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Abstract

Many fundamental machine learning tasks can be formulated
as a problem of learning with vector-valued functions, where
we learn multiple scalar-valued functions together. Although
there is some generalization analysis on different specific al-
gorithms under the empirical risk minimization principle, a
unifying analysis of vector-valued learning under a regular-
ization framework is still lacking. In this paper, we initiate the
generalization analysis of regularized vector-valued learning
algorithms by presenting bounds with a mild dependency on
the output dimension and a fast rate on the sample size. Our
discussions relax the existing assumptions on the restrictive
constraint of hypothesis spaces, smoothness of loss functions
and low-noise condition. To understand the interaction be-
tween optimization and learning, we further use our results to
derive the first generalization bounds for stochastic gradient
descent with vector-valued functions. We apply our general
results to multi-class classification and multi-label classifica-
tion, which yield the first bounds with a logarithmic depen-
dency on the output dimension for extreme multi-label clas-
sification with the Frobenius regularization. As a byproduct,
we derive a Rademacher complexity bound for loss function
classes defined in terms of a general strongly convex function.

Introduction
In machine learning, we often encounter learning tasks
involving vector-valued prediction functions (Álvarez,
Rosasco, and Lawrence 2012; Xu et al. 2019). As examples
consider the following. In multi-class classification (MCC),
we aim to assign each instance to a single label class (Mohri,
Rostamizadeh, and Talwalkar 2012; Crammer and Singer
2002). In multi-label classification (MLC), each instance
may be annotated with one or multiple class labels (Zhou
et al. 2012; Yu et al. 2014). In both cases, we build one
scalar-valued prediction function per class. Together these
functions form a vector-valued predictor with the output di-
mension being the total number of label classes. These two
important learning tasks have found wide applications in
real systems, where they are used, for instance, for image
and video annotation, face classification, and query/keyword
suggestion (Yu et al. 2014). Another popular learning set-
ting where we encounter vector-valued prediction functions
is multi-task learning (MTL). Here we build, for each task,
a distinct predictor. The benefit of learning these predictors

together is that of exploiting a shared hidden structure in
these tasks (Zhang and Yang 2017; Maurer and Pontil 2016;
Yousefi et al. 2018; Argyriou et al. 2007; Ciliberto et al.
2017). The more these tasks are related, the larger the struc-
ture and the benefit of learning them together. We refer to
problems of learning a vector-valued prediction function—
such as the above ones—as vector-valued learning problems
(Micchelli and Pontil 2005; Liu et al. 2019; Xu et al. 2019;
Álvarez, Rosasco, and Lawrence 2012; Lei et al. 2015a).

An important measure of the quality of vector-valued
learning models is their generalization performance, i.e.,
their ability to generalize their empirical behavior on train-
ing examples to unseen test data. As a central topic in sta-
tistical learning theory, generalization analysis has received
a lot of attention. Other than providing an intuitive under-
standing of how different parameters affect the learning per-
formance, generalization analysis is also effective in de-
signing novel learning machines (Cortes, Kloft, and Mohri
2013).

Unlike traditional binary classification problems, a distin-
guished property of vector-valued learning is that the out-
put dimension plays an important role in the analysis (Reddi
et al. 2019). This is especially the case for problems with a
huge output dimension, which are becoming more and more
ubiquitous in the big data era. One such example is eXtreme
Classification (XC; Bengio et al. 2019). Here we deal with
multi-class and multi-label problems involving an extremely
large total number of potential class labels (Jain et al. 2019).
Generalization bounds with an emphasis on the output di-
mension were developed for specific vector-valued learning
problems such as MCC (Zhang 2004; Lei et al. 2015b; Guer-
meur 2017; Li et al. 2018; Musayeva, Lauer, and Guermeur
19) or MLC (Yu et al. 2014; Liu et al. 2018; Shen et al. 2018;
Xu et al. 2016; Khandagale, Xiao, and Babbar 2020).

Recently, Maurer and Pontil (2016); Li, Liu, and Wang
(2019) initiated the study of the general framework of
vector-valued learning. These studies exhibit the following
limitations. First, they exploit the Lipschitz continuity of
loss functions with respect to (w.r.t.) the Euclidean norm,
while typical loss functions occurring in vector-valued learn-
ing problems are Lipschitz continuous w.r.t. the `∞-norm
(Lei et al. 2019), with a comparable Lipschitz constant as
for the Euclidean norm (note `∞-norm can be significantly
smaller than the Euclidean norm). This mismatch between



generalization analysis and Lipschitz continuity induces, for
standard Euclidean regularization, a square-root dependency
on the number of components (that is, the number of classes
or tasks in MCC/MLC and MTL, respectively) (Maurer and
Pontil 2016; Li, Liu, and Wang 2019). Second, there is the
following conceptual mismatch between algorithms and the-
ory. While the theory is developed for empirical risk mini-
mization (ERM) in a constrained space (Maurer and Pontil
2016; Li, Liu, and Wang 2019; Reeve and Kaban 2020), in
practice, regularization schemes are used, which are often-
times easier to solve (Yu et al. 2014; Lei et al. 2015b; Li
et al. 2018; Li, Liu, and Wang 2019). Third, the existing gen-
eralization analysis fails to take into account the computa-
tional properties of the algorithm, which is important to un-
derstand the interaction between optimization and learning.
Lastly, most existing studies are limited to the classic regime
of “slow” rates (Ω(n−

1
2 ), where n is the sample size). In or-

der to achieve so-called fast rates (Bartlett, Bousquet, and
Mendelson 2005), they require restrictive assumptions, such
as the smoothness of loss function (Reeve and Kaban 2020),
the capacity assumption on the hypothesis space, or the ex-
istence of a model with vanishing errors.

In this paper, we address all the above issues. Our contri-
butions are as follows.

1. We show the first generalization bounds for general
vector-valued learning using a regularization framework,
thus removing the gap between the algorithm that is ana-
lyzed in theory and the one that is considered in practice.

2. Not only do we analyze a more realistic model, we dra-
matically improve the best known dependency of bounds for
general vector-valued learning (in either framework). For in-
stance for standard Frobenius regularization, we drop the de-
pendency on the number of components in the model from√
c to log c.
3. In MLC, the components are the classes. Thus our re-

sult establishes guarantees that scale logarithmic in the num-
ber of classes. This is remarkable because the previously
best result for MLC scaled square root in the number of
classes. Thus, for the first time, we establish non-void the-
ory for extreme multi-label classification (yet, as mentioned
in Point 1, our analyzed algorithm is more realistic). Note
that MLC is the by far most common scenario in XC.

4. Our results apply also to the fast-rate regime, that is, the
learning scenario where bounds enjoy a fast decay on n. In
this regime, our analysis improves not only the best known
rates in c (see Point 2) over previous work, but lifts also as-
sumptions employed therein on the smoothness of the loss
function and hypothesis space.

Related Work
Here we survey the related work on vector-valued learning.

