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The gene regulatory network (GRN) architecture plays a key role in explain-
ing the biological differences between species. We aim to understand species
differences in terms of some universally present dynamical properties of
their gene regulatory systems. A network architectural feature associated
with controlling system-level dynamical properties is the bow-tie, identified
by a strongly connected subnetwork, the CORE layer, between two sets of
nodes, the IN and the OUT layers. Though a bow-tie architecture has been
observed in many networks, its existence has not been extensively investi-
gated in GRNs of species of widely varying biological complexity. We
analyse publicly available GRNs of several well-studied species from prokar-
yotes to unicellular eukaryotes to multicellular organisms. In their GRNs, we
find the existence of a bow-tie architecture with a distinct largest strongly
connected CORE layer. We show that the bow-tie architecture is a character-
istic feature of GRNs. We observe an increasing trend in the relative CORE

size with species complexity. Using studied relationships of the CORE size
with dynamical properties like robustness and fragility, flexibility, criticality,
controllability and evolvability, we hypothesize how these regulatory system
properties have emerged differently with biological complexity, based on the
observed differences of the GRN bow-tie architectures.
1. Introduction
A key objective of comparative biology is explaining biological differences
between species. Gene regulation plays a critical role in explaining such orga-
nismal differences [1]. Gene regulatory networks (GRNs) [2] are networks
where edges connect regulator nodes, such as transcription factors (TFs), to
target nodes. A GRN is a model of the gene regulatory system that controls
the development, function and pathology of organisms, and hence its analysis
is extremely important. Study of GRN structure and how it varies between
species can provide insights into how changes in gene expression, underlying
divergence in phenotypes, occur between species [3]. Differences in GRN archi-
tectural organization are considered the reason for differential dynamic
regulatory behaviour between eukaryotic yeast (Saccharomyces cerevisiae) and
prokaryotic bacteria [4]. Comparison across multiple eukaryotes reveals a
common architectural feature of the GRN—a scale-free topology, but with
species-specific characteristics likely to produce species-specific phenotypes
[5]. So it is vital to analyse the differences in GRN architecture to understand
differences between species.

Differences between species are exhibited at various levels like anatomy,
physiology and behaviour. One approach to understanding the differences
between species is looking at differences in universally present dynamical regu-
latory system properties. Complex biological systems display some inherent
system-level dynamical properties like robustness, which are related to the net-
work dynamics and supported by specific network architectural features [6].
Understanding the emergence of these properties is important for
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Figure 1. An example of a bow-tie architecture with the largest strong component (LSC) CORE layer. The circles represent nodes and the arrows represent edges. The
different bow-tie layers are denoted by dashed boxes.
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understanding the functioning and pathology of organisms,
and can support effective systems-based therapy design for
critical diseases like cancer [7]. We want to investigate how
these important dynamical system properties, ubiquitous in
the context of gene regulation, have evolved differently
between different species. For this purpose, analysing the
architecture of their GRNs becomes crucial.

A network architecture associated with important dyna-
mical properties like robustness, flexibility, controllability
and evolvability [8] is the bow-tie. The bow-tie architecture
has been observed in various network types, including infor-
mation networks [9], internet protocol networks [10], neural
networks [11] and biological networks like metabolic [12]
and signalling networks [13]. The formal definition of the
bow-tie architecture in a directed graph is given in terms of
a strongly connected component (SCC) [14]. An SCC is a sub-
network in which every node is connected to every other
node. The largest of these, the largest strong component
(LSC) in the network is defined to be the bow-tie CORE layer
[9,12]. The LSC CORE lies between the IN layer and the OUT

layer. As presented in figure 1, the rest of the nodes in the
network are categorized into remaining layers of the bow-
tie—INTENDRILS, OUTTENDRILS, TUBES and OTHERS.

Researchers have previously shown the existence of a
bow-tie architecture in GRNs of some eukaryotes, with the
LSC CORE being the only non-trivial (consisting of more
than one node) strong component. For example, the work
in [4] demonstrates that a bow-tie architecture with one
large strongly connected CORE is observed in the yeast
(S. cerevisiae) GRN’s dynamical backbone, defined as a sub-
graph of computationally relevant dependencies. However,
the authors observed a top-down hierarchy but not a bow-
tie structure in the dynamical backbones of bacteria Bacillus
subtilis and Escherichia coli GRNs. The other example is that
condition-specific TF–TF regulatory networks of the plant
Arabidopsis (A. thaliana) in six tested experimental conditions
exhibit a bow-tie architecture with one non-trivial distinct
LSC CORE [15]. The authors in [15] additionally speculate
that such an architecture might be prevalent in other eukary-
otic species. However, the existence of bow-tie architectures
and the quantification of their characteristics across GRNs
in species of a wide range of biological complexity have not
yet been addressed.

