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Despite major advances in immunotherapy, hepatocellular carcinoma (HCC) remains a
challenging target. Natural Killer (NK) cells are crucial components of the anti-HCC
immune response, which can be manipulated for immunotherapeutic benefit as primary
targets, modulators of the tumour microenvironment and in synchronising with tumour
antigen specific effector CD8 cells for tumour clearance. Regulatory T cells shape the anti-
tumour response from effector T cells via multiple suppressive mechanisms. Future
research is needed to address the development of novel NK cell-targeted
immunotherapy and on restraining Treg frequency and function in HCC. We have now
entered a new era of anti-cancer treatment using checkpoint inhibitor (CPI)-based
strategies. Combining GMP-NK cell immunotherapy to enhance the frequency of NK
cells with CPI targeting both NK and CD8 T cells to release co-inhibitory receptors and
enhance the cells anti-tumour immunity of HCC would be an attractive therapeutic option
in the treatment of HCC. These therapeutic approaches should now be complemented by
the application of genomic, proteomic andmetabolomic approaches to understanding the
microenvironment of HCC which, together with deep immune profiling of peripheral blood
and HCC tissue before and during treatment, will provide the much-needed personalised
medicine approach required to improve clinical outcomes for patients with HCC.

Keywords: liver, NK cells, regulatory T cells, hepatocellular carcinoma, tumourmicroenvironment, GMP cell therapy
THE LIVER AS AN ORGAN OF IMMUNOTOLERANCE

The liver is a unique lymphoid organ which plays a key role in the immunological function of the
human body. Embryologically, the human liver is derived from the endoderm layer and resides
between two venous circulatory systems; the portal vein, receiving venous flow from the
gastrointestinal tract and the systemic venous circulation. The liver has a unique immunological
org April 2021 | Volume 12 | Article 6433101
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environment containing both professional antigen presenting
cells, dendritic cells and Kupffer cells (resident hepatic
macrophages) as well as non-professional antigen presenting
cells (sinusoidal endothelial cells and biliary epithelium) (1).
There is also an abundance of natural killer (NK) cells, innate
lymphoid cells (ILCs) and innate mucosa associate invariant T
(MAIT) cells, all of which play integral roles in the innate
immune response of the liver.

The liver is constantly filtering harmful and harmless antigens
from the gut acting as an immunological firewall (1). Hepatic
tolerance to gut antigens is achieved by a combination of both
immune cells and parenchymal cells. The constant exposure to gut-
derived bacteria triggers a downregulation of Toll-like receptor 4
(TLR4) on the hepatic sinusoidal endothelial cells (HSEC). Liver-
resident dendritic cells (DC) have distinct properties that promote
tolerance rather than an immune response. These tolerogenic DCs
secrete anti-inflammatory cytokines such as interleukin 10 (IL-10)
and transforming growth factor b (TGF-b) to dampen the immune
response and can promote T-cell “hyporesponsiveness” (2, 3).
Kupffer cells (KCs), known as sinusoidal firewalls, also contribute
to hepatic tolerance by continuously phagocytosing the microbial
products from the portal vein (4). Hepatic regulatory T cells (Treg)
also play a crucial role in maintaining the tolerogenic environment
by continuously controlling the cytokine production and
proliferation of intrahepatic auto-reactive effector CD4 and CD8
T cells (5).

The liver is known as a “graveyard” of immune cells due to
apoptosis of activated lymphocyte populations (6). It canmount an
effective immune response to invading pathogens and cancer cells
or when there is insult or loss of peripheral self-tolerance in
immune-mediated liver injury. The balance between immunity
and tolerance is establishedbycompetition forprimary activationof
effector T cells between the liver and its draining lymphoid tissues.
For example, naive CD8+ T cells, activated within liver-draining
portal lymph nodes are capable of mediating hepatitis, while cells
undergoing primary activation within the liver exhibit defective
cytotoxic function and do not induce hepatocellular injury (7). The
hepatic immune responsewill dependon thenature of the injury. In
acute hepatic injury due to, for example, viral infection or drug-
induced liver injury, an innate immune cells infiltrate appears
important, with eosinophil or neutrophils and natural killer (NK)
cells being the predominant immune cells. Adaptive immune cells
are dominant in chronic injury resulting from, for example, chronic
hepatitis B and C infection, alcoholic and non-alcoholic
steatohepatitis, or autoimmune hepatitis. In the context of HCC,
both innate cells suchasNKcells andadaptiveTcells are involved in
auto-tumour immunity. In general, the balance of effector and
regulatory T cells determines the outcome of inflammation, either
resolution or chronic active hepatitis (8).
HEPATOCELLULAR CARCINOMA

In 2018, HCC was the sixth most common neoplasm diagnosed
globally and was the fourth leading cause of cancer related death.
In the vast majority of cases, primary hepatocellular carcinoma
Frontiers in Immunology | www.frontiersin.org 2
(HCC) arises on a background of cirrhosis, driven by chronic
inflammation from a number of causes. These include viral
(hepatitis B and hepatitis C) and non-viral (non-alcoholic fatty
liver disease and alcoholic liver disease). Improved treatments for
chronic viral hepatitis, coupled with the global epidemic of
obesity imply that in the coming years the global epidemiology
of HCC may shift from infectious to non-infectious causes.

The recent observation that hepatocytes within cirrhotic
nodules have a higher mutational load than normal liver
characterizes cirrhosis as a truly pre-malignant condition (9).
Coexistent with this is the immune dysfunction associated with
cirrhosis. This is characterized by evidence of peripheral
activation of circulating immunocytes exposed to higher than
normal levels of bacterial antigens, but a more profound central
tolerance. A healthy liver is a tolerogenic organ, however this
state is exacerbated by changes in immune sub-populations and
their dysfunction in cirrhosis. The combination of an increased
hepatic mutational burden together with decreased immune
surveillance underpins the development of HCC.
IMMUNE DYSFUNCTION IN CIRRHOSIS

As described above, in a healthy liver, immune system
homeostasis is achieved through immunosurveillance of its
dual blood supply (portal vein and hepatic artery), protecting
the host from microbe-associated molecular patterns and
damage-associated molecular patterns (MAMPs and DAMPs
respectively) from the gut (10). Concurrently the liver displays
features of local immune tolerance to non-pathogenic material
and helps mediate the appropriate immune response through the
synthesis of pro-inflammatory and anti-inflammatory cytokines
(11). The immune system thus plays a decisive role in both the
pathogenesis of cirrhosis and subsequent immune dysfunction.
Chronic factors including infection, alcohol and obesity, inflict
persistent hepatocyte damage leading to fibrosis via hepatic
stellate cell (HSC) activation (12). Disease specific alterations
may compound these factors and augment the rate of fibrosis
progression. Once cirrhosis becomes established, the liver loses
its ability to appropriately protect the body from pathogens as a
consequence of disordered immune cell activation termed
“cirrhosis-associated immune dysfunction”.

