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A variational restriction theorem

Vjekoslav Kovač and Diogo Oliveira e Silva

Abstract. We establish variational estimates related to the problem of
restricting the Fourier transform of a three-dimensional function to the
two-dimensional Euclidean sphere. At the same time, we give a short
survey of the recent field of maximal Fourier restriction theory.

Mathematics Subject Classification. 42B10.

Keywords. Fourier restriction, Variational estimates, Gaussian
domination.

1. Introduction. This short note serves primarily as a commentary on the very
recent topic of pointwise estimates for the operator that restricts the Fourier
transform to a hypersurface. We will concentrate exclusively on the case of the
two-dimensional unit sphere S

2 in three-dimensional Euclidean space R
3. This

both simplifies the exposition and enables the formulation of more general
results.

Classical Fourier restriction theory seeks for a priori Lp-estimates for the
operator f �→ ̂f |S , where S is a hypersurface in the Euclidean space. In the
case of S2 ⊂ R

3, the endpoint Tomas–Stein inequality [17,19] reads as follows:
∥

∥ ̂f
∣

∣

S2

∥

∥

L2(S2,σ)
� ‖f‖L4/3(R3). (1.1)

Here σ denotes the standard surface measure on S
2. It is well-known that 4/3 is

the largest exponent that can appear on the right-hand side of (1.1) provided
that we stick to the L2-norm on the left-hand side. Estimate (1.1) enables the
Fourier restriction operator

R : L4/3(R3) → L2(S2, σ) (1.2)

to be defined via an approximation of identity argument as follows. Fix a
complex-valued Schwartz function χ such that

∫

R3 χ(x) dx = 1, and write χε

for the L1-normalized dilate of χ, defined as

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-021-01604-1&domain=pdf
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χε(x) := ε−3χ(ε−1x)

for x ∈ R
3 and ε > 0. Given f ∈ L4/3(R3), then, thanks to (1.1), Rf can be

defined as the limit

lim
ε→0+

( ̂f ∗ χε)
∣

∣

S2

in the norm of the space L2(S2, σ).
Maximal restriction theorems were recently inaugurated by Müller,

Ricci, and Wright [13]. In that work, the authors considered general C2 planar
curves with nonnegative signed curvature equipped with the affine arclength
measure, and established a maximal restriction theorem in the full range of
exponents where the usual restriction estimate is known to hold. Shortly there-
after, Vitturi [20] provided an elementary argument which leads to a partial
generalization to higher-dimensional spheres. In R

3, Vitturi’s result covers the
full Tomas–Stein range, whose endpoint estimate amounts to

∥

∥

∥ sup
ε>0

∣

∣( ̂f ∗ χε)(ω)
∣

∣

∥

∥

∥

L2
ω(S2,σ)

�χ ‖f‖L4/3(R3). (1.3)

An easy consequence of (1.3) and of obvious convergence properties in the
dense class of Schwartz functions is the fact that the limit

lim
ε→0+

( ̂f ∗ χε)(ω) (1.4)

exists for each f ∈ L4/3(R3) and for σ-almost every ω ∈ S
2. This enables us

to recover the operator (1.2) also in the pointwise sense, and not only in the
L2-norm, which was the main motivation behind the paper [13].

For the elegant proof of (1.3), Vitturi [20] used the following equivalent,
non-oscillatory reformulation of the ordinary restriction estimate (1.1):

∣

∣

∣

∫

(S2)2

g(ω)g(ω′)h(ω − ω′) dσ(ω) dσ(ω′)
∣

∣

∣ � ‖g‖2L2(S2,σ)‖h‖L2(R3). (1.5)

The proof of the equivalence between (1.1) and (1.5) amounts to passing to the
adjoint operator (i.e., to a Fourier extension estimate) and expanding out the
L4-norm using Plancherel’s identity. These steps make the choice of exponents
4/3 and 2 into the most convenient one. The advantage of the expanded adjoint
formulation (1.5) is that one can easily insert the iterated maximal function
operator in h, and simply invoke its boundedness on L2(R3). We refer the
reader to [20] for details. In some sense, we will be following a similar step
below.

