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Image Segmentation and Region Classification
in Automotive High-Resolution Radar Imagery

Yang Xiao , Liam Daniel , Member, IEEE, and Marina Gashinova

Abstract—Image segmentation and classification of sur-
faces and obstacles in automotive radar imagery are the
key technologies to provide valuable information for path
planning in autonomous driving. As opposed to traditional
radar processing, where clutter is considered as an unwanted
return and should be effectively removed, autonomous
driving requires full scene characterization. Hence, clutter
carries necessary information for situational awareness of the
autonomous platform and needs to be fully assessed to find
the passable areas. In this paper, we proposed a method of
automatic segmentation of automotive radar images based
on two main steps: unsupervised image pre-segmentation
using marker-based watershed transformation, followed by
the supervised segmentation and classification of regions containing objects and surfaces based on the use of statistical
distribution parameters. Several distributions were considered to characterize returns from specific region types of
interest within the scene (denoted as classes) in calibrated radar imagery—the extracted distribution parameters were
assessed for their ability to distinguish each class. These parameters were then used as features in a multivariate
Gaussian distribution model classifier. Both the performances of the proposed supervised classification algorithm and
the automatically segmented results were investigated using F1-score and Jaccard similarity coefficients, respectively.

Index Terms— Automotive radar imagery, image calibration, image segmentation, distribution feature extraction,
Weibull distribution, multivariate Gaussian distribution, watershed transformation.

I. INTRODUCTION

AUTOMOTIVE sensors are the backbone of advanced
driver assistant systems (ADASs) and sensing systems

for self-driving cars since they can provide robust assessment
of the proximate environment (up to several hundred meters)
for path planning and decision making [1], [2]. The sen-
sors generally involved includes LIDAR, camera, ultrasound,
global positioning system and automotive radar, the latter is
being reliable all-weather technology.

The development of radar was for decades focused on
reliable detection and tracking algorithms for typical road
actors such as cars and pedestrians [3]. Some elements of
classification were implemented based on the characteristics
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of radar returns, though it could potentially provide wider
scene information e.g. class of surface, traditionally referred
to as clutter, which was however subject to suppression.
Additionally, due to the low resolution, traditional automotive
radar did not possess the capabilities to effectively define,
assess and classify clutter areas.

As opposed to traditional ADAS systems, for autonomous
driving the identification of passable areas is the key task to
achieve automated path planning and obstacle avoidance [3].
One of the approaches to identify the passable region from the
sensed data is to segment and classify the surfaces and objects
viewed by various sensors within a scene. Therefore, radar
should be able to function as “clutter mapping” sensor. There
is a substantial research in the area of remote sensing on image
segmentation, feature extraction and classification. They are
critical steps for object-based image analysis (OBIA) of SAR
imagery in a wide range of applications of remote sensing,
such as sea ice monitoring [4], land cover classification [5],
agricultural crop identification [6] etc.

For automotive sensing to this day, however, the radar sen-
sors have never exceeded the resolution required for traditional
ADAS, which is far from that delivered by SAR imagers,
so that image segmentation and surface classification were
hardly considered in mainstream automotive radar sensing
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research. Therefore, the key requirements for provision of
autonomous navigation can be summarized as follows: ‘radar
clutter’ must be resolved (imaged), characterized (positions,
extent and texture estimated to generate the ‘depth’ of scene),
segmented and labelled, enabling deep scene reconstruction
similar to SAR, where four main approaches are used:

1) The edge-based segmentation algorithms which are
relatively simple and computationally effective; example
algorithms are the fuzzy model and watershed transforma-
tion (WT). The fuzzy logic based techniques in remote
sensing image segmentation include fuzzy c-means clustering
(FCM) [7], [8] and fuzzy stochastic estimation maximization
(FSEM) [9]. The main challenge of FCM is the sensitivity to
weight adjustments of adopted data attributes and the initial-
ization process [10], and the FSEM method was limited to
two classes segmentation. WT, which segments objects using
closed boundaries has become the most popular edge-based
segmentation methods in the remote sensing community.
The WT method based on the typical gradient operator can
however easily produce over-segmented areas due to image
noise [11]. Therefore, the generation of gradient image is
the key to improve the performance of WT which could
constrain the initial edges. Multiple techniques to produce the
gradient image have been explored, such as the Canny edge-
detector [12], marker based edge embedded WT [13] and hier-
archical method [14]. Algorithms of edge-based segmentation
do not function well on images with smooth transitions and
low contract, and they are generally sensitive to noise [15],
however could be very effective for initial pre-segmentation
of the scene, as will be shown in this paper.

2) The region-based methods. These are based on two basic
operations: region merging and splitting. Region merging (or
growing) starts from an initial region (or pixel), then merge
the regions (or pixels) according to a specific homogeneity
criterion which determines whether the area belongs to the
growing region or not [16]. In contrast, region-splitting starts
from the entire image, and then split the image into segments
based on the criterion for inhomogeneity of regions [17]. The
criteria used in region-based methods include the properties
of spectral and spatial characteristics, shape, texture, size,
prior knowledge and context of scenarios. The mathematical
description of these properties is based on statistical distribu-
tion features [18], variance, Moran’s I [19], and F measure etc.
Typically region-based segmentation is based on either merg-
ing or splitting or combination of both techniques [15], [19].
However, finding the appropriate parameters of the criterion
for judging splitting or merging of regions is a significant
challenge.

3) Hybrid method (HM) could overcome the limitation
of both edge-based and region-based segmentation methods.
Most of the studies of HMs start from the edge-based method
to create an over segmented image, and then merge the similar
segments based on either homogeneity or heterogeneity of
regions. The advantages of HMs are (i) the freedom to select
the methods for initial segmentation and the following region
merging; (ii)less sensitivity to image noise texture.

4) Semantic methods are generally supervised approaches
which allot the label to each pixel. Machine learning-based

semantic methods include Neural network [20], Support vector
machine [21] and Convolution Neural Network [22] etc.
Semantic methods showed encouraging results on SAR image
segmentation, although require a vast amount of training data
and a significant number of parameters for validation [15].

