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1. Introduction
The COVID-19 outbreak changed the world and created global concerns regarding public health, global 
economy, human behavior, social networks, and air quality (Amouei Torkmahalleh et al., 2021; Chakraborty 
& Maity, 2020; Diffenbaugh et al., 2020; Rodríguez-Urrego & Rodríguez-Urrego, 2020; Venter et al., 2020). 
Wuhan was the first pandemic epicenter and imposed an unprecedented lockdown beginning January 23, 
2020. China was subsequently placed into a lockdown. These restrictions interrupted a wide array of eco-
nomic activities thereby reducing primary air pollutant emissions. The unexpected pollutant emission re-
ductions created a unique opportunity to assess the responses of air quality to rapid temporary reductions 
in anthropogenic emissions, and inform future air quality abatement strategies.

Many early studies showed substantial declines in observed concentrations of nitrogen dioxide (NO2) dur-
ing lockdown periods globally (Chakraborty & Maity,  2020; Cole et  al.,  2020; Gkatzelis et  al.,  2021; He 
et al., 2020; Lee et al., 2020; Liu et al., 2020; Patel et al., 2020; Pei et al., 2020; Venter et al., 2020). The ob-
served changes resulted from both meteorology and emission changes (Grange & Carslaw, 2019; Gkatzelis 

Abstract Responding to the 2020 COVID-19 outbreak, China imposed an unprecedented lockdown 
producing reductions in air pollutant emissions. However, the lockdown driven air pollution changes 
have not been fully quantified. We applied machine learning to quantify the effects of meteorology on 
surface air quality data in 31 major Chinese cities. The meteorologically normalized NO2, O3, and PM2.5 
concentrations changed by −29.5%, +31.2%, and −7.0%, respectively, after the lockdown began. However, 
part of this effect was also associated with emission changes due to the Chinese Spring Festival, which 
led to ∼14.1% decrease in NO2, ∼6.6% increase in O3 and a mixed effect on PM2.5 in the studied cities 
that largely resulted from festival associated fireworks. After decoupling the weather and Spring Festival 
effects, changes in air quality attributable to the lockdown were much smaller: −15.4%, +24.6%, and 
−9.7% for NO2, O3, and PM2.5, respectively.

Plain Language Summary Strict lockdown measures imposed in most countries to stop 
the 2020 COVID-19 pandemic spread, led to changes in air pollutant concentrations. The lockdown in 
China started at the start of the Chinese Spring Festival (CSF), making it difficult to disentangling the 
lockdown from the CSF effects. We applied a machine learning meteorological normalization technique 
that considered the effects of lunar holidays that fall on different Gregorian dates in different years and 
accounted for meteorological effects on surface air quality. We found that the normal CSF in 2015–2019 
led to reproducible changes in NO2 (−14.1%) and O3 (+6.6%) concentrations, and a mixed effect on 
PM2.5 across China. After decoupling the CSF effects, the 2020 lockdown produced limited changes 
in air quality. Thus, measures similar to the COVID-19 lockdown will suffice to reduce NO2 levels in 
China to be below WHO guidelines but unlikely to attain the WHO PM2.5 guidelines. This methodology 
permits estimation of traditional holiday- and event-driven air quality changes, especially when there are 
recurring cultural events based on non-Gregorian dates that may overlap with intervention.
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Key Points:
•  The Chinese Spring Festival led to a 

14.1% decrease in NO2, 6.6% increase 
in O3 and a mixed effect on PM2.5 
across China in 2015–2019

•  The 2020 lockdown resulted in 
−15.4%, −17.0%, −14.5%, −7.6%, 
−9.7%, and +24.6% changes for 
NO2, SO2, CO, PM10, PM2.5, and O3, 
respectively