In this paper, we quantify the pointwise convergence result (1.4) in terms
of the so-called variational norms. These were introduced by Lépingle [11] in
the context of probability theory. Various modifications were then defined and
used by Bourgain for numerous problems in harmonic analysis and ergodic
theory; see for instance [5]. Recall that, given a function a : (0,∞) → C and
an exponent � ∈ [1,∞), the �-variation seminorm of a is defined as
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‖a‖
˜V

� := sup
m∈N

0<ε0<ε1<···<εm

(
m

∑

j=1

|a(εj) − a(εj−1)|�
)1/�

.

In order to turn it into a �-variation norm, we simply add the term |a(ε0)|�
as follows:

‖a‖V� := sup
m∈N

0<ε0<ε1<···<εm

(

|a(ε0)|� +
m

∑

j=1

|a(εj) − a(εj−1)|�
)1/�

.

Since this is not the standard convention in the literature, we make a dis-
tinction as we are going to use both quantities. Clearly, ‖a‖V� controls both
supε>0 |a(ε)| and the number of “jumps” of a(ε) as ε → 0+ (and even as
ε → ∞, which is not the interesting case here). A particular instance of the
main result of this paper (which is Theorem 1 below) is the following varia-
tional generalization of estimate (1.3):

∥

∥

∥

∥

∥( ̂f ∗ χε)(ω)
∥

∥

V�
ε

∥

∥

∥

L2
ω(S2,σ)

�χ,� ‖f‖L4/3(R3) (1.6)

when � ∈ (2,∞) and f ∈ L4/3(R3). The reader can still consider χ to be a
fixed Schwartz function, but we are just about to discuss more general possible
choices. Variational estimates like (1.6) for various averages and truncations
of integral operators have been extensively studied; the papers [2,6,7,9,12]
are just a sample from the available literature. In addition to quantifying
the mere convergence, such estimates establish convergence in the whole Lp-
space in an explicit and quantitative manner, without the need for pre-existing
convergence results on a dense subspace. Later in the text, we will also use
the biparameter �-variation seminorm, defined for a function of two variables
b : (0,∞) × (0,∞) → C as

‖b‖
˜W � := sup

m,n∈N

0<ε0<ε1<···<εm
0<η0<η1<···<ηn

(
∑

1≤j≤m
1≤k≤n

∣

∣b(εj , ηk) − b(εj , ηk−1)

− b(εj−1, ηk) + b(εj−1, ηk−1)
∣

∣

�
)1/�

.

It is natural to consider more general averaging functions χ; this has already
been suggested (albeit somewhat implicitly) in the papers [13,20]. It is clear
from the proof in [20] that the function χ does not need to be smooth. One
can, for instance, take χ to be the L1-normalized indicator function of the unit
ball in R

3, in which case the ( ̂f ∗ χε)(ω) become the usual Hardy–Littlewood
averages of ̂f over Euclidean balls B(ω, ε),

1
|B(ω, ε)|

∫

B(ω,ε)

̂f(y)dy.

Moreover, Ramos [15] concluded that, for each f ∈ Lp(R3) and 1 ≤ p ≤ 4/3,
almost every point on the sphere is a Lebesgue point of ̂f , i.e., for σ-a.e. ω ∈ S

2,



68 V. Kovač and D. Oliveira e Silva Arch. Math.

we have that

lim
ε→0+

1
|B(ω, ε)|

∫

B(ω,ε)

∣

∣ ̂f(y) − (Rf)(y)
∣

∣ dy = 0.

Prior to [15], this had been confirmed by Vitturi [20] for functions f ∈ Lp(R3),
1 ≤ p ≤ 8/7, who repeated the two-dimensional argument of Müller, Ricci,
and Wright [13].

Subsequent papers [10] and [14], which appeared after the first version of the
present paper, generalize the averaging procedure even further, by convolving
̂f with certain averaging measures μ. In light of this more recent research,
we now take the opportunity to both generalize (1.6) and complete our short
survey of maximal and variational Fourier restriction theories with papers that
appeared in the meantime. In what follows, μ will be a finite complex measure
defined on the Borel sets in R

3; its dilates με are now defined as

με(E) := μ(ε−1E)

for every Borel set E ⊆ R
3 and ε > 0. For reasons of elegance, one can

additionally assume that μ is normalized by μ(R3) = 1 and that it is even, i.e.,
centrally symmetric with respect to the origin, which means that

μ(−E) = μ(E)

for each Borel set E ⊆ R
3.