The approach proposed in this paper aims at image seg-
mentation and supervised classification of automotive radar
images with multiple classes to be identified, so that each
pixel within the image is ultimately labelled according to a
determined class. It can be defined as a HM consisting of
initial edge-based pre-segmentation using the WT method and
a subsequent classification and region merging process on
the pre-segmented regions of interest (RoI’s) based on the
statistical distribution parameters extracted from radar data.
These will be used as features in a multi-variate Gaussian
distribution (MGD) based supervised classifier.

For effective path planning, we aim to distinguish between
tarmac, other traversable surfaces and regions consisting
objects. Radar scattering from specific objects and clutters will
be investigated as a function of grazing angle and resolution.
Several types of distribution functions which are physically
meaningful for the kind of clutter in the automotive envi-
ronment will be investigated, and fitting errors evaluated and
compared between region classes. In the results of full segmen-
tation, each pixel is labelled according to its class, grouped into
clusters (segments) and color coded for reconstructed scene
representation.

The paper is organized as follows: Section II introduces
the automotive radar data set used in this part of research
and outlines the methodology of image calibration. Section III
states the procedure of distribution parameter extraction and
discusses the fit errors. Section IV proposes the supervised
classification algorithm based on the MGD model using
identified features. The effective and redundant factors for
the classification improvement are determined from F1-score
results of classification. Section V introduces the algorithm
of automatic segmentation and discusses the results. Finally,
conclusions are formulated, and the further steps are outlined.

II. RADAR IMAGE DATASET

Here we describe the radar system used for data collection,
the formation and calibration of radar imagery and the dataset
used for the analysis in this paper.

A. Radar System, Image Formation and Dataset
The radar system is an experimental high-resolution 79 GHz

FMCW real aperture radar, designed by the University of
Birmingham and ELVA-1 [31] with parameters presented in
Table I.

The radar is quasi-monostatic, has a ranging frequency of
33.6 kHz/m and is mechanically scanned in azimuth. Range
profiles are generated at equally spaced positions within the
scan to form a radar image over a specified field-of-view
(FoV) with an azimuth resolution dictated by the antenna beam
width.

The fine azimuth resolution achieved through using narrow
beam imaging antennas combined with wide bandwidths/fine
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TABLE I
79 GHz FMCW IMAGING RADAR PARAMETERS

Fig. 1. Automotive radar image set. (a) The uncalibrated radar image
in dB power values, (b) corresponding optical image, (c) calibrated radar
image and (d) the color coded labeled radar image.

range resolutions provides uniquely high-resolution imagery.
Lets’ stress here that there is no loss of generality to applica-
tion of the algorithms applied hereinafter for imagery obtained
using synthetic beamforming techniques e.g. MIMO or SAR.

An example radar image can be found in Fig.1 (a). Fig.1 (b)
is a corresponding optical image of the scene gathered using
a Stereolabs ZED stereo video camera [23] used for ground
truth. The radar image here is expressed in uncalibrated dB
power units and will be termed an image frame from hereon
in. Radar videos are formed using a sequence of image frames
from consecutive radar scans.

A dataset containing 330 frames of radar data is used, which
was acquired with a scan rate in the order of 1 Hz with
199 azimuth range profiles within a FoV of 90◦. The dataset
was recorded from a moving vehicle platform within the urban
environment of the campus of the University of Birmingham,
UK. It contains multiple region types, including asphalt roads,
grass areas, and several roadside and urban objects such as
buildings, pedestrians, signposts and vehicles [24].

B. Radar Image Composition and Pre-Processing
The mono-static radar image is composed of the backscatter

returns from the scene objects, such as cars, tarmac road
and grass areas shown in Fig 1 (a), (b). In classical radar

Fig. 2. (a) the experimental setup for measuring radar system response
and propagation loss using a CR; (b) CR on ground, supported by a mat
to prevent blockage by grass; (c) a radar image of the CR.

applications, these are considered as clutter regions, obscuring
detection of target objects (moving cars and pedestrians) and
are subject to suppression. For path planning of autonomous
platforms however, they are equally as important as targets,
and segmentation and classification of all regions is funda-
mental. The surfaces, road infrastructure and indeed the target
objects can be distinguished visually by their intensity contrast.
The statistical analysis of these areas forms the basis of our
classification procedure and will be discussed in Section III.

For the sake of image segmentation we will treat all regions
as clutter, the power return, Ps

r , within the resolution cell of
a particular clutter area is governed by the following factors
expressed in the form of a radar equation,

Ps
r ∝ S (R) · Latm (R) · Lprop (R)

· σ0
(
θg, P, hrms, Lc, εr

) · Acell (R, θaz,�R) (1)

where range dependent terms are: S is the radar response
characteristic, Latm is an atmospheric loss, which usually
does not exceed 2-3 dB for automotive ranges, L prop is the
propagation loss and Acell is the area of the resolution cell,
governed by the antenna azimuth beamwidth θaz , and the radar
range resolution �R. The normalized RCS of the clutter area
σ0 is a function of many factors including grazing angle, θg ,
polarization, P , surface roughness parameters: rms surface
height, hrms and correlation length, Lc, and material dielectric
permittivity, εr [25].

In order to provide a more general segmentation algorithm
transferrable between radar systems, all radar response char-
acteristics should be removed from the imagery. Additionally,
propagation effects should be compensated leaving solely the
effects of the surface scattering. The following sub-section
describes the calibration procedure.

1) Image Calibration: A trihedral corner reflector (CR) with
an RCS of 17.9 dBsm was placed at ground level at several
ranges from the radar and imaged within a narrow FoV of
±5◦. The measurement setup is shown in Fig. 2 (a) and (b),
an example of the imaged CR is shown in Fig. 2 (c).