There is a large body of work on the generalization
analysis of MCC (Lei et al. 2019; Thrampoulidis, Oymak,
and Soltanolkotabi 2020), based on various capacity mea-
sures: e.g., covering numbers (Zhang 2004; Lei et al. 2019),
the fat-shattering dimension (Guermeur 2017), and (local)
Rademacher complexities (Mohri, Rostamizadeh, and Tal-

walkar 2012; Lei et al. 2015b; Maurer 2016; Cortes et al.
2016; Li et al. 2018; Maximov, Amini, and Harchaoui 2018;
Musayeva, Lauer, and Guermeur 19, 2018; Deshmukh et al.
2019). Unlike binary classification problems, the number
of classes plays here an important role in the generaliza-
tion performance. Until recently, the coupling among the
class components, while exploited by most practical multi-
class algorithms (Crammer and Singer 2002), was ignored
by generalization bounds. As a result, they exhibited at
least a linear dependency on the number of classes (Mohri,
Rostamizadeh, and Talwalkar 2012). Subsequently, several
works aimed to improve this dependency through structural
results on Gaussian and Rademacher complexities that ex-
ploit the coupling among classes, first achieving a square
root (Guermeur 2017; Maurer 2016; Lei et al. 2015b) and
later on a logarithmic dependency (Lei et al. 2019). For the
low-noise regime, Li et al. (2018) show a fast-rate general-
ization bound based on local Rademacher complexities.

There is far less work on the theoretical analysis of MLC.
The consistency of MLC with different loss functions was
studied in Gao and Zhou (2011). For decomposable loss
functions involving the specific least-squares loss, general-
ization bounds based on the Rademacher complexity were
derived in Yu et al. (2014). The best known dependency on
the output dimension is square root and was shown in Liu
et al. (2018); Wu and Zhu (2020). Xu et al. (2016) bounded
the local Rademacher complexity of MLC, which motivated
the authors to study a novel MLC algorithm based on the
tail-sum of singular values of the predictors.

Generalization analysis for general vector-valued learning
algorithms was initiated by Maurer and Pontil (2016) and
put forward by Li, Liu, and Wang (2019). However, their
analysis implies generalization bounds with a square-root
dependency on the output dimension for reasonable regular-
izers such as those based on the Frobenius norm. This is be-
cause they work with the Lipschitz continuity w.r.t. the Eu-
clidean norm. In the present work, we consider the infinity
norm instead. Notice that the existing results for MCC, MLC
or general vector-valued learning algorithms are mainly es-
tablished for ERM in a constrained hypothesis space (Mau-
rer and Pontil 2016; Li, Liu, and Wang 2019; Reeve and Ka-
ban 2020). As a comparison, there is scarce work on vector-
valued learning based on regularization, while in practice
this is the mostly used scheme (Crammer and Singer 2002;
Lei et al. 2015b; Yu et al. 2014).

Problem Formulation and Results
Problem formulation
We describe here the framework of vector-valued learning
with regularization. Let ρ be a probability measure defined
over a sample space Z = X × Y , where X ⊆ Rd is an
input space and Y is an output space (d is the input dimen-
sion). Let S = {z1, . . . , zn} ∈ Zn be the training dataset
drawn independently from ρ. For vector-valued learning, we
aim to build a vector-valued predictor h : X 7→ Rc, i.e.,
h = (h1, . . . , hc) with hj : X 7→ R. We denote by c the
output dimension. We consider non-parametric learning in a
reproducing kernel Hilbert spaceHK associated with a Mer-



cer kernel K : X ×X 7→ R. Let φ : X 7→ HK be the corre-
sponding feature map, i.e., K(x, x′) = 〈φ(x), φ(x′)〉 for all
x, x′ ∈ X with 〈·, ·〉 being the inner product. Consider the
hypothesis space

W = {w = (w1, . . . ,wc) ∈ HcK}.
We consider vector-valued predictors of the form

hw(x) =
(
hw1 (x), . . . , hwc (x)

)
,

where w ∈ W and hwj (x) = 〈wj , φ(x)〉. Note that if
φ(x) = x, then the model hw can be characterized by a
matrix w in Rd×c with wj being the j-th column. The per-
formance of hw on a single example z is measured by a loss
function ` :W ×Z 7→ R+. An effective approach to build-
ing a model is to learn with regularization, where we build
an objective function FS :W 7→ R+ by

FS(w) =
1

n

n∑
i=1

`(w; zi) + r(w). (1)

The first term characterizes the empirical behavior of a
model w on the training examples S, while the second term
r : W 7→ R+ is a regularizer. The predictor is then es-
tablished by minimizing the objective function over the hy-
pothesis space (regularized risk minimization, RRM), i.e.,
wS = arg minw∈W FS(w). The generalization behavior of
a model on a testing example can be measured by the regu-
larized risk defined by F (w) = EZ

[
`(w;Z)

]
+r(w), where

EZ denotes the expectation w.r.t. Z. As we will show in ap-
plications, this framework of vector-valued learning covers
important learning tasks such as MCC and MLC by consid-
ering specific instantiations of the output space, loss func-
tions and regularizers. For any k ∈ N, let [k] = {1, . . . , k}.

To study high-probability bounds for excess regularized
risks of wS , we introduce some necessary assumptions. The
first assumption is the Lipschitz continuity of loss functions.
Assumption 1 (Lipschitz continuity). We assume ` satisfies
a Lipschitz continuity w.r.t. the infinity norm as follows∣∣`(w; z)− `(w′; z)

∣∣ ≤ L‖hw(x)− hw
′
(x)‖∞, (2)

whereL > 0 and ‖t‖∞ = maxj∈[c] |tj | for t = (t1, . . . , tc).
A notable property is that we consider the Lipschitz con-

tinuity w.r.t. the infinity-norm instead of the Euclidean norm
in the literature (Li et al. 2018; Li, Liu, and Wang 2019).
Although these norms are equivalent, the involved Lipschitz
constant can differ up to a factor of

√
c which plays an im-

portant role in the generalization behavior if the output di-
mension is large. Therefore, the L-Lipschitz condition w.r.t.
infinity norm is much stronger than that w.r.t. the Euclidean
norm. Fortunately, popular loss functions in MLC and MCC
actually satisfy the more restrictive condition of the Lip-
schitz continuity w.r.t. infinity-norm, where the Lipschitz
constant is independent of c. This is why we can exploit the
restrctive assumption on infinity-norm to develop a bound
with a better dependency on c, which is an advantage over
the analysis w.r.t. Euclidean norm (Li, Liu, and Wang 2019).

Our second assumption is the (strong) convexity of loss
functions and regularizers (Sridharan, Shalev-Shwartz, and
Srebro 2009; Kakade, Shalev-Shwartz, and Tewari 2012).

Assumption 2. We assume ` is convex w.r.t. the first argu-
ment. We also assume r is σ-strongly convex w.r.t. a norm
‖ · ‖, i.e., for all w,w′ ∈ W

r(w) ≥ r(w′) + 〈w −w′, r′(w′)〉+
σ

2
‖w −w′‖2,

where r′(w′) denotes a subgradient of r at w′.

A popular strongly convex regularizer is r(w) =
σ
2 ‖w‖

2
2,p, where ‖w‖2,p =

(∑c
j=1 ‖wj‖p2

) 2
p is the `2,p

norm (p ≥ 1). Here ‖ · ‖2 denotes the norm in HK in-
duced by 〈·, ·〉. It is known that this regularizer is σ(p − 1)-
strongly convex w.r.t. ‖ · ‖2,p for p ∈ (1, 2] (Kakade,
Shalev-Shwartz, and Tewari 2012). Another popular regu-
larizer is r(w) = σ

2 ‖w‖
2
Sp

for w ∈ Rd×c where ‖w‖Sp

is the Shatten-p norm (Kakade, Shalev-Shwartz, and Tewari
2012). This regularizer is (p − 1)σ-strongly convex w.r.t.
‖ · ‖Sp

for p ∈ (1, 2]. Furthermore, we always assume
‖w‖ ≥ ‖w‖2,∞ for all w ∈ W . This is a very mild as-
sumption and is satisfied for all the norm considered in this
paper. Finally, we assume supx∈X ‖φ(x)‖2 ≤ κ.

