

University of Birmingham

The choice of the offspring population size in the (1,λ)
EA
Rowe, Jonathan; Sudholt, Dirk

DOI:
10.1145/2330163.2330350

Document Version
Peer reviewed version

Citation for published version (Harvard):
Rowe, J & Sudholt, D 2012, 'The choice of the offspring population size in the (1,λ) EA', Paper presented at 14th
International Conference on Genetic and Evolutionary Computation - GECCO 12, Philadelphia, United States,
7/07/12 - 11/07/12 pp. 1349-1356. https://doi.org/10.1145/2330163.2330350

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© ACM,2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in GECCO '12 Proceedings of the 14th annual conference on Genetic and evolutionary computation,
http://doi.acm.org/10.1145/2330163.2330350

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1145/2330163.2330350
https://doi.org/10.1145/2330163.2330350
https://birmingham.elsevierpure.com/en/publications/83cfbb03-75d0-477d-a9d0-b2e0f6ca4134

The Choice of the Offspring Population Size in the (1,λ) EA

Jonathan E. Rowe
School of Computer Science

University of Birmingham
Birmingham, B15 2TT, UK

Dirk Sudholt
Department of Computer Science

University of Sheffield
Sheffield, S1 4DP, UK

ABSTRACT

We extend the theory of non-elitist evolutionary algorithms
(EAs) by considering the offspring population size in the
(1,λ) EA. We establish a sharp threshold at λ = log e

e−1
n ≈

5 log10 n between exponential and polynomial running times
on OneMax. For any smaller value, the (1,λ) EA needs ex-
ponential time on every function that has only one global op-
timum. We also consider arbitrary unimodal functions and
show that the threshold can shift towards larger offspring
population sizes. Finally, we investigate the relationship be-
tween the offspring population size and arbitrary mutation
rates on OneMax. We get sharp thresholds for λ that de-
crease with the mutation rate. This illustrates the balance
between selection and mutation.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Keywords

Evolutionary algorithms, comma strategies, offspring popu-
lations, runtime analysis, drift analysis, theory

1. INTRODUCTION
Runtime analysis has emerged as a very fruitful research

area in the theory of evolutionary algorithms (EAs) and
other metaheuristics. By rigorously estimating the expected
running time of EAs on interesting classes of problems, we
gain valuable insight into the working principles of EAs.
Many running time bounds depend on parameters of the
algorithm such as the mutation rate or the (offspring) pop-
ulation size. This allows for conclusions about optimal pa-
rameters or best possible design choices.

However, most runtime analyses presented so far have
been focussing on plus strategies like (µ+λ) EAs, partic-
ularly special cases thereof like the (1+λ) EA [5, 7] or the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, USA.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

(1+1) EA. In these algorithms the new population is cho-
sen among both parents and offspring. On hard problems
this bears the risk of getting stuck in local optima. Practi-
tioners therefore often use comma strategies where the new
population is selected solely among the offspring.

Analysing non-elitist EAs like these is an interesting and
challenging topic as, unlike for plus strategies, one cannot
rely on the best fitness in the population to increase mono-
tonically over time. Recent advances include runtime anal-
yses of EAs with ranking selection [10], fitness-proportional
selection [12], negative drift results [9] and Lehre’s extension
of the fitness-level method towards non-elitist EAs [8].

Jägersküpper and Storch [4] were among the first to in-
vestigate comma strategies like the (1,λ) EA. The (1,λ) EA
creates λ offspring independently and selects the best among
these as parent. Offspring are created by flipping each bit in
the parent independently with a given mutation rate u. The
default choice is u = 1/n, where n is the number of bits.

The choice of the offspring population size λ is crucial.
As shown in [4], the algorithm needs exponential time on
any function with a unique optimum if λ ≤ (lnn)/14, with
high probability. The reason is that the number of off-
spring is so small that the algorithm tends to move away
from the global optimum once it gets close. This “back-
ward drift” leads to the exponential running time. Contrar-
ily, if λ ≥ 3 lnn the algorithm can effectively perform hill
climbing and approach the global optimum on easy functions
like OneMax. Moreover, there are examples of multimodal
functions for which the (1,λ) EA is provably more efficient
than the (1+λ) EA [4].

Note that there is a gap by a large factor of 42 between
the upper and lower bounds on λ. This gives little guidance
to practitioners as to how precisely λ should be set. We
close this gap by showing that there is a sharp phase tran-
sition at λ = log e

e−1
n ≈ 2.18 lnn ≈ 5 log10 n for OneMax.

In fact, any smaller value (by a constant factor 1− ε) leads
to exponential running times on all functions with a unique
optimum. Any larger value gives a polynomial expected run-
ning time for OneMax. For optimal λ the expected number
of function evaluations is O(n log n). This means that then
the (1,λ) EA is able to perform simple hill climbing tasks
efficiently. In a more general sense, this is a minimum re-
quirement for an algorithm searching for good local optima.
Experiments show that this threshold is indeed sharp, if the
problem dimension is not too small.

On more complicated unimodal functions the phase tran-
sition is shifted to higher λ-values, as demonstrated by theo-
retical upper bounds, and empirical results. It also depends

1349

on the mutation rate. When decreasing the mutation rate
from its default value 1/n, the threshold decreases. We make
this mutation-selection balance precise and also show that,
surprisingly, only two offspring can be effective if the muta-
tion rate is sufficiently small.