In this paper, we investigate the existence of the bow-tie
architecture in GRNs of a number of well-studied species,
which cover a wide range of biological complexity. Complex-
ity is defined on the basis of the number of different cell types
in each organism [16]. We make use of transcriptional regu-
lation information from public databases to construct GRNs
for prokaryotes to unicellular eukaryotes to different phyla
of multicellular species. Here we analyse general GRNs,
which are not specific to any particular context like exper-
imental condition or cell type, and cover a high percentage
of the species total genes, to look for these global regulatory
architectures in different species. We apply architectural
decomposition [14] to these GRNs to find a bow-tie architec-
ture with an LSC CORE. To understand the potential biological
significance of observed trends, we build on studied associ-
ations of the bow-tie architecture with dynamical system
properties. The bow-tie CORE size, both absolute (number of
nodes or regulators) and relative (number of nodes or regula-
tors relative to the corresponding total number in the
network), is considered to be a vital aspect of the network
architecture [17], as it is related to important dynamical



Table 1. GRN data sources selected for analysis.

species data source extraction criteria
% total
genes

E. coli RegulonDB all TF–target gene and sigma factor–target gene interactions 54

yeast YTRP all direct TF–target gene interactions with binding evidence in the shortest pathway connecting

a TF–target gene pair with expression evidence

80

Arabidopsis AtRegNet all direct TF–target gene interactions with TF and target gene name and locus specified 57

Drosophila DROID all TF–target gene interactions 81

mouse RegNetwork all TF–target gene interactions 73

human RegNetwork all TF–target gene interactions 99

The extraction criteria specific to each data source are given with the percentage of species total genes (protein + RNA) in the extracted GRN (denoted as %
total genes, rounded to whole numbers). For the list of data sources not selected for analysis, see the electronic supplementary material.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210069

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

ul
y 

20
21

 

system properties [8]. Such properties include robustness and
fragility, flexibility, criticality, controllability and evolvability,
universally present in complex gene regulatory systems.
The bow-tie analysis in our work is aimed at the novel objec-
tive of demonstrating how differences in this particular GRN
architectural feature can provide a useful perspective from
which to assess differences between species of widely vary-
ing complexity in terms of these dynamical gene regulatory
system properties.

Our main findings are summarized as follows:

— The GRNs of diverse species display a bow-tie architec-
ture with a distinct LSC CORE layer. The bow-tie
architecture of these GRNs is a characteristic feature,
which can not be explained by chance.

— The size of the bow-tie CORE, relative to both the
total number of nodes and the total number of regula-
tors in the GRN, generally increases with the
complexity of the species, suggesting a possible relation-
ship between biological complexity and how dynamical
regulatory system properties have emerged differently
between species.

2. Material and methods
2.1. GRN extraction
In our study, we have selected some species covering a wide
range of biological complexity, for which the GRNs are readily
available from public data sources. These different sources for
GRNs have been created and managed by curators using meth-
odologies differing slightly or even widely. However, in our
analysis we need a common ground for GRN comparison. Our
objective has been to use the GRN extraction criteria that provide
the best possible ground of subsequent comparative analysis, in
terms of completeness and similarity.

GRNs can capture several forms of regulatory interactions. In
the extracted networks of our analysis, the regulators are TF
genes, where TFs can also refer to factors classified as TFs in
the data, like sigma factors in prokaryotes or co-factors or
chromatin remodelling factors in eukaryotes. The target genes
can represent TF, microRNA, small RNA or other genes whose
transcription is controlled by these regulators. Like in [18], we
have excluded the regulatory interactions where the source
genes represent non-coding RNAs like bacterial small RNAs or
microRNAs. However unlike [18], we have incorporated the
interactions where the regulators are TF genes which regulate
the transcription of non-coding RNA target genes. We have
aimed to use the most unique gene identifiers present in the
data source and extract only the regulatory interactions with
valid identifiers. Where possible, a complex/operon/heteromer
is to be included in the network as its individual genes. For
ease of use, we have selected only the TF–target gene interactions
available in the data sources, when in some sources there can be
additional related information like that of TF binding sites, pro-
moters or gene expression correlation. The GRNs in our study
are assumed to be general, and not specific to any particular
experimental condition or cell type.