Main Results
We now present our results. We use Rademacher complexity
to measure the capacity of hypothesis spaces.

Definition 1 (Rademacher complexity). Let H be a class
of real-valued functions defined over a space Z and S =
{zi}ni=1 ∈ Zn. The empirical Rademacher complexities of
H with respect to S is defined as

RS(H) = Eε

[
sup
h∈H

1

n

n∑
i=1

εih(zi)
]
,

where ε1, . . . , εn are independent Rademacher variables,
i.e., εi takes an equal probability of being either 1 or −1.

Our first result is an upper bound on the Rademacher com-
plexity of loss function classes. This result is general in the
sense that we define hypothesis spaces in terms of a general
strongly convex function τ(w) = F (w) − F (w∗), where
w∗ = arg minw∈W F (w). For any Λ > 0, we denote

WΛ = {w ∈ W : F (w)− F (w∗) ≤ Λ} (3)

and the associated class of loss functions

FΛ =
{
w 7→ `(w; z) : w ∈ WΛ

}
. (4)

Theorem 1 (Rademacher complexity bound). Let Assump-
tions 1 and 2 hold. Then there exists a constant C1 indepen-
dent of n, c, L and Λ such that

RS(FΛ) ≤ C1L
√

2ΛB̃ log2(nc)√
nσ

,

where B̃ = sup(x,j) ‖φ̃j(x)‖∗ and ‖ · ‖∗ is the dual norm
of ‖ · ‖ in W . Here for any x ∈ X and j ∈ [c] we use the
notation φ̃j(x) :=

(
0, . . . , 0︸ ︷︷ ︸
j−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−j

)
∈ HcK .



With different loss functions and regularizers, Theo-
rem 1 immediately implies specific Rademacher complex-
ity bounds for different vector-valued learning problems. It
is worth mentioning that the upper bound enjoys a logarith-
mic dependency on the output dimension (we treat Λ as a
constant which is problem-dependent and should be tuned
by cross validation in practice). Therefore, this result is par-
ticularly useful for large-scale learning problems. This mild
dependency is derived by exploiting the Lipschitz continu-
ity of loss functions w.r.t. ‖ · ‖∞ and a structural result to
capture this Lipschitz continuity. The proof of Theorem 1 is
given in Section A.1 in the Appendix.
Remark 1. We now compare this result with the existing
Rademacher complexity bounds for loss function classes in
vector-valued learning problems. Initially, the Rademacher
complexity bounds (Lemma 8.1 in Mohri, Rostamizadeh,
and Talwalkar (2012)) failed to capture the coupling of dif-
ferent components reflected by the constraint (e.g., ‖w‖ ≤
Λ for some ‖ · ‖) and therefore presented a crude depen-
dency on the output dimension. These results are improved
in Lei et al. (2015b) and Maurer (2016) by exploiting the
Lipschitz continuity of loss functions w.r.t. `2 norm. Very
recently, the Lipschitz continuity w.r.t. `∞ norm is also con-
sidered in the literature (Lei et al. 2019; Foster and Rakhlin
2019). However, the analysis in Foster and Rakhlin (2019)
failed to exploit the coupling among components while the
analysis in Lei et al. (2019) only exploited this coupling en-
forced by some specific norms (case by case investigation is
required). For example, they require Khintchine inequalities
for vectors and matrices to handle (2, p)-norm and Schat-
ten p-norm, respectively. As a comparison, Theorem 1 pro-
vides a more general result where w is constrained via a
strongly convex function. A nice property is that Theorem
1 treats (2, p)-norm and Schatten p-norm exactly the same,
and does not need case-by-case discussions. Moreover, The-
orem 1 also applies to other regularization schemes, e.g.,
learning with entropic regularizer in a probability simplex.

We now present upper bounds on the excess regularized
risk for vector-valued learning. We use a variant of the big-O
notation Õ to hide any logarithmic factor. The proof is given
in Section A.2 in the Appendix.
Theorem 2 (Regularized risk bound for RRM). Let As-
sumptions 1 and 2 hold. Let δ ∈ (0, 1). With probability
at least 1− δ Eq. (5) holds uniformly for all w ∈ W

F (w)− F (w∗) = max
{
FS(w)− FS(w∗), 1/(nσ)

}
+

Õ
(((F (w)− F (w∗)

)(
log(1/δ) + B̃

)
nσ

) 1
2
)
. (5)

In particular, the following inequality holds with probability
at least 1− δ

F (wS)− F (w∗) = Õ
( log(1/δ) + B̃

nσ

)
. (6)

Eq. (5) applies uniformly to all w ∈ W while (6) ap-
plies to the RRM scheme. Both of these upper bounds ad-
mit a very mild dependency on the output dimension. Un-
like ERM which generally implies slow ratesO(1/

√
n) (Lei

et al. 2019), we establish fast rates of the order Õ(1/n) for
RRM by leveraging the strong convexity of the objective
function. A notable property of this result is its generality.
It requires only Lipschitz continuity of loss functions and
strong convexity of objective functions to develop mean-
ingful generalization bounds for any vector-valued learning
methods. It does not impose a capacity assumption on hy-
pothesis spaces or a low-noise condition for fast generaliza-
tion bounds as was required in the existing treatments (Li
et al. 2018; Li, Liu, and Wang 2019).
Remark 2. Generalization error bounds with an implicit
dependency on the output dimension were recently derived
for ERM with vector-valued functions (Li, Liu, and Wang
2019). The discussions there imposes a constraint in terms
of either ‖w‖2,1 or ‖w‖S1

on the hypothesis space. As a
comparison, we get a logarithmic dependency by consid-
ering a regularizer involving a much milder norm ‖ · ‖2,2,
(note ‖ · ‖2,1 can be as large as

√
c‖ · ‖2,2). Indeed, the

analysis in Li, Liu, and Wang (2019) would imply a gen-
eralization bound with a square-root dependency on c if the
constraint ‖w‖2,1 ≤ Λ there is replaced by ‖w‖2,2 ≤ Λ.
We achieve this improvement by exploiting the Lipschitz
continuity of loss functions w.r.t. the infinity-norm instead
of w.r.t. the Euclidean norm. Although the Lipschitz con-
tintuity w.r.t. infinity-norm is a much stronger assumption
than that w.r.t. Euclidean norm, it is satisfied by popular loss
functions with the Lipschitz constant independent of c (cf.
Section on Applications). Our analysis is able to fully ex-
ploit this stronger assumption and therefore gets a tighter
dependency on c. The use of strong convexity allows for a
tighter dependency on n.

