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Abstract: In this work, a hybrid laminated plate is devel-
oped by changing ply orientations and stacking
sequences. The hybrid laminated plate is composed of
carbon nanotube reinforced composite and fiber rein-
forced composite layers. Negative Poisson’s ratio (NPR)
is obtained for the case of [22F/(22C/−22C)3T/−22F] lami-
nate. A theoretical laminated model considering geo-
metric nonlinearity and shear deformation is presented.
Based on a two-step perturbation method, the solutions
of the motion equations are obtained to capture the non-
linear frequencies and load–deflection curves. On this
basis, the fourth-order Runge–Kutta method is used to
obtain the dynamic response of hybrid laminated plates.
The presented model is verified by comparing the results
obtained analytically and numerically. Several factors
such as loading and distribution of carbon nanotubes
(CNTs), and foundation type are considered in parametric
study. Numerical results indicate that the thermal-
mechanical behavior of hybrid laminated plates sig-
nificantly improved by properly adjusting the CNT
distribution. In addition, the results reveal that changes
in temperature and foundation stiffness have pronounced
influence on the nonlinear vibration characteristics of

hybrid laminate plates with NPR as compared to those
with positive Poisson’s ratio.

Keywords: auxetic, hybrid laminated plate, nonlinear
dynamics, nonlinear bending, CNT reinforced composite,
temperature-dependent properties

1 Introduction

Structures made from auxetic materials are becoming
important in many industries because of the inherent
excellent properties of these materials. Because of devel-
opments in the manufacturing technology, various
auxetic materials and structures are developed and fab-
ricated nowadays [1–3]. Ren et al. [4] performed a sys-
tematic review of these structures. Recently, the studies
on the design and mechanical analyses have propelled to
achieve improvements in the mechanical properties of
the auxetic structures such as impact resistance [5–7]
and energy absorption [8,9]. Furthermore, these struc-
tural elements require high reliability in their service
life as the plates easily damage under different loading
scenarios. For a safe design, the necessity of accurate
evaluation of the mechanical behaviors of such plates is
becoming inevitable. The characterization of the static
and dynamic response is also required to estimate the
frequencies and deflections of auxetic plates under dif-
ferent environmental scenarios. A number of studies
have been dedicated to these structures. Particularly,
investigations were made to study the bending [10,11],
dynamic [12,13], and buckling behavior [13–15] of these
structures. However, in these researches [10–15], the
value of the negative Poisson’s ratios (NPRs) for esti-
mating the effect of auxetic feature on the mechanical
behavior of a plate is based on an assumption.

In the design of auxetic laminates, the concept of
engineering constants is usually introduced to charac-
terize the effective performance of these laminates.
Evans et al. [16] found that effective NPR can be obtained
by adjusting layup sequences in the laminates. Zhang
et al. [17] also found that both the layup sequence and
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anisotropic material are necessary for structures to
exhibit an NPR. In addition, many investigations are con-
ducted regarding fiber reinforced composite (FRC) lami-
nates with NPR. Herakovich [18] studied the auxetic
behavior of (±θ)s laminates and found that the NPR of
(±25)s laminate is −0.21. Hine et al. [19] observed that
composites made with a high modulus carbon fiber are
obtained to exhibit NPR value of v23 of 0.5. Matsuda et al.
[20] reported that the maximum amplitude of NPR in FRC
laminates was close to −0.7 when the laying angle is 25°.
Harkati et al. [21,22] investigated the effect of material
properties on ve

13 of a symmetric (θ/−θ)2s plate. It was
shown that the NPR of Kevlar and carbon reinforced com-
posite plate was −0.746 at θ = 20°. Most of the above
studies reveal that the magnitude of NPR of the laminated
structures greatly depends on their laying angle and
stacking sequences [23].

FRCs are applied in the design of laminates with NPR.
Compared with FRCs, carbon nanotube reinforced com-
posite (CNTRC) has the advantages of high strength and
strong anisotropy. In addition, functionally graded (FG)
materials are frequently used in many fields. Combining
the concept of FG with carbon nanotubes (CNTs) can be
used to improve the performance of CNTRC [24]. Based on
the design of auxetic FRC laminates, this concept is
applied to the design of FRC/CNTRC hybrid laminate
with NPR. This hybrid laminate is made of FG-CNTRC
core and FRC face sheets. Shen [24] proposed the concept
of FG-CNTRC structures and studied the mechanical
behavior of these structures at different scales. There-
after, researches on the static and vibration response
of FG-CNTRC structures were carried out [25–29]. Fan
and Wang [27] used a theoretical model together with a
finite element approach to analyze low-velocity impact
response of the FG-CNTRC beams. Chen et al. [29] used
the third-order piston theory to study the thermal buck-
ling behavior of multi-scale hybrid laminated nanocom-
posite disk exposed to hygro-mechanical loading. Fu
et al. [30,31] examined the dynamic instability of FG-
CNTRC and FGM conical shells in the framework of first-
order shear deformation theory. Yang and his coauthors
studied the effects of out-of-plane NPR on the nonlinear
flexural and dynamic behavior of FG-CNTRC structures
[32,33]. Yu and Shen [34] investigated the nonlinear
mechanical behavior of hybrid metal/CNTRC plate resting
on elastic foundations. By considering the matrix cracks,
Fan et al. [35,36] studied the static and dynamic charac-
terizes of hybrid laminated structures made from either
FRC or CNTRC. Lei et al. [37,38] investigated the influence
of matrix cracks on the bending and vibration behavior
of FRC/CNTRC plates using the element-free Galerkin

