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Leukocyte trafficking shows strong diurnal rhythmicity and is tightly regulated by circadian
rhythms. As we age, leukocyte trafficking becomes dysregulated, contributing to the
increased systemic, low-grade, chronic inflammation observed in older adults. Ageing is
also associated with diminished circadian outputs and a dysregulation of the circadian
rhythm. Despite this, there is little evidence to show the direct impact of age-associated
dampening of circadian rhythms on the dysregulation of leukocyte trafficking. Here, we
review the core mammalian circadian clock machinery and discuss the changes that
occur in this biological system in ageing. In particular, we focus on the changes that occur
to leukocyte trafficking rhythmicity with increasing age and consider how this impacts
inflammation and the development of immune-mediated inflammatory disorders (IMIDs).
We aim to encourage future ageing biology research to include a circadian approach in
order to fully elucidate whether age-related circadian changes occur as a by-product of
healthy ageing, or if they play a significant role in the development of IMIDs.
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INTRODUCTION

Under homeostatic conditions, leukocytes migrate between the vasculature and different tissues for
immune surveillance. In response to infections or injuries, leukocytes are recruited to the site of
inflammation and play key roles in pathogen clearance and tissue repair. Temporal expression of
adhesion molecules on the leukocyte surface and on endothelial cells (ECs) mediates leukocyte
trafficking, in a process known as the leukocyte adhesion cascade (1). Critically, it is essential that
leukocyte trafficking is tightly regulated as aberrant leukocyte recruitment into tissues contributes to
the development of most immune-mediated chronic inflammatory diseases (IMIDs).

Leukocyte trafficking was first identified to be under circadian control over 50 years ago, when it
was observed that circulating lymphocyte numbers oscillate according to the time of day (2). Since
then, core circadian machinery has been identified in almost all immune cells and a strong
reciprocal relationship between immunity and circadian clocks has been well established (3–5).
Disruption of circadian rhythms due to genetic manipulation or lifestyle (for example, shift work)
dysregulates the immune response and increases the susceptibility to cancers, cardiovascular
disease, and metabolic disease (6). Several IMIDs show daily patterns of symptom intensity and
org May 2021 | Volume 12 | Article 6734051
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responsiveness to treatment which has created a new avenue of
chronotherapy that involves optimal timing of drug delivery (4).
In older adults, leukocyte trafficking becomes dysregulated,
contributing to age-related low-grade, chronic inflammation
(inflammageing) that predispose the older population to
IMIDs (7). Although it is known there is a dampening of
circadian rhythms with increasing age, little work has been
done to investigate the effects of this circadian disruption on
the increase in IMIDs observed in older adults.

In this review, we explore the current knowledge regarding
circadian control of leukocyte trafficking and the circadian
oscillations of inflammatory conditions. We discuss the
changes that occur to the circadian clock with increasing age
and investigate whether this may contribute the age-related
increase in inflammation and diseases.
CIRCADIAN RHYTHM AND AGEING

The Master Pacemaker
The circadian rhythm refers to the endogenous cycles seen in
nearly all organisms that correlate with the Earth’s 24-hour day-
night cycle. Numerous biological processes are regulated by
circadian clocks including behaviour, sleep, metabolism and
body temperature (8, 9). In mammals, the master circadian
pacemaker is found within the suprachiasmatic nucleus (SCN)
which is entrained by the external environment and synchronises
peripheral oscillators (10). Light enters the eye and sends input to
the SCN via the retinohypothalamic tract enabling the central
clock to entrain to external light/dark cues (11). SCN neurons
send rhythmic outputs to peripheral organs and other brain
areas, allowing global synchronisation with the external
environment (12). Additionally, SCN neurons are able to
generate autonomous circadian outputs allowing for circadian
rhythms to exist even under constant darkness (13).