•  Fireworks emissions contributed 
to haze in many cities such as an 
additional 29 μg m−3 PM2.5 in Beijing 
on the first lunar day of 2020
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et al., 2021). To account for the effects of meteorology and emission trends, so-called “deweathering” and 
“detrending,” respectively, were used to estimate the short-term interventions (e.g., lockdown) effects on 
air pollution. Comparisons of observations during the lockdown with the same calendar period in previous 
years were extensively reported (Patel et al., 2020; Pei et al., 2020; Shi & Brasseur, 2020; Sicard et al., 2020). 
That approach assumed negligible interannual variations in the pollutant emissions and meteorology. In 
cities where clean air actions are in place emissions are likely to have been trending downward as a result 
of the regulatory actions (Vu et al., 2019; Zhang et al., 2020). Some studies have analyzed the air quality 
changes with adjustments for meteorology using air quality models (e.g., Le et al., 2020; Wang et al., 2021; 
Zhao et al., 2020). The limited availability of up-to-date emissions inventories introduced substantial uncer-
tainty into the estimation of the air quality responses to lockdown measures. Traditionally, deweathering 
can be achieved by regression analysis (Liang et al., 2015; Zheng et al., 2021), but the performance of such 
regression models is usually not robust (Venter et al., 2020). Machine learning offers an alternative, more 
accurate method to deweather (Grange & Carslaw, 2019; Grange et al., 2018; Lovric et al., 2021; Petetin 
et al., 2020; Rybarczyk & Zalakeviciute, 2021; Vu et al., 2019). Gkatzelis et al. (2021) critically reviewed the 
various available statistical approaches used for deweathering and detrending in evaluating the lockdown 
impacts on air pollution.

Shi et al. (2021) applied a machine learning method to globally deweather air pollutants concentrations in 
11 cities. They recognized the importance of detrending when evaluating air quality changes due to inter-
ventions such as lockdowns. However, the detrending method based on Gregorian dates by Shi et al. (2021) 
introduces an uncertainty in the counterfactual (business as usual: BAU) scenario if there were particular 
events, such as Chinese lunar Spring Festival (CSF) or Easter Holidays, which have different Gregorian 
dates in different years. The beginning of the 2020 lockdown overlapped with the CSF. CSF, the most impor-
tant Chinese national holiday, encompasses one week that includes over 30 billion trips across China since 
many people move from megacities to their hometowns, making “empty cities” during CSF a unique phe-
nomenon in Chinese megacities. Significant declines in primary particles and NOx in urban areas termed 
holiday effects (Lai & Brimblecombe, 2017) occurred due to reduced transportation and some industries 
(Jiang et al., 2015; Tanvir et al., 2021). Such holiday effects make it challenging to separate the lockdown 
changes from the CSF effects.

To address this challenge, Wang et  al.  (2021) combined in situ observations complemented by satellite 
measurements and air quality modeling to decouple NO2 changes attributable to the lockdown from the 
CSF effects and meteorology. In that study, 11-days moving average NO2 was used to compare the concen-
trations in 2020 with counterfactual levels, potentially biasing the results by smoothing the sudden changes 
after the lockdown/CSF start. Excluding the CSF-period data is an alternative (Zheng et al., 2021), but such 
exclusion would lead to the loss of some information.

We specifically addressed this issue by meteorologically normalizing major surface air quality data first, and 
then corrected the CSF effect to obtain real changes in air pollutants attributable to COVID-19 lockdown. 
We applied a machine learning-based meteorologically normalization (deweather) procedure to decouple 
meteorological impacts on air pollutant concentrations collected from over 300 surface air quality data 
measured in 31 provincial capital cities in mainland China from 2015 to 2020 (see Section 2). We improved 
our model performances by considering the exceptional (aperiodic in Gregorian calendar) emissions from 
the CSF that were not considered in prior relevant studies (Cole et al., 2020; Vu et al., 2019; Shi et al., 2021; 
Table S1). The percentage change (P) of the meteorologically normalized concentrations of an air pollutant 
during the CSF with respect to their BAU values in each individual year were estimated (deweathered and 
detrended Shi et al., 2021) (see Figure 1). The average change from 2015 to 2019 was considered as the CSF 
effects (PCSF). Thus, the additional effects of lockdown measures on air quality can be isolated by subtracting 
the CSF effects from the overall changes in 2020. This approach enabled the quantification of the impacts 
of the COVID-19 lockdown as well as the CSF holidays on the air quality changes.
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2. Materials and Methods
2.1. Data Sources