One important aspect in extracting the GRNs is the type and
reliability of evidence associated with the interactions. An inter-
action can be experimentally validated or computationally
predicted, and the interaction can be ranked based on the
reliability of the evidence. All these different data sources use
their own set of criteria for defining these interaction properties,
and in some cases that information is not available. Choosing the
strictest possible threshold on these interaction properties could
lead to incomplete information for some species, which is not
suitable for a reliable analysis. In our study, we extract all inter-
actions with any evidence. Although extracting interactions
without a threshold might lead to false positive edges, it elimin-
ates the variability of analysis caused by different selections of
threshold. We have excluded interactions which are categorized
as indirect in the data source.

Completeness of the data is an important factor while
extracting GRNs. We have addressed the issue of incomplete-
ness of the data sources by only considering extracted GRNs
with coverage of more than 50% of the species total genes.
These total gene (protein + RNA) numbers for all species
were obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) Genome database [19]. For some species,
there are multiple different data sources. To finally have one
data source per species in our analysis, we have used the one
with the highest percentage of the total genes in the species.
The data sources and the corresponding extraction criteria
for GRNs of well-studied species selected for our architecture
analysis are listed in table 1. We believe that these network
extraction criteria give us the most optimally complete and fair
ground of comparison possible across GRNs of several species
from different sources.

Among the selected GRNs, E. coli K-12 GRN was extracted
from the RegulonDB database [20]. The GRN contains TF–
target gene and sigma factor–target gene interactions curated
from literature with different ranks of experimental evidence,
including some which are predicted. For yeast (S. cerevisiae),
the yeast Transcriptional Regulatory Pathway (YTRP) database
[21] was used, which consists of curated interactions with
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evidence of either TF–target gene binding or target gene
expression variation on perturbation of TF, or both.
We extracted the TF–target gene direct pairs with experimental
binding evidence in the shortest regulatory pathway connecting
a TF and a target gene with expression evidence. The A. thaliana
GRN consists of different ranks of direct TF–target gene inter-
actions obtained from the A. thaliana regulatory network
(AtRegNet) database available on Arabidopsis Gene Regulatory
Information Server (AGRIS) [22]. The GRN of Drosophila melano-
gaster consists of TF–target gene interactions with experimental
evidence of the TF binding to the gene and regulating its tran-
scription, or only binding evidence, obtained from the
Drosophila Interactions Database (DroID) [23]. The data source
used for mouse (Mus musculus) and human (Homo sapiens)
GRNs is RegNetwork [24]. These extracted GRNs have TF–
target gene interactions with different ranks of experimental or
predicted evidence. These GRNs have observed percentages of
the species total genes higher than the GRNs from other data
sources for these two species (see electronic supplementary
material).

2.2. Characterization of species complexity
In this section, we describe how we have characterized the notion
of biological complexity in our analysis. The complexity of an
organism can be defined in many ways, like genomic complexity
[25] and phenotypic complexity [26]. In our study, the six species
for which GRNs are selected are arranged in an order of com-
plexity defined on the basis of their number of cell types [16].
A widely accepted precise definition of a cell type is not
available, and researchers have used mostly morphological
characteristics to differentiate between types [27]. However, the
stable equilibrium states or gene expression patterns of GRNs
are viewed to be corresponding to gene expression profiles
associated with each cell type [28]. So we believe that this defi-
nition of biological complexity is relevant in our study where
we analyse GRNs of different species.

We have used the knowledge about the number of cell types
of different species from the literature [16,27]. When the data for
a particular species were not available in the used sources, we
have used the maximum number of cell types observed in the
major group the species belongs to. Escherichia coli is the simplest
organism in our study as it is a prokaryotic eubacteria, which
have a maximum of two cell types. Unicellular eukaryote yeast
is ranked next in complexity with maximum three cell types in
Saccharomyces genus. For the phyla of Arabidopsis and Drosophila,
the number of maximum observed cell types are 44 and 69,
respectively, and hence they are arranged in that order. The
next more complex species is mouse with 102 cell types. Finally,
we have the species human with 411 cell types including 145
types of neurons [29]. We have used this order of complexity
in presenting all our results.