Along the way, we also refine popular drift analysis tools.
In particular, we investigate the balance between “forward
drift” (a tendency to move towards the optimum) and“back-
ward drift” (a tendency to move away from the optimum),
in dependence of the offspring population size. This per-
spective is also useful for analysing parallel EAs; in fact, the
(1,λ) EA can be seen as an island model with a complete
topology. We are confident that these tools will prove useful
in further studies on non-elitist and parallel EAs.

The paper is structured as follows. After some notation
has been explained, we revisit and refine drift analysis re-
sults such as variable drift for proving upper bounds. We
strengthen the negative drift theorem for exponential lower
bounds to take account of large self-loop probabilities. We
apply these results to determine the exact value for λ for
which the run-time on OneMax moves from exponential to
polynomial. We extend the polynomial-time result to uni-
modal functions, and also consider arbitrary mutation rates.
Our results are illustrated experimentally, to determine how
sharp the thresholds are for realistic problem dimensions.

2. REFINED DRIFT ANALYSIS RESULTS
Drift analysis is a very popular and versatile tool for an-

alysing randomised search heuristics. One typically models
the progress throughout the run by a potential function.
For the (1,λ) EA a natural potential function is to consider
the fitness of the current search point. The fitness function
is often taken as a maximisation problem. A trivial trans-
formation leads to the following unified setting where the
potential needs to be minimised and the target state is 0.

Throughout this work we define X1, X2, . . . as a sequence
of random variables on 0, 1, . . . ,m, where we think of 0 as the
target state. These random variables model the progress of
the (1,λ) EA throughout the run, i. e., the index represents
the current generation. In all applications we take it as the
fitness difference between the current search point and the
optimal fitness value. The expected decrease of the current
state is called drift.

For all 1 ≤ k ≤ m, we define:

p−k = Prob(Xt+1 < k | Xt = k)

pok = Prob(Xt+1 = k | Xt = k)

p+k = Prob(Xt+1 > k | Xt = k)

∆k = E[k −Xt+1 | Xt = k]

∆+
k = E[Xt+1 − k | Xt = k and Xt+1 > k]

where ∆k is the drift towards the target at state k and ∆+
k is

the drift away from the target, conditional on moving away.
For all 0 ≤ i, j ≤ m we abbreviate

pi,j = Prob (Xt+1 = j | Xt = i) .

We call the (expected) first hitting time of the state 0 the
(expected) running time of the process.

2.1 Variable Drift—Nondifferentiable drift
He and Yao [3] presented an additive drift theorem for

upper bounds. It gives an upper bound on the expected

running time if the drift is at least some positive constant
throughout all non-optimal states. The multiplicative drift
theorem [2] gives an upper bound when the drift is at least a
fixed fraction of the current state. Both drift theorems can
be generalised to account for variable drift, where the drift
is monotonically increasing with the current state. This was
done by Johannsen [6] and, independently, by Mitavskiy,
Rowe and Cannings [11]. We present a proof here with
slightly weaker assumptions.

Theorem 1. Variable drift – Johannsen Suppose there
is a monotonic increasing function h : R+ → R

+ such that
the function 1/h(x) is integrable on [1, m], and with

∆k ≥ h(k)

for all k ∈ {1, . . . ,m}. Then the expected running time is
at most

1

h(1)
+

∫ m

1

1

h(x)
dx.

Proof. Let

g(x) =

{

x
h(1)

if x < 1
1

h(1)
+
∫ x

1
1

h(z)
dz if x ≥ 1

.

Note that g is strictly monotone increasing and hence in-
vertible. The running time is therefore the same as the first
hitting time of the random sequence g(Xt) of the state 0.

If x 6= 0 and y 6= 0 then

g(x)− g(y) =

∫ x

y

1

h(z)
dz ≥

x− y

h(x)

(since 1/h(z) is positive and monotone decreasing) and if
x 6= 0 and y = 0 then

g(x)− g(y) =
1

h(1)
+

∫ x

1

1

h(z)
dz ≥

1

h(1)
+

x− 1

h(x)
≥

x− y

h(x)
.

So, for any k ∈ {1, . . . , m},

E[g(Xt)− g(Xt+1) | g(Xt) = g(k)]

= E[g(Xt)− g(Xt+1) |Xt = k]

≥ E[(Xt −Xt+1)/h(Xt) |Xt = k]

=
∆k

h(k)
≥ 1.

So by the classical (additive) drift theorem [3], the first hit-
ting time of 0 by the sequence g(Xt) is bounded above by
g(m). The result follows.

The difference with Johannsen’s original version, is that we
don’t require h to be differentiable. Defining it to be a step
function allows us to derive Mitavskiy’s version as a corol-
lary:

Theorem 2. Variable drift – Mitavskiy Suppose there
are εm ≥ εm−1 ≥ · · · ≥ ε1 > 0 such that, for all 0 < k ≤ m

∆k ≥ εk

then the expected running time is at most
∑m

k=1
1
εk

.

Proof. Take

h(x) = εdxe

in Theorem 1.

1350

2.2 Negative Drift Theorem with Self-Loops
Drift analysis can also be used to prove exponential lower

bounds on the running time if there is an additive drift lead-
ing away from the target state, on a part of the state space.