The average Tx/Rx height is 1.2 m. At each range within
5-60 m the CR was positioned to ensure maximum return
power, and was measured several times. To determine if there
was a potential effect from surface type, this was carried out
on both grass and asphalt, being two surfaces of significantly
different roughness. Using the radar equation and known RCS
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Fig. 3. (a) Measured loss compared with the free space propagation
model. (b) Average loss calculated from the grass and asphalt mea-
surements and polynomial loss fit. The label of x-axis shows both range
information and the corresponding grazing angles for comparison.

of the CR we can evaluate propagation loss as function of
range, which relates also to grazing angle. The result is
shown in Fig. 3(a), alongside modelled free space propagation
loss [36].

It can be seen in Fig. 3(a) that at ranges > 15 m, the loss fol-
lows the free space model trend. This is due to the radar inter-
mediate frequency (IF) response being flat in this region and
multipath/ground reflection playing a reduced role when con-
sidering a ground-based target. At ranges < 15 m, we observe
a deviation from the free space model which may be attributed
to a combination of drop off in the radar IF response and
antenna elevation pattern effects. The important conclusion is
that the loss is not significantly different between grass and
asphalt measurements and so a common loss curve/calibration
can be used for all imagery, not specific to the surface type
we are trying to determine. To this end, a polynomial fit must
be used to apply the range response corrections as shown in
Fig. 3(b), where a 4th order polynomial was used as a close
fit to our measurements:
L f it

prop = −5.7 × 10−6 R4+0.001R3−0.05R2+0.36R−26.4

(2)

Compensation of the radar return w.r.t. range was applied
to each range profile within the radar image frame. Fig. 4
shows an example of a range profile before and after the
compensation and infers that such compensation results in a
“whitening” of the range profile. This effect is shown across all
classes of surface in the compensated radar map of Fig. 1(a)
which is shown in Fig. 1(c).

2) Backscatter Coefficient: The sheer variation of grazing
angle shown on the x-axes upper scale in Fig. 3 is specific
to the short-range topology, distinguishing it from other radar
imaging systems such as airborne and spaceborne synthetic
aperture radar. This variation in grazing angle implies a vari-

Fig. 4. Comparison of uncalibrated and calibrated radar range profiles.

Fig. 5. (a) Back scatter coefficient as a function of frequency and range
for a rough asphalt surface (b) resolution cell area as a function of range
for experimental radar setup.

ation in the rough surface backscatter coefficient σ0 which in
general can be split into 3 regions [26]: linear increase at small
grazing angles, plateau at intermediate grazing angles and
exponential increase at high grazing angles. The true position
and prominence of these transitions are radar and surface spe-
cific. Thus, after range loss compensation (Fig. 4) we should
either remove influence of the grazing angle on the normalized
radar cross section of the clutter, or pre-segment image into
regions in range where we expect negligible variation of σ0.
The former requires a priori knowledge of the terrain, while
for the latter we need to know the behavior of σ0 for the
chosen classes to define range regions of similar returns. The
whitening effect of the range loss compensation indicates,
however, that the last two terms of (1.1), σ0 and Ares , must
have compensated each other. To explain this effect we have
first modelled backscatter coefficient as function of grazing
angle using Integral Equation Method [27], which in [28]
has shown good agreement between measured and modelled
results for asphalt at 94 GHz. Fig. 5(a) shows that simulated
backscatter coefficient for multiple frequencies drops as the
grazing angle reduces. In Fig. 5(b) a plot of the resolution
cell area Ares (in dBsm) calculated using radar parameters
(Table I) and elevation above the ground. Fig. 5 therefore
highlight the fact that for the real-aperture imaging radar an
increase in resolution cell size with increase in the range
counteracts the falloff in the normalised radar cross section.
It should be noted that this discussion of σ0 relates to our
average received power level and the ability to look further
ahead of the vehicle, though at the expense of cross-range
resolution. It does not account for statistical variations in the



6702 IEEE SENSORS JOURNAL, VOL. 21, NO. 5, MARCH 1, 2021

return power between individual resolution cells, which may
vary with grazing angle as the scattering mechanism changes.
This potential statistical variation with range will be discussed
in Section III.

C. Image Format and Data Labelling
Now the data has been described, we discuss its labelling for

use in examining potential features for supervised learning. For
path planning, we need to distinguish between tarmac, other
kinds of terrain, roadside objects and road actors (targets).
In terms of image segmentation, this represents the classifi-
cation into four broad classes such as tarmac (e.g. asphalt),
non-tarmac surface e.g. grass (requiring a vehicle response
to transit from tarmac), shadow and most general – target
object regions, which incorporate all impassable obstacles
such as buildings, vehicles, streetlights, traffic signs and trees,
which generally have a higher RCS in the imagery. Shadow
regions behind objects are of particular interest as their
identification and subsequent estimation of shadow depth can
provide indirect information about an object’s height. Shadow
like regions will also be formed from regions of very low
backscatter, such as surface water. It should be noted that
the methodology proposed in this paper is not limited to
these chosen classes. All radar images are labelled using the
labelling tool of Liblable [29], [30]. The tool operates on
a rectangular grid and so a raster image of the radar scan
must be used, not the raw range-azimuth data; corresponding
video imagery guides the labelling. Thus mapping between
two data representations is required to perform the labelling
and corresponding radar data extraction. The representations
are: the radar range-azimuth map pixels (‘resolution cells’)
converted and plotted in Cartesian coordinates in a plan
position indicator (PPI) representation and the radar raster
image pixels with three color channels (defined as “raxels”).
The relationship between resolution cells and raxels are shown
graphically in Fig. 6. A full description of the transformation
may be found in [31], it is very specific to the real aperture
radar coordinate map and its representation and is summarised
in Section III, A. The labelled image of the radar frame in
Fig. 1 (a) is shown in Fig. 1 (d), where the pixels of the radar
raster image belonging to a specific class are identified by the
same color. The pixels of areas which could not be associated
with one of four classes in the optical image due to restricted
visibility or uncertainty are shown as black background in
the labelled image. These will be treated as belonging to
an “unknown” class, which can then be refined in advanced
context-based and association approaches.