2.3. Bow-tie architecture decomposition
To analyse the architecture of GRNs, we have used the strongly
connected component based bow-tie architecture decomposition
[14]. In some other definitions, the bow-tie network structure
needs to resemble an hourglass, with the intermediate CORE smal-
ler than the input and output layers [30]. However, this bow-tie
definition, as used in our work, does not have this particular
requirement. The details of the decomposition are given as fol-
lows. Let a directed network G be represented with a set V of
vertices and a set E of edges. A destination node is defined to
be reachable from a source node if there is a directed path
from the source to the destination node. This definition of reach-
ability (to or from) is extended to sets of nodes if there is a path
to or from at least one node in that set. A strongly connected
component is a set of nodes where every node is reachable
from every other node in the set. By definition, every single
node is a trivial strongly connected component. The bow-tie
decomposition of the network G = (V, E) with the largest
strong component (LSC) defined to be the CORE decomposes
the network (figure 1) into these seven different layers or sets
of nodes:

1. CORE ¼ LSC
2. IN ¼ {v [ V � CORE jCORE is reachable from v}
3. OUT ¼ {v [ V � CORE j v is reachable from CORE}
4. INTENDRILS ¼ {v [ V�CORE j v is reachable from IN and

OUT is not reachable from v}
5. OUTTENDRILS ¼ {v [ V � CORE j v is not reachable from

IN and OUT is reachable from v}
6. TUBES ¼ {v [ V � CORE� IN�OUT j v is reachable from

IN and OUT is reachable from v}
7. OTHERS ¼ V � CORE� IN�OUT� INTENDRILS�

OUTTENDRILS� TUBES:

The bow-tie decomposition is performed using algorithm 1
DFSG(v) represents the set of nodes obtained from a depth-first
search starting at vertex v in network G. GT refers to the network
that is obtained by reversing the direction of every edge in G.

2.4. Null model construction
We compared the GRNs of different species with their random-
ized counterparts in which the number of nodes and the
degree at each node are preserved. Similar to the approach in
[4], we generate these random networks. The autoregulatory
edges of the original GRN are preserved separately because
they do not affect the bow-tie layer definitions. This random
generation process starts with the other non-autoregulatory
edges in the original GRN forming the initial edge list. A pair
is selected randomly from this list and their end nodes are
swapped. If any of these new edges lead to self-loops or multiple
edges, this swap operation is not performed for that pair. After
trying the swap operation on every distinct pair in the edge list
for an iteration, the algorithm in the next iteration repeats the
process on the new edge list, consisting of edges from the pairs
which could not be swapped. To make the process efficient on
one hand and to have enough iterations for many swap oper-
ations to possibly occur on the other, we chose the number of
iterations to be 10. There can be some edges whose end nodes
are not swapped with another edge even after the 10 iterations.
There are other ways of generating these null model networks,
here we have used this simple and fast method for our analysis.
1000 such random networks were generated independently for
each GRN.
3. Results
In this section, we present the results of applying the bow-
tie architecture decomposition (described in §2.3) on the
selected GRNs of six species of varying complexity. Table 2
shows the number of nodes and regulators in each of
the bow-tie layers in these GRNs, where regulators are
nodes with at least one outgoing edge in the extracted
GRN. We present the relative sizes of these layers with
respect to all nodes and all regulators in the network in
figure 2a,b, respectively.

From table 2, we observe that for all these GRNs there is a
non-trivial LSC substantially larger than the second LSC. For
example in E. coli GRN, the LSC consists of 54 nodes com-
pared to a three-node second LSC, and the difference
between the two are larger for other species. In all these
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Figure 2. Bow-tie decomposition of GRNs. (a) Distribution of nodes in different bow-tie layers of GRNs in different species. (b) Distribution of regulators in different
bow-tie layers of GRNs in different species. The CORE consists of a substantial percentage of all regulators. The relative CORE size generally increases with species
complexity.

Table 2. Bow-tie decomposition of GRNs in different species.