The negative (or so-called “simplified”) drift theorem of
Oliveto and Witt [16], as given in [15], has two assumptions,
which we will refer to as SD1 and SD2 as follows:

SD1 There exists integers a, b with 0 < a < b ≤ m and
ε > 0 such that ∆k < −ε for all a ≤ k ≤ b. That is,
the process drifts backwards (in expectation) between
states a and b.

SD2 There exists constants r, δ > 0 (i. e. they are indepen-
dent of m) such that for all k ≥ 1 and all 1 ≤ d ≤ k

pk,k−d ≤
r

(1 + δ)d
.

That is, there is an exponentially small chance of tak-
ing jumps towards the goal state.

The negative drift theorem then states

Theorem 3. Negative drift
Suppose a process satisfies conditions SD1 and SD2 and

T is the running time, starting from X1 ≥ b. Let ` = b− a.
Then there is a constant c > 0 such that

Prob(T ≤ 2c`/r) = 2−Ω(`/r).

Note that the requirement of having a constant backward
drift is quite strong. The negative drift theorem is gener-
ally not applicable if the process might spend a significant
amount of time performing self-loops. This applies to the
(1,λ) EA in many cases if there is a high probability that
the fitness of the current search point does not change. One
workaround is to replace the random process by another one
without self-loops (see [16] for examples).

A more convenient way is to relax the negative drift the-
orem to account for self-loops. Our new conditions are:

SL1 There exists integers a, b with 0 < a < b ≤ m and
ε > 0 such that ∆k < −ε(1− pok) for all a ≤ k ≤ b.

SL2 There exists constants r, δ > 0 (i.e. they are indepen-
dent of m) such that for all k ≥ 1 and all 1 ≤ d ≤ k

pk,k−d ≤
r(1− pok)

(1 + δ)d
.

This gives us the following result:

Theorem 4. Suppose the process satisfies SL1 and SL2
and T is the running time, starting from X1 ≥ b. Let ` =
b− a. Then there is a constant c > 0 such that

Prob(T ≤ 2c`/r) = 2−Ω(`/r).

Note that other variants of the drift theorem [16] can be
adapted in the same manner.

Proof. We define a Markov process X∗
t without self-loops,

whose transition probabilities are denoted by p∗i,j . We show
that under the given conditions the original drift theorem
can be applied with respect to the starred process. As self-
loops only slow down the process, any lower bound for a
random first hitting time of the starred process is also a
lower bound for the original process.

Let p∗i,i := 0 and

p∗i,j :=
pi,j

1− poi

for all j 6= i. Also, let ∆∗
k = E[k −X∗

t+1 | X∗
t = k]. Now,

∆i ≤ −ε(1− poi) ⇔

m
∑

j=0

j · pi,j ≤ −ε · (1− poi)

⇔
m
∑

j=0

j · p∗i,j ≤ −ε ⇔ ∆∗
i ≤ −ε.

This fulfils condition SD1 for the Markov chain X∗
t . SD2

is trivially true for d = 0, regardless of r and δ. For d > 0

pk,k−d ≤
r · (1− pok)

(1 + δ)d
⇔ p∗k,k−d ≤

r

(1 + δ)d
.

Invoking Theorem 3 proves the claim.

3. FORWARD VS. BACKWARD DRIFT
In a situation, such as the (1,λ) EA, where there can be

moves towards and away from the optimum, it is helpful to
have the following bound on the overall drift. The following
lemma relates the drift to the conditional drift when the
algorithm moves away from the optimum.

Lemma 1. Recall that ∆k is the expected drift towards
0 at k, and that ∆+

k is the expected drift away from 0,
conditional on a backwards move being made. We have

∆k ≥ p−k − p+k ∆
+
k .

Proof.

E[Xt+1 |Xt = k] =

k−1
∑

j=0

jpk,j + kpok +
m
∑

j=k+1

jpk,j

=

k−1
∑

j=0

jpk,j + kpok + p+k (∆
+
k + k)

≥ (k − 1)p−k + kpok + p+k (∆
+
k + k)

= k − p−k + p+k ∆
+
k

and so ∆k ≥ p−k − p+k ∆
+
k .

Notice that when the sequence is elitist, we have ∆+
k = 0

for all k, and so ∆k ≥ p−k . In this situation, the variable
drift theorem allows us to recover the well-known method of
fitness levels, by defining εk = p−k in Mitavskiy’s version.

The (1,λ) EA can be regarded as a parallel process where
λ mutations are made independently, and the best outcome
is taken over for the next population. Even if a single mu-
tation does not give a drift towards the global optimum,
the parallel process can—provided the offspring population
size λ is large enough. In other words, a sequential process
with a drift away from the optimum (if the process has got-
ten close) can be turned into a parallel process with a drift
towards the optimum.

The following result establishes a connection between the
process of a single mutation, the offspring population size,
and the expected running time of the (1,λ) EA. It will be
used in the following sections to establish the phase transi-
tion for λ where a backward drift is replaced by a forward
drift, if λ increases past the threshold.