III. REGION STATISTICAL PROPERTIES

AND FEATURE EXTRACTION

The distribution parameters of the labelled radar clutter
are extracted and analyzed to determine potential use as
feature vectors in the automatic segmentation and classi-
fication procedure. In order to determine which provides
the parameters/features with the greatest contrast between
region types, distribution fits are made to the probability
density histograms of both the radar absolute intensity val-
ues, Vintensity and the dB-power values, Pd B . Weibull and

Fig. 6. Relationship between raxels of rasterised radar images and radar
map (resolution) cells.

log-Weibull distributions have been widely used in modelling
of ground clutter [32], [33]. Both distributions are considered
to model radar intensity values, and logarithmic power values.
Rayleigh and Rice distributions are considered as reference
fits for Gaussian-like clutter and returns consisting of strong
components indicating presence of a target. This relationship
between Rayleigh and Rician distributions could be mathemat-
ically represented as: if the variable V = √

X2 + Y 2 where
X ∼ N(v cos θ, σ 2) and Y ∼ N(v sin θ, σ 2) are inde-
pendent normal random variables, then V ∼ Rice(|v| , σ ),
and Rayleigh is the special case of Rician distribution that
V ∼ Rayleigh(σ ) when v = 0.

The definitions of the PDFs of these four distributions are
given as:

fweibull (x; λ, k) = k

λ

( x

λ

)k−1
e−( x

λ )
k
, (3)

flog-wei (x; λ, k) = k

λ

(
ln x

λ

)k−1

e
−

(
ln x
λ

)k

, (4)

frayleigh(x; c, σ ) = (x − c)

σ 2 e−(x−c)2/(2σ 2), (5)

frice(x; c, σ, ν) = (x − c)

σ 2 e− (x−c)2+ν2

2σ2 I0

(
(x − c)ν

σ 2

)
, (6)

where x ≥ 0, fweibull, flog-wei, frayleigh and frice are func-
tions of PDFs of Weibull, log-Weibull, Rayleigh and Rice
distributions, respectively; k and λ are the shape and scale
parameters of Weibull and log-Weibull distributions; c and σ
are the location and scale parameters of Rayleigh and Rice
distributions; v is the shape parameter of Rice distribution
which gives the distance between the origin point and the
center of the bivariate distribution. I0(z) represents the Bessel
function of the first kind with order zero. Rayleigh distribution
with λRayleigh = λW eibull/

√
2 is the special case of Weibull

distribution whose shape parameter k = 2.

A. Method to Extract Distribution Features
Initially, we need to extract data from regions where a

statistically meaningful assessment can be made.
As the image labelling is performed in raxel space on the

raster image, (Fig. 6), the initial task is to map these labelled
class regions to their appropriate resolution cell values in the
corresponding radar map. The azimuth dimension of each cell
depends on its range. Therefore, raxels in the labeled image
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at different ranges correspond to a different number of cells
in azimuth, e.g. raxel 1 and raxel 2 shown in Fig. 6. A raxel
consists of cnr/rnr cells in range direction, where cnr is a
number of cells and rnr is the number of raxels within a
region of R extent in range. In the case of physical aperture
beamforming the relationship between the sizes of raxels and
cells in the azimuth direction is a function of distance dx .
In the azimuth direction, the number of cells corresponding to
one raxel is, round

[
cna R

2Acnr dx sin(0.5o)

]
, where cna is number of

azimuth positions in the FoV of Ao. The analysed radar frames
are truncated between ranges of 5-25 m, thus R = 20m. The
FoV A = 90◦, cnr = 668 and cna = 199 (≈ 0.5◦ azimuth step
between range profiles). The rasterised image resolution gives,
rnr = 308, so one raxel consists of 3 × 2 cells at the range
of 5 m and 3 × 1 cells at the range of 25 m [31]. In order
to simplify the process of cell extraction, we disregard this
difference and take the larger 3×2 cells for each raxel whatever
the range to the raxel. This guarantees all cell intensities of
the RoI are extracted, though some will be extracted multiple
times. To remove multiple counts, the co-ordinates of the
extracted cells are compared, and repeats are discarded.

It should be noted that the transformation between raxels
and cells may be simplified (potentially 1-to-1) if the data
was labelled on a rasterized rectangular range-azimuth radar
plot (B-scope). The choice to label on the PPI was made due
to the direct visual equivalence between this and the ground
truth camera imagery, which aids the labeling process.

As discussed in section II-B.2 it is important to investigate
variation of statistical characteristics for each class as a func-
tion of grazing angle. The grazing angle across the truncated
image area varies from 11◦ to 2.3◦ and at ranges >25 m the
grazing angle variation is insignificant. Due to the significant
changes in the grazing angle, range segmentation into regions
of 5 m extent will be performed.

Class datasets extracted from all available radar frames are
further divided into arrays of size 1000 to produce statistically
meaningful histogram plots using a consistent number of
intensity values for investigating each class.

B. Distribution Fitting to Region Intensity Statistics
Fig. 7 presents exemplar histograms of I and Q components,

and the radar intensity values for the four region classes.
Fig. 7(a), (b) and (c), (d) show that the components of the
returns from asphalt and shadows area are distributed normally
with zero mean, which justify use of Rayleigh and Rice
distributions for their Vintensity (Fig. 7 (i), (j)). However, the
I and Q components of grass and objects areas shown in
Fig. 7 (e), (f) and (g), (h), deviate from normal distribution
and the histograms of intensity values in Fig. 7 (k) and (l) are
better fit by a Weibull distribution.

The scale ranges of Vintensity (horizontal axes) increase
successively from shadows to asphalt to grass, with highest
values corresponding to “object” class. The probability density
scales (vertical axes) reflect the increasing spread of intensities
for these classes with higher median values.