Six criteria air pollutant concentrations (SO2, NO2, CO, O3, PM10, and PM2.5) in 2015–2020 for the 31 ma-
jor Chinese cities in mainland China were collected from the China National Environmental Monitoring 
Center website (http://106.37.208.233:20035). Surface meteorological variables (air temperature, relative 
humidity, wind direction, wind speed, and pressure recorded at the airport of the selected cities) were down-
loaded from NOAA using the “worldMet” R packgage (https://github.com/davidcarslaw/worldmet). The 
boundary layer height, total cloud cover, surface net solar radiation, and total precipitation for every hour 
were collected from ERA5 reanalysis dataset. For each city, 72-hour backward air mass trajectories for every 
hour were calculated using the HYSPLIT model (Stein et al., 2015; Tanvir et al., 2021) with arrival height 
of 100 m a.g.l for the studied periods. Trajectories for each city were subjected to cluster analysis using the 
Euclidian distance to produce 12 clusters for analysis.

2.2. Random Forest Modeling and Meteorological Normalization

A machine learning-based meteorological normalization method using the random forest (RF) algorithm 
(Cole et al., 2020; Grange & Carslaw, 2019; Shi et al., 2021; Vu et al., 2019) was used to decouple the meteor-
ological impacts on the observed air pollutants. As one of the best machine learning algorithm in building 
predictive models, RF can well capture the variation of air pollutants and better than air quality modeling 
(Grange et al., 2018; Vu et al., 2019). The explanatory variables including the meteorological variables, air 
mass clusters, and time variables were used to build the RF model and predict the air pollutant concentra-
tions. Air pollutants either emitted from routine sources or formed via secondary formation periodically 
varied by time of day, day of week, and season, time variables such as Unix time (number of seconds since 
January 1, 1970), Gregorian day (day of the year), weekday, and hour of the day were used as surrogates of 
the trends of emissions strength. Local air pollution is affected by regional transport. The air mass trajec-
tory clusters provide likely directions of the potential source regions for a given city. The aforementioned 
variables are used as typical input features in previous studies (Cole et al., 2020; Grange et al., 2018; Shi 
et al., 2021; Vu et al., 2019). We included the lunar day as an additional time variable to account for the 
emission changes from lunar holidays. Model performances were improved if the lunar day was an add-
ed variable (Table S1 and Figure S3). For each pollutant in the 31 cities, the meteorological normalized 
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Figure 1. Concept of the calculation for the effects of Chinese Spring Festival holiday and additional lockdown by 
taking meteorologically normalized NO2 as an example. C2015–2019, and C2020 are the meteorologically normalized NO2 
concentrations in 2015–2019, and 2020, respectively. Cpre and Cafter are the average concentrations of NO2 in the 1st–2nd 
weeks before the lunar new year and 3rd–4th weeks after the lunar new year. CCSF and CCSF, business as usual (BAU) are the 
average value of NO2 during the CSF holiday and counterfactual NO2 under BAU emission scenario. ΔCtrend, ΔCCSF, and 
ΔClockdown are the changes in meteorologically normalized concentrations of NO2 attributable to the emissions trend, 
holiday effects, and additional lockdown effects, respectively.

http://106.37.208.233:20035
https://github.com/davidcarslaw/worldmet
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concentration at a particular hour was calculated by averaging 1,000 predictions from the meteorological 
variables (excluding all time variables) randomly resampled from the observation period (2015–2020). By 
comparing our results with those of Shi et al. (2021) (Figure S3), we successfully captured the effects of the 
CSF by including the lunar date. Further details regarding the RF model setting and meteorological normal-
ization procedure are available in supporting information Text S1.