1351

Theorem 5. Consider the (1,λ) EA on some finite search
space S. Assume a potential function g : S → {0, 1, . . . ,m}
so that g(x∗) = 0 if and only if x∗ is globally optimal for the
problem under consideration. For any point x with g(x) =
k > 0, consider the result, y, of a single mutation. Let

p−k = Prob(g(y) < k | g(x) = k)

p+k = Prob(g(y) > k | g(x) = k)

∆+
k = E[g(y)− k | g(x) = k and g(y) > k].

Suppose there exists εm ≥ εm−1 ≥ · · · ≥ ε1 > 0 such that,
for all k

1− (1− p−k)
λ −∆+

k (p
+
k)

λ ≥ εk.

Then the expected running time of the (1,λ) EA is bounded
above by

∑m
k=1

1
εk
.

In the remainder, we will take g(x) as the fitness difference
between x and a global optimum.

Proof. The probability that at least one of the λ offspring is
better (i. e., has a smaller potential) than x is 1− (1− p−k)

λ.

The probability that all offspring are worse than x is (p+k)
λ.

And the expected drift away from the target (k = 0) condi-
tional on a move away occurring is less than ∆+

k . Applying
Lemma 1, the drift of one generation of the (1,λ) EA is at
least

1− (1− p−k)
λ −∆+

k (p
+
k)

λ

and the result then follows from Theorem 2.

4. A SHARP THRESHOLD FOR THE OFF-

SPRING POPULATION SIZE
Before we proceed to the polynomial upper bound, for

sufficiently large λ, we require the following lemmas.

Lemma 2. Let X0, X1, . . . be the numbers of zeros in the
current search point of the (1,λ) EA with mutation rate u.
Then for any 0 ≤ k ≤ n

∆+
k ≤

1

(1− u)n−1
.

For u = 1/n the bound simplifies to e.

Proof.

E(Xt+1 −Xt | Xt+1 > Xt)

=
n
∑

d=1

d · Prob(Xt+1 = Xt + d | Xt+1 > Xt)

=
1

Prob(Xt+1 > Xt)
·

n
∑

d=1

d · Prob(Xt+1 = Xt + d).

Prob(Xt+1 = Xt + d) is bounded by the probability that d
1-bits flip. Therefore, the sum is bounded by the expected
number of flipping 1-bits, (n−Xt)·u. The term Prob(Xt+1 >
Xt) is bounded from below by the probability of mutation
flipping only a single 1-bit. The probability for this event is
(n−Xt) · u · (1− u)n−1. Together,

E(Xt+1 −Xt | Xt+1 > Xt)

≥
1

(n−Xt) · u · (1− u)n−1
· (n−Xt) · u

=
1

(1− u)n−1
.

Lemma 3. For any 0 ≤ x ≤ 1, and any n > 0

(1− x)n ≤
1

1 + nx
.

Proof. From (1− x) ≤ e−x it follows that (1− x)n ≤ e−nx.
And from enx ≥ 1 + nx it follows that

(1− x)n ≤ e−nx ≤
1

1 + nx
.

Now we can prove an upper bound on the expected run-
ning time of the (1,λ) EA. We consider the well-known func-
tion OneMax =

∑n
i=1 xi as it reflects how good an EA is in

performing a simple hill climbing task. The following result
shows that the (1,λ) EA is effective if the population size is
large enough.

Theorem 6. If λ ≥ log e
e−1

n ≈ 2.18 lnn and u = 1/n then

the expected number of generations of the (1,λ) EA on the
n-bit OneMax function is O((n log n)/λ+n). The expected
number of function evaluations is then O(n log n+ nλ).

Both upper bounds match the ones for the (1+λ) EA pre-
sented in [7] (we refer to bounds for an equivalent parallel
EA with a complete communication topology). In this sense,
the (1,λ) EA is as effective as the (1+λ) EA with this choice
of λ. Note that for λ = dlog e

e−1
ne we get an upper bound

of O(n log n) function evaluations. This is best possible for
EAs using only mutation [18].

Proof. The states are defined by the number of zeros in the
current bit string. Let X1, X2, . . . be the process defined
by randomly mutating a string. For this process, we have
p−k ≥ k/(en), p0k ≥ (1 − 1/n)n and ∆+

k ≤ e according to
Lemma 2. By Theorem 5 we have

1− (1− p−k)
λ −∆+

k (p
+
k)

λ

≥ 1−

(

1−
k

en

)λ

− e

(

1−
k

en
−

(

1−
1

n

)n)λ

using Lemma 3 and 1/(en)+(1−1/n)n ≥ 1/e for n ≥ 2 [14]

≥ 1−
1

1 + λk/(en)
− e

(

1−
1

e

)λ

=
λk

en+ λk
− e

(

1−
1

e

)λ

≥
λk

en+ λk
−

e

n

≥
λk

2en+ 2λk
=: εk

where the last inequality holds if n, and hence λ, is large
enough. Invoking Theorem 2 yields an upper bound of

n
∑

k=1

1

εk
≤ 2n+

2en

λ

n
∑

k=1

1

i
= O

(

n log n

λ
+ n

)

.

Jägersküpper and Storch [4] have shown that the running
time of the (1,λ) EA on OneMax is exponential if λ ≤ 1/14·
lnn. Neumann, Oliveto andWitt [12] showed an exponential
lower bound for a similar algorithm in a related setting if
λ ≤ 1/4 · lnn. Here, we relax on these conditions and show
that the threshold from Theorem 6 is tight.