Theorem 2 establishes excess risk bounds for wS under
RRM, which is non-constructive in the sense that it does not
tell us how the model wS is built from the data. In the fol-
lowing theorem, we will consider a constructive algorithm
called SGD, which is a very popular optimization algorithm
especially useful for large data analysis due to its simplic-
ity and efficiency. To study its excess risk bounds, we need
to consider both statistical and computational properties as
well as the trade-off realized by early-stopping. We give the
proof in Section A.3 (Appendix).
Theorem 3 (Regularized risk bound for SGD). Assume
`(w; z) takes the form `(w; z) = ψ(hw(x), y) with ψ :
Rc × Y 7→ R being a convex function w.r.t. the first ar-
gument. Let Assumption 1 hold and r(w) = σ

2 ‖w‖
2
2,2. Let

f(w; z) = `(w; z) + r(w). Let w1 = 0 ∈ W and {wt}t∈N
be the sequence produced by SGD, i.e.,

wt+1 = wt − ηtf ′(wt; zit), (7)

where ηt = 1/(tσ) and {it}t is independently drawn from
the uniform distribution over [n]. Then for any δ ∈ (0, 1)
with probability at least 1− δ the following holds:

F (wT )− F (w∗) = Õ
( log(1/δ)

min{n, T}σ

)
. (8)

If T is of the order of n then with probability at least 1− δ,

F (wT )− F (w∗) = Õ
( log(1/δ)

nσ

)
. (9)



Table 1: Generalization bounds for MCC in a Frobenius learning framework (either constraint ‖W‖F ≤ 1 or regularizer ‖W‖2F )

Bound Lipschitz Continuity Additional Assumption Method Reference
c/
√
n `1-norm No ERM Kuznetsov, Mohri, and Syed (2014)√

c/n `2-norm No ERM Lei et al. (2015b)√
c log3(n)/n `2-norm smoothness and low noise ERM Li et al. (2018)

log2(nc)/
√
n `∞-norm No ERM Lei et al. (2019)√

c/n `2-norm decay of singular values ERM Li, Liu, and Wang (2019)
log3(nc)/n `∞-norm strong convexity RRM/SGD This work

Remark 3. According to Theorem 3, there is no need to
run more iterations once T is of the order of n since fur-
ther computation would not further improve the generaliza-
tion performance. In other words, a computationally effi-
cient method is to early-stop SGD after a constant number
of passes over the data. To our best knowledge, this is the
first result on the generalization analysis of SGD for vector-
valued learning algorithms.

Applications
In this section, we apply our general results to specific
vector-valued learning tasks, including MCC and MLC. Let
˜̀ : R 7→ R be convex, decreasing and (L/2)-Lipschitz con-
tinuous. Popular choices of ˜̀ includes the hinge-loss ˜̀(t) =

max{0, 1−t} and the logistic loss ˜̀(t) = log(1+exp(−t)).
We only consider applications to RRM here. It should be
mentioned that our results directly apply to SGD.

Multi-class classification
MCC is a classic learning problem which aims to assign a
single class label to each training example, i.e., Y = [c].
In this problem setting, the j-th component of a model
h : X 7→ Rc measures the likelihood of the output la-
bel being j. The prediction is made by taking the com-
ponent with the largest value as the predicted label, i.e.,
x 7→ arg maxj∈[c] hj(x). We apply our result to three clas-
sical MCC models: the multi-class SVM, the multinomial
logistic regression and top-k SVM. In Table 1, we com-
pare generalization bounds for MCC in a Frobenius learning
framework, i.e., either there is a constraint ‖W‖F ≤ 1 or a
regularizer ‖W‖2F .
Example 1 (Multi-class SVM). Let Y = [c]. Consider the
objective function FS in (1) with

`(w; z) = max
y′∈[c]:y′ 6=y

˜̀
(
〈wy −wy′ , φ(x)〉

)
and r(w) = σ

2

∑
j∈[c] ‖wj‖22. This is a margin-based loss

function and miny′∈[c]:y′ 6=y〈wy −wy′ , x〉 is called the mar-
gin of hw at z = (x, y). It is clear that the loss function is
designed to favor a model with a large margin. This objec-
tive function recovers the multi-class SVM in Crammer and
Singer (2002) by taking ˜̀as the hinge loss. To apply Theo-
rem 2, it suffices to verify Assumptions 1, 2. It was shown
that ` is L-Lipschitz continuous w.r.t. ‖·‖∞ (Lei et al. 2019).
The convexity of ` follows from the convexity of ˜̀ and the
linearity of hypothesis. The σ-strong convexity of r w.r.t.

‖ · ‖2,2 is clear in the literature (Kakade, Shalev-Shwartz,
and Tewari 2012). The dual norm is ‖ · ‖2,2, and therefore
B̃ ≤ κ. Therefore, we can apply Theorem 2 to develop the
generalization bound F (wS)−F (w∗) = Õ

(
log(1/δ)
nσ

)
with

high probability.
Example 2 (Multinomial logistic regression). Let Y = [c].
Consider the loss function

`(w; z) = log
(∑
j∈[c]

exp
(
〈wj −wy, φ(x)〉

))
.

Consider the objective function FS (1) with the above loss
function and the regularizer r(w) = σ

2

∑
j∈[c] ‖wj‖22. This

learning scheme recovers the popular multinomial logistic
regression. It was shown that the above loss function is 2-
Lipschitz continuous w.r.t. ‖ · ‖∞ (Lei et al. 2019). As-
sumption 2 also holds. Therefore, we can apply Theorem
2 to develop the generalization bound F (wS) − F (w∗) =

Õ
(

log(1/δ)
nσ

)
with probability at least 1− δ.

Example 3 (Top-k SVM). Let Y = [c]. Consider the loss

`(w; z) = max
{

0,
1

k

c∑
j=1

(
Iy 6=1 + 〈w1−wy, φ(x)〉, · · · ,

Iy 6=c + 〈wc −wy, φ(x)〉
)
{j}

}
,

where I is the indicator function and for any t ∈ Rc the
notation {·} denotes a permutation such that {j} is the in-
dex of the j-th largest score, i.e., t{1} ≥ t{2} ≥ · · · ≥
t{c}. If we use the above loss function and the regularizer
r(w) = σ

2

∑
j∈[c] ‖wj‖22 in (1), we recover the top-k SVM

useful to tackle the ambiguity in class labels (Lapin, Hein,
and Schiele 2015). It was shown that the above loss func-
tion is 2-Lipschitz continuous w.r.t. ‖ · ‖∞ (Lei et al. 2019).
Assumption 2 also holds. Therefore, we can apply Theorem
2 to develop the generalization bound F (wS) − F (w∗) =

Õ
(

log(1/δ)
nσ

)
with probability at least 1− δ.

Remark 4. The existing generalization analysis of MCC
considers ERM in a constrained hypothesis space (Lei et al.
2019). However, RRM is more popular in MCC. For ex-
ample, the multi-class SVM, multinomial logistic regres-
sion and top-k SVM in the above three examples are pro-
posed in a regularization setting (Lapin, Hein, and Schiele
2015; Crammer and Singer 2002). Furthermore, the exist-
ing discussions generally imply a slow generalization bound



O(1/
√
n) (Lei et al. 2015b, 2019) or require restrictive as-

sumptions such as low-noise condition and capacity assump-
tions to achieve a fast generalization boundO(1/n) (Li, Liu,
and Wang 2019). As a comparison, our discussion implies a
fast bound O(1/n) without these assumptions.

