradiation was observed in a dose-depend-
ent relationship; suggesting that lower radiant exposures
promoted early differentiation, while higher radiant expo-
sures exerted enhanced effects, albeit at a more latent stage
[26]. Exposure to 420 nm LED irradiation at 3 J/em? also
increased expression of the mineralising markers RUNX2
and OCN, in ADMSC:s at 21 days. These effects were also
reportedly regulated by an increase in intracellular calcium
signalling [25] (see Table 2).

Continuous wave laser (405 nm) exposure at 9, 18, 27,
36, and 54 J/cm? was shown to enhance osteogenic differ-
entiation in mouse BMMSCs cultures, in a dose-depend-
ent manner. These outcomes were supported by increased
ALP and OCN expression (see Table 2). Immuno-staining
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confirmed the nuclear accumulation of the clock proteins,
CRY1 and Period-2. CRY 1 down-regulation occurred in a
dose-dependent manner, at levels above 18 J/cm?, and the
authors proposed that blue light was able to reset the circa-
dian clock in MSCs. Notably, however, 664 and 808 nm light
irradiation did not affect the expression of CRY1 [23, 24].

The application of transient receptor potential channel
antagonists, including capsazepine and SKF96365, have
been shown to abolish the bio-stimulatory effects of blue
light, suggesting involvement of light-gated channels in the
PBM mechanism. The original enhancement in minerali-
sation processes reportedly occurred via an ROS-mediated
mechanism, accompanied by an increase in intracellular
calcium, which was transduced by light-gated ion channels
[25, 29, 30].

6 Discussion and Conclusions

This review has outlined the different PBM mechanisms
reported to enhance the mineralisation potential of MSCs,
using either blue or R/NIR light. Studies have shown that
light in the R/NIR spectrum can have positive bio-stimu-
latory effects on MSCs in terms of both proliferation and
mineralising phenotype differentiation. These effects pre-
dominantly occur using both continuous-wave LEDs and
lasers at relatively low radiant exposures of up to 4 J/cm?2
[17-21]. The majority of the studies reporting multiple
irradiations did not specify the exact number of treatments
applied to the MSCs except for the study by Soleimani et al.
[21], which utilised an estimated cumulative radiant expo-
sure of 612 J/cm?. Assuming that in studies where multiple
irradiations were applied throughout the full duration of the
mineralised nodules formation assay, the cumulative radi-
ant exposure would be in the range of 10-50 J/em? [17-20].
Interestingly, it was also reported that multiple NIR laser
irradiations at much higher radiant exposures of 64 J/cm?
[68] could enhance osteogenic processes.

Relating to the Arndt Schultz model for the biphasic
dose-dependent effects, several irradiation parameters trends
were observed. With regards to R/NIR light, different com-
binations of irradiances and irradiation times were used to
deliver a range of radiant exposures from 0.5 to 4 J/cm?>.
With multiple red light (620-660 nm) irradiations, 1 and 2 J/
cm? enhanced proliferation—compared with 4 J/cm?- when
irradiation was undertaken at 6.67 and 15 mW/cm?. How-
ever, 2 and 4 J/cm? resulted in enhanced proliferation—in
comparison with 1 J/em?—at 10 mW/cm? [18-20]. Moreo-
ver, a single exposure of 0.5 J/cm? at 50 mW/cm? signifi-
cantly enhanced proliferation compared with 1 and 2 J/cm?
[22]. Conversely, 2 and 4 J/cm? enhanced the mineralisa-
tion processes in a dose-dependent manner regardless of the
irradiance or irradiation time [17-20, 22]. As for NIR light

(808-850 nm), differentiation was also stimulated in a simi-
lar dose-dependent trend using 2 and 4 J/cm* when MSCs
were irradiated once (40 mW/cm?) or up to three irradiations
(167 mW/cm?) [21, 69]. Notably, when employing a single
irradiation at 50 mW/cm?, 0.5 and 2 J/cm? resulted in higher
mineralised nodules formation compared with 1 J/em? [22].
All these trends were common using both lasers and LEDs,
indicating that successful phototherapy approaches depend
on the irradiation parameters, rather than the light delivery
source [12].