method and self-consistent model. Further, the buckling
behavior of these structures was examined by Lei and
Yang [39]. Kamarian et al. [40] used the firefly algorithm
for the optimization of fiber/CNT/polymer plates to maxi-
mize the natural frequency. Furthermore, the adoption
of FRC/CNTRC hybrid concept was later extended to the
design of composite blades by Zhang et al. [41,42]. They
are concerned with the nonlinear vibration responses of
hybrid composite blades. In addition, the studies of the
hybrid laminated structures made with multi-materials
can be found in ref. [43–51]. However, there are no stu-
dies available in literature that report the vibration and
dynamic characteristics of auxetic FRC/CNTRC hybrid
laminated plate.

In the present study, both FRC/CNTRC hybrid con-
figurations and NPR are considered. The authors used
Reddy Shear Deformation Theory with von Kármán non-
linear theory for bending, vibration, and forced vibration
analyses of these structures. The motion equations are
derived by considering temperature field and subgrade
reaction of foundation. The effects of the CNT configura-
tion, environmental conditions, and foundation type on
the mechanical behavior of hybrid laminated plate with
NPR or positive Poisson’s ratio (PPR) are assessed.

2 Theoretical modeling of hybrid
laminates with NPR or PPR

2.1 Effective Poisson’s ratio for laminates

The global stiffness and strength of laminates depend on
the ply orientation and stacking sequence. The effect of
CNTs’ orientation angle on the instability characteristic of
laminated plate is studied by Liew et al. [52] and Jam and
Maghamikia [53]. It was assumed in these studies that
reinforcing fibers are of sufficient length to be laid in at
different angles. The same assumption is also considered
in the current work.

Sun and Li [23] presented a model for effective Pois-
son’s ratio (EPR) of symmetric laminates. This model
cannot be applied for an arbitrary layup laminates.
Unlike the Sun et al.’s model [23], the model proposed
in this study considers the effect of bending and bending-
extension coupling, and provide more accurate predic-
tion of EPR of an arbitrary angle-ply laminates. Based
on the classical laminate theory, the formulae for the
EPR are obtained as follows:
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where BT
2,3 is the transposed matrix of B2,3, and Aij, Bij, Dij,

(i,j = 1–6) are the stiffnesses of laminates, given in ref.
[54]. When considering an antisymmetric angle-ply lami-
nated plate with UD or FG-O and FG-X configurations, a
simplified form of equation (1) can be found in previous
work [55]. Details about the derivation process of EPRs
are found in ref. [27] and [56].

Furthermore, the presented model has high general-
ization capacity because it can be used to design sym-
metric laminates as well as laminates with asymmetric
materials properties. In the current work, FRC/CNTRC
hybrid laminate with NRP is developed. The hybrid lami-
nated plates are modeled in the hinged condition with
the following ply orientation and staking sequence: [θF/
(θC/−θC)3T/−θF]. To facilitate the identification, the super-
script F and C represent the layer of FRC and CNTRC,

respectively. To predict the EPR of hybrid laminate, the
material parameters of each layer are determined. Based
on ref. [24] and [57], the general form for calculating
these properties are given by Fan and Wang [36], which
can be expressed as:
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ηi (i = 1, 2, 3, 4) are the efficiency coefficients, and ρ and αii
(i = 1, 2) are the density and thermal expansion coeffi-
cients of composite material, respectively. The Poisson’s
ratio (v12) is obtained as:

= +ρ V ρ V ρ ,r
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where the superscript r (r = CNT, F) means reinforcement
and subscript m means matrix; E r

11 and E r
22 are the long-

itudinal and transverse moduli of elasticity; Gr
12 is the

shear moduli in the X−Y planes; andVr denotes the volume
of the constituent. Em is the elastic modulus of isotropic
matrix. The material properties of the fiber are: E11

F =
233.05 GPa, α11

F = −5.4 × 10−7 K−1, v12
F = 0.2, E22

F = 23.1 GPa,
α22

F = 10.08 × 10−6 K−1,G12
F = 8.96 GPa, ρF = 1,750 kg/m³. The

properties that relate CNT/PmPV are reported in ref. [24,25]
and are summarized in Tables 1 and 2.