Multi-label classification
For MLC, each training example can be associated with one
or more class labels (Yu et al. 2014; Zhang and Zhou 2013;
Xu, Liu, and Geng 2020; Dembczyński et al. 2012; Wu and
Zhu 2020). This can be realized by setting Y = {−1,+1}c,
i.e., each y =

(
y(1), . . . , y(c)

)
is a binary vector where

y(j) = 1 if the j-th label is relevant and y(j) = −1 if the
j-th label is irrelevant. A popular approach to MLC is to
learn a vector-valued function h : X 7→ Rc and predict the
output ŷ for z according to its sign, i.e., ŷ(j) = sgn(hj(x)),
where sgn(a) denotes the sign of a ∈ R. There are vari-
ous performance measures to quantify the performance of
a multi-label predictor, including the subset accuracy and
the ranking loss. In Table B.1, we compare generalization
bounds for MLC in a Frobenius learning framework, i.e., ei-
ther a constraint ‖W‖F ≤ 1 or a regularizer ‖W‖2F .

Example 4 (Learning with subset loss). Let Y =
{−1,+1}c. Consider the loss function

`(w; z) = max
j∈[c]

˜̀
(
y(j)〈wj , φ(x)〉

)
. (10)

This loss function is called the subset loss (Zhang and Zhou
2013). Note that ˜̀(y(j)〈wj , φ(x)〉) is a standard loss if we
consider the prediction of the j-th label as a standard binary
classification problem. Then this loss function encourages us
to predict all labels correctly. As we will show in Proposition
4, the subset loss isL-Lipschitz continuous w.r.t. ‖·‖∞. If we
consider the objective function (1) with the subset loss and
the regularizer r(w) = σ

2

∑
j∈[c] ‖wj‖22, then we can apply

Theorem 2 to derive with probability 1 − δ that F (wS) −
F (w∗) = Õ

(
log(1/δ)
nσ

)
.

Example 5 (Learning with ranking loss). Let Y =
{−1,+1}c. For each y ∈ {−1,+1}c we denote y+ = {j ∈
[c] : y(j) = +1} and y− = {j ∈ [c] : y(j) = −1} as the set
of relevant and irrelevant labels, respectively. Consider the
following ranking loss (Zhang and Zhou 2013)

`(w; z) =
1

|y+||y−|
∑
j+∈y+

∑
j−∈y−

˜̀
(
〈wj+ −wj− , φ(x)〉

)
,

(11)
where |A| denotes the cardinality of a set A. Intuitively,
the ranking loss encourages predictors with larger function
values for a relevant label than a irrelevant label. As we
will show in Proposition 4, the ranking loss is L-Lipschitz
continuous w.r.t. ‖ · ‖∞. If we consider the objective func-
tion (1) with the ranking loss and the regularizer r(w) =
σ
2

∑
j∈[c] ‖wj‖22, then we can apply Theorem 2 to show

with probability at least 1 − δ that F (wS) − F (w∗) =

Õ
(

log(1/δ)
nσ

)
.

Remark 5. Generalization bounds of the order O(1/
√
n)

were established for MLC with the decomposable loss
`(w; z) = 1

c

∑
j∈[c]

(
y(j) − 〈wj , x〉

)2
under ERM in a con-

strained space {w ∈ Rd×c : ‖w‖S1
≤ Λ} (Yu et al. 2014).

Although this bound has no dependency on c, it requires
a constraint in terms of ‖ · ‖S1

, which can be as large as√
c‖ · ‖2,2 (i.e., a constraint ‖w‖S1 ≤ Λ corresponds to the

constraint ‖ · ‖2,2, ≤
√
cΛ). As a comparison, we consider

a regularization scheme involving the much milder norm
‖ · ‖2,2. Also, there is a gap between the theoretical analysis
and the algorithm design: the generalization analysis there is
for ERM, while the algorithm is designed based on a regu-
larization scheme (Yu et al. 2014). Furthermore, our analysis
for regularization implies a fast rate O(1/n).

The proof of Proposition 4 is given in Appendix A.4.

Proposition 4. 1. If ˜̀ is L-Lipschitz continuous, then the
subset loss (10) is L-Lipschitz continuous w.r.t. ‖ · ‖∞.

2. If ˜̀ is (L/2)-Lipschitz continuous, then the ranking loss
(11) is L-Lipschitz continuous w.r.t. ‖ · ‖∞.

Experimental Verification
In this section, we present experimental results to ver-
ify our theoretical analysis. We consider a specific vector-
valued learning problem called multinomial logistic regres-
sion, where the aim is to predict a class label for each train-
ing example. We apply SGD (7) to solve the optimization
problem with the objective function

FS(w) =
1

n

n∑
i=1

log
(∑
j∈[c]

exp
(
〈wj−wyi , xi〉

))
+
λ

2
‖w‖22,2,

(12)
where w = (w1, . . . ,wc) ∈ Rd×c and λ = 0.01. We set
the initial point w = 0 and the step size ηt = 1/(λt + 1).
We consider four real-world datasets available from the LIB-
SVM homepage (Chang and Lin 2011), whose information
is summarized in Table B.2. We repeat experiments 50 times
and report the average as well as standard deviation of the
experimental results. We call FS and F the training error and
testing error, respectively. We consider two experiments.

For the first experiment, we aim to verify the generaliza-
tion bound in (8). We randomly use 80% of data for training
and reserve the remaining 20% for testing. We plot the test-
ing errors F (wt) of the SGD sequence versus the number of
passes, i.e., t/n in Figure 1. It is clear that the testing error
decreases initially as we run more SGD iterations. After suf-
ficient number of iterations, the generalization performance
of SGD iterates no long improves. This is well consistent to
the generalization bound in (8) which shows that the gen-
eralization bound would be dominated by the effect due to
sample size if T ≥ n.

For the second experiment, our aim is to show whether the
dependency of the generalization bound (9) on the sample
size can be really captured in practice. For each dataset, we
randomly select different number of examples for training
and reserve the remaining for testing. For each fixed number
of training examples, we train a model by solving (12) with
SGD and stop it after 5 passes over the data. We compute



(a) ALOI (b) CIFAR10 (c) RCV1 (d) SECTOR
Figure 1: Testing errors versus the number of passes.

(a) ALOI (b) CIFAR10 (c) RCV1 (d) SECTOR
Figure 2: Training and testing errors versus the training data size.

(a) ALOI (b) CIFAR10 (c) RCV1 (d) SECTOR
Figure 3: F (wT )− FS(wT ) versus the training data size.

both the training error FS(wT ) and testing error F (wT )
of the output model wT (last iterate). In this way we get
a training error and a testing error for each considered sam-
ple size. We then plot the relative behavior of these errors
versus the number of training examples in Figure 2. Accord-
ing to Figure 2, it is clear that training errors increase as
the increase of training examples. This phenomenon is due
to the increasing difficulty of the optimization problem as
the increase of training examples. Note the fit of a model
on 10, 000 examples would be significantly harder than that
on 100 examples. It is also clear that the generalization be-
havior improves as we have more training examples. This
matches well the generalization bound (9). In Figure 3 we
further plot the difference between testing error and training
error (F (wT )− FS(wT )) versus the sample size. It is clear
this difference is a decreasing function of the sample size.