2.3. Quantifying Changes in Air Quality Attributable to the CSF and Lockdowns

We first compared the averaged meteorologically normalized air pollutant concentrations in the two weeks 
(1st–2nd weeks) before CSF with those in the 3rd–4th weeks after the CSF began. Using linear interpolation, 
half of the differences were then attributed to the counterfactual, BAU concentrations ( ,CSF BAUC ) during 
the CSF holiday. The CSF holiday effects for the year of i, ,CSF iP , can be calculated as the percentage change 
(P) of pollutant concentrations during the CSF holiday with respect to their BAU levels ( ,CSF BAUC ). ,CSF iP  in 
each city may vary by year due to emission changes. The CSF holiday effects for each pollutant in each city 
were estimated by averaging ,CSF iP  values from 2015 to 2019 (Figure 1).

        CSF CSF, pre, after,
1 2 / 1 100%
5 i i iP C C C (1)

where pre,iC , CSF,iC  and after,iC  are the average concentrations in the 1st–2nd weeks before the holiday, during 
the holiday, and in the 2nd–3rd weeks after the holiday in year i, respectively. The day of the lunar New Year 
Eve was considered as a transition day before the CSF began. A 1-week transition period from the end of the 
CSF holiday to the Lantern Festival was also included.

We selected the equivalent 1-week CSF holiday rather than the whole lockdown period in each city as ep-
isode candidates for calculation. The 2020 changes in air pollutants during the CSF were attributed to the 
effects of trend, holiday, and lockdown measures (Figure 1). The percentage change in the trend of each 
pollutant in 2020 was estimated by averaging its percentile changes from 2015 to 2019. Thus, the percentage 
changes caused by lockdown measures alone can be estimated as:

    
        

CSF,2020
lockdown trend,2020 CSF

pre,2020 CSF, BAU pre,

1
11 / 1
5 ii

C
P P P P

C C C
 (2)

where CSF,2020C  is the average concentration during the CSF holiday in 2020. Details of the estimations of 
the CSF and lockdown effects are presented in the Text S2.

3. Results and Discussion
3.1. Changes in Air Quality Attributable to the CSF in 2015–2019

The observed daily concentrations of ambient NO2, O3, PM2.5, SO2, CO, and PM10 are presented in Fig-
ures S4–S9. A sudden decline in the meteorologically normalized NO2 coincided with the start of the CSF in 
all studied cities in 2015–2019 (Figure S10), with an average CSFP  of −14.1%, ranging from −24.1 ± 2.0% in 
Hangzhou to −3.9 ± 1.1% in Harbin (Table S2). A recent study reported that the CSF effect caused a 20.9% 
reduction of the NOx emission intensity (Gg/d) in China in 2019 (Zheng et al., 2020), comparable to our 
estimates of NO2 in 2019 (14.7 ± 6.5%). On average, O3 increased by 6.6% (from +1.5 ± 3.4% in Lhasa to 
+10.0 ± 1.4% in Changchun) (Figure S11). Meteorologically normalized PM2.5 increased at midnight of the 
lunar New Year Eve in more than half of the studied cities (18 out of 31, Figure 2), with CSFP  ranging from 
−9.1 ± 4.2% in Hangzhou to +24.9 ± 4.2% in Hohhot. Fireworks are likely the source since they produce 
particles as well as SO2 and NO2 (Wang et al., 2007). The meteorologically normalized SO2, CO, and PM10 
are presented in Figures S12–S14. A decline in meteorologically normalized SO2 during the CSF was also 
observed in most cities, with an average CSFP  of −3.4% (−17.4 ± 6.1% in Guangzhou to +13.6 ± 17.2% in 
Beijing). The average changes in the meteorologically normalized CO were −2.3% (from −8.0 ± 2.9% in 
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Lanzhou to +5.1 ± 5.3% in Taiyuan). Meteorologically normalized PM10 had a similar trend to PM2.5, with 
an average CSFP  of −0.5%.