The analytical solution mentioned above is capable
of calculating the EPR of an arbitrary angle-ply laminate.
A systematic investigation of the antisymmetric hybrid
laminates is also carried out. Five configurations of lami-
nated plates are considered as described in Table 3, and
the uniform distribution (UD) is used as a reference.
These configurations are for an identical material and

Table 1: Temperature-dependent properties of CNT/PmPV ( =v 0.17512
CN , vm = 0.34) [24,25]

T (K) E11
CNT (TPa) E22

CNT (TPa) G12
CNT (TPa) Em (TPa) α11

CNT (10−6/K) α22
CNT (10−6/K) αm (10−5/K)

300 5.6466 7.0800 1.9445 2.1000 3.4584 5.1682 4.500
400 5.5679 6.9814 1.9703 1.6300 4.1496 5.0905 4.725
500 5.5308 6.9348 1.9643 1.1600 4.5361 5.0189 4.950
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have a constant thickness of 0.125 and 0.25 mm for FRC
and CNT layers, respectively. Several types of CNT distri-
butions are taken into consideration, which include the
type of CNT volume fraction (VCNT) and the volume frac-
tion of the fibers to be fixed as VF = 0.6 (see Figure 3(b)).

2.2 Design of auxetic hybrid laminate

An analytical example is given to show the correctness of
the solutions mentioned above. Figure 1 shows the compar-
ison of the solutions of the EPR (ve

13) and the solution derived
by Yeh et al. [58] for a symmetric laminate. The material
parameters of the laminates are E11 = 200GPa, ν12 = 0.2,
ν31 = 0.4, ν32 = 0.6, and G12/E11 = 0.2. EPRs (ve

13) have been
predicted for a wide range of elastic modulus ratio E33/E11. In
Figure 1, the values of ve

13 for symmetric laminates are plotted
with varying relative elastic modulus E22/E11. It can be noted
that the EPRs (ve

13) calculated by the proposedmethod agrees
well with those obtained by Yeh et al. [58].

Here, equation (1) is adopted to assess the effect of
the ply orientations and FG configuration on the EPR
(ve

13). Figure 2 shows the effect of the CNT and fiber orien-
tation θ on the EPR of the [θF/(θC/−θC)3T/−θF] laminated
plates. It is observed that ve

13 decreases with increasing θ.
ve

13 attains its minimum and maximum negative values at
θ equal to 22° and 90°, respectively, whereas the value of
ve

13 is positive at θ = 45°. As expected, the ply orientation
significantly affects the EPR of hybrid laminated plates.
In this regard, [22F/(22C/−22C)3T/−22F] and [45F/(45C/−45C)3T/

−45F] are taken as example. The out-of-plane EPR of [22F/
(22C/−22C)3T/−22F] laminate is negative, whereas [45F/(45C/
−45C)3T/−45F] plate has PPR. The results in terms of EPR of
these hybrid laminates and the corresponding FG configura-
tions are presented in Table 4.

3 Theoretical modeling of
nonlinear behavior

3.1 Motion equations

Laminates consist of layers of composites reinforced with
CNTRC and FRC. Consider a hybrid laminated plate com-
posed of eight layers with lamination scheme [θF/(θC/

Table 2: Values of the efficiency parameters ηj (j = 1, 2, 3, 4) [24,45]

Volume
fraction (Vr)

VCNT

= 0.11
VCNT

= 0.14
VCNT

= 0.17
VF

= 0.6

η1 0.149 0.15 0.15 1
η2 0.934 0.941 0.941 1
η3 0.934 0.941 0.941 1
η4 0 0 0 1

Table 3: Configuration of CNT for FRC/CNTRC laminate plate

Types
of ply

UD FG-X FG-O FG-Λ FG-V Geometry of
laminated plate

Ply1 0.6 0.6 0.6 0.6 0.6 b
Ply1
Ply2
Ply3
Ply4
Ply5
Ply6
Ply7
Ply8

Y

Z

h

Ply2 0.14 0.17 0.11 0.11 0.17
Ply3 0.14 0.14 0.14 0.11 0.17
Ply4 0.14 0.11 0.17 0.14 0.14
Ply5 0.14 0.11 0.17 0.14 0.14
Ply6 0.14 0.14 0.14 0.17 0.11
Ply7 0.14 0.17 0.11 0.17 0.11
Ply8 0.6 0.6 0.6 0.6 0.6

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.4

0.8

1.2

1.6

2.0

2.4

I:Present
II:Yeh[58]

E33/E11:
 0.2&I
 0.4&I
 0.6&I
 0.8&I
 1&I

 0.2&II
 0.4&II
 0.6&II
 0.8&II
 1&II

νe 13

E22/E11

Figure 1: Effect of E22/E11 on the EPR (v e
13) of laminates (45/−45)4S.