Conclusion
We present a unifying generalization analysis for the reg-
ularization framework of learning with vector-valued func-
tions. Our generalization bounds admit a mild dependency
on the output dimension and decay fast w.r.t. the sample size.
For instance for MLC, they improve the best known depen-
dency on the number of classes from O(

√
c) to a O(log(c)),

making them suitable for extreme classification. Further-

more, our analysis relax the existing restrictive assumptions
such as a low noise condition or a smoothness requirement
on loss functions. We develop the first generalization anal-
ysis for SGD to learn vector-valued functions, which is im-
portant to understand both statistical properties of models
and the convergence of the algorithm. We present applica-
tions to specific learning machines and conduct experiments
to verify our theory.

It would be interesting to extend our discussion to a
distributed learning setting (Lin and Zhou 2018; Hu, Wu,
and Zhou 2020). It would be also interesting to study non-
strongly convex regularizers such as `1 regularizers which is
useful to learn sparse models (Guo et al. 2017).
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A Proofs
A.1 Proof of Theorem 1
The following lemma relates the Rademacher complexity of loss function classes to that of hypothesis spaces (Lei et al. 2019).
The idea of considering a function space H̃Λ defined over an extended input argument is to fully exploit the Lipschitz continuity
of loss functions w.r.t. the infinity norm, i.e.,

max
z

∣∣`(w; z)− `(w′; z)
∣∣ ≤ Lmax

x
max
j

∣∣hwj (x)− hw
′
j (x)

∣∣.
We define the worst-case Rademacher complexity as Rn(H) = supS∈Zn RS(H).
Lemma A.1 (Lei et al.,2019). Let Assumption 1 hold. For any Λ > 0, define

H̃Λ =
{

(x, j) 7→ hwj (x) : x ∈ X , j ∈ [c],w ∈ WΛ

}
. (A.1)

Then there exists a constant C1 independent of n, c, L and Λ such that

RS(FΛ) ≤ C1L
√
cRnc

(
H̃Λ

)
log2(nc).

To apply the above lemma, we need to estimate Rnc

(
H̃Λ

)
. This is achieved in the following lemma. Note that the upper and

lower bound matches up to a constant factor. Note H̃Λ takes the form H̃Λ =
{

(x, j) 7→ 〈wj , x〉 : w ∈ WΛ

}
in this paper.

Recall that φ̃j(x) :=
(

0, . . . , 0︸ ︷︷ ︸
j−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−j

)
∈ HcK .

Lemma A.2. If Assumption 2 holds, then the worst-case Rademacher complexity of H̃Λ can be bounded by√
1

2nc
sup

w∈WΛ

〈
w, φ̃j(x)

〉
≤ Rnc(H̃Λ) ≤

√
2Λ

ncσ
B̃.

For a convex function f , we denote by f∗ its Fenchel conjugate, i.e., f∗(v) := supw[〈w,v〉 − f(w)]. The following lemma
is due to Kakade, Shalev-Shwartz, and Tewari (2012).
Lemma A.3. If τ is σ-strongly convex w.r.t. ‖ · ‖ and τ∗(0) = 0, then for any sequence v1, . . . ,vn and any w we have

n∑
i=1

〈w,vi〉 ≤ τ(w) +

n∑
i=1

〈∇τ∗(v1:i−1),vi〉+
1

2σ

n∑
i=1

‖vi‖2∗,

where v1:i−1 denotes the sum
∑i−1
j=1 vj .

Proof of Lemma A.2. Define τ : W 7→ R by τ(w) = F (w) − F (w∗). It is clear that τ is σ-strongly convex w.r.t. ‖ · ‖.
Furthermore, it follows from the definition of w∗ that

τ∗(0) = sup
v

(
〈0,v〉 − τ(v)

)
= − inf

v
τ(v) = 0.

According to the definition of Rademacher complexity (Bartlett and Mendelson 2002) and H̃Λ in (A.1), we know

ncRnc(H̃Λ) = sup
(xi,ji):i∈[n]

Eε sup
w∈WΛ

nc∑
i=1

εi〈wji , φ(xi)〉 = sup
(xi,ji):i∈[n]

Eε sup
w∈WΛ

nc∑
i=1

εi〈w, φ̃ji(xi)〉, (A.2)

where we have used the definition of φ̃ji in the last identity. We apply Lemma A.3 with vi = λεiφ̃ji(xi) and derive
nc∑
i=1

εi〈w, λφ̃ji(xi)〉 ≤ τ(w) +

nc∑
i=1

〈∇τ∗(v1:i−1),vi〉+
λ2

2σ

nc∑
i=1

‖φ̃ji(xi)‖2∗.

It is clear that

Eε〈∇τ∗(v1:i−1),vi〉 = Eε
〈
∇τ∗

(
λ

i−1∑
k=1

εkφ̃jk(xk)
)
, λεiφ̃ji(xi)

〉
= 0

and therefore

Eε sup
w∈WΛ

nc∑
i=1

εi〈w, φ̃ji(xi)〉 ≤
supw∈WΛ

τ(w)

λ
+

λ

2σ

nc∑
i=1

‖φ̃ji(xi)‖2∗.



We can combine the above inequality and (A.2) together and get

ncRnc(H̃Λ) ≤ Λ

λ
+

λ

2σ
sup

(xi,ji):i∈[n]

nc∑
i=1

‖φ̃ji(xi)‖2∗ =
Λ

λ
+
λnc

2σ
B̃2.

With the choice λ =
(

2Λσ

ncB̃2

) 1
2

, we derive

ncRnc(H̃Λ) ≤
√

2Λncσ−1B̃.

This establishes the upper bounds. We now turn to the lower bounds. By taking x1 = · · · = xn = x, j1 = · · · = jn = j, we
know (WΛ is symmetric)

sup
w∈WΛ

〈
w,

nc∑
i=1

εiφ̃ji(xi)
〉

= sup
w∈WΛ

〈
w,

nc∑
i=1

εiφ̃j(x)
〉

=
∣∣∣ nc∑
i=1

εi

∣∣∣ sup
w∈WΛ

〈
w, φ̃j(x)

〉
.

It then follows from (A.2) and Khitchine’s inequality Eε|
∑n
i=1 εi| ≥

√
n/2 (Mohri, Rostamizadeh, and Talwalkar 2012) that

sup
(xi,ji):i∈[n]

Eε sup
w∈WΛ

nc∑
i=1

εi〈wji , φ(xi)〉 ≥ sup
(x,j)

Eε
∣∣∣ nc∑
i=1

εi

∣∣∣ sup
w∈WΛ

〈
w, φ̃j(x)

〉
≥
√
nc/2 sup

(x,j)

sup
w∈WΛ

〈
w, φ̃j(x)

〉
.

This establishes the stated lower bound and finishes the proof.

Proof of Theorem 1. Theorem follows directly by combining Lemma A.1 and Lemma A.2 together.

A.2 Proof of Theorem 2
To prove Theorem 2, we first introduce some necessary notations. Let ρ0 > 0 and δ0 ∈ (0, 1) be two numbers to be fixed. We
construct two sequences ρk = 2kρ0, δk = 2−kδ0 for k ∈ N. For brevity we set ρ−1 = 0. We decomposeW into a sequence of
disjoint sets according to the function value

W ′k =
{
w ∈ W : ρk−1 < F (w)− F (w∗) ≤ ρk

}
.