In early cirrhosis, changes in the intrahepatic immune
compartment are often due to persistent innate immune cell
stimulation. As disease progression ensues, ultimately leading to
decompensated cirrhosis, immune hyporesponsiveness and
increased tolerance develops (13). This is driven by the innate
immune system in which long-term exposure of toll-like
receptors to bacterial products such as lipopolysaccharide, can
lead to a dampened innate immune response (14). Cirrhosis is
associated with a multitude of abnormalities in the innate and
adaptive arms of the immune system leading to a generalised
immune hyporesponsiveness. The reticulo-endothelial system
becomes compromised in the context of cirrhosis as a result of
fibrotic damage to the sinusoidal vascular space. This leads to
capillarisation, porto-systemic shunts and loss of the KC
April 2021 | Volume 12 | Article 643310
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population, which are also dysfunctional, with impaired
phagocytosis (10, 15). Consequently, the capacity for clearance
of endotoxin and microbes is attenuated, lowering the threshold
for bacterial infection. This dysfunction may be exacerbated by a
combination of changes in the gut microbiota and increased
intestinal permeability (16). Evidence for this persistent immune
stimulation is supported by both human disease studies and
mouse models (17). Cirrhotic livers possess a reduced ability to
synthesise innate immune proteins, such as complement and
pattern recognition receptors thus reducing its bactericidal
capacity. This is further exacerbated by reduced numbers of
MAIT cells which have the capacity to respond directly to
bacterial metabolites (18, 19).

Compromised immune function not only occurs at a local level
in cirrhosis, but also systemically, and affects many different
immune cell sub-populations. Neutrophils are reduced, with
impaired chemotaxis and subsequent phagocytosis of bacteria as
illustrated by a lower response to peptidoglycan recognition
proteins (20). Monocytosis is observed in cirrhotic patients with
evidence of cellular dysfunction, such as impaired function of the
Fc-g receptors, which are responsible for the clearance of bacteria
(21). In alcohol and hepatitis C virus (HCV) related cirrhosis, a
reduced frequency of CD27+ memory B cell function suggests
defective antibody function (22). T cell defects have also been
noted including T cell lymphopenia affecting both CD4 and CD8
T cells. There is depletion of naïve and memory T cells, although
naïve T cells appear to be more profoundly affected putatively
related to splenic pooling, and there is also impaired proliferation of
peripheral T lymphocytes (23). NK cells are shown to be lower in
number in the periphery but also less responsive to cytokine stimuli
which hampers their cytotoxic and anti-fibrotic roles (24). Within
the intrahepatic compartment, innate lymphoid cells type 2 (ILC-2)
cells appear to be the dominant ILC population (25, 26). The
observed changes in immune cell function alters the equilibrium
of immunosurveillance and immunotolerance within the liver,
promoting the latter through relative immune deficiency. Due to
the observed microenvironmental shift towards immunotolerance,
there is an increase in host vulnerability to tumorigenesis and the
occurrence of HCC.
NATURAL KILLER CELLS

Natural Killer (NK) cells are a key part of the innate immune
response against viruses and tumours, and more recently, have
been shown to participate in the adaptive immune response
through cross-talk with dendritic cells and T cells. They make up
between 5-20% of circulating lymphocytes, but a much larger
fraction (~50%) of the intrahepatic lymphocyte compartment.
NK cells are usually characterised as CD3-CD56+ lymphocytes
and in general do not require priming to initiate anti-viral or
anti-tumoral cytotoxic or cytokine secretory effects (27). Recent
work has identified that they also have adaptive properties (28),
which can be both receptor or cytokine driven. Particular interest
has been generated in the utility of cytokine-induced memory
NK cells as agents for immunotherapy (29).
Frontiers in Immunology | www.frontiersin.org 3
Surveillance of diseased cells can be mediated through the
‘missing self’model (loss of inhibition) or through recognition of
stress-induced molecules (gain of activation) (30). The net effects
of both of these mechanisms is a change in the balance between
activating and inhibitory signals transduced by the NK cell such
that activation is favoured. Both these mechanisms may operate
in cancer. In the missing-self model, healthy cells which express
major histocompatibility complex (MHC) class I are spared from
lysis through the engagement of inhibitory receptors on the NK
cell surface, such as killer cell immunoglobulin-like receptors
(KIR) or CD94:NKG2A. Thus if MHC class I is downregulated,
the tonic inhibitory signal to the NK cell is lost and the cell
becomes activated (31). Conversely NK cells can be activated by
augmenting activating signals. Key activating receptors include
the natural cytotoxicity receptors (NKp30, NKp44 and NKp46)
and C-type lectin-like receptors, especially NKG2D. In stressed,
transformed or infected cells MHC class I is often downregulated
and ligands for NKG2D are up-regulated, shifting the NK cell
balance towards activation and tumour lysis (31, 32).

The KIR are MHC class I-specific receptors that perform a
fundamental role in self-recognitionand in functional “licensing”of
NK cells. The tuning of the activity of NK cells may be a more
dynamic process than previously considered, which is relevant for
NK cells within immunosuppressive tumour microenvironments
(33, 34), resulting in induced-hyporesponsiveness. The KIR exhibit
an extraordinarily high level of diversity at the gene content and
allelic levels. In combination with the diversity of MHC class I
ligands, the KIR form a complex immunogenetic network, which
has been associatedwith development and outcomes of cancer. The
KIR gene family is found on chromosome 19 and comprises 13
functionalKIR genes and 2pseudogenes (35).TwohaplotypesKIR-
A and KIR-B have been identified with the former having a fixed
gene content but substantial allelic diversity, and the latter
haplotype displaying variation in gene content and also allelic
diversity. There also is substantial diversity in the frequencies of
KIR-A and KIR-B haplotypes amongst different human
populations (36). This has been proposed to account for some of
the diversity noted in anti-cancer responses. For instance, the
activating KIR, KIR2DS2, has been associated with protective
responses against acute myeloid leukaemia and other solid
tumours including HCC (37, 38). Interestingly, KIR2DS2+ NK
cells appear to express higher amounts of FcgRIII (CD16), a
medium-low affinity IgG receptor essential for antibody-
dependent cellular cytotoxicity, providing a potential molecular
basis for enhanced protection (39). ImprovedHCC outcomes have
been observed in individuals with different KIR : HLA genotypes
includingHLA-C group 1, KIR2DS5 and the compound genotypes
KIR2DL2: HLA-C group 1, KIR3DS1:HLA-Bw480T and KIR3DS1:
HLA-BBw480I (38, 40).
HEPATOCELLULAR CARCINOMA AND
NATURAL KILLER CELLS

In comparison to other cancers, HCC is relatively cold
immunologically with only about 25% having an immune
April 2021 | Volume 12 | Article 643310
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reactive phenotype (41, 42). Individuals with HCC have reduced
numbers of NK cells within the periphery and these have lower
levels of functionality (43). Within the tumour they are present at
low frequencies in contrast to myeloid and other lymphoid cells
(44). In HCC accumulation of NK cells in intratumoral tissue, as
compared to peritumoural tissue, has increased expression of the
activation marker CD49a and an increased CD56bright:CD56dim

ratio, demonstrating localised differences in these two subtly
distinct microenvironments (45). Individuals with higher
frequencies of NK cells and enhanced cytotoxic and cytokine
secretory functions have improved overall survival in HCC
following liver resection (46–48). Patient survival also
positively correlates with the frequencies of both circulating
and intratumoral NK cells in HCC (49), and in two separate
studies the response to sorafenib was better if a higher frequency
of intratumoral NK cells was present (48, 50). Conversely, overall
survival is worse in individuals with fewer intratumoral NK cells
and a higher proportion of CD56bright to CD56dim NK cells. The
CD56bright sub-population are considered less mature and have
lower levels of cytotoxicity than the CD56dim subpopulation,
indicating that NK cell functionality is important in determining
the outcome of HCC.