layer E. coli yeast Arabidopsis Drosophila mouse human

all Edges 7348 16 032 670 771 157 462 120 579 171 946

Nodes 2381 5124 16 427 12 323 18 916 22 121

Regs 220 159 573 149 1328 1456

CORE Nodes 54 83 422 86 1203 1187

Regs 54 83 422 86 1203 1187

2nd LSC Nodes 3 2 1 2 3 3

Regs 3 2 1 2 3 3

IN Nodes 8 11 43 1 3 3

Regs 8 11 43 1 3 3

OUT Nodes 2257 5003 15 943 12 236 17 670 20 901

Regs 119 63 92 62 108 249

INTENDRILS Nodes 7 25 2 0 23 13

Regs 0 0 0 0 0 0

OUTTENDRILS Nodes 35 1 15 0 14 15

Regs 35 1 15 0 14 15

TUBES Nodes 1 1 0 0 0 0

Regs 1 1 0 0 0 0

OTHERS Nodes 19 0 2 0 3 2

Regs 3 0 1 0 0 2

The regulators (denoted as Regs) are the nodes which have at least one outgoing edge in the extracted GRN. The second LSC refers to the next largest strong
component separate from the LSC CORE.
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GRNs, this LSC is the distinct CORE of the bow-tie, located
between a smaller IN layer and a larger OUT layer. As evident
from figure 2b, the non-trivial CORE which consists only of reg-
ulators by definition, consists of a substantial percentage of
all regulator nodes, specially for eukaryotes (greater than
40%). We can therefore conclude that a bow-tie architecture
with one distinct LSC CORE exists in the GRNs of all these
species of varying complexity.



Algorithm 1. Bow-tie network decomposition algorithm based on the
largest strong component (LSC) as core layer.

1. Set CORE ¼ LSC.

2. Selecta v [ CORE: IN ¼ DFSGT (v)� CORE:

3. Selecta v [ CORE: OUT ¼ DFSG(v)� CORE:

4. foreach v [ V � CORE� IN� OUT do

5. IRV ¼ (IN> DFSGT (v) = f):

6. VRO ¼ (OUT> DFSG(v) = f):

7. if IRV and not VRO then

8. v [ INTENDRILS.

9. else if not IRV and VRO then

10. v [ OUTTENDRILS:

11. else if IRV and VRO then

12. v [ TUBES:

13. else

14. v [ OTHERS:

15. end if

16. end foreach
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The GRN bow-tie architecture observed in our results has
some important differences between species. Through the
arrangement of species in an increasing order of biological
complexity from E. coli to human, in table 2 and figure 2,
we observe the relationship of the bow-tie CORE size with
this biological complexity. Since we are comparing differently
sized GRNs, we have examined the variation of relative CORE

size. This variation is clear in figure 2a and especially in
figure 2b. The relative CORE size roughly increases as species
complexity increases. This increase in percentage of network
regulators in the bow-tie CORE in more complex organisms
comes at the cost of a roughly decreasing percentage of reg-
ulators in the IN and the OUT layers, as can be observed in
figure 2b. Based on our observations, we can conclude that
structurally the CORE size is a key differentiating factor in
the bow-tie GRN architecture of different species, with a rela-
tively larger CORE observed in more complex organisms.

To assess the effects of false positive and missing edges in
the extracted GRNs on our observations, we perform sensi-
tivity analysis experiments. In figures 3 and 4, we present
the average distribution of nodes and regulators in the differ-
ent layers from bow-tie decomposition of 1000 GRNs after
random addition and deletion of 10% of the original GRN
edges, respectively. On addition of edges, the size of the
CORE increases. For Drosophila GRN with just one node in
the IN layer, random edge addition leads to an incomplete
bow-tie architecture, with the average number of IN nodes,
rounded to an integer, being 0. Between species, the generally
increasing trend in CORE size with complexity is still observed.
The increase in the CORE size at the cost of the sizes of layers
like the OUT would depend on factors like the network density
and the original layer sizes, governing how a regulator node
can now become part of the LSC, which can explain why we
observe larger changes for some species in figure 3. On del-
etion of edges, the CORE decreases in size, but is still
substantially large and the roughly increasing trend in CORE

size with complexity is preserved. There is an increase
observed in the size of the OTHERS layer. The sensitivity
analysis for much larger percentages (25% and 50%) of
edge addition and deletion are presented in the electronic
supplementary material. Overall, these experiments demon-
strate that the observed existence of a bow-tie architecture
with an LSC CORE and the trend of increasing CORE size with
species complexity is quite robust to variations in the quality
of the GRN data.

