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Abstract
A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with 
humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include 
knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our 
architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense 
domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot 
to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical 
actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabili-
ties are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated 
images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably 
acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and 
to provide accurate explanations in the presence of noisy sensing and actuation.

Keywords Explainable reasoning and learning · Non-monotonic logical reasoning · Deep learning · Scene understanding · 
Robotics

Introduction

Imagine a robot arranging objects in desired configurations 
on a table, and estimating the occlusion of objects and stabil-
ity of object configurations. Figure 1a illustrates a scene in 
this setting. An object is occluded if the view of any mini-
mal fraction of its frontal face is hidden by another object, 

and an object configuration (i.e., a vertical stack of objects) 
is unstable if any object in the configuration is unstable. 
To perform these tasks, the robot extracts information from 
on-board camera images, reasons with this information and 
incomplete domain knowledge, and executes actions to 
achieve desired outcomes. It also incrementally learns and 
revises previously unknown constraints, and preconditions 
and effects of actions, and responds to questions about its 
plans, actions, decisions, and beliefs. For instance, assume 
that the goal in Fig. 1b is to have the yellow ball on the 
orange block, and that the plan is to move the blue block 
to the table’s surface before placing the ball on the orange 
block. When asked about a plan step, e.g., “why do you want 
to pick up the blue block first?”, the robot answers “I have 
to put the ball on the orange block, and the blue block is on 
the orange block”; when asked, after plan execution, “why 
did you not pick up the pig?”, the robot responds ”Because 
the pig is not related to the goal”.

The motivating scenario described above poses key 
knowledge representation, reasoning, learning, and control 
challenges. In this paper, we focus on enabling a robot to 
provide on-demand explanations of its decisions and beliefs 
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in the form of descriptions comprising relations between 
relevant domain objects, object attributes, actions, and robot 
attributes. Such “explainability” will help human designers 
improve the underlying algorithms and establish account-
ability. Providing these explanations is particularly challeng-
ing in integrated robot systems that combine knowledge-
based reasoning methods (e.g., for planning) and data-driven 
learning methods (e.g., for pattern recognition). Inspired by 
research in cognitive systems that highlights the superior 
capabilities provided by coupling different representa-
tions, reasoning methods, and learning methods [20, 43], 
our architecture provides transparency in decision making 
by integrating the principles of data-driven learning and 
knowledge-driven reasoning. Building on our prior work 
that combined non-monotonic logical reasoning and deep 
learning for classification tasks in simulated images [31], 
our architecture enables a robot to:

– Automatically learn axioms encoding previously 
unknown state constraints, and action preconditions and 
effects;

– Automatically trace the evolution of any given belief or 
the non-selection of any given action at a given time by 

inferring the relevant sequence of axioms and beliefs; 
and

– Exploit the interplay between representation, reasoning, 
and learning to describe decisions and beliefs related to 
computed or executed plans and hypothetical situations.

Our recent conference paper provided proof of concept 
evidence of our architecture’s ability to learn previously 
unknown constraints and extract relevant information to con-
struct descriptions of decisions and beliefs [33]. Here, we 
describe these capabilities in more detail, and introduce the 
ability to acquire action preconditions and effects and trace 
the evolution of beliefs. These capabilities are evaluated in 
the context of performing planning tasks and scene under-
standing tasks in simulated scenes and on a physical robot 
manipulating tabletop objects. Specifically, the robot: (1) 
computes and executes plans to arrange objects in desired 
configurations; and (2) estimates occlusion of scene objects 
and stability of object configurations. Experimental results 
indicate the ability to (1) incrementally reduce uncertainty in 
the scene by learning previously unknown state constraints, 
and preconditions and effects of actions; and (2) construct 
explanations reliably and efficiently by automatically iden-
tifying and reasoning with the relevant knowledge despite 
noisy sensing and actuation.

The remainder of this paper is organized as follows. 
“Related Work” discusses related work to motivate the archi-
tecture described in “Architecture”. Experimental results 
and conclusions are discussed in “Experimental Setup and 
Results“ and “Conclusions”, respectively.