NK cells express multiple activating receptors and therefore
can engage many different molecules expressed by tumours.
Changes in the balance of expression of activating and
inhibitory receptors can determine NK cell function in a
“rheostat” model. Thus, in advanced HCC there may be
upregulation of the inhibitory receptor NKG2A and this,
combined with a reduction in the effector molecules perforin
and granzyme B, contributes to a hypofunctionality of NK cells
(43, 46). Down-regulation of granzyme B is a feature of intra-
tumoral, as opposed to peri-tumoral, NK cells and correlates
with expression of IL-10-positive tumour-associated
macrophages (51). This immunosuppressive gradient also
correlates with expression of exhaustion-associated markers
such as PD-1, Tim-3, and Lag-3. In addition to modulating T
cell functions these molecules may act as checkpoints for NK
cells and are often co-expressed on activated or exhausted
NK cells (52). CD96 (TACTILE) is another immunological
checkpoint associated with HCC, that in combination with its
ligand negatively associates with the outcome of HCC (53). Thus,
together this group of checkpoints form potential therapeutic
targets for HCC.

A number of activating NK cell receptors have been
associated with HCC. Differential splicing of NKp30 leads to
preferential generation of an inhibitory isoform that
predominates in advanced HCC (54). However, most attention
has focussed on NKG2D which engages multiple ligands
including MIC-A/B and the ULBP proteins. These stress-
induced proteins are express on tumours and may be released
into the circulation following proteolytic cleavage, through
molecules including ADAM9, which is upregulated in HCC
(55). Soluble receptors bind and down-regulate NKG2D on the
surface of NK cells thus rendering cells less active. In HCC high
levels of soluble ULBP1 is associated with poor survival (56). The
observation that in mouse models of HCC, NKG2D can drive
Frontiers in Immunology | www.frontiersin.org 4
tumorigenesis, probably through promotion of the chronic
inflammation that leads to mutagenesis, indicates the
complexity of the molecular pathology of this disease (57, 58).
Nevertheless, in general down-regulation of the NKG2D:
NKG2D ligand axis is associated with poorer outcomes (59).
REGULATORY T CELLS

Sakaguchi and colleagues first described regulatory T cells
(Tregs) in the late 1990s (60). Tregs are generated in the
thymus. They are a subset of CD4 T cells, expressing high
levels of CD25 (the a-chain of the IL-2 receptor) and low
levels of IL-7 receptor (CD127). Thus, Tregs are defined by
surface receptors as CD4, CD25high, CD127low (61). Tregs are
crucial in maintaining peripheral immune tolerance (62). Their
phenotype and function are controlled by the transcription
factor Foxp3 (63). Tregs represent 2–5% of CD4 T cells in
humans and about 10% in rodents.

Tregs are present in the human liver. Our group has previously
demonstrated thatTregs reside togetherwith effectorCD4andCD8
T cells, CD11c dendritic cells in both interface and lobular hepatitis
areas to control liver inflammation (5). The suppressive function of
Treg is reduced in the inflamed microenvironment (64). The main
function of Tregs is to control autoreactive effector T cells, thereby
maintaining hepatic immune tolerance. We have shown that Treg
recruitment via hepatic sinusoids to inflamed human liver is
mediated by the chemokine receptor CXCR3 and the integrin
VLA-4 on Tregs and the chemokine ligands CXCL9, 10, 11 and
VCAM expression on inflamed sinusoids. Following recruitment,
post endothelial migration through the fibrous stromal framework
occurs via LFA-1 and VLA-4 integrin’s on Treg and cell adhesion
molecules ICAMandVCAMon the stroma cells, and subsequently
Tregs reside around the area of hepatitis to control liver
inflammation (5). Their suppressive function in the human liver
is mainly executed via CTLA-4, CD39 or IL-10 dependent
mechanisms and low dose IL-2 can upregulate functional CTLA-
4 on the surface of Tregs surface via STAT-5 (65, 66).

Tregs have the potential to be plastic towards effector Th1 or
Th17 lineages especially in the inflamed human liver and tumour
microenvironment (8). The immune response mediated by T
lymphocytes plays an important role in anti-tumour immunity.
Tregs secrete immunosuppressive cytokines such as IL-10 and
IL-35 to suppress the aberrant immune response, while Th1/Treg
and Th17/Treg cells can release not only anti-inflammatory
cytokines but also proinflammatory Th1 cytokines such as
IFNg, TNFa, and Th17 cytokines IL-17, IL-22 (67, 68). The
ratio of Treg to Th17 cells is closely associated with the outcome
of many immune mediated diseases and cancers (69).
HEPATOCELLULAR CARCINOMA (HCC)
AND TREGS

Multiple studies have reported that the frequency of
CD4+CD25++Treg cells in the peripheral blood of HCC
April 2021 | Volume 12 | Article 643310
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patients is significantly higher than in the blood of healthy
individuals (70, 71). CD4+CD25++Tregs in advanced (stage III-
IV) HCC patients is significantly increased compared to early
(stage I-II) HCC patients, implying that the presence of
CD4+CD25++Tregs is closely related to tumour progression
and enhances the invasiveness and metastasis of HCC (71). In
addition, accumulation of Tregs correlates with reduced
infiltration of CD8 T cells in HCC tumour regions, and the
expression of granzymes and perforin functional molecules is
less in tumour-infiltrating CD8 T cells (72). Furthermore, in this
study an increased quantity of circulating Treg was associated
with a high mortality and reduced survival time of HCC patients.