For brevity, for any f : W × Z 7→ R we denote E[f(w; ·)] the expectation Ez[f(w; z)] and ÊS [f(w; ·)] = 1
n

∑n
i=1 f(w; zi)

the empirical average. For any w, we define s(w, ·) the shifted loss relative to w∗

s(w; z) = `(w; z)− `(w∗; z).
Our proof of Theorem 2 requires to use a concentration inequality called McDiarmid’s inequality (Mohri, Rostamizadeh, and

Talwalkar 2012).
Lemma A.4 (McDiarmid’s inequality). Let Z1, . . . , Zn be independent random variables taking values in a set Z , and assume
that f : Zn 7→ R satisfies

sup
z1,...,zn,z̄i∈Z

|f(z1, · · · , zn)− f(z1, · · · , zi−1, z̄i, zi+1, · · · , zn)| ≤ ci (A.3)

for 1 ≤ i ≤ n. Then, for any 0 < δ < 1, with probability of at least 1− δ, we have

f(Z1, . . . , Zn) ≤ Ef(Z1, . . . , Zn) +

√∑n
i=1 c

2
i log(1/δ)

2
.

Proof of Theorem 2. By the σ-strong convexity of F , we know F (w) − F (w∗) ≥ σ
2 ‖w − w∗‖2, from which we derive the

following inequality for any w ∈ W ′k

‖w −w∗‖ ≤
(

2σ−1
(
F (w)− F (w∗)

)) 1
2 ≤ (2σ−1ρk)

1
2 .

For any w ∈ W ′k and z = (x, y) we know

|s(w; z)| =
∣∣`(w; z)− `(w∗; z)

∣∣ ≤ L∥∥hw(x)− hw
∗
(x)
∥∥
∞

= L
∥∥∥(〈w1 −w∗1, φ(x)〉, . . . , 〈wc −w∗c , φ(x)〉

)∥∥∥
∞

= L max
j=1,...,c

∣∣〈wj −w∗j , φ(x)〉
∣∣

≤ L max
j=1,...,c

‖wj −w∗j‖2‖φ(x)‖2 ≤ Lκ‖w −w∗‖2,∞ ≤ Lκ(2ρk/σ)
1
2 ,



where we have used the mild assumption ‖ · ‖2,∞ ≤ ‖ · ‖.
For any S = {z1, . . . , zk−1, zk, zk+1, . . . , zn} and S′ = {z1, . . . , zk−1, z

′
k, zk+1, . . . , zn}, we have∣∣∣ sup

w∈W′k

(
E[s(w; ·)]− ÊS [s(w; ·)]

)
− sup

w∈W′k

(
E[s(w; ·)]− ÊS′ [s(w; ·)]

)∣∣∣
≤ sup

w∈W′k

∣∣∣ÊS [s(w; ·)]− ÊS′ [s(w; ·)]
∣∣∣ =

1

n
sup

w∈W′k

∣∣s(w; zk)− s(w; z′k)
∣∣

≤ 2

n
sup

w∈W′k
sup
z∈Z
|s(w; z)| ≤ 2Lκ

n

(
2ρk/σ

) 1
2 .

By the McDiarmid’s inequality with increments bounded by 2Lκ
n

(
2ρk/σ

) 1
2 , we get the following inequality with probability

at least 1− δk

sup
w∈W′k

(
E[s(w; ·)]− ÊS [s(w; ·)]

)
≤ ES sup

w∈W′k

(
E[s(w; ·)]− ÊS [s(w; ·)]

)
+ 2Lκ

(ρk log(1/δk)

nσ

) 1
2

. (A.4)

It follows from the symmetry trick that (S̃ = {z̃1, . . . , z̃n} is drawn i.i.d. and independently of S)

ES sup
w∈W′k

(
E[s(w; ·)]− ÊS [s(w; ·)]

)
= ES sup

w∈W′k

(
ES̃ÊS̃ [s(w; ·)]− ÊS [s(w; ·)]

)
≤ ES,S̃ sup

w∈W′k

(
ÊS̃ [s(w; ·)]− ÊS [s(w; ·)]

)
=

1

n
ES,S̃,ε sup

w∈W′k

[ n∑
i=1

εi
(
s(w; zi)− s(w; z̃i)

)]
≤ 2

n
ES,ε sup

w∈W′k

[ n∑
i=1

εis(w; zi)
]

=
2

n
ES,ε sup

w∈W′k

n∑
i=1

εi`(w; zi) = 2ESRS(Fρk), (A.5)

where in the last second step we remove `(w∗; zi) since w∗ is fixed. According to Lemma A.1 and Lemma A.2, we know

ESRS(Fρk) ≤ C1L
√
cRnc

(
H̃ρk

)
log2(nc) ≤

√
2ρkC1L log2(nc)B̃√

nσ
.

Combining (A.4), (A.5) and the above inequality together, we derive the following inequality with probability at least 1− δk

sup
w∈W′k

(
E[s(w; ·)]− ÊS [s(w; ·)]

)
≤ 2
√

2ρkC1L log2(nc)B̃√
nσ

+ 2Lκ
(ρk log(1/δk)

nσ

) 1
2

. (A.6)

For any w ∈ W ′k, we have
ρk
2

= ρk−1 ≤ F (w)− F (w∗)

and therefore
ρk ≤ max

{
ρ0, 2(F (w)− F (w∗))

}
.

Furthermore, it is clear
1

δk
=
ρ02k

δ0ρ0
≤

max
{
ρ0, 2(F (w)− F (w∗))

}
δ0ρ0

.

By the definition of F , FS and s(w), we know(
F (w)− F (w∗)

)
−
(
FS(w)− FS(w∗)

)
= E[s(w, ·)]− ÊS [s(w, ·)].

Combining the above discussions and (A.6) together, with probability 1 − δk the following inequality holds uniformly for all
w ∈ W ′k

F (w)− F (w∗) ≤
(
FS(w)− FS(w∗)

)
+ 2L

√
max

{
ρ0, 2(F (w)− F (w∗))

}
nσ

×(√
2C1 log2(nc)B̃ + κ

√
log(1/δ0) + log max

{
1, 2ρ−1

0 (F (w)− F (w∗))
})
. (A.7)

Noticing
∑∞
k=0 δk = 2δ0, the above inequality holds with probability at least 1 − 2δ0 uniformly for all w ∈ W . The stated

inequality (5) then follows by setting ρ0 = 1/(nσ).



We now prove (6). We prove instead

F (wS)− F (w∗) ≤ 16L2

nσ

(
2C2

1 log3(nc)B̃2 + 4κ2 log(1/δ0)
)
. (A.8)

Since FS(wS) ≤ FS(w∗), it follows from (A.7) that the following inequality holds with probability 1− 2δ0

F (wS)− F (w∗) ≤ 2L

√
max

{
ρ0, 2(F (wS)− F (w∗))

}
nσ

×(√
2C1 log2(nc)B̃ + κ

√
log(1/δ0) + log max

{
1, 2ρ−1

0 (F (wS)− F (w∗))
})
. (A.9)

Note that the above inequality holds for any ρ0 > 0. We can take ρ0 = 64L2κ2/(nσ). We now consider two cases. For the case
F (wS)− F (w∗)) < ρ0/2, the inequality (A.8) is trivial. We now consider the case F (wS)− F (w∗)) ≥ ρ0/2. In this case, it
follows from (A.9) and the elementary inequality (a+ b)2 ≤ 2(a2 + b2) that

F (wS)− F (w∗) ≤ 16L2

nσ

(
2C2

1 log3(nc)B̃2 + κ2
(

log(1/δ0) + log
(
2ρ−1

0 (F (wS)− F (w∗))
)))

.