Further, to quantify the extent to which the GRN bow-tie
architectures are different than what would be expected
simply by chance, we compared the bow-tie architectures
observed in the empirical GRNs with their randomized
counterparts. We looked at the LSC CORE size in these
GRNs and the corresponding sizes in random networks
having the same number and degree of nodes (§2.4).
Figure 5 shows the LSC CORE layer sizes of 1000 random net-
works for every species, along with CORE size in the original
GRNs. We observe that for E. coli and yeast, the size of the
CORE is smaller than that expected in similar random net-
works. As the species complexity increases in eukaryotes
beyond yeast, the size of the GRN bow-tie CORE is larger
than expected in random networks. For Drosophila, most
of the similar random networks do not have a full bow-tie
architecture, with 0 nodes in the IN layer. Using a z-score
absolute value threshold of 1.5 as in [15], we can say that
the sizes of the bow-tie LSC CORE in the original GRNs
of these species are significantly different from those in
random networks. This points to the conclusion that the
observed bow-tie architectures are characteristic features of
these GRNs differentiating them from random networks of
similar size and degree.
4. Discussion
4.1. Summary of observations
From our results in table 2 and figure 2, we find that a bow-
tie architecture with a distinct LSC bow-tie CORE exists in the
GRNs of all six species of varying complexity. We observe
that there is a general increase in bow-tie CORE size, relative
to all nodes and all regulators in the GRN, with the complex-
ity of the species. Our sensitivity analysis in figures 3, 4 and
electronic supplementary material and comparison with
similar random networks in figure 5 show that the bow-tie
architectures in these GRNs are characteristic features and
cannot be explained just by chance.

Our observations build on and add to the GRN architec-
ture analysis results obtained from prior research. A bow-tie
architecture with a distinct LSC CORE has been previously
observed in the dynamical backbone of yeast GRN [4] and
in Arabidopsis TF–TF networks [15]. However, the authors
of [4] did not find a bow–tie architecture in the dynamical
backbone of the analysed E. coli GRN, with the LSC not
much larger than the second LSC. The GRN consisted of
1607 nodes or about 36% of the species total genes. By con-
trast, with the use of a more complete GRN with greater
than 50% of the total genes of the species, we observe a dis-
tinct LSC CORE between IN and OUT layers for the prokaryote
E. coli and for other more complex eukaryotic species.

We observe an increase in bow-tie relative CORE size with
the complexity of the species, but this increase is not
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monotonic (figure 2). A possible explanation for these slight
variations from the trend of relative CORE size increase with
complexity is variation in the GRN data quality from differ-
ent data sources. Specifically in figure 2a, a larger CORE size
relative to all nodes is observed in E. coli than for more com-
plex yeast. There is also a subsequent drop for more complex
species Drosophila. We believe that the likely cause of this is
the incompleteness of the available GRN information in
terms of the number of regulators in the extracted GRN.
The percentage of regulator nodes out of all network nodes
in the extracted GRN, where the corresponding absolute
numbers are presented in table 2, is highest for E. coli and
lowest for Drosophila. This might contribute to the observed
relatively high and low CORE sizes with respect to all nodes
respectively for these two species. Therefore, we validate
the observation that the CORE becomes larger with complexity
by also examining the size relative to all regulators in the
GRN in figure 2b. Here a clearer increase of CORE size with
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complexity is observed. The reason behind the slight drop
observed here for Drosophila is probably that one of the two
sources used by the curators of the Drosophila database
(§2.1) has a stricter criterion of both binding and transcrip-
tional regulation evidence for interactions. Our sensitivity
analysis demonstrates that our results are quite robust to fac-
tors related to GRN data quality like incorrect or missing
information. It should be noted that this analysed robustness
of our observations is not the same as the dynamical property
of robustness, which we discuss separately in the next
section.
4.2. Variation of dynamical properties with complexity
Next, with our observations about the differences in GRN
architectures between species, we aim to understand their
biological implications. For that purpose, here we use pre-
viously proposed associations of dynamical system
properties with the bow-tie architecture and specifically its
CORE layer size. This enables us to suggest hypotheses about
how some dynamical gene regulatory system properties
may have emerged differently with biological complexity.
4.2.1. Robustness and fragility
Robustness of a dynamical system is the property to with-
stand the effects of external and internal perturbations to
maintain its functioning, whereas fragility is the property
where the system, robust against expected perturbations, is
fragile to some unexpected perturbations [31]. The robustness
facilitated by the network bow-tie architecture can follow
from the robustness of the strongly connected CORE [6], due
to the presence of multiple paths between any two pairs of
CORE nodes [12]. However, the same system is fragile to suffi-
cient perturbations of the bow-tie CORE and can be hijacked or
disrupted by other processes [8]. In the model of [32], a tran-
sition from a random GRN to one with a smaller, denser and
segregated core block of nodes, followed by a general
decrease in core size, has been observed on increasing the
selective evolutionary pressure favouring robustness against
noise. In our results, we observe a bow-tie architecture with
a LSC CORE in GRNs of all species, and this architectural fea-
ture makes these regulatory systems robust. We hypothesize
that the increase in bow-tie CORE size in more complex species
imparts the system increased robustness to perturbations not
specifically concentrated in the CORE, as there are potentially
more regulatory paths between any pair of nodes in the
bigger LSC core. But this comes at the cost of increased
system fragility to specific perturbations to the larger CORE.
4.2.2. Flexibility
Flexibility refers to the property by which a large number of
possible outcomes are supported by a dynamical system [33].
This property describes the internal degrees of freedom in the
system [34]. It is pointed out in [8] that a larger bow-tie CORE