CD4+CD25++Tregs suppress the anti-tumour immune
response either in the draining lymph nodes or in tumour
tissue. CD4+CD25++Tregs in the tumour-draining regional
lymph node inhibit the proliferation of effector T cells, and
Tregs prevent effector T cells from killing tumour cells in the
primary tumour tissue (73). It has been shown that the level of
Treg cells in cancer tissue was significantly higher than that in
adjacent tissues (74). It is thought that Treg cells may decrease
the proliferation of effector CD4 and CD8 T lymphocytes in the
tumour microenvironment by contact inhibition, subsequently
reducing the anti-tumour immune response and resulting in the
potential for tumour cells to escape immune surveillance. HCC is
one of the most common and aggressive human malignancies
and CD4+CD25++Treg promote hepatocellular carcinoma
invasion via TGF-b1 dependent mechanisms (75). Furthermore,
ICOS+ FOXP3+ Tregs contribute to the immunosuppressive
HCC microenvironment and lead to an unfavourable prognosis
for HCC patients (76). Thus, removal or reduction of the Treg
cell population, or inhibition of CD4+CD25++Treg function
in the HCC microenvironment may facilitate the efficacy
of tumour immunotherapy (77). In addition, the Th17/Treg
ratio is a risk factor for HCC (78). The majority of expanded
Tregs do not express CD45RA suggesting that Tregs have a
memory phenotype and exponential expansion of these tumour
antigen exposed memory Tregs has been a distinct finding in
HCC (79).
TREG AND NK CELL INTERACTIONS IN
HEPATOCELLULAR CARCINOMA

The balance of NK cells which provide tumour clearance and
Tregs which inhibit tumour immunity may determine the
outcome of HCC (Figure 1). A potential role for Tregs in
dampening NK cell functions was first suggested in a murine
leukaemia model. In this model, the depletion of Tregs by
administration of anti‐CD25 mAb before tumour inoculation
abolished tumour growth and promoted the generation of
cytotoxic cells characterized as NK cells (80). In HCC, the NK
cell frequency within the tumour-infiltrating lymphocyte
compartment is less than in the non-tumour tissue, and these
intratumoral cells demonstrate impaired cytotoxicity and IFN-g
production (43, 81), We have also previously demonstrated that
there is a parallel increase in NK cells and Treg in hepatic
Frontiers in Immunology | www.frontiersin.org 5
inflammation (82) suggesting that taming the Treg population
will allow NK cells to function more efficiently.

Freshly isolated human Tregs can directly inhibit human NK
cell cytotoxicity against K562 (83). TGF-b maintains the
inhibitory functions of Treg and plays a suppressive role by
inhibiting the expansion of NK cells and their cytotoxic functions
(84, 85). TGF-b can also have a negative effect by facilitating the
onset of tumours due to a reduction of immunosurveillance and
anti-cancer responses. Resting NK cells harbour surface
expression of TGF‐b receptors, rendering them susceptible to
soluble TGF‐b (86). Resting human Tregs express membrane‐
bound TGF‐b that is associated with the protein, latency‐
associated protein (LAP) (87). When associated with LAP,
TGF‐b remains inactive. Membrane‐bound TGF‐b is involved
in the inhibitory function of Tregs on NK cells since anti‐TGF‐b
blocking antibodies can restore the cytotoxicity IL‐12‐induced
IFN‐g secretion of human NK cells (88). When exposed to
TGF‐b or on Treg encounter, Smad signalling in NK cells
blunts expression of cytotoxic molecules such as granzyme B
and perforin (89). In addition, high levels of TGF-b have been
associated with impaired NK cell function and NKG2D
expression (90). Therefore, Tregs bearing TGF-b on their
membrane can present it directly to NK cells resulting in a
reduction in NKG2D expression (88). Activated Tregs can also
suppress NK cells responses via an IL-2 mediated mechanism
that is crucial for NK cell survival (91). This reduces the capacity
of NK cells to secrete IFN‐g on stimulation with IL‐12 but not on
activation by IL‐2 and IL‐15 suggesting the regulation of NK cell
control by Tregs is critically dependent on the cytokine milieu in
the HCC microenvironment.
THE INFLUENCE OF THE TUMOUR
MICROENVIRONMENT ON NK
CELL FUNCTION

The intrahepatic microenvironment is crucial for both NK and
Treg phenotypic stability, functionality, survival and
proliferation (8). The HCC microenvironment is an active
component of the tumour rather than merely a passive
structural support for tumour growth, which changes
dynamically and consequently affects HCC behaviour. These
immunosuppressive features of HCC are a challenging barrier to
clinicians to design effective immunotherapies. The HCC
microenvironment is composed of not only growth factors,
cytokines, metabolites and chemokines generated by stroma
and tumour cells, but also tumour-infiltrating macrophages,
myeloid-derived suppressor cells, neutrophils, cancer-
associated fibroblasts and regulatory T cells. They all play key
roles in the clinical outcome of HCC and success or failure
of immunotherapies.

Hepatic stellate cells (HSCs) are the major framework of HCC
and can directly promote tumour cell proliferation. Conditioned
medium collected from HSCs induce not only proliferation and
migration of HCC cells but also promote HCC growth through
the activation of NF kappa B and extracellular-regulated kinase
April 2021 | Volume 12 | Article 643310
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(ERK) pathways (92). Cancer-associated fibroblasts are the
major cell type within the tumour stroma and play a critical
role in tumour-stromal interactions (93). They are activated by
TGF-b and are responsible for the synthesis, deposition and
remodelling of excessive extracellular matrix thus modulating
the biological activities of HCC. HCC cell growth, extravasation
and metastatic spread are dependent upon the presence of these
fibroblasts. HCC cells can reciprocally stimulate proliferation of
tumour associated fibroblasts, suggesting their key role in
tumour-stromal interaction (94). Stroma from HCC express
several growth factors, including hepatocyte growth factor
(HGF), epidermal growth factor (EGF), fibroblast growth
factor (FGF) and Wnt family members, stromal-derived factor
(SDF)-1a and IL-6 (95).

Additionally, myeloid derived suppressor cells (MDSC) exert
multiple mechanisms of immunosuppressive activity in the
tumour microenvironment. MDSCs induce differentiation and
expansion of Tregs during tumorigenesis; inhibit DCs and NK
cells via TGF-b; deprive T cells of essential amino acids such as
L-arginine and L-cysteine; and generate the oxidative stress that
is associated with HCC progression (96). MDSCs co-cultured
with autologous T cells induce an increased number of Tregs,
PD-1+-exhausted T cells, and an increase in immunosuppressive
Frontiers in Immunology | www.frontiersin.org 6
cytokine levels in HCC patients (97). MDSCs can also impair NK
cell function. In HCC, MDSCs inhibit NK cell cytotoxicity and
cytokine release mediated by the NKp30 receptor (98). MDSCs
also inhibit TLR-ligand-induced IL-12 production and inhibit
the T-cell stimulating activity of DCs in HCC (99). Tumour-
associated neutrophils can also recruit macrophages and Treg
cells into HCCs to promote their growth, progression, and
resistance to sorafenib therapy (100, 101).

Furthermore, immunosuppressive cytokines, extracellular
ma t r i x and inflammatory cy tok ine s in the HCC
microenvironment can define HCC biology and prognosis.
Global gene expression profiling of human HCC indicates that
TGF-b gene signatures cluster HCC into two homogeneous
groups with early or late TGF-b signatures (102). Importantly
the late TGF-b signature is associated with an invasive HCC
phenotype and an increased risk of tumour recurrence. MMP1
and TIMP1 were also signature genes in the immature
hepatoblast subtypes of HCC that is associated with a poor
prognosis (103). Inflammation-associated pathways, gene
expression signatures, NF-kB, TNF-a, and IL-6 from the
adjacent benign tissue can also predict late recurrence of HCC
(104). IL-6, a major pro-inflammatory cytokine, is one of the
signature genes in the hepatoblast phenotype signature (103).
FIGURE 1 | The HCC microenvironment is enriched with anti-tumour CD8 T cells, NK cells and Treg cells. Both T cells and NK cells express checkpoint molecules
(PD1, TIGIT, TIM3, LAG3 and CTLA-4) as common targets. HCC express ligands for these checkpoints (PDL1, CD155, Galactin). Arginine and Nitrous oxide are also
enriched in HCC environment and the microenvironment is hypoxic environment and enriched with chemokines, cytokines, metabolites and microbial products (8).
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Osteopontin, secreted from Kupffer or stellate cells in response to
inflammatory cytokines, is also associated with metastasis of
HCC (105).