1352

Theorem 7. Consider the (1,λ) EA on any function with
a unique global optimum. If λ ≤ (1 − ε) log e

e−1
n for some

0 < ε ≤ 1 then its running time is at least 2cn
ε/2

with

probability 1− 2−Ω(nε/2), for some constant c > 0.

Proof. Based on an idea by Doerr, Johannsen andWinzen [1],
Sudholt [18] showed that among all functions with a unique
global optimum OneMax is the easiest function. This holds
with respect to a broad class of mutation-based EAs, which
includes the (1,λ) EA. Witt [19] improved this result to-
wards covering stochastic dominance and arbitrary mutation
rates 0 < u ≤ 1/2.

Using [19, Theorem 9] we can focus on the running time
of the (1,λ) EA on OneMax; the running time on any other
function stochastically dominates the former.

We consider the Markov chain defined by the number of
zeros in the current bit string, and let pi,j be the transition
probabilities. Our goal is to apply the negative drift theorem
with self-loop probabilities, Theorem 4.

The interval is chosen as [0, `] with ` := nε/2. As ε ≤ 1

the probability of starting with less than ` zeros is 2−Ω(n).
In the following, we assume that this does not happen.

As a first step, we replace the original Markov chain by
a simpler one where some transition probabilities pk,j are
modified in a pessimistic way. If the current state is k ≤
nε/2, we estimate for j ∈ N

pk,k−j ≤ λ ·

(

k

j

)

· n−j ≤ λ

(

k

n

)j

≤ λnjε/2−j =: p′k,k−j .

For transitions to larger indices we assign the probability
mass for jumps from k to k + j with j ≥ 2 to the transi-
tion from k to k + 1. It is clear that this modification is
pessimistic. The probability that all λ offspring will have
a larger number of zeros than their parent is given by the
product of probabilities for each single mutation. A suffi-
cient condition for the latter is that the mutation does flip
at least one out of n− k 1-bits and that is does not flip any
0-bit.

We then have

n−k
∑

j=1

pk,k+j ≥

((

1−

(

1−
1

n

)n−k
)

·

(

1−
1

n

)k
)λ

=

(

(

1−
1

n

)k

−

(

1−
1

n

)n
)λ

≥

(

1−
1

e
−

k

n

)λ

≥

(

1−
1

e
− nε/2−1

)λ

=

(

1−
1

e

)λ

·

(

1−
e

e− 1
· nε/2−1

)λ

≥ nε−1 ·

(

1−
e

e− 1
· λnε/2−1

)

≥ nε−1/2 := pk,k+1.

Finally, p′k,k := 1−
∑k

j=1 p
′
k,k−j − p′k,k+1. Note that p′k,k =

1−Θ(nε−1), so we indeed have a very large self-loop prob-
ability.

Thus,

∆k ≤

k
∑

j=1

j · pk,k−j − pk,k+1 ≤

∞
∑

j=1

jλnjε/2−j − nε−1/2

≤ λ

∞
∑

j=1

j(nε/2−1)j − nε−1/2

≤ λ ·
nε/2−1

(1− nε/2−1)2
− nε−1/2

≤ − nε−1/4 = −Ω(1− pk,k)

if n is large enough. This establishes SL1. For j ∈ N

pk,k−j ≤ λnjε/2−j = Θ(λn−ε/2) · n(j−1)(ε/2−1) ·Θ(nε−1)

≤ 2−j · (1− pk,k)

if n is large enough. This establishes SL2 for δ := 1 and
r(`) := 1. Applying Theorem 4 yields that the running time

is at least 2cn
ε/2

with probability 2−Ω(nε/2), for some con-
stant c > 0. This still holds when considering the probability
of 1− 2−Ω(n) for an initialisation with at least ` zeros.

Let us consider experiments to illustrate how drastic the
phase transition is. Note that log e

e−1
n ≈ 5 log10 n. We con-

sidered n ∈ {100, 1000, 10000} and stopped each run after
either a global optimum has been reached or a maximum
of 100n generations has passed. The value 100n was de-
rived from preliminary experiments; it allows to distinguish
successful runs from unsuccessful runs quite clearly.

Figure 1 shows average running time of the (1,λ) EA in
100 runs for each setting. The curves for various problem
dimensions have been scaled to fit in one plot. The plot also
shows the threshold value 5 log10 n in the center of the scale.

0

0.2

0.4

0.6

0.8

1

·100n

1 5 log10 n 10 log10 n

λ

nu
m
b
er

of
ge
n
er
at
io
n
s

n = 100
n = 1000
n = 10000

Figure 1: Average number of generations for
the (1,λ) EA with mutation rate 1/n on OneMax
with n ∈ {100, 1000, 10000} bits for all values λ ∈
{1, . . . , 10 log10 n}. The number of generations was
capped to 100n. Curves are scaled to fit in one plot.

One can observe that there is a very sharp threshold be-
haviour. For smaller n the (1,λ) EA seems to be efficient
even slightly below the predicted threshold. This does not
contradict our lower bound from Theorem 7 as the lower

1353

bound 2cn
ε/2

is extremely small for small problem dimen-
sions. In accordance with Theorem 7, with growing n the
observed threshold value approaches the predicted one.