To estimate the intensity histogram fit errors, the normalized
root-mean-square-deviation (NRMSD) will be used, which

Fig. 7. The probability density histogram plots and distribution fits of
I and Q components (a)-(h) and Vintensity (i)-(l), for the four classes.

averages the individual RMSDs over all histogram bins:

N RM SD = 1

N

N∑
n=1

√
(v

(n)
P DF − v

(n)
hist )

2∣∣∣v(n)
hist

∣∣∣ (7)

where N is the number of bins, vP DF and vhist are the PDF
fit value (center of the histogram bin) and the histogram value
of each bin respectively.

The NRMSD results are shown in Fig. 8, in which the error
bars represent the standard deviation of the fit errors, estimated
from fits to all instances of the class regions in the labelled
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Fig. 8. Results of NRMSDs between PDF fits and the density histograms
of intensity values extracted from the four class region types.

Fig. 9. The distribution parameters obtained from Weibull distribution fit
of Vintensity as a function of range gate. Range values indicate the upper
value of a range gate.

dataset. The result confirms observations in Fig. 7 that Weibull
and log-Weibull have smaller fitting error and deviation than
Rayleigh and Rician distributions for all four classes. Also the
smallest deviation is shown for the shadows and largest for the
object class which are intuitively obvious results as the latter
is very different from the traditional distributed clutter, while
the former should be close to the noise floor of the receiver
due to fundamental absence of reflections.

We should stress here, that while finding the ‘correct’
distribution is important task for characterization of radar
returns and essential for understanding of the underlying
physical processes, it is not our goal—we want to compare
parameters of the same distribution when applied to different
classes to determine if there is sufficient parameter contrast to
discriminate and classify an RoI within the image. The Weibull
fit distribution parameters extracted from Vintensity for the four
region types are shown in Fig. 9. Log-Weibull is omitted
due to its similar fitting performance, Rayleigh and Rician
are omitted due to their poorer fitting performance and thus
greater variations in distribution parameters for a given class.
Each point represents the mean value of the specific parameter
evaluated for all areas of the same class in our dataset within a
prescribed range group (discussed in Sections II.2.2 and III.1),
the error bar represents the standard deviation. We draw
the following conclusions 1) object areas show significant
difference when compared to the other classes; 2) most
parameters show a monotonic trend of change with increase
of range; 3) for all clutter classes, except object, Weibull
shape parameter k is close to 2 which shows that conventional

Fig. 10. Density histograms and PDF fits for uncalibrated (left column)
and calibrated (right column) radar map dB-power values.

clutter returns are close to Rayleigh distribution; 4) There
are large overlaps between feature parameters extracted from
areas of asphalt, grass and shadows and significant variation
in parameter values for the object class. This will result in
classification confusion when using distribution parameters
derived from the Vintensity data representation.

Next, we will estimate the distribution of class region
statistics from both uncalibrated and calibrated dB-power radar
maps to determine if this can improve parameter contrast.

C. Distribution Fitting to Uncalibrated and Calibrated
Region Power Statistics

Corresponding density histograms and PDF fits for exemplar
region dB-power statistics, Pd B , are shown in Fig. 10. Shadow
has the smallest variation of radar power compared to other
classes, as it is defined by the electronic noise of radar
transceiver rather than any reflected signal. Comparison of the
histograms in Fig. 10 (c)(d) and (e)(f) show that grass area
returns follow a slightly wider bell shape distribution than that
of asphalt, which can be explained by wider deviations in the
height profile of grass within regions. The areas containing
target return demonstrate a wide intensity spread and evidence
of bimodality. However again let’s stress that for the purposes
of showing that classes have distinctive differences, we may
fit unimodal distributions for all classes. Comparing the uncal-
ibrated and calibrated Pd B histograms shows that calibration
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Fig. 11. NRMSEs of PDF fits to the density histograms of uncalibrated
radar power map regions for the four classes.

Fig. 12. The parameters obtained from Weibull distribution fit to
uncalibrated PdB (a), and calibrated PdB, (b). Range values indicate the
upper value of a range gate.

will shift the median and slightly change the distribution scale
parameter.

Fig. 11 presents the results of fitting errors estimated based
on the Pd B of radar clutters. Weibull and log-Weibull dis-
tributions show comparable fit errors to the four classes and
have smaller fitting errors than Rayleigh and Rician. Thus,
Fig. 12 shows the distribution parameters of uncalibrated (a)
and calibrated (b) dB-power region statistics resulting from
the Weibull fit.

The following conclusions can be drawn:
1) For results of both uncalibrated and range calibrated data,

the scale parameter, λ, showed significant contrast between
different classes

2) The λ parameter obtained from the uncalibrated Pd B

decreases with range for all four classes, although for shadows
it has distinctively less change than for other classes. Impor-
tantly, for classes other than shadow, this decreasing trend is
reduced after the “whitening” calibration and therefore we
may assume that the same class will have similar statistical
parameters across the full range of the calibrated image.

By contrast, the calibration leads to an increase in shadow.
parameter values which again indicates its essentially different
physical nature of shadow—calibration results in an invalid
increase of receiver noise floor values, rather than actual
calibration of returned powers.

3) The results for Weibull shape parameter, k, mainly
stresses the contrast between objects and other classes, with
calibration improving the object parameter separation, but
reducing that of shadow.

We may conclude that the parameters obtained from the
Pd B data showed higher contrast than Vintensity and calibrated
and uncalibrated data representations both have their own
advantages for parameter contrast. Thus, both representations
will be tested in discrimination of different classes.

IV. CLASSIFICATION BASED ON STATISTICAL

DISTRIBUTION FEATURES

Here we propose the supervised classification algorithm
based on the MGD model in which the extracted parameters
of the Weibull distributions for each class are used as feature
parameters. This model has previously been used for unsu-
pervised anomaly detection [34]. At this stage the automotive
radar image dataset is separated into training and test data to
verify the model performance.