providing a wider range of common services increases the
system flexibility. Based on our observations in the analysed
GRNs, we propose that the larger bow-tie CORE provides more
flexibility in the more complex species. A more complex
organism has more cell types, which are involved in more
specialized functions, and the larger CORE structurally has
the ability to mediate a larger variety of biological functions.
So in these complex organisms the general GRN is observed
to have a larger bow-tie CORE, to increase the flexibility of the
regulatory system.
4.2.3. Criticality
Criticality is the property by which a dynamical system tunes
to a point or region of marginal stability, and exists at the
boundary between the ordered and the chaotic phases [35].
Biological regulatory networks are found to be critical or
near critical [35]. This property of criticality allows the
system to attain an optimal trade-off between the above-men-
tioned properties of robustness and flexibility [33]. It is
discussed in [17] that a larger bow-tie CORE might make the
system more flexible and shift it more towards the ‘state at
the edge of chaos’. Our hypothesis is that a larger GRN
CORE in more complex species moves their gene regulatory
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systems closer to criticality, and with an increase in flexibility
and a decrease in robustness to specific perturbations to the
CORE as discussed before, allows a better robustness–flexibility
balance.

4.2.4. Controllability
Another dynamical property of relevance here is controll-
ability. A non-linear dynamical system is defined to be
controllable when there is a control path from an undesired
attractor state to a desired attractor state under finite pertur-
bations, where attractor states are stable equilibrium states in
the phase space [36]. It has been proposed that a larger bow-
tie CORE reduces controllability [8]. Tighter control of the regu-
latory system may be related to more extreme conditions and
less resources [17], which might explain why less complex
organisms including bacteria in our analysis have a smaller
bow-tie CORE allowing more rigid control. More complex
organisms with more cell types should have more attractor
states, as these attractor states of GRNs are considered to
correspond to gene expression profiles associated with each
cell type [28]. We hypothesize that in such cases, perturb-
ing the regulatory system to move from an undesired
attractor to a desired attractor might be more difficult. This
reduces the system controllability with complexity, that
comes with a larger GRN bow-tie CORE, as observed for
more complex species.

4.2.5. Evolvability
All the properties discussed above are in the context of a
short timescale, and a dynamical system long-term property,
which the bow-tie architecture is associated with, is evolva-
bility. This is the property by which an organism generates
heritable phenotypic variation [37]. At longer timescales,
evolvability can be considered as the robustness of lineages
to potentially large external or internal changes [8]. Hence
the architectural requirements are the same for both robust-
ness and by extension to long time-horizons—evolvability,
and these requirements can be met through the bow-tie archi-
tecture [6]. It is pointed out in [8] that a larger bow-tie CORE

reduces evolvability, which makes sense if only robustness
is considered. However while analysing which systems are
more evolvable, we should consider both robustness and
flexibility [37], and how these two properties are more opti-
mally balanced through critical behaviour [33,38]. With this
consideration, we hypothesize that an increase in GRN CORE

size with species complexity provides increased long-term
evolvability in the more complex organisms.

To summarize our hypotheses, an increasing GRN bow-
tie CORE in more complex species gives their gene regulatory
systems increased robustness to perturbations not concen-
trated in the CORE, but also leads to increased system
fragility to specific perturbations to the CORE. The larger
CORE provides greater flexibility and moves the regulatory
system closer to criticality, and gives increased evolvability
in the long term. The less complex species have a smaller
bow-tie CORE imparting increased short-term controllability.