In [10], one of the present authors showed analogues of (1.3) and (1.6) when
χ is replaced by a measure μ whose Fourier transform μ̂ is C∞ and satisfies
the decay condition

|∇μ̂(x)| � (1 + |x|)−1−δ (1.7)

for some δ > 0. It is interesting to make the following observation, which
applies to the cases of two or three dimensions only as things improve in
higher dimensions. If one takes μ to be the normalized spherical measure,
i.e., μ = σ/σ(S2), then the decay of |∇μ̂(x)| as |x| → ∞ is only O(|x|−1);
see [1]. Consequently, the results from [10] do not apply. This was one of the
sources of motivation for Ramos [14], who reused Vitturi’s argument from [20]
to conclude that the maximal estimate

∥

∥

∥ sup
ε>0

∣

∣( ̂f ∗ με)(ω)
∣

∣

∥

∥

∥

L2
ω(S2,σ)

�μ ‖f‖L4/3(R3)

holds as soon as the maximal operator h �→ supε>0(h ∗ με) is bounded on
L2(R3). Relating this to the work of Rubio de Francia [16], he further deduced
the following sufficient condition in terms of the decays of μ̂ and ∇μ̂:

|μ̂(x)| � (1 + |x|)−α and |∇μ̂(x)| � (1 + |x|)−β with α + β > 1.

This condition includes the spherical measure as it satisfies |μ̂(x)| = O(|x|−1)
and |∇μ̂(x)| = O(|x|−1) as |x| → ∞.

The main result of this note is a variational estimate which generalizes (1.6)
slightly beyond the previously covered cases of the averaging functions χ or
measures μ.
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Theorem 1. Suppose that � ∈ (1,∞), and that μ is a normalized, even complex
measure, defined on the Borel subsets of R3, satisfying any of the following
three conditions:
(a) −x · ∇μ̂(x) ≥ 0 for each x ∈ R

3, and
∥

∥

∥

∥

∥(h ∗ με)(x)
∥

∥

˜V
�

ε

∥

∥

∥

L2
x(R

3)
�μ,� ‖h‖L2(R3) (1.8)

holds for each Schwartz function h;
(b) � ∈ (2,∞), while μ̂ is C2 and satisfies the decay condition (1.7);
(c) the inequality

∥

∥

∥

∥

∥(h ∗ με ∗ μη)(x)
∥

∥

˜W
�

ε,η

∥

∥

∥

L2
x(R

3)
�μ,� ‖h‖L2(R3) (1.9)

holds for each Schwartz function h.
Then, for each Schwartz function f , the following estimate holds:

∥

∥

∥

∥

∥( ̂f ∗ με)(ω)
∥

∥

V�
ε

∥

∥

∥

L2
ω(S2,σ)

�μ,� ‖f‖L4/3(R3). (1.10)

Let us immediately clarify one minor technical issue. Theorem 1 claims
estimate (1.10) for Schwartz functions f only, but it immediately extends to
all f ∈ L4/3(R3) whenever μ is absolutely continuous with respect to the
Lebesgue measure. Otherwise, we could run into measurability issues on the
left-hand side of (1.10) for singular measures μ.

Condition (a) in Theorem 1 is quite restrictive, but it is satisfied at least
when � > 2 and the Radon–Nikodym density of μ is a radial Gaussian function.
Indeed, if dμ(x) = α3e−πα2|x|2 dx for some α ∈ (0,∞), then

− x · ∇μ̂(x) = 2πα−2|x|2e−πα−2|x|2 (1.11)

is nonnegative, and (1.8) is a standard estimate by Bourgain [5, Lemma 3.28].
In fact, Bourgain formulated (1.8) for one-dimensional Schwartz averaging
functions in [5], but the proof carries over to higher dimensions. Alternatively,
one can invoke more general results from the subsequent literature, such as
the work of Jones, Seeger, and Wright [9], which covered higher-dimensional
convolutions, more general dilation structures, and both strong and weak-type
variational estimates in a range of Lp-spaces.

Theorem 1 under condition (b) was covered by the paper [10], up to minor
technicalities, such as the fact that here we do not need μ̂ to be smoother
than C2. However, [10] was concerned with more general surfaces and more
general measures σ on them, while here we are able to give a more direct proof
that is specific to the sphere and to the stated choice of the Lebesgue space
exponents. In fact, as we have already noted, the present proof predates [10].

Condition (c) above is somewhat artificial and difficult to verify, but we
include it since the proof that it implies (1.10) will be the most straightforward.