0 15 30 45 60 75 90
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
[θF/(θ/-θ)C

3T/−θF]  UD
 FG-V  FG-Λ
 FG-X  FG-O

θ

ve 13

Figure 2: EPR (v e
13)-laying angle for [θF/(θC/−θC)3T/−θF] laminated plates.

1628  Xu-Hao Huang et al.



−θC)3T/θF] and resting on a continuous elastic and visco-
elastic foundation as shown in Figure 3. Figure 3(a) defines
the coordinate system used in the analysis of hybrid lami-
nated plate analysis. The XYZ coordinate system is assumed
to have its origin on the middle face of the plate, so that
the middle surface lies in the XY-plane. The displacements
at a point in the X, Y, and Z directions are Ū , V̄ , and W̄ ,
respectively.

The simply supported plate is surrounded by a visco-
Pasternak foundation that consists of the Winkler foun-
dation (K̄1), shearing layer stiffness (K̄2), and visco-elastic
foundation (Cd). The distributed reaction between this
foundation and the bottom layer of the hybrid plate can
be expressed as:

( ) = − (∂ /∂ + ∂ /∂ )

+ ∂ /∂

p X Y t K W K W X W Y
C W t

, , ¯ ¯ ¯ ¯ ¯
¯ .

0 1 2
2 2 2 2

d
(5)

The method of analysis is based on the third-order
shear deformation theory [59] for the laminated plate
undergoing large deflection. The effect of the elevated
temperature is considered by introducing thermal forces

N̄T , moments M̄T , and higher order moments P̄T , as
defined in Appendix A. For the forced vibration problem,
the applied load Q is considered. The motion equations
are written as follows:
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where the nonlinear operator ( ()L̃ ) and the stress function
(F̄ ) can be expressed as follows:

() =

∂

∂

∂

∂

+

∂

∂

∂

∂

−

∂

∂ ∂

∂

∂ ∂

L
X Y Y X X Y X Y

˜ 2 ,
2

2

2

2

2

2

2

2

2 2
(10)

=

∂

∂

=

∂

∂ ∂

=

∂

∂

N F
Y

N F
X Y

N F
X

¯ ¯
, ¯ ¯

, ¯ ¯
,x xy y

2

2

2 2

2
(11)

where ψ̄x and ψ̄y denote the rotation about the Y- and
X-axes. The coefficients Sij and inertias Ii are shown in
Appendix A. The operators (L̃ij()) introduced in the above
motion equations are defined from ref. [60].

Table 4: EPR (v e
13) of hybrid laminates for various temperature conditions

FG- [22F/(22C/−22C)3T/−22F] [45F/(45C/−45C)3T/−45F]

300 K 400 K 500 K 300 K 400 K 500 K

UD −0.479 −0.580 −0.723 0.025 0.020 0.015
FG-V −0.338 −0.427 −0.559 0.031 0.026 0.019
FG-Λ −0.338 −0.427 −0.559 0.031 0.026 0.019
FG-X −0.416 −0.515 −0.658 0.028 0.023 0.017
FG-O −0.447 −0.548 −0.693 0.027 0.022 0.016

)b()a(

FG- FG-V

FG-X FG-O
VCNT =0.11

VCNT =0.14

VCNT =0.17

VF =0.6

Figure 3: Coordinate system and various configurations of hybrid laminated plates.
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In the current work, simply supported boundary con-
ditions (BCs) are used.

At X = 0, a:

= = = =W Ψ M P¯ ¯ ¯ ¯ 0,y x x (12a)

=Ū 0, (12b)
At Y = 0, b:

= = = =W Ψ M P¯ ¯ ¯ ¯ 0,x y y (12c)

=V 0, (12d)
where M̄x,P̄x (i = x, y) are the bending and higher order
moments, respectively, shown in ref. [60]. Ū and V̄ are
the plate displacements in X and Y directions.

The immovable in-plane BCs (12b) and (12d) are con-
verted to integral form as given below:

∫ ∫ ∂ /∂ =U X X Y¯ d d 0,
b a

0 0

(13a)
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in which the reduced stiffnesses of plate ( ∗Aij ,

∗Bij ,
∗Dij, Eij

⁎,
Fij

⁎,Hij
⁎) are the functions of the geometry, materials prop-

erties, and stacking sequence of the laminated plate as
given in Appendix A.