The changes in meteorologically normalized NO2 values were smaller than the measured data (see Table S2 
and discussion in supporting information Text S3). Similar results were obtained for the other air pollutants, 
suggesting that meteorological variations played a major role in the short-term variability of the air pollut-
ant concentrations during the CSF. The responses of the observed air pollutants to the CSF were partially 
masked by the meteorological variations. Thus, they do not necessarily provide the signs and magnitudes of 
changes in source emissions. The CSFP  have much smaller standard deviations than Pobs (Table S2), demon-
strating that the responses of air quality to emissions changes remain constant across the studied years.

The declines in NO2 were strongly related to transportation and industrial emission changes as determined 
by the changes in anthropogenic emissions in February 2019 in mainland China (Zheng et al., 2020). Such 
effects of CSF on NO2 were more substantial for cities with greater vehicle populations (Figure S15). De-
creases in meteorologically normalized NO2 and corresponding increases in O3 were ubiquitous across all 
these cities in China. The decreased traffic volume caused reduced NO emissions and likely led to a decline 
in local titration of O3 (Sicard et al., 2020), contributing to a sharp increase in O3 during the CSF holiday. 
This result is also in phase with existing literature that the decreased NOx emission over east China due to 
the lockdown led to a significant increase in surface O3 and other atmospheric oxidants (HO2, NO3, and 
OH radical) through air quality modeling and measurements (Huang et al., 2020; Lv et al., 2020; Zhang 
et al., 2021).

The substantial spike in meteorologically normalized PM2.5 that appeared immediately at midnight 
(around 12:00 a.m.) of each lunar New Year Eve was largely attributed to the CSF-related emissions (Jiang 
et al., 2015; Lai & Brimblecombe, 2017, 2020). Fireworks are a ubiquitous worldwide festival events such as 
both the CSF and Lantern Festival in China (Dai et al., 2020; Lai & Brimblecombe, 2020; Pang et al., 2021; 
Tian et al., 2014; Wang et al., 2007), the Las Fallas in Spain (Moreno et al., 2007), and the Guy Fawkes 
celebrations in UK (Godri et al., 2010). Fireworks emissions are a temporary source that can substantially 
exacerbate air pollution and remain airborne for several days (Godri et al., 2010; Kong et al., 2015; Moreno 
et al., 2007; Tian et al., 2014). As the most important festival in China, most people return to their home-
town to celebrate the CSF with activities including igniting fireworks on New Year's Eve. “Sheng Wang 
Huo” is a tradition in Shanxi, Hebei, and Inner Mongolia Provinces to celebrate the CSF by igniting a bon-
fire of stacked coal/wood and burned over five days (Dai et al., 2020). Therefore, emissions from these festi-
val-related sources tend to offset the effects of halted traffic and economic activities during the CSF (Lai Y & 
Brimblecombe, 2017; Sun et al., 2020; Dai et al., 2021). To reduce emissions, these events were increasingly 
banned by local governments in many megacities, particularly after 2017. Guangzhou was the first Chinese 
city to implement a no-fireworks policy in urban areas starting in the early 1990s (Jiang et al., 2015). Thus, 
the meteorologically normalized PM2.5 in Guangzhou in the studied years did not show a spike after the 
CSF beginning (Figure 2). Nanjing had fireworks problems in earlier years (Kong et al., 2015). The local 
government then imposed stricter control of fireworks beginning January 1, 2015, which has been effective 
at improving air quality as reported previously (Lai & Brimblecombe, 2017). This regulatory ban was con-
sistent with our result (Figure 2) as there was no obvious spike in the meteorologically normalized PM2.5 in 
Nanjing as observed in other cities across 2015–2020. Shanghai was similar. For Beijing, Fuzhou, Hohhot, 
Nanning, Tianjin, and Xi'an, meteorologically normalized SO2 also increased concurrently with the increase 
of meteorologically normalized PM2.5 at the midnight of the lunar New Year Eve (Figure S12) and decreased 
afterward, further supporting that the sharp spike of PM2.5 was from fireworks emissions implying that the 
increased PM2.5 in those cities originates primarily from the surrounding rural areas. Although fireworks 
were generally banned in urban areas, people still shoot fireworks in rural areas where coal/biomass were 
extensively burned for heating/cooking.