Maximal restriction estimates have found a nice application in the very
recent work of Bilz [4], who used them to show that there exists a compact
set E ⊂ R

3 of full Hausdorff dimension that does not allow any nontrivial a
priori Fourier restriction estimates for any nontrivial Borel measure on E. We
do not discuss the details here, but rather refer an interested reader to [4].
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1.1. Notation. If A,B : X → [0,∞) are two functions (or functional expres-
sions) such that, for each x ∈ X, A(x) ≤ CB(x) for some unimportant constant
0 ≤ C < ∞, then we write A(x) � B(x) or A(x) = O(B(x)). If the constant
C depends on a set of parameters P , we emphasize it notationally by writing
A(x) �P B(x) or A(x) = OP (B(x)).

We write a variable in the subscript of the letter denoting a function space
whenever we need to emphasize with respect to which variable the correspond-
ing (semi)norm is taken. For instance, ‖g(ω)‖Lp

ω
can be written in place of

‖g‖Lp , while ‖g(ε)‖V�
ε

can be written in place of ‖g‖V� , whenever the variables
ω, ε need to be written explicitly.

The Fourier transform of a function f ∈ L1(R3) is normalized as

̂f(y) :=
∫

R3

f(x)e−2πix·ydx

for each y ∈ R
3. Here x · y denotes the standard scalar product of vectors

x, y ∈ R
3, and integration is performed with respect to the Lebesgue measure.

The map f �→ ̂f is then extended, as usual, by continuity to bounded linear
operators Lp(R3) → Lp′

(R3) for each p ∈ (1, 2] and p′ = p/(p − 1).
More generally, the Fourier transform of a complex measure μ is the func-

tion μ̂ defined as

μ̂(y) :=
∫

R3

e−2πix·ydμ(x)

for each y ∈ R
3.

The set of complex-valued Schwartz functions on R
3 will be denoted by

S(R3).
The remainder of this paper is devoted to the proof of Theorem 1.

2. Proof of Theorem 1. We need to establish (1.10) assuming any one of the
three conditions from the statement of Theorem 1. Let us start with condition
(a).

Proof of Theorem 1 assuming condition (a). Start by observing that

sup
ε0>0

∣

∣ ̂f ∗ με0

∣

∣ ≤ ∣

∣ ̂f ∗ μ
∣

∣ + sup
ε0>0

∣

∣ ̂f ∗ (με0 − μ1)
∣

∣,

that ̂f ∗ μ = (fμ̂) , and that the ordinary restriction estimate (1.1) applies to
fμ̂ and yields

∥

∥ ̂f ∗ μ
∥

∥

L2(S2,σ)
� ‖fμ̂‖L4/3(R3) �μ ‖f‖L4/3(R3).

Thus, inequality (1.10) reduces to two applications of
∥

∥

∥

∥

∥( ̂f ∗ με)(ω)
∥

∥

˜V
�

ε

∥

∥

∥

L2
ω(S2,σ)

�μ,� ‖f‖L4/3(R3), (2.1)
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which we proceed to establish. The desired estimate (2.1) unfolds as
∥

∥

∥

∥

sup
m∈N

0<ε0<ε1<···<εm

(
m

∑

j=1

∣

∣

(

̂f ∗ (μεj−1 − μεj
)
)

(ω)
∣

∣

�
)1/�

∥

∥

∥

∥

L2
ω(S2,σ)

�μ,� ‖f‖L4/3(R3).

(2.2)
The numbers εj in the above supremum can be restricted to a fixed interval
[εmin, εmax] with 0 < εmin < εmax, but the estimate needs to be established
with a constant independent of εmin and εmax. Afterwards one simply ap-
plies the monotone convergence theorem letting εmin → 0+ and εmax → ∞.
Moreover, by only increasing the left-hand side of (2.2), we can also achieve
ε0 = εmin and εm = εmax.

Next, by continuity, one may further restrict the attention to rational
numbers in the interval [εmin, εmax], and, by yet another application of the
monotone convergence theorem, one may consider only finitely many val-
ues in that interval. In this way, no generality is lost in assuming that the
supremum in (2.2) is achieved for some m ∈ N and for some measurable
functions εk : S2 → [εmin, εmax], k ∈ {0, 1, . . . ,m}, such that ε0(ω) ≡ εmin,
εm(ω) ≡ εmax. Estimate (2.2) then becomes

∥

∥

∥

(
m

∑

j=1

∣

∣

(

̂f ∗ (μεj−1(ω) − μεj(ω))
)

(ω)
∣

∣

�
)1/�∥

∥

∥

L2
ω(S2,σ)

�μ,� ‖f‖L4/3(R3).