We not only put forward hypotheses about how dynami-
cal gene regulatory system properties emerge differently with
species complexity, but also are able to suggest a complexity
based division between species in terms of these properties.
Comparison with random networks similar in size and
degree distribution in figure 5 reveals that the LSC CORE is
smaller than expected by chance in E. coli and yeast GRNs.
Similar results for LSC size were previously observed in
GRNs of B. subtilis and E. coli [18], and yeast [39]. For more
complex eukaryotic GRNs, we observe that the bow-tie
CORE size is larger than expected in similar random
networks. So it is reasonable to speculate that for prokaryotic
bacteria and unicellular eukaryotes living in comparatively
more extreme conditions, greater regulatory system controll-
ability is beneficial. On the other hand, for multicellular
eukaryotes, increased flexibility at the cost of reduced robust-
ness to specific perturbations and hence behaviour closer
to criticality, with subsequently increased long-term evolva-
bility are probably key requirements for the regulatory
system. Our work has focused on how the GRN bow-
tie architectures in these species have evolved to possibly
support these requirements.
5. Conclusion
In this paper, we investigate the GRNs of several species and
demonstrate the existence of a bow-tie architecture with a dis-
tinct LSC CORE in them. We show that the bow-tie is a
characteristic GRN architectural feature. Among the strengths
of our work, to our knowledge this is a novel comprehensive
bow-tie architecture analysis of GRNs in several species of
widely varying complexity. We further observe an increasing
trend in relative CORE size with species complexity and
hypothesize how dynamical gene regulatory system proper-
ties have emerged differently with complexity. These
system properties are tightly coupled with the functioning
and pathology of all the organisms. For instance, using the
trade-off between robustness and fragility is considered to
be a promising direction of cancer therapy [7]. The controll-
ability of the gene regulatory system is very relevant, as
cancer cells are considered to be trapped in abnormal attrac-
tor states [40]. Understanding how these properties emerge
and how they emerge differently between species, can lead
to novel systems-based therapy approaches for diseases like
cancer. Our work has provided valuable insights into the
structural basis of these differences. For instance, the larger
bow-tie CORE size for more complex organisms like human
needs to be taken into account in coming up with potential
approaches for controlling the regulatory system state.
Another possible benefit of our work is that the observed
trends from the analysis of GRNs in several well-studied
species can provide guiding directions for studies on less-
studied or non-model species whose regulatory interaction
information is largely incomplete at present.

A limitation of this work is that using other GRN data
sources or a different set of GRN extraction criteria could
affect our observations. For our analysis, we depend on the
information available in existing state-of-the-art biological
data sources, with GRN extraction criteria aimed at an opti-
mal ground of comparison. Supported by our sensitivity
analysis experiments, we believe our results are quite
robust to data quality factors and hence the corresponding
possible biological explanations hold merit. As new exper-
imental methods for collecting data on regulatory
interactions are developed, more complete and accurate
data on regulatory networks for more species should
become available. We anticipate that the methods and results
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presented here will enable more detailed analysis of these
data.

Future work could aim at testing the hypotheses pro-
posed in this paper. There exist some approaches applicable
in dynamical models for quantifying the system properties
discussed here, however, obtaining accurate dynamical
models of these general GRNs of different species is a challen-
ging problem on its own [35,41]. Metric definitions on real
systems should be standardized. For quantifying properties
associated with biological functions, we might need to look
for gene functionalities through functional enrichment analy-
sis, or for pathways through pathway enrichment analysis in
the bow-tie layers. Our suggested hypotheses about how
these properties emerge differently with species complexity
could then be verified, and the role of the bow-tie architecture
CORE size difference can be assessed by possible in vitro GRN
modification experiments. We need to consider other factors,
including connectivity within and between different bow-tie
layers, that might also control these dynamical properties.
However, for verifying the impact of the GRN bow-tie archi-
tecture in the proposed relationships, understanding how this
architecture governs the network dynamics is of prime
importance.

In our work, we only look at the structural relationship of
GRN architecture with dynamical gene regulatory system
properties, but in future we want to investigate the details
of how the network architecture controls the network
dynamics. For this we need to understand how the structure
of an individual bow-tie layer governs the dynamics associ-
ated with that layer, and then possibly extend this to how
the global bow-tie architecture controls the global network
dynamics, within and between species. Determining how
dynamical behaviour associated with specific biological func-
tions or pathways is controlled by the individual layers and
the overall bow-tie architecture would provide new and valu-
able understanding of the functionality of GRNs. In our
study, we consider general trends in one direction of either
increase or decrease in terms of dynamical properties with
general increase of bow-tie CORE size in more complex species.
However, detailed analysis of dynamics could reveal and
explain the more complicated nature of these trends [32].
The insights we provide here in our work can be useful for
such future dynamical analysis.
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