Molecular Mechanisms
In mammalian cells, the intracellular circadian clock is made up of
an autoregulatory negative feedback loop. Transcriptional
activators CLOCK (Circadian Locomotor Output Cycles Kaput)
and BMAL1 (Brain and Muscle ARNT-Like 1) dimerise and form
a complex. The CLOCK/BMAL1 complex then translocates to the
nucleus where they bind to E-Box elements in promoter sequences
of clock-controlled genes to positively regulate their own
transcription (14). CLOCK/BMAL1 also promotes transcription
of the clock regulators, Cryptochrome (CRY) and Period (PER),
which in turn dimerise and undergo nuclear translocation where
they inhibit CLOCK/BMAL1, repressing their own transcription
(15). In addition to this feedback loop of core clock genes, nuclear
receptor subfamilies Rev-erb and ROR (retinoic acid-related
orphan receptor) compete for binding to ROR responsive
elements (ROREs) in Bmal1 promoter sequences to repress and
promote expression of BMAL1, respectively (16). Post-
translational modifications of clock transcription factors further
regulate this feedback loop. Phosphorylation of PER and CRY
proteins by casein kinase Iϵ/d and AMP kinase promotes
ubiquitination by E3 ligases resulting in their degradation (8).
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Recently, another circadian repressor gene has been identified
which is under control of the circadian clock (17). CHRONO
(ChIP-derived repressor of network oscillator) inhibits CLOCK/
BMAL1 transcription activation in a histone deacetylase (HDAC)–
dependent manner, adding an epigenetic arm to the mammalian
circadian clock (18).Overall, thisnegative feedback loop takesabout
24 hours and results in the circadian oscillation seen in a multitude
of physiological processes.

Ageing and the Circadian Rhythm
It is well-established that the circadian system influences ageing and
longevity, and vice versa. Circadian outputs are diminished in older
animals (19); transplantation of foetal SCN tissue into aged
hamsters led to increases in longevity and restored the age-
associated loss of behavioural rhythmicity seen in control animals
(20). BMAL1 knockout mice (KO) have significantly shorter
lifespans than wild type (WT) controls, and display a premature
ageing phenotype (21). Reactive oxygen species (ROS) accumulate
in the kidney, spleen and heart of BMAL1 KO animals which all
show an age-related decrease in size, suggesting a role of oxidative
damage in age-associated degeneration. Inhibition of endogenous
BMAL1 by siRNAs inmurine fibroblast cell lines also increases ROS
levels (6). Oxidative damage caused by increasing ROS production
could drive the progression of cellular senescence of local cells,
promoting a senescence-associated secretory phenotype, and
subsequent dysregulation of the inflammatory response. CLOCK
KOmice also have significantly reduced lifespans thanWT controls,
but show a milder ageing phenotype than BMAL1 KO mice,
whereas PERIOD-deficient mice only have reduced lifespans after
challenge with irradiation (22). The severe ageing phenotype limited
to BMAL1 KO mice may be due to systemic effects independent of
the circadian role of BMAL1, or functional redundancy seen by
other core clock proteins. Importantly, BMAL1 KO mice also lose
all time-of-day dependent leukocyte trafficking when housed in
constant darkness, in contrast to WT littermates (23) indicating the
pivotal role of the circadian clock in regulation of
leukocyte trafficking.

In humans, ageing is associated with a reduced sleep quality
and disrupted sleep cycles (9), which in turn further dysregulates
the robustness of the circadian rhythm. Importantly, circadian
rhythm dysregulation is associated with the development of age-
related disorders, including inflammatory and metabolic
disorders, and neurodegenerative diseases such as Alzheimer’s
Disease and Parkinson’s (24). Several changes occur to the
circadian clock with increasing age and identifying which of
these are natural processes of healthy ageing and which of these
are pathological will increase our understanding of age-
associated aberrant inflammation.
CIRCADIAN REGULATION OF
LEUKOCYTE TRAFFICKING IN AGEING