A. Classification Algorithm Based on MGD Model
The general definition of the MGD PDF is denoted as:

p(xt) = 1

(2n)
n
2 |�| 1

2

e− 1
2 (xt−M)T �−1(xt−M) (8)

where xt = [ f1, f2, . . . , fn ] is a feature vector consisting of
n different random variables, M is the vector of their mean
values M = [μ1, μ2, . . . , μn], � is their covariance matrix
and |�| is its determinant. In our case the random variables
are the previously identified statistical distribution parameters
and will be termed hereon in as feature parameters. To use
the MGD formulation for classification we must include a
training phase, this is a significantly different methodology
than when used solely for anomaly detection. The training
stage involves the calculation of one M , and one � per class
c for the C classes under consideration i.e. Mc and

∑
c. This is

accomplished using a class training feature parameter set Xc
tr ,

extracted from the training data.

Xc
tr =

⎛
⎜⎝

Fc
1,1 · · · Fc

1,n
...

. . .
...

Fc
m,1 · · · Fc

m,n

⎞
⎟⎠ (9)

where Fc
i, j is an instance of a training feature and i =

{1 . . . m} labels the number of samples (observations) of the
j = {1 . . . n} feature parameters, i.e. the number of regions
of a particular class from which the feature parameters have
been extracted. The values μc

j in Mc and elements of �c are
calculated as follows:

μc
j = 1

m

m∑
i=1

Fc
i, j

�c
j,v = 1

m

(
Fc

i, j − μc
j

) (
Fc

i,v − μc
v

)T (10)
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Fig. 13. Probability density histograms of extracted statistical para-
meters and normal PDF fits for “asphalt” class. (a) Weibull shape
parameter λ; (b) Weibull scale parameter k.

Fig. 14. Comparison between the generated bi-variate (λ and
k -variates) Gaussian PDF for asphalt (colourmap indicates probability
density) and the training feature parameter values (blue markers).

Once MGD’s for all classes have been trained, a test vector
of feature parameters xt , from an unknown class region can
be evaluated using (8) to obtain a p-value, pc (xt) from each
class MGD. The p-values give the probability that the test set
belongs to a particular class, further evaluation of the obtained
set of p-values is used to assign a single class type to a
region. This involves 2 stages of decision making, which will
be described later in this sub-section and expanded upon in
Section V.2.

In order for a multi-variate statistic (n -variate in this case)
to be Gaussian, each of its n variables should be Gaussian,
thus for the MGD to model our feature parameters exactly,
the distributions of the parameters should ideally be Gaussian.
Examples of the density histograms for Weibull λ and k feature
parameters for instances of the asphalt class, are shown in
Fig. 13. with corresponding Gaussian fits. Although there are
some small observable discrepancies between the data and
normal fit, similar to discussion in Section III.2 regarding
distribution fits, the MGD framework may still be used and
approximates our parameters as Gaussian variables.

An example of the covariance matrix calculated for training
feature parameters, λ and k of asphalt areas is shown in (11):

�kλ =
[

8.22 −0.21
−0.21 5.3

]
(11)

This indicates λ and k have low correlation since the absolute
values of non-diagonal elements are close to 0.

Fig. 14 shows the bi-variate Gaussian distribution generated
using (8), the covariance matrix in (11) and the corresponding
mean values μλ and μk . The circular shape again highlights
the low correlation between features. The training feature
parameter values are plotted with blue markers and show good

agreement with the generated distribution—this emphasises
that the MGD framework approximates our parameter distri-
butions well.

To estimate performance of the MGD classifier, Weibull
shape, λ, and scale, k, factors from uncalibrated (“unc” ) and
calibrated (“cal”) dB-power data are evaluated as feature para-
meters in the following combinations: i) x (1)

t = [wunc
λ ,wunc

k ];
ii) x (2)

t = [wcal
λ ,wcal

k ]; iii) x (3)
t = [wunc

λ ,wunc
k , wcal

λ ,wcal
k ]; the

effect of training sample size on performance is also examined.
The full MGD model, combining the individual MGD’s for

each class, can be represented as:
pMG D(xt ) = [p1(xt ,�1, M1), . . . , pc(xt ,�c, Mc)] (12)

Test RoI’s are selected from the labeled data. Each RoI
is further divided into equal sample sub-regions. Feature
parameters are extracted from each sub-RoI and form the
input to the trained MGD model. The class with the highest
p-value, pc(xt ,�c, Mc), identifies a sub-RoI as belonging
to that class—this is the first stage of classification. Thus,
within each initial RoI we may have many sub-RoI’s labelled
differently according to their individual result of classification.
In the second stage of classification, the whole RoI is labelled
as the class represented by the largest number of sub-RoI’s.
In general, more complex metrics can be used for the voting
of the class at the second stage of classification.

B. Estimation of Classification Performance
We use the F1-score [35] as a general assessment tool for

estimating the performance of classification on the test dataset.
The definition of the F1-score calculation is based on the
precision and recall estimation of the classification results:

F1 = 2 ∗ precision ∗ recall

precision + recall
, (13)

in which, recall and precision are:

precision = Tp

Tp + Fp
; recall = Tp

Tp + Fn
, (14)

where Tp , Fp and Fn are the number of true positives, false
positives and false negatives obtained from the confusion
matrix results. We will evaluate the impacts of (i) the calibra-
tion of radar data and (ii) the size of the training dataset on
performance of classification, the F1-score results are shown in
Fig. 15 and 16. In Fig. 15, the F1-score at each classification
stage are plotted for each class presented on x-axis. The results
for the three types of feature parameter compositions, x (1)

t , x (2)
t

and x (3)
t described in Section IV.A are represented using differ-

ent line types, and results of first and second stage of classifica-
tion are shown by different markers. The results of first stage
of classification showed that F1-scores of asphalt and grass
areas are effectively improved by use of features from cali-
brated data, either solely or in combination with uncalibrated.
By contrast, the F1-score of shadows showed the opposite
effect where use of x (1)

t results in better performance than
that of x (2)

t , however the combination of both, x (3)
t , showed

the best F1-score. These conclusions are consistent with the
results and discussion in section III.3, where we stressed the
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Fig. 15. F1-score results obtained from the classification algorithm.
Legend labels F and S indicate results of first and second stages of
classification and U and C correspond to the use of uncalibrated and
calibrated power data respectively.