Several studies investigated different irradiation modes
to optimise light delivery. Li et al. studied the effects of 2
and 4 J/cm? (630 nm LED)—on BMMSCs—delivered in
two modes, 5 mW/cm? (400 and 800 s) or 15 mW/cm? (133
and 266 s); they also studied single or multiple irradiations.
Their results showed that multiple irradiations at 15 mW/
cm? for 266 s resulted in the highest proliferation rates [17].
Moreover, Kim et al. reported that pulsed 810 nm LED light
was more effective in enhancing ALP levels in DPSCs, com-
pared with continuous-wave irradiation. They examined the
effects of a range of duty cycles (0-60%) at a fixed pulse
frequency (1 Hz), which typically resulted in a range of radi-
ant exposures (0.8—154 mJ/cm?). The duty cycle indicates
the percentage of time the light is on over the entire ‘on—off’
cycle. A duty cycle of 30% resulted in the most hyperpolar-
ized cytoplasmic membrane potential. At fixed frequency
(1 Hz) and duty cycle (30%), cells exhibited similar ALP
levels when irradiated at both 77 mJ/cm? and 2.3 J/cm?>—
at variable irradiation times. Additionally, at fixed radiant
exposure (77 mJ/cm?), and duty cycle (30%), a frequency
of 300 Hz resulted in highest ALP levels when studying
a range of different frequency settings; 1-3000 Hz. These
results indicated that the duty cycle and pulse frequency are
the main parameters influencing DPSC response, as opposed
to the radiant exposure. Nonetheless, the radiant exposure
settings applied [10] were much lower compared with other
studies investigating the effects of continuous-wave R/NIR
light [17-22, 69]. This violates the Arndt—Schulz law if
both continuous and pulsed irradiation are hypothesised to
enhance mineralisation relying on the same photo-chemical
mechanism.

For blue LED irradiation, induction of MSC osteogenic
differentiation and inhibition of proliferation occurred as a
result of multiple irradiations at radiant exposures within a
range from 1 to 6 J/cm?, utilising an irradiance of 100 mW/
cm? (cumulative 10—80 J/cm?) [26, 27]. However, at much
lower irradiance (16 mW/cmz), longer exposure times, and
only five irradiations, 3 J/em? (cumulative 15 J/cm?) was
required to stimulate MSCs mineralisation [25].

At higher radiant exposures; multiple blue LED irradia-
tions (12 J/cm?) inhibited osteogenesis [70], while single
blue laser irradiation (9—54 J/cm?) stimulated minerali-
sation [23, 24]. Compared with LEDs, both blue and NIR
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lasers were shown to enhance MSCs mineralisation only at
considerably higher radiant exposure. Further investigation,
especially using the higher energy of blue light photons, is
required to ensure that irradiation does not lead to injury
of local tissues. Intriguingly, enhancement of the minerali-
sation potential of MSCs using R/NIR light was reported
to occur with either fewer treatments at higher irradiance
parameters (40-167 mW/cm?) (shorter exposure times), or
increased treatments at lower irradiance (6—15 mW/cm2)
(longer exposure times). However, the converse was the
case for blue light irradiation, since MSCs irradiated at 16
mW/cm? required only five exposures compared with cul-
tures irradiated at 100 mW/cm? every other day. Reciprocity
between irradiance and exposure times was evident through-
out various R/NIR investigations, which was not reported for
blue light studies [17-22, 25-27, 69].

Notably, as is highlighted in Tables 1 and 2, there were
variations among the experimental conditions regarding
the type of MSCs culture-ware used, location of irradia-
tion source, and irradiation distance. Remarkably, different
studies reported using fixed irradiance values, even though
irradiation was carried out in different culture dishes within
the same study. The use of different size culture-ware will
clearly result in the generation of different irradiance at
target, different cell densities, and different light—cellular
interaction. Despite this, to address this issue, the studies by
Ates et al. [22] and Wang et al. [25] reported adjusting the
irradiation distance within the various culture-plate setups
to enable maintenance of the same spot size and irradiance.
Other differences in experimental set-up were also reported
in attempts to maintain homogeneity of delivered light and
decrease bleed. For example, in some designs, the culture-
ware plate lid was removed before covering the entire plate
with aluminium foil except for a window to enable the light
source to be used to deliver the light from above the culture
at a fixed distance [68]. Other designs relied on changeable
distance to target while keeping the light spot and aluminium
foil window size fixed [25]. While the aluminium foil can
cause multiple light reflections and affect the light—cellular
interaction, some authors preferred covering the plates with
blackout foil or using black-walled well plates [22-24].