Once again, the implicit constant needs to be independent of m and the func-
tions εk. The reduction we just performed is an instance of the Kolmogorov–
Seliverstov–Plessner linearization method used in [13].

Dualizing the mixed L2
ω(��

j )-norm, see [3], we turn the latter estimate into

∣

∣Λ(f,g)
∣

∣ �μ,� ‖f‖L4/3(R3)

∥

∥

∥

(
m

∑

j=1

|gj |�′)1/�′∥
∥

∥

L2(S2,σ)
, (2.3)

where the bilinear form Λ is defined via

Λ(f,g) :=
∫

S2

m
∑

j=1

(

̂f ∗ (μεj−1(ω) − μεj(ω))
)

(ω)gj(ω) dσ(ω).

Here, �′ = �/(�−1) denotes the exponent conjugate to � as usual, and gj : S2 →
C are arbitrary measurable functions, j ∈ {1, 2, . . . ,m}, gathered in a single
vector-valued function g = (gj)m

j=1. By elementary properties of the Fourier
transform, Λ can be rewritten as

Λ(f,g) =
∫

R3

f(x)E(g)(x)dx,

where E is a certain extension-type operator given by

E(g)(x) :=
∫

S2

m
∑

j=1

(

μ̂
(

εj−1(ω)x
) − μ̂

(

εj(ω)x
)

)

gj(ω)e2πix·ω dσ(ω). (2.4)
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By Hölder’s inequality, (2.3) is in turn equivalent to

‖E(g)‖L4(R3) �μ,�

∥

∥

∥

(
m

∑

j=1

|gj |�′)1/�′∥
∥

∥

L2(S2,σ)
. (2.5)

If we denote
ϑ(x) := −x · (∇μ̂)(x), (2.6)

then we also have

−t
d
dt

μ̂(tx) = −(tx) · (∇μ̂)(tx) = ϑ(tx)

for any x ∈ R
3, which in turn implies

μ̂(ax) − μ̂(bx) =

b
∫

a

ϑ(tx)
dt

t
(2.7)

for any 0 < a < b. Substituting this into the definition of E yields

E(g)(x) =

εmax
∫

εmin

ϑ(tx)
∫

S2

gj(t,ω)(ω)e2πix·ω dσ(ω)
dt

t
,

where, for each t ∈ [εmin, εmax) and each ω ∈ S
2, we denote by j(t, ω) the

unique index j ∈ {1, 2, . . . ,m} such that t ∈ [εj−1(ω), εj(ω)). Since ϑ(x) ≥ 0,
by the standing assumption in (a), we can apply the Cauchy–Schwarz inequal-
ity in the variable t to estimate

|E(g)(x)|2 �μ A(x)B(g)(x), (2.8)

where

A(x) :=

εmax
∫

εmin

ϑ(tx)
dt

t

and

B(g)(x) :=

εmax
∫

εmin

ϑ(tx)
∣

∣

∣

∫

S2

gj(t,ω)(ω)e2πix·ω dσ(ω)
∣

∣

∣

2 dt

t
. (2.9)

By (2.7),
A(x) = μ̂

(

εminx
) − μ̂

(

εmaxx
)

� 1. (2.10)
From (2.8) and (2.10), we see that (2.5) will be established once we prove

‖B(g)‖L2(R3) �μ,�

∥

∥

∥

(
m

∑

j=1

|gj |�′)1/�′∥
∥

∥

2

L2(S2,σ)
. (2.11)

Expanding out the square in the definition of B(g)(x) yields

B(g)(x) =
∫

(S2)2

εmax
∫

εmin

gj(t,ω)(ω)gj(t,ω′)(ω′) e2πix·(ω−ω′) ϑ(tx)
dt

t
dσ(ω) dσ(ω′).

(2.12)
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For fixed ω, ω′ ∈ S
2, consider

J(ω, ω′)
:=

{

(j, j′) ∈ {1, 2, . . . ,m}2 : [εj−1(ω), εj(ω)) ∩ [εj′−1(ω′), εj′(ω′)) �= ∅}.