The tumour microenvironment also shapes NK cell metabolism
and effector functions. Understanding immunometabolic
suppression is critical in engineering a new generation of effective
natural killer cell-based immunotherapies targeting solid tumours
such as HCC.Multiple factors can modulate NK cell metabolism in
the tumour microenvironment. HCC exert immunosuppressive
effects through a number of mechanisms, a key driver of which is
hypoxia. High oxygen consumption by tumour cells can generate
hypoxic regions. Hypoxia impairs NK cell effector functions, but
also sustains HIF1a, which promotes glycolytic metabolism.
Hypoxia fuels the generation of adenosine from the cancer-
associated ectoenzymes CD39, expressed on Treg (106), and
CD73 on antigen presenting cells. Tumour cells also generate
extracellular adenosine through the CD39 and CD73
ectonucleotidases, thus compromising NK cell function through
competition for nutrients.

Thus, the interaction between the tumour and stroma
interaction generates the microenvironment within HCC tissue
and can suppress the effect of surrounding tissues or cell types
that stimulate hepatocarcinogenesis, tumour progression,
invasion, and metastasis. Sorafenib, an oral multi-kinase
inhibitor, which is the most widely used HCC medication,
inhibits VEGFR-2/-3 and PDGFR as well as Raf kinase,
disrupting tumour-stromal interactions and resulting in
decreased cell proliferation and angiogenesis. The efficacy and
safety of sorafenib have been demonstrated in Phase III clinical
trials, and it is currently the standard of care for patients with
advanced stage HCC (104, 107).
IMMUNOTHERAPEUTIC INTERVENTIONS
AND HOW THEY MAY ENHANCE
NK FUNCTION AND TAME
TREG SUPPRESSION

Currently the treatment for HCC is challenging, often due to the
stage at which many patients present. Therapeutic options
include surgery, transplantation and locoregional therapies can
be curative, and systemic therapies with tyrosine kinase
inhibitors including sorafenib and lenvantinib result in a
modest prolongation of survival. As a result there is much
interest in novel therapeutics and therapeutic combinations
which have been recently reviewed by Llovet et al. (108).

In terms of immunotherapy, trials of checkpoint inhibitors
have been the best studied. The PD-1 checkpoint inhibitors
nivolumab and pembrolizumab have been used for the
treatment of patients with HCC (109), but only leads to
clinical responses of 10-20%. Several factors including the
expression of programmed cell death-Ligand 1 (PD-L1),
tumour mutational loads, and tumour-infiltration immune
cells correlate with patient responses using these medications
(110). This relative lack of efficacy implies that combination
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therapy should be considered and applied to each patient as
personalized treatment approaches in HCC. Consistent with this
combining a PDL1 inhibitor (Atezolizumab) with an anti-VEGF
antibody (Bevacizumab) increased survival for unresectable
HCC by approximately six months compared to sorafenib
monotherapy (111). As checkpoint inhibitors predominantly
target T cells, one attractive approach is to simultaneously
target NK cells thus effectively mobilizing two arms of the
immune system.
Enhancing NK Cell Frequency
and Function
The field of NK cell therapeutics is rapidly growing. The
observations of Ruggeri et al. demonstrating that NK cell
alloreactivity was beneficial in refractory leukaemia acted as
the cornerstone for the development of NK cell-based
approaches (112). Initial work focussed on culturing NK cells
in vitro and then infusing them, met with success mainly for
haematological malignancies rather than solid tumours (113).
However, this may be augmented by combining NK cells with
monoclonal antibody therapy thus targeting the ADCC function
of NK cells, or by genetically modifying NK cells to express
chimeric antigen receptors (CAR-NK cells). Both these strategies
have reached clinical trials (114, 115). Encouragingly the use of
CD19-transduced CAR-NK cells did not result in the increase in
cytokine levels associated with the systemic toxicity of CAR-T
cell therapies. An alternative strategy is to target inhibitory
receptors. As NK cells are held in check by dominant
inhibitory signals then they are excellent candidates for having
their activity unleashed by blocking these inhibitory receptors
using monoclonal antibody therapeutics. These have targeted
both the KIR receptors and NKG2A. Importantly, the clinical
effects of the anti-NKG2A monoclonal antibody Monalizumab
may be related to unleashing both T and NK cells for its anti-
tumour effects (116).

In current clinical trials of adoptive tumour immunotherapy,
large dosages of NK cells have been used ranging between 5 x 106

to 5 x 107/kg body weight (117). An approach to achieve these
large numbers of NK cells is via the enrichment of NK cells from
donor-derived leukapheresis products. Multiple protocols have
been successfully developed to generate GMP NK cell products
through immunomagnetic depletion of T and B cells and positive
selection of CD56+ cells (118). The necessity of the NK cell
products to be of a high-purity, which requires not only a long
manufacturing process and compromises the viability and
potency of the NK cell product, combined with the limited
availability of autologous leukapheresis products makes the
task of obtaining sufficient GMP NK cells from a single
leukapheresis challenging. Therefore, an alternative method is
to make NK cell products via the expansion of NK cells from
PBMCs using feeder cells. An example of this are K562 cells
modified with membrane-bound molecules such as IL-15 and 4-
1BB ligand which can rapidly expand NK cells from PBMCs by
21.6-fold in 7 days (119). This method also produces NK cell
products with purities in the range of 60-70%. To achieve purities
needed for allogenic use a further expansion up to 21 days or
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enrichment of NK cells is still required (117, 119). NK cells can
also be derived from induced pluripotent stem cells (IPSCs) and
this has the advantage of hugely increasing their availability, as
well as the prospect of selecting NK cell populations based on
their alloreactivity potential, which may enhance their anti-
cancer response (120).

IL-2 can also be used for short term activation of NK cells
without feeder cells. IL-2 activation of NK cells can be coupled
with CD3+ T-cell and CD19+ B cells depletion to increase the
purity of the cell product (121). GMP NK cells have high IFNg
expression upon cultivation with K562 tumour cells and are
highly cytotoxicity toward tumour cell lines in vitro (122). These
data confirm that NK cells can have high clinical potency and
potential for a significant role in tumour immunotherapy,
including HCC.