It is well established that leukocyte trafficking follows a circadian
oscillation [reviewed extensively in (3, 4, 25)]. The expression of
circadian clock genes is ubiquitous to nearly all immune cells,
and clocks can directly regulate immune cell trafficking.
May 2021 | Volume 12 | Article 673405
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Leukocyte trafficking becomes dysregulated in ageing as
expression of adhesion molecules, chemokines and integrins
change and senescent cells accumulate (26), contributing to
inflammageing and increasing susceptibility to IMIDs. Despite
the abundant research focusing on circadian changes with
increasing age, very little work has been done on how this
affects circadian control of leukocyte trafficking. Future
research should concentrate on this interaction to identify
which changes to the immune system and to the circadian
machinery occur as a natural by-product of ageing and which
are signs of pathology.
Neutrophils
Neutrophils are the first innate immune cell recruited to sites of
inflammation, where they phagocytose pathogens and secrete anti-
microbial agents (27). Under steady state conditions, neutrophils
are retained in the bone marrow by the key retention signal,
CXCL12, acting through its receptor, CXCR4. Diurnal adrenergic
signals inhibit CXCL12 expression in the bonemarrow, resulting in
daily variations in chemokine expression which regulates the
circadian egress of neutrophils (and haematopoietic stem cells)
from the bone marrow (28, 29). Following LPS challenge,
neutrophils show a circadian-regulated recruitment to the lungs
(30). Interestingly, this is regulated by the circadian clocks in lung
epithelial cells, and not the clocks within neutrophils themselves.
Local lung epithelial cells regulate the diurnal expression of the
chemokine, CXCL5, in a glucocorticoid-dependent mechanism,
which attracts neutrophils to the lungs (30). This identifies the
complexity of circadian regulation of leukocyte trafficking, as
immune cells both contain intrinsic clock machinery and are
regulated by chemokine expression, which can be under the
control of circadian clocks in other cells.

Recently, it has been reported that human and murine
neutrophils possess an intrinsic, cell-autonomous diurnal ageing
programme that acts to regulate trafficking of neutrophils to
infections, whilst promoting their removal from the bloodstream,
thus protecting vessels from inflammation (31). In young (6-12
weeks old) WTmice, neutrophils lose CD62L expression and gain
CXCR4 as they age, promoting their recruitment to the bone
marrow for elimination (32). This diurnal change is mediated by
BMAL1,whichupregulates expressionofCXCL2, enablesautocrine
surface CXCL2-CXCR2 interactions and in turn promotes CD62L
expression (31). Neutrophil-specific CXCR4 KO mice showed
constitutive ageing as seen by low levels of CD62L (31).
Persistence of aged neutrophils in the vasculature of these mice
increased thrombo-inflammation in a model of ischemia-
reperfusion, and depletion of these neutrophils prevented
thrombus formation and improved survival after infarction (31).
This suggests that the importance of this diurnal neutrophil ageing
process is to prevent senescent neutrophils accumulating in the
vasculature and to prevent thrombo-inflammation. Healthy aged
mice have an accumulation of CD11bhigh/ICAM-1high neutrophils
in lymphoid organs (33) whichmay be in response to the increased
levels of inflammation in agedmice.However, no research has been
done on the diurnal neutrophil ageing process in aged mice and
future work should aim to identify if this accumulation of
Frontiers in Immunology | www.frontiersin.org 3
neutrophils in aged lymphoid organs is a result of dysregulated
neutrophil ageing due to reduced circadian outputs.
Monocytes/Macrophages
Macrophages are key regulators of the innate immune response
and show strong circadian oscillations in genes involved in
cytokine secretion, which are essential mediators of leukocyte
trafficking (34). REV-ERBa has been highlighted as a direct link
between the circadian clock and the macrophage inflammatory
response (35) prompting further investigation of this nuclear
receptor as a therapeutic target. The role of REV-ERBa in
immune responses is well established [reviewed in (36)], and
recently synthetic REV-ERBa agonists are being used in vivo to
investigate a direct circadian modulation in IMIDs such as in
Rheumatoid Arthritis (RA) and colitis. RA shows strong
symptom rhythmicity, underpinned by daily fluctuations in
serum IL-6 concentrations (37). Synthetic REV-ERB ligands
have been shown to control the release of IL-6 from
macrophages and can alleviate disease symptoms (38). REV-
ERBa also has a protective effect against colitis via down-
regulation of Nlrp3 inflammasome activity (39). Activation of
REV-ERBa ameliorates ulcerative colitis in WT mice (39)
suggesting it may be a promising target for colitis treatment.