The intersection of two half-open intervals is either the empty set or again a
half-open interval. For each pair (j, j′) ∈ J(ω, ω′), it follows that there exist
unique real numbers a(j, j′, ω, ω′) and b(j, j′, ω, ω′), such that

[εj−1(ω), εj(ω)) ∩ [εj′−1(ω′), εj′(ω′)) = [a(j, j′, ω, ω′), b(j, j′, ω, ω′)). (2.13)

Clearly the intervals (2.13) constitute a finite partition of [εmin, εmax). Using
(2.7), we can rewrite (2.12) as

B(g)(x) =
∫

(S2)2

∑

(j,j′)∈J(ω,ω′)

gj(ω)gj′(ω′) e2πix·(ω−ω′)

×

⎛

⎜

⎝

b(j,j′,ω,ω′)
∫

a(j,j′,ω,ω′)

ϑ(tx)
dt

t

⎞

⎟

⎠ dσ(ω) dσ(ω′)

=
∫

(S2)2

∑

(j,j′)∈J(ω,ω′)

gj(ω)gj′(ω′) e2πix·(ω−ω′)

×
(

μ̂
(

a(j, j′, ω, ω′)x
) − μ̂

(

b(j, j′, ω, ω′)x
)

)

dσ(ω) dσ(ω′).

Taking h ∈ S(R3) and dualizing with ̂h leads to the form

Θ(g, h) :=
∫

R3

B(g)(x)̂h(x) dx.

By Plancherel’s identity, we have

‖B(g)‖L2(R3) = sup
{|Θ(g, h)| : h ∈ S(R3), ‖h‖L2(R3) = 1

}

,

so (2.11) will follow from

|Θ(g, h)| �μ,�

∥

∥

∥

(
m

∑

j=1

|gj |�′)1/�′∥
∥

∥

2

L2(S2,σ)
‖h‖L2(R3), (2.14)

which we proceed to establish.
Using basic properties of the Fourier transform, the form Θ can be rewritten

as

Θ(g, h) =
∫

(S2)2

∑

(j,j′)∈J(ω,ω′)

gj(ω)gj′(ω′)

× (

h ∗ μa(j,j′,ω,ω′) − h ∗ μb(j,j′,ω,ω′)
)

(ω − ω′) dσ(ω) dσ(ω′)
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for any Schwartz function h. Applying Hölder’s inequality to the sum in (j, j′),
and recalling the definition of the �-variation yields

|Θ(g, h)| ≤
∫

(S2)2

(
m

∑

j=1

|gj(ω)|�′)1/�′
(

m
∑

j=1

|gj(ω′)|�′)1/�′

× ‖(h ∗ με)(ω − ω′)‖
˜V �

ε
dσ(ω) dσ(ω′).

By the usual Tomas–Stein restriction theorem in the formulation (1.5), applied

with g replaced by
( ∑m

j=1 |gj |�′)1/�′
and with h replaced by ‖h ∗ με‖˜V

�

ε
, we

obtain

|Θ(g, h)| �
∥

∥

∥

(
m

∑

j=1

|gj |�′)1/�′∥
∥

∥

2

L2(S2,σ)

∥

∥‖h ∗ με‖˜V
�

ε

∥

∥

L2(R3)
.

Invoking assumption (1.8) completes the proof of estimate (2.14), and therefore
also that of (1.10). �

Next, we will impose condition (b) and reduce the proof to the previous
one by replacing μ with a superposition of “nicer” measures.

Proof of Theorem 1 assuming condition (b). We can repeat the same steps as
before, reducing (1.10) to (2.11), where B is as in (2.9) and ϑ is defined by
(2.6).

We have already noted that (1.8) is satisfied for measures μ with Gaussian
densities, i.e., when dμ(x) = α3e−πα2|x|2 dx for some α ∈ (0,∞), and that in
this case (1.11) equals ψ(x/α), where

ψ(x) := 2π|x|2e−π|x|2 .

Therefore, the previous proof of (2.11) specialized to this measure yields

∥

∥

∥

∥

εmax
∫

εmin

ψ
( tx

α

)∣

∣

∣

∫

S2

gj(t,ω)(ω)e2πix·ω dσ(ω)
∣

∣

∣

2 dt

t

∥

∥

∥

∥

L2
x(R

3)

��

∥

∥

∥

(
m

∑

j=1

|gj |�
′)1/�′∥

∥

∥

2

L2(S2,σ)
.