Several studies found that high particulate haze events in China during the lockdown were driven by 
enhanced secondary pollution offsetting the primary emissions reductions (Chang et  al.,  2020; Sun 
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Figure 2. Meteorologically normalized concentrations of daily PM2.5 in the 31 major Chinese cities before and after the Chinese Spring Festival (CSF) in 
2015–2020. Data are temporally aligned according to their lunar calendar dates in 2015–2020 and shown as Day of Year in Lunar calendar. Vertical dash line 
refers to the day before the CSF.



Geophysical Research Letters

et al., 2020; Huang et al., 2020). If atmospheric oxidants increase substantially in urban areas, they may pro-
mote the secondary aerosol formation. However, total oxidants (O3 + NOx) did not change significantly in 
Beijing (Shi et al., 2021). Furthermore, it is unlikely to have secondary PM2.5 increasing as sharp as the me-
teorologically normalized PM2.5 showed in most studied cities (Figure 2). Given that secondary aerosol was 
generally formed via various pathways under given meteorological conditions (e.g., high relative humidity), 
the calculated meteorologically normalized PM2.5 was a concentration averaged by 1,000 predictions with 
randomly sampled meteorological conditions, which tends to smooth the secondary PM2.5. Our analysis 
suggests that the festival-related emissions (e.g., fireworks emissions) also played an important role in haze 
formation in a number of cities. In cities such as Hohhot, Xi'an, Shenyang, Taiyuan, Nanjing, and Haik-
ou where the abrupt increase in meteorologically normalized PM2.5 occurred after midnight of New Year 
Eve, this excess PM2.5 likely originated from the festival-related emissions. The meteorologically normalized 
PM2.5 on the first lunar day of 2020 in those cities had elevated daily mass concentrations of 54.6, 26.2, 25.4, 
13.8, 10.9, and 8.6 µg m−3, respectively, compared to a day before (Figure 2). For Beijing, we estimated that 
such festival-related emissions contributed 23.6, 29.1, 36.4, 24.2, 22.9, and 29.1 µg m−3 daily PM2.5 for 2015 to 
2020, respectively, based on meteorologically normalized values. These values are substantially below those 
estimated by the observed concentration in Beijing (Lai & Brimblecombe, 2020) because the meteorology 
limited the local dispersion of fireworks aerosol.

After the CSF ended, meteorologically normalized NO2 gradually returned to the pre-CSF levels as nor-
mal economic activities and local transportation resumed. In Hangzhou, a city without apparent fireworks 
emissions (Xu et  al.,  2020), PM2.5 dropped immediately after the CSF began and then returned to their 
pre-CSF level after the CSF ended. In contrast to the other cities, meteorologically normalized PM2.5 in 
Kunming, a southwestern city with more deleterious particulate pollution in spring than in other seasons, 
continuously increased from winter to spring that may result from its unique climatology. Thus, the CSF 
holiday led to generally reduced NO2 but increased O3 concentrations. Alternatively, changes in meteor-
ologically normalized PM2.5 varied by city due to differences in CSF-related emissions and the extent of 
secondary aerosol formation.

3.2. Changes in Air Quality During CSF in 2020

Wuhan, the initial epicenter of the pandemic, had a major decline in meteorologically normalized NO2 
(∼43.6%) and PM2.5 (∼22.0%), and an increase of ∼22.5% in O3. Meteorologically normalized NO2 dropped 
to its lowest value on January 28 (28 µg m−3, a reduction of ∼42% (P) in NO2 from pre-lockdown levels). Our 
estimated change in meteorologically normalized NO2 was smaller than from the observed data (∼57%) (Pei 
et al., 2020; Sicard et al., 2020) and the meteorologically normalized data (∼63%) (Cole et al., 2020) without 
considering the lunar date variable, demonstrating the importance of separating the lockdown changes 
from the effects of meteorology and the CSF. In addition to the enforcement of the first-level emergency 
response on 25 January, Urumqi adopted an upgraded lockdown (home quarantine in communities and the 
whole city) beginning on 5 February (equivalent to lunar 12 January) to further prevent the transmission of 
the virus. The meteorologically corrected NO2 declined again on 6 February after its initial drop on the first 
day of the CSF (Figure S10).