Many companies have developed GMP cell isolation
equipment and GMP reagents and have a manufacturing
platform which has been utilised for multiple clinical trials
utilising NK cell therapy (Figure 2). There are currently only a
few MHRA and HTA approved GMP facilities in the UK
focusing on GMP T cells and NK cell therapy for patients with
both autoimmune diseases and cancer. GMP grade magnetic
isolation or GMP cell sorting of clinical grade CD56-positive NK
cells and applying these cells as immunotherapy in HCC could be
one of the future treatment for these patients.
Suppressing Treg Frequency and
Function in HCC
Restraining Tregs in HCC is important for many reasons. Anti-
tumour T cell responses are severely compromised in advanced
HCC patients through multiple immunosuppressive pathways
comprising Tregs, PD-1+ T effector cells, and inhibitory
cytokines (72, 97, 123). In HCC, expression of PD-1 is
increased on CD8 memory T effector cells and interaction with
its ligand PD-L1 on HCC cells blocks signalling, proliferation,
and cytokine secretion of anti-tumour CD8 T cells (124, 125).
The association between the infiltration of CD8 T cells in HCC
and patient survival has been well recognised (126, 127).
Granzyme B, perforin and IFNg secretion by CD8 T cells
generates potent anti-tumour activity but high expression of
PD-1 on exhausted T cells contributes to ineffective effector T cell
function, and select ive in vitro deplet ion of these
immunosuppressive cells results in improvement of T effector
cell function in HCC patients (128, 129).

Activated Tregs also have the ability to inhibit effector T cells
via contact-dependent interactions between checkpoint
molecules and their ligands including PD-1 with PD-L1, Tim-3
with galectin-9, CTLA-4 and GITR. Tregs also contribute to the
strongly immunosuppressive HCC microenvironment by
releasing the inhibitory cytokines TGF-b and IL-10 (130, 131).
The mechanism of inhibition of anti-tumour effector T cells by
Treg involves several molecular pathways: 1) Tregs may inhibit
proliferation and cytokine secretion of T effector cells by IL-10,
adenosine production from CD39 on its surface and IL-35, which
can be reversed by adding neutralising antibodies (132, 133);
2) via the PD-1/PD-L1 pathway to suppress anti-tumoral
Frontiers in Immunology | www.frontiersin.org 8
immunity in HCC (134); and also via 3) the co-inhibitory
molecule CTLA-4 (135).

Suppressing Tregs and Boosting
NK Cells in HCC
Combination of these approaches by inhibiting Tregs and
enhancing NK cells is an exciting option which has not been tried
before (Figure 3). One of the potential approaches would be
sequential manipulation by administering Basilizumab (anti-
CD25) to deplete CD4pos CD25high Treg cells followed by GMP
NKcells either via a peripheral route or direct administration along
with transarterial chemoembolization (TACE) as GMP-NKTACE
therapy. This would prevent systemic depletion of Treg thus
reducing the potential for inducing autoimmunity. With the
remarkable success of chimeric antigen receptor (CAR)-
engineered technology, developing CAR-engineered NK (CAR-
NK) cells for cancer therapy could offer some significant
advantages, including better safety by a lack or minimal cytokine
release syndrome, multiple different mechanisms for inducing
cytotoxic activity including checkpoint inhibition, and off-the-
shelf manufacturing. CAR-NK cells could also have better
infiltration into solid tumour such as HCC and overcome the
resistant tumour microenvironment.

Targeting intratumoral Treg cells may offer a therapeutic
direction to modulate the tumour microenvironment. The
combination of nivolumab with the Treg-depleting anti-CCR4
antibody, mogamulizumab has been explored by Doi et al. (136).
In their proof of concept study this combination provided anti-
tumour activity and can thus be a potentially effective option in
cancer immunotherapy. A recent study found that CD36 was
selectively upregulated in intratumoral Treg cells as a central
metabolic modulator. They genetically ablated CD36 in Treg cells
resulting in suppressed tumour growth, a decrease in
intratumoral Treg cells and enhanced antitumour activity
(137). In addition, a recent report identified widespread HLA-E
expression in tumour samples, with levels correlating to those of
NKG2A. This is of importance as one mechanism of tumour
resistance to immune cells is mediated by the expression of
peptide-loaded HLA class I molecule (HLA-E) in tumour cells.
HLA-E suppresses NK cell activity via ligation of inhibitory
receptor, NKG2A (138). Furthermore, blockade of NKG2A
results in the enhancement of tumour immunity by promoting
both NK and CD8+ T cell effector functions in mice and humans.
As described above, monalizumab is a humanised anti-NKG2A
antibody which has been shown to enhance the activity of NK
cells against various tumour cells and rescue CD8+ T cell
function in combination with blockade of the PD-x axis (116).
THE POTENTIAL FOR FUTURE
COMBINATION IMMUNOTHERAPY
IN HCC

Checkpoint Therapy to Enhance T and NK
Cell Function
Both T cells and NK cells express co-inhibitory molecules or
checkpoint inhibitors, which can be targeted using CPI to
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unleash potent anti-tumour immunity by recovering both NK
and T cell function (116, 139). These include PD-1, CTLA-4,
TIGIT and LAG-3. The mechanism of action of PD-1 involves
the engagement of its ligands PD-L1 and PD-L2 to deliver
inhibitory signals that regulate the balance between T cell
exhaustion, tolerance and immunopathology (140). Tumour
cells expressing PD-1 ligands on their surface use the PD-1
pathway to attenuate tumour immunity and facilitate tumour
progression (141). PD-1/PD-L1 has been recognised to play a
role of critical importance in immune escape in HCC after the
successful treatment of nivolumab in patients with advanced
HCC, achieving an objective response rate of 15-20% (142).
Furthermore, elevated PD-L1 expression in HCC significantly
correlates to poor survival and tumour aggressiveness (143–146).
Blockade of the PD-1 and PD-L1 interaction using monoclonal
antibodies produces durable clinical responses in patients with
diverse advanced tumour types (147).

CTLA-4 outcompetes the co-stimulatory molecule CD28 for
binding to B7-1/CD80 or B7-2/CD86 expressed on the surface of
antigen presenting cells, including tumour infiltrating dendritic
cells. This is due to its higher affinity for CD80/CD86 as
compared to CD28. As a result of this, CTLA-4 negatively
regulates T-cell activation, inactivating T lymphocytes in the
G1 phase. CD8 T lymphocytes are able to exert their anti-tumour
Frontiers in Immunology | www.frontiersin.org 9
cytotoxic effects via the secretion of TNFa and IFNg leading to
the apoptosis of tumour cells (148), when the T-cell receptor
(TCR) binds its cognate peptide:MHC antigen expressed on
tumour cells (149–153). CTLA-4 blockade can then provide
long-lasting tumour remission due to its impact on memory T
cells response to cancer (154). After blocking CTLA-4, an
increase in the number and breadth of protective T cells can
be seen in the blood as evidenced by TCR V-b analysis (154).
However, its role in the anti-tumour NK cell response requires
further study.