5. THRESHOLDS FOR UNIMODAL FUNC-

TIONS
The threshold log e

e−1
n is a lower bound for any function

with a unique global optimum. Having an offspring pop-
ulation size above the threshold is sufficient for optimizing
OneMax. However, for different problems we might need a
larger offspring population size.

We consider the general class of unimodal functions. A
function is called unimodal if every non-optimal search point
has a Hamming neighbour (i. e., a search point differing in
just one bit) with a strictly better fitness.

Theorem 8. Consider an arbitrary unimodal function f
with d function values. If λ ≥ log e

e−1
(dn) ≈ 2.18 ln(dn) then

the expected number of generations of the (1,λ) EA on f is
O(dn/λ+ d). The expected number of function evaluations
is then O(dn+ dλ).

Proof. The proof is similar to the proof of Theorem 6. We
consider the Markov chain that describes the number of
fitness values in between the current fitness and the opti-
mum fitness value. We have p−k ≥ 1/(en) for all k > 0,
p0k = 1− 1/n, and clearly ∆+

k ≤ d − k ≤ d. Then repeating
previous calculations, we have, for the (1,λ) EA

1− (1− p−k)
λ −∆+

k (1− p−k − p0k)
λ

≥ 1−

(

1−
1

en

)λ

− d

(

1−
1

en
−

(

1−
1

n

)n)λ

≥ 1−
1

1 + λ/(en)
− d

(

1−
1

e

)λ

=
λ

en+ λ
− d

(

1−
1

e

)λ

≥
λ

en+ λ
−

1

n

≥
λ

2en+ 2λ
=: ε

where the last inequality holds if n, and hence λ, is large
enough. Invoking Theorem 2 yields an upper bound of

d
∑

k=1

1

ε
=

2edn

λ
+ 2d.

If d = Θ(n) this doubles the threshold value for λ, compared
to the function OneMax, disregarding additive constants.

This additional factor seems to be necessary for some func-
tions. Especially if (unlike for OneMax) there is a risk
that the fitness can decrease significantly in a single muta-
tion. The function LO(x) :=

∑n
i=1

∏i
j=1 xj (LeadingOnes)

counts the number of leading ones in the bit string. An un-
lucky mutation can destroy a long prefix of leading ones and,
if this happens for all offspring, the fitness of the current
search point can decrease significantly.

We also consider the function Ridge [17], defined as

Ridge(x) :=

{

n−
∑n

i=1 xi if x /∈ {1i0n−i | 0 ≤ i ≤ n}

n+ i if x ∈ {1i0n−i | 0 ≤ i ≤ n}
.

In a typical run, an EA starts at the bottom of the ridge and
then has to walk along the ridge to reach the optimum. If λ
is too small, the (1,λ) EA tends to fall off the ridge. Then it
typically has to make its way back to the start of the ridge
and start over.

Experiments as in Figure 1, for n = 1000 and capped at
106 generations, show that the phase transition for LO and
Ridge is shifted towards larger λ-values. Although LO and
OneMax have the same number of fitness values, the former
is harder to optimise than the latter, and a larger offspring
population size is needed. Also Ridge is harder than LO in
this sense.

The thresholds seen in the experiments for LO and partic-
ularly Ridge exceed the value 5 log10 n (see Figure 2). This
justifies why the threshold from Theorem 8 is, in general,
worse than the one for OneMax. It indicates that there
is a sharp threshold for the offspring population size across
various problems, and its location depends on the problem
at hand.

0

0.2

0.4

0.6

0.8

1

·106

1 5 log10 n 10 log10 n

λ

nu
m
b
er

of
ge
n
er
at
io
n
s

OneMax

LO

Ridge

Figure 2: Average number of generations for the
(1,λ) EA on OneMax, LeadingOnes, and Ridge with
n = 1000 bits for all values λ ∈ {1, . . . , 10 log10 n}. The
number of generations was capped to n2 = 106.

6. VARYING THE MUTATION RATE
We now generalise some of our results to arbitrary muta-

tion probabilities u := u(n). The drift depends on u as well
as on λ. Similar to work by Lehre and Yao [10] on rank-based
selection, we observe a certain mutation-selection balance.
That is, the performance of the algorithm depends on the
interplay of two parameters. A similar result was also shown
in Neumann, Sudholt, and Witt [13] for a comma-strategy
variant of an ant colony optimiser. It was shown that λ = 2
ants result in an expected running time of O(n log n) on
OneMax if the pheromone model adapts quite slowly to
new solutions.

The same effect could be achieved by lowering the muta-
tion probability of the (1,λ) EA. For this reason, we gen-
eralise our previous bound on OneMax. Here and in the
following H(n) =

∑n
i=1 1/i = O(log n) denotes the n-th

Harmonic number.

1354

Theorem 9. If

λ ≥ log 1
1−(1−u)n−1

(

1

u(1− u)2n−2

)

then the expected number of generations of the (1,λ) EA
with mutation probability u on OneMax with n ≥ 2 bits is
bounded by

4n+
4

λu(1− u)n−1
·H(n).

The expected number of function evaluations is bounded by

4λn+
4

u(1− u)n−1
·H(n).