The nonlinear motion equations for the forced vibra-
tion can be solved by a two-step perturbation approach
proposed by Shen [60]. Equations (6)–(9) can be con-
verted to dimensionless forms by the definition of the
following dimensionless parameters as:
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The non-dimensional parameters and nonlinear
operator (L) in the equations (15)–(18) are given as follows:
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in which the non-dimensional forms of foundation stiff-
nesses k1, k2 are only used in numerical calculations, E0
and ρ0 are reference values of matrix Young’s modulus
Em and matrix density ρm at room temperature, respec-
tively. Ax

T , Dx
T , Fx

T , etc. are defined as follows:
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In equations (15)–(18), the dimensionless linear
operators (Lij()) are defined as in Shen [60].

Substitution of dimensionless parameters into equa-
tions (14a–b) and (15a–b) yields:

At x = 0, a:

= = = =W Ψ M P 0,y x x (21a)

=δ 0,x (21b)

At y = 0, b:

= = = =W Ψ M P 0,x y y (21c)

=δ 0,y (21d)

where δx and δy are given as:
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with γijk given in Shen [60].

3.2 Solutions for large amplitude vibration

The solutions for equations (15)–(18) consist of an addi-
tional and initial displacement terms as a result of the
thermal stress. Here, we will only discuss the solution
process of the first term. The solutions for the thermal
bending can be derived in the same way [61]. The fol-
lowing initial BCs are used in this study:
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Considering τ = εt, the equations can be expanded as
a function with a small perturbation parameter εi (1,
2, 3,…).
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Next, an initially deflected hybrid plate is considered
and solution of the first-order equation can be assumed
to be:

( ) = ( )

( )w x y τ A τ mx ny, , sin sin ,1 11
1 (25)

where (m, n) are the half-wave number of vibration mode
of plate along the X- and Y-directions, respectively.

Motions equations converted into their perturba-
tion expansions are given from the substitution of
solution equation (24) to equations (15)–(18). The per-
turbation solutions of the motion equations are given
below:
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In equations (26)–(30), τ is replaced back by t and

( )

( )εA t11
1 is taken as the second perturbation coefficient,

which is related to deflection. Here, assuming that (x, y) =
(π/2m, π/2n), ( )

( )εA t11
1 can be expressed as:
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Substituting equation (31) into (30) and applying
Galerkin procedure yield equation (33), which can be
expressed as:
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with g40, g41, etc. are given in equations (C.1)–(C.3) of the
Appendix C, and
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where ( )λ x y t, ,q = ( ) ( )λ F x y F t,q0 1 2 . λq0 and ( )F x y,1 are the
amplitude and distribution function of transvers loading,
respectively. ( )F t2 is impulsive shapes function, defined in
Table 5.

By solving equation (32), the relationship between
deflection and time can be obtained to characterize the

forced vibration. It can be easily converted to a free vibra-
tion problem by setting the load to zero. Therefore, the
solution of the dimensionless nonlinear frequency (ωNL)
can be obtained by solving equation (21) with λ̄q(t) = 0
can be obtained as follows:
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= /ω g g ,L 41 40 (35)

where ωL is the dimensionless linear frequency.

3.3 Solutions for forced vibration

In addition to large amplitude and free vibration analysis,
the forced vibration of hybrid laminated plates subjected
to dynamic load (see Figure 3) is taken into considera-
tion. The center deflection–time relationship is used to
characterize the forced vibration of the plate. Therefore,
the second-order ordinary differential equation (see equa-
tion 32)with initial value can be obtained using the fourth-
order Runge–Kutta method. It is worth noting that the
initial deflection for FG-Λ or FG-V will be triggered under
the temperature field.

3.4 Solutions for nonlinear bending

In this section, the nonlinear bending response of hybrid
laminated plates with NPR and PPR is studied. First,
the relationship between the applied pressure and the
deflection is determined. For the static analysis, this rela-
tionship is independent of the variation in time (t).
Therefore, the dynamic load is modified to be static
load and Q(X, Y, t) = q0. Based on these assumptions
and using a two-step perturbation approach, the solution
of motion equations can be obtained as:

Table 5: Impulsive shapes of dynamic loads

Dynamic load F2(t)

Sudden load F2(t) = 1

 Sudden load
 Step load
 Triangular load
 Sine load
 Exponential decay load

t0 t

1

0

F2(t)Step load F2(t) = 1, t < t0
F2(t) = 0, t > t0

Triangular load F2(t) = 1 − t/t0, t < t0
F2(t) = 0, t > t0

Sinusoidal load F2(t) = sin(πt/t0), t < t0
F2(t) = 0, t > t0

Exponential load F2(t) = e−ωt
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and
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In equations (34)–(37), the second perturbation coef-
ficient ( )A ε11

1 that relates to the non-dimensional max-
imum deflection allows the application of a two-step per-
turbation technology. The load–deflection relationship
can be written as:
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It can be noted that ( )AW
1 and ( )AW

3 are related to the
material properties and are functions of temperature.
Further details can be found in Appendix D.