Fig. 16. F1-score results of classification algorithm for varied amounts
of training data, using combined features case x(3)

t .

physically different mechanisms behind the clutter returns
and shadows and the effect of calibration the distribution/
feature parameters. The F1 score results of targets showed
similar performance for all x (1)

t , x (2)
t and x (3)

t since feature
parameters obtained from uncalibrated and calibrated data all
demonstrate high contrast with respect to other classes. For
the results of second stage of classification, the utilization of
features from both uncalibrated and calibrated dB-power data
improved the F1-score performance, especially for the asphalt,
grass and shadow classes.

In Fig. 16, F1-scores for the combined feature case x (3)
t are

plotted as function of the size of the training dataset, which
was varied from 80 % of the available dataset (330 frames)
to 10 %. Results for different areas are presented using
different color. The results showed no obvious monotonic trend
for different amounts of training data, however the F1 score
of the second stage of classification did drop when using
only a small fraction for training. Therefore, this classification
algorithm does not significantly depend on the amount of
training data, which infers a high consistency of statistical
parameters over all instances of class regions in the dataset.
The comparison between results of first and second-stage of

TABLE II
CONFUSION MATRIX AFTER FIRST STAGE OF CLASSIFICATION –

COMBINED CALIBRATED/UNCALIBRATED FEATURES

TABLE III
CONFUSION MATRIX AFTER SECOND STAGE OF CLASSIFICATION-

COMBINED CALIBRATED/UNCALIBRATED FEATURES

Fig. 17. Block diagram of the automatic segmentation on automotive
radar image based on distribution feature extraction and MGD classifi-
cation model.

classification showed that classification performance is signif-
icantly improved in the second stage. This is also highlighted
in the corresponding confusion matrices in Tables II and III.
The F1-scores of the first stage of classification are not higher
than 0.825, and that of the second stage are above 0.95.

V. AUTOMATIC SEGMENTATION OF RADAR IMAGERY

Till this point, we have shown the development and perfor-
mance of the segmentation algorithm on fully labelled data.
Now we move to the discussion of automatic segmentation and
classification of a single test frame. The processing flowchart
is shown in Fig. 17 and processing steps will be explained in
the following sub-sections.

A. Image Pre-Segmentation Using the Watershed
Transform

An image pre-segmentation stage is used to define the RoI’s
within which the classification and region merging stages are
applied.
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Fig. 18. The pre-segmentation results obtained using (a) uncalibrated
and (b) calibrated radar images after single application of WT. ‘O’
indicates an over-segmented region, ‘U’ an under-segmented one.

The most widely used methods of image segmentation
based on RGB information are thresholding [36], edge detec-
tion [37], region growing [38] and WT method [39]. In this
paper, the marker-based WT method is used to generate the
closed contours of the regions in the radar imagery, which
will be subject to classification. The principle of the WT in
OpenCV is given in [49] and full description of the method
can be found in computer vision literature, e.g. [40]–[42]. Here
we will only briefly describe main steps undertaken.

First, a greyscale image generated from the radar image
is binarised using a threshold on raxel values. Markers for
the WT are produced by subtracting the erosion binary image
from the dilated binary image [49], producing a set of broken
edges. These are then connected in the WT process to form
the contours of sub-regions within the image, generating what
we term a pre-segmented image. Results of this process using
the uncalibrated and calibrated radar imagery are presented
in Fig. 18—the extracted region contours are superimposed
over intensity maps. It clearly demonstrates more robust
performance of the method on the calibrated image (b), with
the uncalibrated image (a) displaying both under-segmented
regions containing mixed classes and over-segmented areas.

A single WT on a calibrated image is enough to produce
region pre-segmentation, uncalibrated imagery would require
multiple applications of the WT—this increases the algorithm
complexity and computation time.

B. Region Merging Using MGD-Based Classification
Method

After pre-segmentation, which may result in potentially
over-segmented RoIs, the identification and merging of sim-
ilar regions is performed within the classification procedure
described in Section IV.A. The input is the pre-segmented test
automotive radar image which may include RoIs which do not
necessarily correspond to any of the defined classes. Therefore,
to stress that for some regions the confidence in finding the
correct class is low, another class “unknown” is introduced.
This is a class containing the regions which show no obvious
bias to any of the other classes in one of two distinct ways,
described below.

Firstly, the output p-values of the MGD model evaluated
for specific RoI sub-regions are normalized using the softmax
function defined as:

psof t,c = e pc

C∑
c=1

e pc

(15)

TABLE IV
EXAMPLE OF ORIGINAL p-VALUES AND SOFTMAX NORMALIZED

VALUES AND THEIR CLASS DETERMINATION

Fig. 19. (a) ground truth optical image; (b) calibrated automotive radar
image; the manually labeled image (c) and automatically segmented
radar image (d).

in which pc represents the original p-values obtained from the
MGD model and to reiterate, C is the number of classes (4 in
this case). The softmax function allows elimination of large
differences between the original p values. The “unknown”
label will be assigned in the first stage of classification to
the sub-ROI’s where all psof t,c values are smaller than a
threshold tu . The sub-RoI’s for which at least one psof t,c > tu
will be classified according to the highest psof t,c value. In this
work we used a threshold tu = (1/C) + ε where ε is a
small value, in our case 0.01, though this is a subject for
further optimization. Table IV gives examples of areas which
are classified as either “known” classes (case 1 and case 2) or
“unknown” (case 3).

Secondly, the ROI will be classified as an “unknown” area
if the highest score in the second stage of classification is not
unique.

It should be stressed here that the pre-segmented image may
consist of over-segmented areas which could be too small to
extract a statistically meaningful number of power values, Pd B ,
upon which to perform a distribution fit and extract parameters.
These small areas are extended to a square region of raxels in
the size of 30 × 30 around the center point. Then the feature
extraction will be performed within the extended area.