Proof. We again consider the Markov chain defined by the
number of zeros in the current bit string. Using the notation
from Theorem 5 we have p−k ≥ (1− (1− u)k) · (1− u)n−k =

(1−u)n−k−(1−u)n, the weaker estimate p−k ≥ ku·(1−u)n−1,
p0k ≥ (1−u)n, and ∆+

k ≤ 1/(1−u)n−1 for all k by Lemma 2.
Now, we have, using both estimations for p−k and Lemma 3,

1− (1− p−k)
λ −

1

(1− u)n−1
· (1− p−k − p0k)

λ

≥ 1− (1− ku(1− u)n−1)λ −
1

(1− u)n−1
· (1− (1− u)n−k)λ

≥ 1−
1

1 + λku(1− u)n−1
−

1

(1− u)n−1
· (1− (1− u)n−k)λ

=
λku(1− u)n−1

1 + λku(1− u)n−1
−

1

(1− u)n−1
· (1− (1− u)n−k)λ

≥
λku(1− u)n−1

1 + λku(1− u)n−1
− u(1− u)n−1

=
λku(1− u)n−1 − u(1− u)n−1 · (1 + λku(1− u)n−1)

1 + λku(1− u)n−1

≥
λku(1− u)n−1 − u(1− u)n−1 · (k + λku(1− u)n−1)

1 + λku(1− u)n−1

= ku(1− u)n−1 ·
λ(1− u(1− u)n−1)− 1

1 + λku(1− u)n−1

using u(1− u)n−1 ≤ u(1− u) ≤ 1/4 and λ ≥ 2

≥ ku(1− u)n−1 ·
λ · 3/4− 1

1 + λku(1− u)n−1

≥ ku(1− u)n−1 ·
λ/3 · 3/4 + 2/3 · λ · 3/4 − 1

1 + λku(1− u)n−1

≥ ku(1− u)n−1 ·
λ/4

1 + λku(1− u)n−1

=
λku(1− u)n−1

4 + 4λku(1− u)n−1
=: εk.

Invoking Theorem 5 yields an upper bound of

n
∑

k=1

1

εk
≤ 4n+

4

λu(1− u)n−1
·H(n).

For u = c/n with 0 < c ≤ 1, using (1 − c/n)n−1 ≥ e−c,
we get the following.

Corollary 1. For u = c/n with 0 < c ≤ 1 (possibly de-
pending on n), λ ≥ ec (ln(n/c) + 2c) yields a time bound of
4n+ 4cecnH(n)/λ generations, i. e., 4λn+ 4cecnH(n) eval-
uations.

For larger, but constant c, these calculations are off by a
small term as (1− c/n)n−1 ≥ e−c −O(1/n).

Corollary 2. For u = c/n with c > 0 constant, any choice
λ ≥ ec (ln(n/c) +O(1)) yields an upper time bound of at
most 4n + 4cecnH(n)/λ + O((log n)/λ) generations, i. e.,
4λn+ 4cecnH(n) +O(log n) evaluations.

A lesson learnt from these results is that the threshold is
very close to ec lnn, i. e., the minimum feasible offspring
population size grows exponentially with the constant c in
u = c/n.

The threshold for λ from Theorem 9 strictly increases
with u. This means that lowering the mutation probabil-
ity from u = 1/n allows for using smaller offspring popula-
tions. It is therefore interesting to ask whether we can do
with just λ = 2 offspring, i. e., we create just two offspring
and select the better one. A simple calculation shows that a
mutation probability of u = 1/n2 fulfills the condition from
Theorem 9.

Corollary 3. If λ = 2 then u = 1/n2 yields a time bound
of 2n2 · H(n) + O(n log n) generations, i. e., 4n2 · H(n) +
O(n log n) evaluations.

This bound is of orderO(n2 log n) and hence weaker than the
bound O(n log n) for the ant colony optimiser investigated
in [13]. But it shows that polynomial expected running times
are possible with just two offspring.

Also the lower bound from Theorem 7 can be generalised,
with some additional effort. As the proof is very technical
and it uses the same proof ideas as the proof of Theorem 7,
it is omitted here.

Theorem 10. Consider the (1,λ) EA with mutation prob-
ability n−δ < u ≤ ε/4 · (lnn)/n, for an arbitrary con-
stant δ > 0, on any function with a unique global optimum.
If λ ≤ (1− ε) log 1

1−(1−u)n

(

1
u

)

for some 0 < ε ≤ 1 then the

runtime of the (1,λ) EA is at least 2cn
ε/3

with probability

1− 2−Ω(nε/3), for some constant c > 0.

The conditions on the mutation rate imply that λ is always
polynomially bounded in n. Apart from the factor 1−ε, the
threshold for λ differs from the one in Theorem 9 only by
the term 1/(1 − u)2n−2 inside the log-term. If u = Θ(1/n),
the two terms only differ by a constant additive term. The
difference only becomes important when the mutation rate
grows very large.

The balance between the mutation rate and the offspring
population size for the OneMax function is illustrated in
Figure 3. It shows how the phase transition varies as a
function of the mutation rate and the offspring population
size λ for n = 1000 bits. All runs were stopped after a
maximum of 10000 generations.

One can see that here using mutation rate 2/n massively
shifts the threshold towards higher values. Lower mutation
rates lead to a smaller threshold, but at the expense of a
higher average running time in cases where λ is large enough.