4 Numerical results and
discussions

4.1 Validation studies

To verify the proposed model, results of the comparison
analysis are reported. The results of four examples are
given to validate the present model. Hybrid plates are
assumed in the first, second, and fourth examples,
whereas FG-CNTRC plates are adopted in the third
example.

Example 1. In this example, verification investigations of
the free vibration of a simply supported [θC/90F]2 hybrid
plate with a = 20h and h = 0.5 mm are presented. Table 6
presents the comparison of the solutions using an
analytical model proposed by Fan and Wang [62] and
the method presented in this study for a hybrid lami-
nated plate. The two reinforced materials are FRC and

CNTRC and the material properties are: (1) for FRC: E11
F =

233.05 GPa, v12
f = 0.2, E22

F = 23.1 GPa, ρF = 1,750 kg/m3,

G12
F = 8.96 GPa; (2) for CNTRC: E11

CN = 5646.6 GPa, v12
CN = 0.175,

E22
CN = 7080.0 GPa, ρCN = 1,400 kg/m3,G12

CN = 1944.5 GPa; for
the same matrix: Em = 2.5 GPa, ρm = 1,150 kg/m3, νm = 0.34.
The comparison shows that the proposed model has a good
agreement with the existing results.

Example 2. This example is given to verify the correctness
of the solution for nonlinear vibration of plate. The dimen-
sions of the (0/90)3T plate are: a = 2b = 20mm and h =
0.6mm. Present frequency ratios are compared with those
of Pillai and Rao [63] and Lai et al. [64] for a plate with
Wm/h = 0.5, 1, 1.5, 2. The determined frequency ratios are
then compared with the data in ref. [63,64] and shows an
excellent agreement for different deflections (see Figure 4).

Example 3. The predicted dynamic response by the pro-
posed model is compared to the numerical results pre-
dicted in detail by Liew et al. [65]. The CNTRC plates
are set with a/h = 4 cm and b = a, whereas the material
parameters are the same as in Example 1. As shown
in Figure 5, the forced vibration curves are compared
with the results predicted in ref. [65]. According to the
curves plotted in Figure 5, similar trend can be observed
between the results.

Example 4. The bending studies of a hybrid plate con-
sisting of a cross-ply [45C/−45F] with large deflection are
reported by Fan and Wang [66]. A hybrid plate subjected to
a uniform and sinusoidal load is considered in the analysis.
Constituent materials of the plate are same as in the case of
hybrid plates listed in Figure 6. The results of the present
dimensionless deflections are compared with those in ref.
[66]. As plotted in Figure 6, the proposed results are very
close to those presented by Fan and Wang [66].

4.2 Linear vibration analysis

In this subsection, the effects of the change in tempera-
ture, CNT distribution pattern, and the foundation
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constants (k1, k2) on the free vibration of hybrid lami-
nated plates are scrutinized. Unless otherwise specified,
the angle-ply (22F/(22C/−22C)3T/22F) and (45F/(45C/
−45C)3T/45F) hybrid laminated plates are adopted in the
following studies.

The effect of thermal environments on the first six

frequencies Ω̃ij (i, j = 1, 2, 3) of hybrid laminated plates
with five different distribution patterns is investigated in
Figure 7(a)–(c). Here, a plate with (70F/(70C/–70C)3T/70F)
is considered for comparison purpose. Among the three
angle-ply hybrid plates, the (45F/(45C/–45C)3T/45F) plates
have the maximum first-order frequency for different tem-
peratures. It is observed that increasing the temperature
causes decrease in the frequencies for both angle-ply hybrid
plates. As a result, the influence of the degradation caused
by thermal stress should be taken into consideration in the
design and service life of hybrid laminated plates.

The values of the stiffnesses in the framework of
Pasternak foundation for different distributions of CNT
are shown in Figure 7(d) and (e). Two different founda-
tion coefficients (k1, k2) are considered, i.e., (102, 10), (102,
0). It should be noted that structures with (k1, k2) = (0, 0)
are selected as reference examples and can be found in
Figure 7(a). As shown, the natural frequencies of the
hybrid laminated plate for higher (k1, k2) are greater
than the other cases.