TIGIT (T cell immunoglobulin and ITM domain) is an
inhibitory receptor and is expressed on activated T cells and can
also be found on NK cells as well as memory T cells, a subset of
Treg cells as well as follicular T helper (Tfh) cells (155–160). TIGIT
is recognised for its protective role in autoimmune diseases as well
as cancer. To date, tumour associated lymphocytes expressing
TIGIT have been shown to exist in acute myeloid leukaemia,
non-small cell lung cancer, colo-rectal carcinoma and melanoma
(161–163). TIGIT is a key checkpoint inhibitor in anti-tumour
responses and thus presents a promising target for future
immunotherapies (161). TIGIT binds to its ligand PVR or
CD155 on the tumour cells with a much higher affinity than its
activating counterpart CD226 (DNAM-1), thereby inhibiting the
interaction between CD226 and CD155 which is widely expressed
FIGURE 2 | Workflow for the isolation of GMP polyclonal NK product and subsequent pathways from the NK cell isolation to distribution to other centres. GMP NK
cell product must fulfil the release criteria according to MHRA criteria. Flow cytometry/CyTOF and histological analysis, CT, PET and MRI scans are performed before
cell infusion to help identify individuals for therapy. Following GMP NK cell infusion the patient immune system is monitored using a combination of flow cytometry/
CyTOF, tissue analysis and cross-sectional radiological imaging. HCC, Hepatocellular carcinoma; OMICs, genomic proteomic metabolomic; CyTOF, cytometry time
of flight.
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on tumour cells (158–160, 164). CD226 promotes cytotoxicity and
enhances anti-tumour responses (165, 166), whereas TIGIT, which
outcompetes CD226, negatively regulates anti-tumour responses
(167). After TIGIT/CD155 ligation, TIGIT’s immunoglobulin tail
tyrosine-like motif becomes phosphorylated at Tyr225 and binds to
cytosolic adapter Grb2. This in turn leads to NK cell
immunosuppression and dysfunction, including downregulation
of IFN-g production (168). It is now recognised that TIGIT
expression on tumour-infiltrating NK cells is associated with
tumour progression and was also linked to functional immune
exhaustion (139). The role of TIGIT in liver cancer is still under
investigation. Recent research has shown that survival and
prognosis of HCC patients is positively correlated with NK cell
numbers in blood and tumour tissue (169). Tumour progression of
these HCC patients was associated with dysfunction of the tumour-
Frontiers in Immunology | www.frontiersin.org 10
infiltrating NK cells (170), and exhausted tumour-infiltrating NK
cells correlate with poor clinical outcome for HCC patients.
Importantly, this NK cell exhaustion was reversed by
manipulating the TIGIT pathway (171). Thus, the clinical
application of anti-TIGIT CPI immunotherapy will enhance the
NK cell anti-tumour immune response and is a promising new
approach towards treating HCC.

Lymphocyte activation gene-3 (LAG-3) belongs to the
immunoglobulin superfamily and is expressed on tumour
infiltrating lymphocytes (TILs) (172), NK cells (173), B cells
(174) and DCs (175). LAG-3 has a high binding capacity to
MHC II (173). Current data suggests that modulating LAG-3 can
impact autoimmunity, cancer and chronic viral infection (164).
Fibrinogen-like protein 1 (FGL1) is a new major ligand for LAG-
3 and it has recently been demonstrated that blocking the FGL1-
FIGURE 3 | The hepatocellular carcinoma microenvironment and crosstalk of NK, Treg and HCC with the key signalling cascades. Effector T cells are the source of
interleukin-2 (IL-2) which acts on the IL-2a receptor in CD25 on regulatory T cells. This leads to phosphorylation of STAT5 which subsequently upregulates Treg
functional molecule CTLA-4 and the transcription factor Foxp3. The tumour microenvironment is enriched with adenosine triphosphate (ATP). CD39 on Tregs
generates cyclic AMP from ATP. CD73 expressed on intrahepatic Tregs subsequently generate immunosuppressive adenosine from the cyclic AMP. Adenosine act
on A2AR on NK cells which leads to the suppression of NK cell function. In addition, immunosuppressive cytokines TGFb and IL-10 are secreted by Tregs and these
cytokines lead to reductions in proliferation, IFNg production and expression of NKG2D. Conversely, high concentrations of IL-2 lead to an increase in perforin and
granzyme B expression on NK cells. IL-12, IL-15 and IL-18 act on their corresponding receptors on NK cells and leading to enhanced cell survival, and granzyme B
production via PI3Kinase and mTOR pathways. NK cells express inhibitory receptors such as TIGIT and PD-1, which interact with corresponding ligands CD155
(PVR) and PDL-1 expressed on tumour cells. Inhibition of these receptors with check point inhibitors could lead to unleashing of NK cell cytotoxic activity to tumour
cells via secretion of granzymes, perforin, IFNg and TNFa. Monoclonal antibodies against inhibitory receptors such as immune checkpoint inhibitor monalizumab are
developed to block MHC-I ligands and NKG2A interactions and enhance NK cell cytotoxicity towards cancer cells. CD16 receptors on NK cells allows them to carry
out ADCC targeting such molecules as PD-L1.
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LAG-3 pathways results in the stimulation of tumour immunity
and inhibits tumour growth (176). Furthermore, co-expression
of LAG-3 and PD-1 on TILs has been observed in several mouse
tumour models. One of the first pre-clinical cancer models using
anti-LAG-3 demonstrated enhanced activation of tumour-
specific T cells at the tumour site and disruption of tumour
growth, especially when used in combination with anti-PD-1
(177). Currently human studies involving LAG-3 as a target are
usually performed in combination with PD-x axis blockade,
providing a wider checkpoint blockade than monotherapy.

The use of monoclonal antibodies targeting CTLA-4, PD-1
and PD-L1 has seen excellent success, especially in settings such
as melanoma and non-small-cell lung cancer. However, most
HCC patients have underlying cirrhosis, and there is a concern
about the risk of decompensation related to CPI-induced
immune mediated hepatitis. This appears relatively rare
occurrence during checkpoint inhibitor therapy for HCC with
grade ≥3 side effects affected under 5% of patients (142, 178,
179). Nivolumab and pembrolizumab have now received
approval from the FDA as second-line treatments for advanced
HCC based on both the Checkmate 040 (142) and Keynote 224
(178) clinical trials. Although subsequent phase III trials have
failed to show statistically significant data for survival
improvement in either first-line (nivolumab vs. sorafenib) or
second-line (pembrolizumab vs. placebo) setting (179, 180).
These therapeutics now have potential to be combined with
anti-VEGF therapies (111), however there remains an unmet
clinical need for investigating combinatorial blockade targeting
the novel inhibitory receptors, such as TIGIT and LAG-3.

Combination of GMP NK Infusion and
Check Point Inhibitors in HCC
NK-cell therapy in cancer has made significant progress in the
past decade with many milestones. It has been shown that NK-
cell alloreactivity can eliminate the risk of leukaemia relapse and
graft rejection as well as protecting against graft-versus-host
disease in transplant patients (112). High-risk myelodsysplastic
syndrome (MDS) patients have been shown to be responsive to
NK-cell therapy due to the infused donor NK cells causing a
reduction in high-risk clones and a less pronounced host
immune activation (181). The infusion of NK cells has also
been successful in patients with refractory acute myeloid
leukaemia achieving remission in one third of patients (113). A
recent phase I trial investigating the use of NK-cell therapy in
combination with trastuzumab in HER2-positive cancer patients
demonstrated that the therapy was well tolerated and that target
engagement and anti-tumour activity was seen in the patients
(115). CAR-NK cell infusion is also an exciting and promising
therapy for cancer patients with a recent phase I and II trial
showing that the majority (8 out of 11) patients responded to the
treatment, of which 7 patients had complete disease remission
(114). Recent developments suggested that NK cells derived from
induced pluripotent stem cells (iPSCs) produce inflammatory
cytokines and exert strong cytotoxicity against a variety of
hematologic and solid tumours. iPSC-derived NK cells were
also found to recruit T cells and cooperate with T cells and
anti-PD-1 antibody, subsequently enhancing inflammatory
Frontiers in Immunology | www.frontiersin.org 11
cytokine production and promoting tumour lysis (120).
Additionally, NK-CAR-iPSC-NK cells have been shown to
significantly inhibit tumour growth resulting in prolonged
survival in an ovarian cancer xenograft model (182).