7. CONCLUSIONS
The analysis of non-elitist EAs is an emerging and inter-

esting topic. We have extended results by Jägersküpper and
Storch [4] on the performance of the (1,λ) EA. There is a
sharp threshold for the choice of λ at log e

e−1
n ≈ 5 log10 n.

1355

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

·105

λ

nu
m
b
er

of
ge
n
er
at
io
n
s

u = 0.002
u = 0.001
u = 0.0005
u = 0.0001
u = 0.00005

Figure 3: Average number of generations for the
(1,λ) EA on OneMax with n = 1000 bits, using dif-
ferent mutation probabilities u.

Any smaller values render the algorithm inefficient on larger
problems with a unique optimum. Any larger values en-
able the algorithm to perform hill climbing effectively and
hence to optimise OneMax. This is demonstrated by both
theoretical and empirical results.

We also conclude that the location of the threshold de-
pends on the problem at hand, as for other unimodal prob-
lems the threshold is higher than for OneMax. Finally,
there is a delicate mutation-selection balance when varying
the mutation rate. Decreasing the mutation rate decreases
the minimum offspring population size. With a mutation
rate of 1/n2 even just two offspring are efficient for One-

Max. The results not only apply to the global optimisation
of unimodal functions. In a more general sense, they show
when the (1,λ) EA is effective at exploitation and can find
local optima efficiently.

Acknowledgment

Dirk Sudholt was partially supported through EPSRC grant
EP/D052785/1.

8. REFERENCES
[1] B. Doerr, D. Johannsen, and C. Winzen. Drift

analysis and linear functions revisited. In Genetic and
Evolutionary Computation Conference (GECCO ’10),
pages 1449–1456. ACM Press, 2010.

[2] B. Doerr, D. Johannsen, and C. Winzen.
Multiplicative drift analysis. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC
2010), pages 1–8. IEEE, 2010.

[3] J. He and X. Yao. A study of drift analysis for
estimating computation time of evolutionary
algorithms. Natural Computing, 3(1):21–35, 2004.

[4] J. Jägersküpper and T. Storch. When the plus
strategy outperforms the comma strategy and when
not. In Proceedings of the IEEE Symposium on
Foundations of Computational Intelligence, FOCI
2007, pages 25–32. IEEE, 2007.

[5] T. Jansen, K. A. De Jong, and I. Wegener. On the
choice of the offspring population size in evolutionary
algorithms. Evolutionary Computation, 13:413–440,
2005.

[6] D. Johannsen. Random Combinatorial Structures and
Randomized Search Heuristics. PhD thesis, Universität
des Saarlandes, 2010.

[7] J. Lässig and D. Sudholt. General scheme for
analyzing running times of parallel evolutionary
algorithms. In 11th International Conference on
Parallel Problem Solving from Nature (PPSN 2010),
pages 234–243. Springer, 2010.

[8] P. K. Lehre. Fitness-levels for non-elitist populations.
In Proceedings of the 13th Annual Genetic and
Evolutionary Computation Conference (GECCO ’11),
pages 2075–2082. ACM Press, 2011.

[9] P. K. Lehre. Negative drift in populations. In 11th
International Conference on Parallel Problem Solving
from Nature (PPSN 2010), pages 244–253. Springer,
2011.

[10] P. K. Lehre and X. Yao. On the impact of
mutation-selection balance on the runtime of
evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 2012. To appear.

[11] B. Mitavskiy, J. Rowe, and C. Cannings. Theoretical
analysis of local search strategies to optimize network
communication subject to preserving the total number
of links. International Journal of Intelligent
Computing and Cybernetics, 2(2):243–284, 2009.

[12] F. Neumann, P. S. Oliveto, and C. Witt. Theoretical
analysis of fitness-proportional selection: landscapes
and efficiency. In Genetic and Evolutionary
Computation Conference (GECCO’09), pages
835–842, 2009.

[13] F. Neumann, D. Sudholt, and C. Witt. A few ants are
enough: ACO with iteration-best update. In Genetic
and Evolutionary Computation Conference
(GECCO ’10), pages 63–70, 2010.

[14] C. P. Niculescu and A. Vernescu. A two-sided estimate
of ex − (1 + x

n
)n. Journal of Inequalities in Pure and

Applied Mathematics, 5(3), 2004.

[15] P. Oliveto. Computational Complexity Analysis of
Evolutionary Algorithms for Combinatorial
Optimisation. PhD thesis, Univ. Birmingham, 2009.

[16] P. S. Oliveto and C. Witt. Simplified drift analysis for
proving lower bounds in evolutionary computation.
Algorithmica, 59(3):369–386, 2011.

[17] R. J. Quick, V. J. Rayward-Smith, and G. D. Smith.
Fitness distance correlation and ridge functions. In
Parallel Problem Solving from Nature (PPSN V),
pages 77–86. Springer, 1998.

[18] D. Sudholt. General lower bounds for the running
time of evolutionary algorithms. In 11th International
Conference on Parallel Problem Solving from Nature
(PPSN 2010), pages 124–133. Springer, 2010.

[19] C. Witt. Optimizing Linear Functions with
Randomized Search Heuristics - The Robustness of
Mutation. In 29th International Symposium on
Theoretical Aspects of Computer Science (STACS
2012), pages 420–431, 2012.

1356