Several aged-related changes occur in macrophages, including
polarization towards an alternate M2 phenotype and reduction
in phagocytosis (40). Despite M2 macrophages originally
considered to display an ‘anti-inflammatory’ phenotype, these
age-associated M2 like macrophages secrete several pro-
inflammatory mediators including TNFa, IL-1 and IL-6. In
mice, Ly6Chigh (inflammatory) monocytes but not Ly6Clow

(patrolling) monocytes exhibit diurnal oscillations in trafficking
under both homeostatic conditions and in a model of sterile
peritonitis (41). A recent study discovered BMAL1 is induced
following stimulation of M1, but not M2, macrophages by
inflammatory stimuli (42). It appears that the classically
activated, pro-inflammatory ‘M1’ phenotype is more tightly
regulated by the circadian clock. Very little research has been
done on the effect of ageing-associated circadian dysregulation
and macrophage function, and it would be interesting to
understand how the clock alters within ageing macrophages
and whether circadian control of transcriptional programmes
is affected. As discussed above, it appears that circadian
regulation can have varying effects on different macrophage
subsets, which highlights the complexity of the relationship
between inflammation and circadian clocks. Targeting
circadian mechanisms may be important to maintain
homeostasis and responses to inflammation.
Lymphocytes
Numbers of T-cells in the circulation follow daily oscillations, with
the highest numbers during the behavioural rest phase and
decreasing up to 40% at the peak of the active phase (43).
However, individual T-cell subsets show varying migration
patterns throughout the day, which is regulated by varying
changes in serum concentrations of glucocorticoids and
May 2021 | Volume 12 | Article 673405
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catecholamines (43). Cortisol levels peak in the blood at the
beginning of the active phase and up-regulates IL-7 receptor
(IL-7R) and the chemokine receptor, CXCR4, on the surface of
naïve and central memory T-cells, mediating their extravasation
into the bone marrow. Conversely, numbers of circulating effector
CD8+ T-cells peak during the active phase at the same time as
epinephrine. Effector CD8+ T-cells have increased intrinsic
expression of beta-2-adrenergic receptors and CXCR1, which is
proposed to be the reason for the effector CD8+ T-cell response to
epinephrine. This subset-specific variation in trafficking is thought
toprovide increased immunedefence during the active phase,when
injury or infection is most likely to occur (43, 44).

Numbers of lymphocytes in the lymph nodes fluctuate in the
opposite manner than those in the circulation. In youngWTmice,
migration of lymphocytes to lymph nodes peaked at the start of the
active phase roughly 8 hours after peak blood lymphocyte
concentrations (45, 46). BMAL1 regulates rhythmic expression of
CCR7 and the sphingosine-1-phosphate receptor (SIPR1) on
lymphocytes, which mediates their homing to and egress from
lymph nodes respectively (45). Lymphocyte egress from lymph
nodes is also regulated by adrenergic innervation through B2-
adrenergic receptors (AR) (46). B2-AR-deficient mice lost the
daily fluctuations of lymphocyte numbers in blood and lymph
nodes due to reduced levels of norepinephrine in peripheral lymph
nodes (46). It is thought that circadian oscillations in immune cells
prime the immune system for stronger responses in the active phase
when interactionwithpathogens aremost likely to occur. Retention
of lymphocytes within the lymph nodes during the active phase is
thought to increase the chance to encounter T-cells with their
cognate antigen. These studies highlight the importance of both
cell-intrinsic clocks and cell-extrinsic rhythmic signals for driving
daily trafficking of lymphocytes.