Compared to the changes during the CSF in 2015–2019, the meteorologically normalized NO2 in 2020 de-
clined more dramatically for all studied cities. The results suggest that the strict nationwide lockdown meas-
ures introduced additional air quality changes beyond the normal CSF reductions. Changes in meteorolog-
ically normalized NO2 ranged from −44.9% in Changsha to −15.5% in Harbin, with an average of −29.5%. 
Accordingly, the meteorologically normalized O3 increased by 31.2% on average, ranging from −5.0% in 
Haikou to +57.2% in Changchun. Similar to previous years, O3 increased immediately on the first day of 
each lunar new year in all cities except Haikou. The direction and magnitudes of the changes in PM2.5 are 
heterogeneous across China. Changes in meteorologically normalized PM2.5 ranged from −22.0% in Wuhan 
to +32.9% in Kunming, with an averaged PCSF of −7.0%.
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3.3. Changes in Air Quality Attributable to the Lockdown

The average change in meteorologically normalized NO2 from the lockdown was −15.4% across all studied 
cities (Figure 3). Reduction of meteorologically normalized NO2 in Wuhan (−26.3%) was below a previously 
reported value at urban background site (−44%) without the adjustment for CSF (Shi et al., 2021). Except 
for Haikou (−3.6%), meteorologically normalized O3 attributable to the lockdown on average increased 
+25.8%. The average change in PM2.5 attributable to the lockdown was −9.7%. The lockdown also led to 
−17.0%, −14.5%, and −7.6% changes for SO2, CO, and PM10, respectively. The overall changes in meteor-
ologically normalized NO2 and O3 in all studied cities in the first week after the 2020 CSF began were 1.1 
and 3.9 times the changes (same direction) during the CSF in 2015–2019. The meteorologically normalized 
PM2.5 during the CSF shifted from increases in the CSF of 2015–2019 to decreases in the CSF of 2020. These 
results demonstrated that the mandatory lockdown measures amplified the CSF effects resulting from the 
festival-related emission reductions.

The responses of air quality to the lockdown estimated in this study differ substantively from existing re-
ports (Chen et al., 2020; Cole et al., 2020; He et al., 2020; Liu et al., 2020; Pei et al., 2020; Shi & Brasseur, 2020; 
Sicard et al., 2020; Venter et al., 2020). The reason for the differences is that we decoupled meteorology and 
the confounding CSF effects from lockdown-induced changes. This decoupling approach provided more 
reliable estimates of the air quality responses to the lockdowns, which is important for understanding 

DAI ET AL.

10.1029/2021GL093403

8 of 12

Figure 3. Percentage changes in meteorologically normalized NO2, PM2.5, and O3 attributable to the Chinese Spring 
Festival (CSF) effects in 2015–2019 and additional lockdown effects in 2020. Open circles denote the average changes 
resulted from the CSF effects in 2015–2019, with error bars indicate the minimum and maximum values. The solid 
circles denote changes attributable to additional lockdown effects.
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lockdown effects for policy assessment. The limitations of the methodology are presented in supporting 
information Text S4.

The effects of holiday on air quality were observed worldwide. Our findings also have implications for other 
locations in other countries that follow similar Chinese traditions, and countries with localized cultural ac-
tivities based on non-Gregorian dates, such as Diwali (India national calendar) (Perrino et al., 2011), Jewish 
Day of Atonement (Levy, 2013), festivals of Islam, and the Easter holiday (the exact date for Easter holiday 
is tied to the vernal equinox). By including their specific calendar as a predictor variable in the model, it is 
likely that lunar date will capture holiday effects of related cultural events that reduce or enhance primary 
emissions.