By the elementary inequality log a ≤ ab+ log(1/b)− 1 for all a, b > 0, we know

log
(
2ρ−1

0 (F (wS)− F (w∗))
)
≤ nσ

32L2κ2
(F (wS)− F (w∗)) + log(64L2κ2/(ρ0nσ))− 1.

It then follows that

F (wS)− F (w∗) ≤ 16L2

nσ

(
2C2

1 log3(nc)B̃2 + κ2 log(1/δ0)
)

+
F (wS)− F (w∗)

2
+

16L2κ2 log(64L2κ2/(ρ0nσ))

nσ
.

Since ρ0 = 64L2κ2/(nσ) we then get the stated inequality (A.8). The proof is complete.

A.3 Proof of Theorem 3
To prove Theorem 3, we first introduce a high-probability bound on the convergence rate of SGD.
Lemma A.5 (Harvey et al.,2019). Suppose FS(w) = 1

n

∑n
i=1 f(w; z) is σ-strongly convex w.r.t. ‖ · ‖2,2. Assume for all

w ∈ W and z ∈ Z there holds ‖f ′(w; z)‖2,2, ≤ L̃ for some L̃ > 0. Let {wt} be obtained by wt+1 = wt − ηtf ′(wt; zit),
where ηt = 1/(σt) and {it}t∈N is independently drawn from the uniform distribution over [n]. Then with probability at least
1− δ we have

FS(wT )− inf
w
FS(w) = O

( log(T ) log(1/δ)

Tσ

)
.

Proof of Theorem 3. For any j ∈ [c] denote `(j)(w; z) = ∂`(w;z)
∂wj

the partial (sub)gradient w.r.t. the wj . Then `(j)(w; z) =

ψ(j)(hw(x), y)φ(x), where ψ(j) denotes the partial (sub)gradient w.r.t. the j-th coordinate. Assumption 1 means that∥∥(ψ(j)(hw(x), y)
)c
j=1

∥∥
1
≤ L for all x, y. It then follows that

‖`′(w; z)‖22,2 =

c∑
j=1

∥∥`(j)(w; z)
∥∥2

2
=

c∑
j=1

∣∣ψ(j)(hw(x), y)
∣∣2‖φ(x)‖22

≤ κ2
c∑
j=1

∣∣ψ(j)(hw(x), y)
∣∣2 ≤ κ2

( c∑
j=1

∣∣ψ(j)(hw(x), y)
∣∣)2

≤ L2κ2. (A.10)

According to the SGD update, we know∥∥wt+1

∥∥
2,2

=
∥∥∥wt − ηt

(
`′(wt; zit) + σwt

)∥∥∥
2,2

≤
(
1− ηtσ

)
‖wt‖2,2 + ηt‖`′(wt; zit)‖2,2

≤
(
1− ηtσ

)
‖wt‖2,2 + ηtσ(Lκ/σ)

≤ max{‖wt‖2,2, Lκ/σ},

where we have used (A.10) and ηt ≤ 1/σ. Applying this inequality recursively, we know by induction that

‖wt+1‖2,2 ≤
{
‖w1‖2,2, . . . , ‖wt‖2,2,, Lκ/σ

}
= Lκ/σ.



This together with (A.10) shows that

‖f ′(wt; z)‖2,2 ≤ ‖`′(wt; z)‖2,2 + σ‖wt‖2,2 ≤ 2Lκ.

Note r(w) is σ-strongly convex w.r.t. ‖ · ‖2,2. Therefore, assumptions in Lemma A.5 hold. We can apply Lemma A.5 to show
the following inequality with probability at least 1− δ/2

FS(wT )− inf
w
FS(w) = O

( log(T ) log(1/δ)

Tσ

)
. (A.11)

According to (5), with probability at least 1− δ there holds

F (wT )− F (w∗) = max{FS(wT )− FS(w∗), 1/(nσ)}+ Õ
(((F (wT )− F (w∗)

)(
log(1/δ) + B̃

)
nσ

) 1
2
)

= O
( log(T ) log(1/δ)

min{T, n}σ

)
+ Õ

(((F (wT )− F (w∗)
)(

log(1/δ) + B̃
)

nσ

) 1
2
)

where we have used FS(w∗) ≥ infw FS(w) and (A.11) (It can be shown B̃ ≤ κ). Solving the above quadratic inequality of
F (wT )− F (w∗) yields the stated bound (8) with probability at least 1− δ. The proof is complete.

A.4 Proof of Proposition 4
Proof of Proposition 4. We first prove the first part. For any w,w′ ∈ W , by the elementary inequality∣∣max{a1, . . . , ac} −max{b1, . . . , bc}

∣∣ ≤ max{|a1 − b1|, . . . , |ac − bc|}

we have ∣∣`(w; z)− `(w′; z)
∣∣ =

∣∣∣max
j∈[c]

˜̀
(
y(j)〈wj , φ(x)〉

)
−max

j∈[c]

˜̀
(
y(j)〈w′j , φ(x)〉

)∣∣∣
≤ max

j∈[c]

∣∣˜̀(y(j)〈wj , φ(x)〉
)
− ˜̀
(
y(j)〈w′j , φ(x)〉

)∣∣
≤ Lmax

j∈[c]

∣∣〈w −w′j , φ(x)〉
∣∣ = L

∥∥hw(x)− hw
′
(x)
∥∥
∞.

This proves the first part.
We now turn to the second part. For any w,w′ ∈ W∣∣`(w; z)− `(w′; z)

∣∣ =
1

|y+||y−|

∣∣∣ ∑
j+∈y+

∑
j−∈y−

(
˜̀
(
〈wj+ −wj− , φ(x)〉

)
− ˜̀
(
〈w′j+ −w′j− , φ(x)〉

))∣∣∣
≤ max
j+∈y+,j−∈y−

∣∣∣˜̀(〈wj+ −wj− , φ(x)〉
)
− ˜̀
(
w′j+ −w′j− , φ(x)〉

)∣∣∣
≤ L

2
max

j+∈y+,j−∈y−

∣∣∣〈wj+ −wj− , φ(x)〉 − 〈w′j+ −w′j− , φ(x)〉
∣∣∣

≤ L

2

(
max
j+∈y+

∣∣〈wj+ −w′j+ , φ(x)〉
∣∣+ max

j−∈y−

∣∣〈wj− −w′j− , φ(x)〉
∣∣)

≤ L‖hw(x)− hw
′
(x)‖∞.

This proves the second part and finishes the proof.



B Some Tables

Table B.1: Generalization bounds for MLC in a Frobenius learning framework (either constraint ‖W‖F ≤ 1 or regularizer
‖W‖2F )

Bound Lipschitz Continuity Additional Assumption Method Reference√
c/n `1-norm sub-gaussian distribution ERM Yu et al. (2014)√
c/n `2-norm No ERM Liu et al. (2018); Wu and Zhu (2020)√
c/n `2-norm decay of singular values ERM Li, Liu, and Wang (2019)

log3(nc)/n `∞-norm strong convexity RRM/SGD This work

Table B.2: Description of the datasets. c is the number of classes, n is the sample size and d is the input dimension.

Dataset c n d
CIFAR10 10 10, 000 3, 072

RCV1 53 15, 564 47, 236
SECTOR 105 3, 207 55, 197

ALOI 1, 000 108, 000 128