4.3 Large amplitude vibration

The nonlinear vibration analysis of hybrid plates is car-
ried out. A non-dimensional frequency ratio (ωNL/ωL) is

Table 6: Comparison of the fundamental frequencies for [θC/90F]2
plates

VCN b/h

10 20 50 100

0.12 Fan and
Wang [62]

14.8861 16.7109 17.3677 17.4686

Present 14.6569 16.6273 17.3523 17.4644
0.17 Fan and

Wang [62]
16.2484 18.2019 18.8970 19.0034

Present 16.0858 18.1115 18.8874 19.0072
0.28 Fan and

Wang [62]
17.6812 20.2276 21.1827 21.3314

Present 17.3354 20.0948 21.1646 21.3332
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Figure 4: Comparisons of ωNL/ωL for angle-ply (0/90)3T laminated
plate.
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Figure 7: Natural frequencies  = ( / ) /b ρ E hΩ Ωij ij
2

0 0
0.5 for different temperatures and foundation stiffness; NPR-I: (22F/(22C/−22C)3T/−22F),

NPR-II: (70F/(70C/−70C)3T/−70F), PPR: (45F/(45C/−45C)3T/−45F). (a) T = 300 K & (k1, k2) = (0, 0); (b) T = 400 K & (k1, k2) = (0, 0); (c) T = 500 K &
(k1, k2) = (0, 0); (d) T = 300 K & (k1, k2) = (100, 0); (e) T = 300 K & (k1, k2) = (100, 10).
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considered. The frequency ratio–deflection relationships
obtained for hybrid laminated plates composed of CNTRC
with different configurations are presented in Figure 8. As
expected, FG-X has the lowest frequency ratio, whereas
the FG-O has the highest frequency ratio. The frequency
ratios for the plate with Λ and V pattern are similar. It
shows that the overall stiffness of the plates increases as
the CNT volume fraction in the surface layer is increased.

Furthermore, nonlinear frequencies are predicted for
UD and FG-X plates subjected to temperatures in the
range of 300–500 K. Looking at the curves shown in
Figure 9, one can see that an increase in the thermal
stress leads to an increase in the frequency ratio. It is
found that laminated plates with NPR are more sensitive
to temperature changes than plates with PPR.
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The frequency ratio of UD and FG-X plates with and
without considering elastic foundations are obtained as
shown in Figure 10. The foundation coefficients are taken
as (k1, k2) = (0, 0), (103, 0), (103, 10). From Figure 10, it is
concluded that the increase in foundation stiffness makes
the plate more rigid when the foundation coefficients of
the plate are increased. This also leads to an increase
in the frequency ratio of the UD and FG-X. It can also
be seen that (22F/(22C/−22C)3T/−22F) laminated plates are
more sensitive to change in foundation stiffnesses than
those with (45F/(45C/−45C)3T/−45F).

4.4 Forced vibration analysis

Hybrid plates with NPR subjected to dynamic load are
investigated in this section. Different dynamic loads are
adopted to make a comparison and calculate the one
corresponding to the maximum deflection of the plate.

Except for a sudden load, it is assumed that the duration
of the dynamic load is equal to the period of forced vibra-
tion. As shown in Figure 11, a comparison of the forced
vibration of (22F/(22C/−22C)3T/−22F) plate with a = b = 20h
and h = 35 mm subjected to different dynamic loads
is proposed. It can be found that the same amplitude
does not mean the same defection of the applied load
(Figure 11(b)). The highest defection is predicted for
step load during forced vibration. While analyzing the
free vibration of plate, one can find that the highest incre-
ment of defection for the same duration takes place for
the triangular load. Unless otherwise specified, a sudden
uniform load is considered in the following forced vibra-
tion studies.

Five different configurations present above are taken
into consideration. The CNT distributions between the
central deflection and the time t are analyzed under the
reference temperature, and the corresponding curves
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Figure 12: Forced vibration curves for FG hybrid plates.
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are shown in Figure 12(a) and (b). Unless otherwise spe-
cified, the amplitude of the load is fixed at 4 MPa. As
expected, the type of FG configurations has a consider-
able effect on the forced vibration. Furthermore, FG-X
exhibits great stiffness, which can be attributed to the
increased VCN near the top and bottom layers. Thus, for
the next parametric analysis, the studying examples are
taken as UD and FG-X.

In Figure 13(a) and (b), the influence because of var-
iation in thermal stress is considered in the forced vibra-
tion of the UD and FG-X plates. The applied uniform load
is adopted as 4 MPa for (22F/(22C/−22C)3T/−22F) and (45F/
(45C/−45C)3T/−45F)with L = 20h. It is found that the defec-
tion and period of plate increase with increase in thermal
stress. In fact, this phenomenon may be attributed to

reduction in the overall stiffness of the plates under
thermal environment.