(2.15)
Also note that the L1-normalization of the above Gaussians guarantees that
the left-hand side of (1.8) does not depend on the parameter α. Consequently,
the previous proof makes the constant in the bound (2.15) independent of α as
well. In this way, estimate (2.11) for a general measure μ satisfying condition
(b) will be a consequence of (2.15) and Minkowski’s inequality for integrals if
we can only dominate ϑ(x) pointwise as follows:

|ϑ(x)| �μ,δ

∞
∫

1

ψ
(x

α

) dα

α1+δ
(2.16)

for each x ∈ R
3.
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Denote by Ψ(x) the right-hand side of (2.16), and observe that Ψ(0) = 0
and Ψ(x) > 0 for each x �= 0. By continuity and compactness, it suffices to
show that the ratio |ϑ(x)|/Ψ(x) remains bounded as |x| → ∞ or |x| → 0+.

Substituting r = πα−2|x|2, we may rewrite Ψ as

Ψ(x) = 2π|x|2
∞
∫

1

e−πα−2|x|2 dα

α3+δ
(2.17)

=

π|x|2
∫

0

e−r
(

√
r√

π|x|
)δ

dr. (2.18)

From (2.18), we see that lim|x|→∞ Ψ(x)/|x|−δ ∈ (0,∞), while decay condition
(1.7) gives |ϑ(x)| = O(|x|−δ) as |x| → ∞.

On the other hand, using Taylor’s formula for the function x �→ e−πα−2|x|2

and substituting into (2.17), we easily obtain

Ψ(x) = 2π|x|2
( 1

2 + δ
+ Oδ(|x|2)

)

on a neighborhood of the origin. Moreover, μ̂ is C2 and even since μ is even,
and so we have that (∇μ̂)(0) = 0. Taylor’s formula then yields

ϑ(x) = Oμ(|x|2)
on a neighborhood of the origin. It follows that |ϑ(x)|/Ψ(x) = Oμ,δ(1) for
sufficiently small nonzero |x|, and this completes the proof of (2.16). �

The Gaussian domination trick which we have just used can be attributed
to Stein, see [18, Chapter V, §3.1]. It was generalized and used in a slightly
different context by Durcik [8].

Proof of Theorem 1 assuming condition (c). We can repeat the same steps as
before that reduce (1.10) to (2.5). This time we define the form Θ differently
via

Θ(g, h) :=
∫

R3

|E(g)(x)|2 ̂h(x) dx,

where g is as before and h ∈ S(R3). Again, by duality, we only need to establish
(2.14).

Squaring out (2.4) and inserting that into the above definition of Θ, we
obtain

Θ(g, h) =
∫

R3

∫

(S2)2

∑

1≤j≤m
1≤k≤m

gj(ω)gk(ω′)
(

μ̂
(

εj−1(ω)x
) − μ̂

(

εj(ω)x
)

)

×
(

μ̂
(

εk−1(ω′)x
) − μ̂

(

εk(ω′)x
)

)

̂h(x) e2πix·(ω−ω′) dσ(ω) dσ(ω′) dx,
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i.e.,

Θ(g, h) =

∫

(S2)2

∑

1≤j≤m
1≤k≤m

gj(ω)gk(ω′)

× (

h ∗ (μεj−1(ω) − μεj(ω)) ∗ (μεk−1(ω) − μεk(ω))
)

(ω − ω′) dσ(ω) dσ(ω′).

Applying Hölder’s inequality to the sum in (j, k), and recalling the definition
of the biparameter �-variation seminorm yields

|Θ(g, h)| ≤
∫

(S2)2

(
m

∑

j=1

|gj(ω)|�′)1/�′
(

m
∑

k=1

|gk(ω′)|�′)1/�′

× ‖(h ∗ με ∗ μη)(ω − ω′)‖
˜W

�

ε,η
dσ(ω) dσ(ω′).

Using (1.5) we obtain

|Θ(g, h)| �
∥

∥

∥

(
m

∑

j=1

|gj |�′)1/�′∥
∥

∥

2

L2(S2,σ)

∥

∥‖h ∗ με ∗ μη‖
˜W

�

ε,η

∥

∥

L2(R3)
,

and it remains to invoke the assumption (1.9). This proves (2.14) and, thus,
also completes the proof of the theorem assuming condition (c). �
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