T-cell recruitment is impaired in older adults, leading to a
compromised adaptive immune response, increased vulnerability
to infections, and weakened responses to vaccinations (reviewed
in (26). Age-related dysregulation of lymphocyte recruitment has
mostly been attributed to changes in expression of chemokines
and adhesion molecules, and accumulation of senescent immune
cells. However, very little research has investigated the
contribution of diminished circadian outputs on lymphocyte
trafficking in ageing.
Endothelial Cells
Leukocyte recruitment is also regulated by oscillating expression
of adhesion molecules on the EC surface. Autonomic innervation
via b-adrenoreceptors differentially regulates adhesion molecule
expression in different tissues (23), resulting in a highly-tissue
specific temporal expression of EC adhesion molecules. A screen
of adhesion molecule expression in multiple murine organs
revealed a general peak in expression of adhesion molecules on
ECs at the start of the active phase, parallel to the increased
leukocyte emigration from blood (47). Adoptive transfer of cells
into EC-specific Bmal1-deficient mice lost the time-of-day
dependent leukocyte migration out of the circulation seen in
WT controls (47). Therefore, leukocyte recruitment is regulated
by rhythmic expression of adhesion molecules on both the EC
Frontiers in Immunology | www.frontiersin.org 4
surface and the leukocyte surface, increasing efficacy of the
leukocyte-endothelium interaction required for leukocyte
rolling, adhesion, and transmigration across the endothelial
barrier (Figure 1).
CIRCADIAN RHYTHMS AND THE AGEING
IMMUNE RESPONSE

Vaccination
Older adults (>65 years) often have weaker responses to primary
vaccination than younger adults, in terms of titre and immunity to
infection (48, 49). Older adults are particularly susceptible to
infections and are at increased risk for serious complications due
to ageing-related comorbidities and increased immunosenescence
(50). Therefore, vaccine optimisation is essential to limit
hospitalisation and deaths due to vaccine-preventable infections
in the older population. Interestingly, Suzuki et al. (46) showed that
in young (8-12 week) WT mice immunisation via intradermal
injection of a soluble antigen conjugated with chicken
g-globulin (NP-CGG) resulted in an elevated humoral response
whenadministered at peak lymphnode lymphocyte cellularity (46).
Recently, this has been confirmed in humans by administration of
BCG vaccines. Early morning vaccination produced a stronger
adaptive immune phenotype and increased cytokine production
comparedwith latermorning and evening administration (51). The
immune microenvironment present during the initiation of an
adaptive response is therefore an important regulator of the overall
strength of the response, and timing of vaccine administration
needs to be considered when developing and researching novel
vaccines (52).

Circadian Misalignment
The importance of a robust circadian rhythm for maintaining
health span with increasing age is evident as chronic circadian
misalignment caused by night-shift work is associated with several
age-related disorders (53).Adult,WTmice subjected to chronic jet-
lag by shifting light-dark conditions by an 8-hour phase advance
every 4 days had significantly shorter lifespans than control mice,
increased levels of senescent immune cells, and increased
inflammatory cell infiltration to the liver indicating chronic
inflammation (54). Another jet-lag model revealed significantly
shorter lifespans of aged (27-31 months old), but not young (8-12
weeks old) C57BL/6 male mice, suggesting circadian misalignment
has more severe consequences in aged animals (55). The exact
mechanisms responsible for premature ageing seen in human shift-
workers are multifaceted and not fully understood.

A recent study found night-shift workers had increased
plasma levels of C-reactive protein compared to day workers,
indicating increased systemic inflammation (56). Importantly,
night-workers had slightly decreased levels of long pentraxin 3
(PTX3), a pattern recognition receptor, which positively
correlates with leukocyte telomere length, a marker of
biological ageing. This suggests night-workers are more
susceptible to premature ageing through increased systemic
inflammation and loss of protective PTX3. Therefore, people
May 2021 | Volume 12 | Article 673405
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who experience chronic circadian misalignment should consider
the impact this may have on their health, and restoration of
immune homeostasis may be a therapeutic target against age-
related disorders in these people.