The raxels of the classified RoI will be labeled and colour-
coded according to the assigned class, this operation will then
be repeated for the next RoI.

C. Results of Automatic Segmentation of Automotive
Radar Images

An example of an automatic segmentation result is illus-
trated in Fig. 19, which shows the annotated ground truth
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Fig. 20. The automatically segmented results of four consecutive frames of automotive radar imagery. a-d(1) are the optical images; a-d(2) are the
calibrated automotive radar images and a-d(3) are the results of automatic segmentation. Region colour coding equivalent to Fig. 19.

image of the scene (a), annotated calibrated radar frame (b),
manually labelled image (c) and the automatically segmented
and labelled image in (d).

Annotations in the Figure are: A, B, C, D are pedestrians,
traffic sign, wall, and bush, respectively and all are of the class
‘object’. E is the road surface (class asphalt), F is grassed
area (class “grass”) and G is a region of shadow of the wall
(class shadow), white represents unclassified regions. Square
bounding boxes are used for annotation of objects and circles
identify surfaces.

Comparing Fig. 19 (c) and (d) one can see that most of
the objects and surfaces in the labeled image (c) are classified
correctly in the full segmented image (d). Unclassified regions
are present e.g. a region of pavement near the annotation E.
Pavement regions are currently included in the asphalt class,
in (b) however there is noticeable difference in the regions
surface returns in contrast to its asphalt surroundings. This
may just be an anomalously rough patch of surface, inclusion
of a ‘pavement’ class may remedy the confusion in the
classification. Another important feature is the region classified
as a patch of grass (within circle E) within the asphalt road
surface, this is a manhole cover. Importantly, it has been
classified as a surface type feature rather than object and so
could still be traversed, but the contrast can warn a vehicle to
prepare for a transition. It may also be seen as an anomalous
region within the large region of asphalt road and contextually
this may aid identification—again additional classes may also
be added.

The automatic segmentation results of 4 successive frames
of a radar “movie” (radar snapshots) are shown in the bottom
row of Fig. 20. Corresponding optical ground truth snapshots

and calibrated automotive radar images are on the top and
middle row respectively. The imaged scenes are mainly com-
posed of areas of road tarmac, grass, traffic signs and trees on
the grass area. The segmented images show that the majority
of regions such as the areas of asphalt, grass and objects
are properly segmented using the WT method and correctly
classified based on the MGD model. The moving vehicle
in different frames shown passing through the scene is also
identified correctly with well-defined shape.

There are some incorrect classifications of areas. This
may be caused by the over-merging of regions in the pre-
segmentation. For example, area B in Fig. 20 b (3) shows
that the shadow area has merged with the larger asphalt area
and is incorrectly classified as asphalt. Similarly area G in
Fig. 20 d(3) shows that the asphalt or kerbside merged with
the lawn area and is incorrectly classified as grass area. Some
regions have been classed as “unknown” areas, such as A in
a(3), C in b(3) and F in c(3), which are primarily object regions
containing lampposts and signage, and E, an area of grass in
c(3). However, each of these unclassified regions are in fact
correctly classified in at least one of the 4 segmented images.
In the next stages of research, we plan to improve confidence
of true positive classification by using frame-to-frame region
tracking and associations within a succession of frames.

The numerical estimation of the accuracy of the automatic
segmentation and classification is conducted based on a test
data set consisting of 120 continuous image frames and utilises
the Jaccard similarity coefficient (JSC) [43]. In the perfor-
mance analysis we exclude segments which, though classified
as one of the known classes in automatic segmentation, cannot
be confirmed by ground truth and were marked as black areas
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TABLE V
THE JSCS OF THE AUTOMATICALLY SEGMENTED

RADAR IMAGES AND THE LABELED IMAGES

in the manually labelled images. The JSC for each class is
defined as:

Jclass = A f s ∩ Alabel

Alabel
, (16)

where A f s is the number of correctly classified raxels over-
lapping with the labelled data regions of that class and Alabel

is the total number of raxels of corresponding class in the
labeled data.

The averages of the JSCs of the four area classes are
presented in Table V. Areas of asphalt have the highest JSC
of 0.81 and the areas of grass and object show the lowest value
of 0.64.

The JSC’s for the single frame image segmentation of
a relatively complex scene are encouraging. As mentioned
previously, improvement will be made by considering results
of consecutive frames of the radar movies.

VI. CONCLUSION

An algorithm for automatic segmentation and classification
of automotive high-resolution radar images is presented in this
paper. The two main steps in this algorithm are: 1) initial
image pre-segmentation using WT method; 2) supervised
region classification into chosen classes, utilizing statistical
parameters of radar image regions as feature parameters in a
proposed MGD classifier. The features were based on Weibull
distribution parameters extracted from image data represented
in dB-power units, this showed better contrast between fea-
tures/classes than when considering radar intensity values.

As performance metrics, the F1 score and JSC have been
used to assess the results of classification/segmentation. They
showed good performance of the proposed algorithm to recon-
struct the content of single (standalone) radar image frames.

It was shown that the proposed two stage classification
process can significantly improve the accuracy of the auto-
matic classification.

A detailed range-power calibration process has been
described and shown to vitally enhance the image
pre-segmentation process when compared to using
uncalibrated data. Segmentation/classification depends
highly on the result of pre-segmentation by WT and this
should be subject of further studies to determine the feedback
mechanism to compensate the occasional inaccuracies of
initial segmentation.

It was demonstrated that the calibration tends to reduce the
variation of the feature parameters over the extent of the radar
imagery. In general the Weibull statistical (feature) parameters
for dB-power radar imagery show good separation between
classes, the exception to this is the shadow class which has
overlap with other classes in the scale factor k parameter, this
motivates the inclusion of uncalibrated data features in order
to improve classification of all classes.

Further work will also include context-based analysis to
enhance classification, for example: anomalous regions within
large extents of a particular class.

Finally, we will investigate the full use of multiple con-
secutive frames of radar movie to improve confidence of
classification.
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