Another important variable which should be considered
is the potential effect of temperature change following light
irradiation. Only the two studies of Li et al. [17] and Tur-
rioni et al. [69] reported measuring thermal affects. In the
first study, red LED (630 nm) irradiation resulted in less
than 0.26 °C temperature increase in the media, while in the
latter study, no significant rise in temperature was detected
at up to 2 min of 850 nm LED irradiation. In vivo, the heat
dissipation in cultures depends on their thermal relaxation
time, as well as the irradiance, irradiation time, pulse fre-
quency, and pulse duration of the light source [71]. It is also
notable that non-irradiated controls in all the experimental
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designs studied were kept outside the incubator for the same
amount of time it took their counterparts to be irradiated.
This means that depending on the local temperature, the
irradiated samples might experience a rise in temperature
below their thermal tolerance, which may not be the case
in a clinical setting. While PBM is generally accepted as a
non-thermal response [9], the effect of hyperthermia can-
not be totally ruled out specially it is known to lead to an
increase in mitochondrial ROS production [72]. Notably,
hyperthermia is reported to enhance the osteogenic differ-
entiation of BMMSC’s via the up-regulation of ALP, OSX,
RUNX2, BMP2, and osteopontin. These effects are medi-
ated by the heat shock protein (HSP70), and its knockout
alleviated the positive effects of hyperthermia [73-75]. If the
phototherapy mechanism involves hyperthermia, this would
mean that total energy of all light photons absorbed in dif-
ferent molecules—aside/alongside the chromophore—will
dictate the resulting effects. Therefore, generally, this means
that blue light—with higher energy per photon [14]—exhib-
its a greater ability to cause hyperthermia compared with
red light with similar number of photons. However, from
a photo-chemical prospective, both the wavelength used
and the absorption spectrum of the chromophore influence
the outcomes [71]; and not the energy per photon. There-
fore, with the variations among experimental setups, light
sources, cultures dishes, and the lack of any media absorp-
tion measurements, hyperthermia cannot be excluded. It also
means that the inclusion of appropriate thermal controls
should be included in all studies.

Interestingly, R/NIR and blue light enhanced osteogenic
events in MSCs when cultured in mineralising-inductive
media, containing dexamethasone, ascorbic acid, and beta-
glycerophosphate. No irradiation conditions were reportedly
able to stimulate differentiation in cultures maintained in un-
supplemented media. Notably, R/NIR was able to stimulate
MSC proliferation in mineralising-inductive media, while
blue light could inhibit proliferation irrespective of the
MSC culture media used. These findings highlight potential
differences in the mode of action between R/NIR and blue
light, and indicate the need for a conducive environment to
enable PBM effects, i.e., the presence of supportive culture
conditions.

Data summarised here support PBM of MSC mineralisa-
tion events as conforming with the Arndt—Schulz law, with
relatively low radiant exposure enhancing cell fate deter-
mination, while much higher levels are inhibitory of both
proliferation and differentiation. The inhibitory effects of
higher radiant exposure of light potentially occur due to
either the direct interference of photons on chromophore
function, or indirectly due to excessive ROS production
[76] or hyperthermia [71, 72]. R/NIR light stimulates the
mineralisation potential of MSCs via stimulation of cAMP,
respiratory chain signalling, and ROS production. Blue light
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enhanced mineralisation primarily through relatively small
increases in ROS levels; however, the precise involvement
of the CRY protein in light absorption and subsequent redox
signalling still remains to be entirely elucidated [77-79].
To ensure the safety of PBM, thorough characterisation of
light irradiation parameters and the further investigations
are required for the use of blue and NIR lasers at high radi-
ant exposure. The combined application of PBM and MSCs
could offer a prospective modality for hard tissue regenera-
tive medicine in the future provided that the underlying path-
ways of light—cellular interactions are fully understood, and
irradiation parameters are standardised. The light param-
eters applied should be optimised for delivery, taking into
account the absorption of the light within the target tissue
while maintaining the safety of host tissues.
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