Figure 14(a) and (b) show the variation in maximum
deflections with time for hybrid plates (22F/(22C/−22C)3T/
−22F) and (45F/(45C/−45C)3T/−45F) for different founda-
tion stiffnesses, but for the same temperature. To eval-
uate the influence of Pasternak and viscoelastic founda-
tion, the plates with k1 = k2 = Cd = 0 are adopted for
comparative analysis. It appears that the dynamic beha-
vior of the plates depends significantly on the values of
the foundation coefficients. For example, the value of
central deflections decreases with an increase in the
foundation coefficient. The reinforcement effect of visco-
elastic foundation is more obvious as compared to elastic
foundation. It means that the forced vibration of the
hybrid laminated plates is significantly influenced by
the viscoelastic parameter. Furthermore, the peak value
of the central deflection decreases with increase in time.
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Figure 14: Effect of foundation coefficients on forced vibration of
hybrid plates.
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Figure 15: Load versus deflection of hybrid laminated plate com-
posed of different CNT distribution patterns.
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4.5 Nonlinear bending analysis

Figure 15(a) and (b) illustrate the nonlinear bending
curves for UD and FG-plates subjected to different
loading scenarios. Under uniform and sinusoidal distri-
bution load, it is found that the defection of FG-O plate is
largest, followed by UD. In addition, FG-X plates exhibit
the largest bearing capacity. This is because CNTs are
distributed away from the interlayer to improve the
bending stiffness of the plate. Therefore, in the following,
exhaustive studies will be carried out to evaluate the
bending performance of FG-X and UD subjected to UD
load, and different environmental conditions.

To evaluate the influence of thermal environment on
the bending characteristics of FRC/CNTRC hybrid plate,
Figure 16(a) and (b) show the variations in the central

deflection of UD and FG-X plates with L = 10h versus
load for various temperature fields. It is easy to observe
that the deflection of the hybrid laminated plates
increases with increment of temperature. As a result,
the effect of the degradation caused by temperature field
should be considered in the design of bearing capacity of
plates.

Figure 17(a) and (b) show the influence of the foun-
dation coefficients on the bending behavior of UD and
FG-X with room temperature and L = 20h. Three sets of
values are selected for the stiffnesses of the elastic foun-
dation ((k1, k2) = (0, 0), (102, 0), (102, 10)). As expected,
the central deflection decreases when the foundation
stiffness is increased.

0 200 400 600 800 1000
0.0

0.3

0.6

0.9

1.2

300 K

UD: , ,
FG-X: , ,

q0L
4/E0I

W
/h

(22C/(22/-22)C
3T/-22F)

uniform load
L=10h;

400 K 500 K

(a) 

0 200 400 600 800 1000
0.0

0.3

0.6

0.9

1.2

q0L
4/E0I

W
/h

(45F/(45/-45)C
3T/-45F)

uniform load
L=10h;

UD: , ,
FG-X: , ,

300 K 400 K 500 K

(b) 

Figure 16: Effect of thermal field on bending behavior of hybrid
laminated plates.
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Figure 17: Effect of foundation coefficient on bending behavior of
hybrid laminated plates.
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5 Closing remarks

In this study, static and dynamic characteristics of hybrid
plates fabricated from FRC layer and FG-CNTRC core
resting on elastic foundation are studied. According to
the arrangement of CNT, four FG distributions (Λ,V,
X,O) and UD are taken into consideration. For the config-
urations of (22F/(22C/−22C)3T/−22F) and (45F/(45C/−45C)3T/
−45F), the out-of-plane Poisson’s ratios exhibit NPR and
PPR, respectively. A two-step perturbation technology is
adopted to solve the bending and vibration problem of
the above plates. Geometric nonlinear analysis is per-
formed by investigating large amplitude vibration, forced
vibration, and bending situations. The influence of the
variation in the thermal stress and the foundation stiff-
ness on the static and dynamic characteristics of FRC/
CNTRC laminated plates are also studied.

The following observations are summarized from the
present study:
• The configuration of CNTs has significant effect on
the mechanical response of hybrid plate. The results
show that FG-X arrangement exhibits minimum central
deflection or nonlinear vibration frequency under the
reference temperature. Moreover, FG-X configuration
still shows excellent performance in thermal environ-
ment and foundation conditions.

• It is observed that environmental conditions have a
considerable effect on the frequency of plates. Increas-
ing the foundation coefficients (k1, k2) increases the
frequencies of hybrid plates, whereas the elevated tem-
perature effect plays an opposite role on the vibration
behavior of these members.

• In the case of nonlinear bending, vibration, and forced
vibration behavior, increasing thermal stresses will
increase the central deflection and nonlinear vibration
frequency, whereas increasing the value of (k1, k2) will
lead to an opposite effect.

• The most dangerous function shape loading is the step
load. It gives the highest defection for all the analyzed
cases. For viscoelastic foundation, a larger difference in
the middle defection is visible for the duration greater
than 0.5 ms.

• The results of the parametric analysis reveal that the
large amplitude vibration of (22F/(22C/−22C)3T/−22F)
laminated plates is more sensitive to variation in the
temperature and foundation stiffness as compared to
those with (45F/(45C/−45C)3T/−45F).
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