Inflammation and Rhythmicity:
A Reciprocal Relationship
Inflammation itself can directly affect circadian rhythmicity.
TNFa inhibits the CLOCK/BMAL1-induced activation of
E-box regulatory elements in clock-controlled genes in
fibroblasts in vitro, and in livers of mice in vivo (5). Other
recent studies in rheumatoid synovial cells have shown TNFa
suppresses PER2, while inducing expression of BMAL1 by
upregulating RORa (57). Additionally, long term treatment
with IFN-g reduced the amplitude of the circadian rhythm of
Per1-luc expression in individual cultured rat SCN neurons (58),
and LPS injection caused transient suppression of core clock
genes in male rats in vivo. These studies highlight the complex,
reciprocal relationship between inflammation and clock genes,
and support the idea increased inflammation seen in older adults
may result in dysregulation of the circadian rhythm.
Frontiers in Immunology | www.frontiersin.org 5
FUTURE DIRECTIONS
AND CONCLUSIONS

Circadian rhythms play an essential role in immune homeostasis
and regulate the diurnal rhythmicity seen in leukocyte trafficking
under both steady state and inflammatory conditions.
Inflammation itself can inhibit clock gene expression,
demonstrating a complex and reciprocal relationship between
the two biological systems. In older adults, there is a parallel
increase in systemic inflammation and dysregulated leukocyte
trafficking, and also a reduction of circadian outputs, both of
which can enhance the other, therefore increasing vulnerability
to disease. Despite a multitude of research into circadian systems
and leukocyte trafficking, there is a need for more research into
chronotherapy to optimise timing of drugs and vaccine delivery
in order to improve drug efficacy, reduce side effects, and target
chronic inflammation, particularly in aged individuals. Similarly,
current work on vaccination has focussed on either how
responses to vaccines vary with increasing age, or on how
responses vary with the time of administration, but not on the
two angles combined. Circadian rhythm research can also be
FIGURE 1 | Circadian regulation of leukocyte trafficking. Migration of leukocytes such as lymphocytes, neutrophils and monocytes, out of circulation and into
surrounding tissues is regulated by circadian clocks. Hematopoietic stem cells (HSPCs) and mature leukocytes (except CD8+ T cells) peak in the circulation during
the rest phase as there’s less migration out of the blood and increased migration of leukocytes and haematopoietic stem cells out of the bone marrow. Conversely,
circulating HPSCs and mature leukocytes (except CD8+ T cells) are at their lowest during the active phase due to increased leukocyte recruitment to tissues and
reduced migration out of the bone marrow. Leukocyte migration is regulated by diurnal changes in expression of chemokines and adhesion molecules, and
fluctuating glucocorticoid levels and adrenergic signalling. With increasing age, leukocyte trafficking becomes dysregulated due to a multitude of factors. Senescent
cells accumulate and increase secretion of pro-inflammatory cytokines, glucocorticoid levels decrease and signalling becomes dysregulated, several age-associated
changes occur to cytokine and adhesion molecule expression, and circadian outputs diminish. All of these contribute to dysregulated leukocyte trafficking seen in
older adults.
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beneficial to the development of non-pharmacological treatment
strategies. For example, diminished circadian output leads to
reduced sleep quality in older adults, which subsequently
dysregulates global circadian rhythmicity. Entrainment of
peripheral clocks via regulating food intake and light exposure
may help alleviate the effects of dampened circadian outputs seen
in older adults, and help prevent one of the contributing factors
for increased inflammation. Importantly, ageing research
struggles to characterise changes that occur as a natural result
of healthy ageing, versus those that are a condition of age-
associated pathology, or changes in the circadian circuitry.
More research into the circadian clock and inflammageing
could determine if circadian rhythmicity can be used a sign of
pathological ageing.
Frontiers in Immunology | www.frontiersin.org 6
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