Anti-PD-1, anti-PD-L1 and anti-CTLA-4 monoclonal
antibodies also enhance NK cell tumour trafficking and release
cytokines against tumours whilst simultaneously supressing Treg
function (183–186). Anti-CTLA-4 monoclonal antibodies have
also been shown to induce the release of TNFa against tumour
cells via CD16 binding to antibody-bound tumour cells, and
simultaneously to induce Treg inactivation (187–189). Blocking
TIGIT and its ability to exploit both T cell and NK cell responses
is also a strategy that is currently being explored by multiple
pharmaceutical companies undergoing phase I/II clinical trials.
Experimental drugs such as tiragolumab (anti-TIGIT)
is currently undergoing phase I trials in various cancers
(https://clinicaltrials .gov/ct2/show/NCT02913313) in
combination with atezolizumab and nivolumab. Specific
clinical trials looking at patients with HCC include looking at
the use of SRF388 which is a fully human IgG1 antibody
against IL-27 that decreases the expression of inhibitory
immune checkpoint receptors (https://clinicaltrials.gov/ct2/
show/NCT04374877?term=TIGIT+HCC&draw=2&rank=).

Thus, combining the massive increase in CPI therapy with
the growth in adoptive NK cell therapeutics indicates that
there is now a great potential to generate novel therapeutic
combinations that target both CD8 T cells, NK cells and Tregs
generating a holistic approach to cancer immunotherapy. Such an
approach could simultaneously positively modulate the tumour
microenvironment and directly cytotoxicity against tumours. In
particular, the combination of augmenting both CD8 T cells and
NK cells means that tumours that down-regulate MHC class I to
avoid CD8 T cell mediated lysis, lose an important inhibitory
signal for NK cells, and thus render themselves susceptible to NK
cell killing. However, new therapeutic combinations have the
potential to exacerbate toxicity, especially those related to
autoimmunity and so these approaches need caution. In general,
though NK cell therapeutics have proven relatively safe with little
systemic toxicity observed, so these combinations may be more
advantageous than those that target solely T cells. Nevertheless as
with all therapeutic combinations it is important that future
studies are carefully monitored for signs of unexpected toxicity.
CONCLUSION

HCC remains a challenge for clinicians and researchers to approach
in partnership. The recent development of multiple new
immunotherapies including monoclonal antibodies and cell
products present new opportunities for the clinician to treat
HCC. However, understanding the immunological micro
environment in which HCC occurs will be key to successfully
combining these. Fundamental research is required to unpick the
different intrahepatic immunological microenvironments on which
HCC occurs. Understanding these on a personalized basis will be
the key to selecting the optimal combination of immunotherapies
for each patient.
April 2021 | Volume 12 | Article 643310

https://clinicaltrials.gov/ct2/show/NCT02913313
https://clinicaltrials.gov/ct2/show/NCT04374877?term=TIGIT+HCC&draw=2&amp;rank=
https://clinicaltrials.gov/ct2/show/NCT04374877?term=TIGIT+HCC&draw=2&amp;rank=
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bozward et al. Exploring Therapeutic Options in HCC
AUTHOR CONTRIBUTIONS

AB and FW contributed equally to this work. All authors
contributed to the article and approved the submitted version.
FUNDING

We received funding from Sir Jules Thorn Trust Biomedical
Research Grant, Transbioline Innovative Medicine Initiative
Research Grant, Queen Elizabeth Hospital Birmingham
Frontiers in Immunology | www.frontiersin.org 12
Charity, Medical Research Foundation - G1002552 from the
The Medical Research Council (grants M019829 and S009338),
CRUK (“HUNTER” accelerator award) the NIHR Birmingham
BRC, and the NIHR Southampton BRC.
ACKNOWLEDGMENTS

All figures were created using ServierMedical Art templates,
which are licensed under a Creative Commons Attribution 3.0
Unported License, https://smart.servier.com.
REFERENCES

1. Oo YH, Shetty S, Adams DH. The Role of Chemokines in the Recruitment of
Lymphocytes to the Liver. Dig Dis (2010) 28:31–44. doi: 10.1159/000282062

2. McCuskey R, Reilly F. Hepatic Microvasculature: Dynamic Structure and its
Regulation. Semin Liver Dis (1993) 13:1–12. doi: 10.1055/s-2007-1007333

3. Arii S, Imamura M. Physiological Role of Sinusoidal Endothelial Cells and
Kupffer Cells and Their Implication in the Pathogenesis of Liver Injury.
J Hepatobiliary Pancreat Surg (2000) 7:40–8. doi: 10.1007/s005340050152

4. Balmer ML, Slack E, De Gottardi A, Lawson MAE, Hapfelmeier S, Miele L,
et al. The Liver may Act as a Firewall Mediating Mutualism Between the
Host and its Gut Commensal Microbiota. Sci Transl Med (2014) 6:1–11.
doi: 10.1126/scitranslmed.3008618

5. Oo YH, Weston CJ, Lalor PF, Curbishley SM, Withers DR, Reynolds GM,
et al. Distinct Roles for CCR4 and CXCR3 in the Recruitment and
Positioning of Regulatory T Cells in the Inflamed Human Liver.
J Immunol (2010) 184:2886–98. doi: 10.4049/jimmunol.0901216

6. Bertolino P, Bowen DG, Benseler V. T Cells in the Liver: There is Life Beyond
the Graveyard. Hepatology (2007) 45:1580–2. doi: 10.1002/hep.21786

7. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The Site
of Primary T Cell Activation is a Determinant of the Balance Between
Intrahepatic Tolerance and Immunity. J Clin Invest (2004) 114:701–12.
doi: 10.1172/JCI200421593

8. Osei-Bordom D, Bozward AG, Oo YH. The Hepatic Microenvironment and
Regulatory T Cells. Cell Immunol (2020) 357:104195. doi: 10.1016/
j.cellimm.2020.104195

9. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, et al.
Somatic Mutations and Clonal Dynamics in Healthy and Cirrhotic Human
Liver. Nature (2019) 574:538–42. doi: 10.1038/s41586-019-1670-9

10. Jenne CN, Kubes P. Immune Surveillance by the Liver. Nat Immunol (2013)
14:996–1006. doi: 10.1038/ni.2691

11. Racanelli V, Rehermann B. The Liver as an Immunological Organ.
Hepatology (2006) 43:54–62. doi: 10.1002/hep.21060
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