4. Policy Implications for Air Pollution Control
Reductions from anthropogenic emissions (particularly transportation section) during CSF/lockdown re-
sulted in significantly lower NO2 in all studied capital cities of mainland China. The meteorologically nor-
malized daily NO2 in all provincial capital cities were below the daily limit value (i.e., 80 µg m−3 for daily 
NO2) of the national ambient air quality standards of China (NAAQS, GB3095-2012) (MEE, 2012). Emis-
sions reductions on the scale of the lockdown overlapping the CSF were insufficient for most of the cities 
to bring the daily PM2.5 concentrations into compliance with the WHO guidance level (WHO, 2006) (i.e., 
25 µg m−3 for daily PM2.5). This result could be expected because most emission reductions during the lock-
down came from transportation and some industrial emissions sectors (such as nonessential industrial pro-
duction) that account for only a small proportion of primary PM2.5 emissions in China (Li et al., 2018). Emis-
sions from industrial activities and residential solid fuel continue to be the major sources of air pollution 
in China given its industry-dominated emissions and coal-dominated energy consumption (Li et al., 2018; 
Zhang et al., 2019; Zhao et al., 2018). It suggests that a large fraction of sulphate, a major species of PM2.5, 
was from residential coal combustion (Dai et al., 2019; Hopke & Dai, 2021). There is also an urgent need to 
control another increasingly important secondary pollutant, O3, in China. Given the nonlinear relationship 
between secondary pollutants and their precursor gaseous in atmosphere (Seinfeld & Pandis, 2016), it is 
crucial to adopt synergistic reduction strategies to simultaneously curb both VOCs and NOx emissions, to 
slow the increasingly enhanced secondary PM2.5 and O3 pollution in the future.

A decreasing interannual trend of meteorologically normalized air pollutant concentrations provided a 
measure of the effectiveness of abatement measures. The meteorologically normalized SO2 before the start 
of the CSF also decreased year by year, particularly in the Beijing-Tianjin-Hebei and surrounding areas af-
ter 2017 when the central and local governments enacted an extensive program of replacing the solid fuels 
with natural gas and electricity (Wang et al., 2020). The success of the Clean Air Action and other control 
measures was also evident from the decreased meteorologically normalized PM2.5 and NO2 before the CSF 
in 2015–2019 in most provincial capital cities. Although the air quality in northern China has improved 
considerably since 2013 (Zhang et al., 2019), the air pollution in the Fenhe-Weihe basin (Taiyuan and Xi'an 
urban agglomerations) has deteriorated over the past years (Song et al., 2017). The meteorologically nor-
malized NO2 in Taiyuan, Xi'an, Lanzhou, and Xining were higher in recent years than those in 2015–2016. 
Similarly, meteorologically normalized PM2.5 in Taiyuan and Xi'an were higher in 2019–2020 compared to 
previous years. Although the current “Blue Sky Protection Campaign” was implemented by the central gov-
ernment in 2018, more aggressive efforts are needed to further reduce NO2 in these areas.

Changes in air quality attributable to the lockdown measures were smaller than expected when adjusted for 
other effects (Shi et al., 2021). Our results also highlight that a larger decline in NOx emissions potentially 
risks increased O3 pollution in most megacities (Grange et al., 2021). The health benefits from COVID-19 
lockdown measures were compromised since the NO2 and PM2.5 reductions might be offset by increased O3. 
Measures like the COVID-19 lockdown will unlikely lead to step-changes in air quality. More comprehen-
sive abatement measures are needed to control both primary pollutants and secondary PM2.5 and O3 in the 
future.
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Data Availability Statement
All code and data necessary for replication, including observed and meteorologically normalized air quality 
data, are openly available at Zenodo repositories (http://doi.org/10.5281/zenodo.4620324). Additional infor-
mation about these data are available from the corresponding author upon reasonable request.
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Erratum
In the originally published version of this article, Figure 2 and figures in the supporting information in-
cluded city data for Taipei and Hong Kong. In keeping with the scope of the article, these data have been 
removed and the figures have been updated. The present version may be considered the authoritative ver-
sion of record.
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