Related Work

Early work in explanation generation drew on research in 
cognition, psychology, and linguistics to characterize expla-
nations in terms of factors such as generality, objectivity, 
connectivity, relevance, and information content [11]. Sub-
sequent studies involving human subjects have also indicated 
that the attributes of good explanations include coherence, 
simplicity, generality, soundness, and completeness [36]. In 
parallel, fundamental computational methods were devel-
oped for explaining unexpected outcomes by reasoning logi-
cally about potential causes [16].

With the increasing use of AI and machine learning meth-
ods in different domains, there is renewed interest in under-
standing the decisions of these methods1. This understand-
ing can be used to improve the underlying algorithms, and to 

(a) Test scenario.

(b) Image from robot’s camera.

Fig. 1  a Motivating scenario of a Baxter robot arranging objects on a 
tabletop; b image from the camera on the robot’s left gripper

1 For an interesting debate on whether interpretability is needed in 
machine learning, please see: https:// www. youtu be. com/ watch?v= 
93Xv8 vJ2acI.

https://www.youtube.com/watch?v=93Xv8vJ2acI
https://www.youtube.com/watch?v=93Xv8vJ2acI
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make automated decision-making more acceptable or trust-
worthy to humans [25]. Recent work in explainable AI and 
explainable planning can be broadly categorized into two 
groups [29]. Methods in one group modify or map learned 
models or reasoning systems to make their decisions more 
interpretable, e.g., by mapping decisions to input data [17], 
explaining the predictions of classifiers by learning equiva-
lent interpretable models [37], or biasing a planning system 
towards making decisions easier for humans to understand 
[45]. Methods in the other group provide descriptions that 
make a reasoning system’s decisions more transparent, e.g., 
describing planning decisions [5], combining reasoning 
based on classical first order logic with interface design to 
help humans understand a plan [4, 26], describing why a 
particular solution was obtained for a given problem using 
non-monotonic logical reasoning [8], or using rules made 
of monotonic operators to define proof trees that provide a 
declarative view (i.e., explanation) of the trace of a compu-
tation [9]. Researchers have also explored explanations for 
non-monotonic rule-based systems in semantic web appli-
cations [2, 18]. Much of this research is agnostic to how an 
explanation is structured or assumes comprehensive domain 
knowledge. Also, they do not explore the interplay between 
learning, representation, and reasoning to improve the qual-
ity of the explanations.

Given the use of deep networks and related algorithms 
in different applications, methods are being developed to 
understand the operation of these networks, e.g., by comput-
ing the features most relevant to a deep network’s outputs 
[3]. As documented in a recent survey, these methods com-
pute gradients and decompositions in a network’s layers to 
obtain heatmaps of the relevant features [38]. There has also 
been work on reasoning with learned symbolic structure, or 
with a learned graph encoding scene structure, in conjunc-
tion with deep networks to answer questions about images of 
scenes [35, 44]. However, these approaches do not (1) fully 
integrate reasoning and learning to inform and guide each 
other; or (2) use the rich commonsense knowledge, which is 
available in almost every domain, for reliable and efficient 
reasoning, learning, and the generation of descriptions of 
the decisions and beliefs of the system under consideration.

There is a well-established literature methods in AI for 
learning logic-based representations of domain knowledge. 
Examples include the incremental revision of a first-order 
logic representation of action operators [14], the inductive 
learning of domain knowledge represented as an Answer 
Set Prolog program [15, 23], and work in our group on cou-
pling of non-monotonic logical reasoning, inductive learn-
ing, and relational reinforcement learning to incrementally 
acquire actions and axioms [33, 41]. Our approach for 
learning domain axioms is inspired by work in interactive 
task learning, a general framework for acquiring domain 
knowledge using labeled examples or reinforcement signals 

obtained from domain observations, demonstrations, or 
human instructions [6, 21]. However, unlike methods that 
learn from many training examples, our approach learns 
from limited training examples.

In this paper, we focus on integrated robot systems that 
use knowledge-based methods and data-driven methods to 
represent, reason with, and learn from incomplete domain 
knowledge and noisy observations. We enable such robots 
to generate relational descriptions of decisions and beliefs, 
including hypothetical or counterfactual situations that are 
often used by humans and computer systems to infer causal 
relations [27]. Recent surveys indicate that these capabilities 
are not supported by existing systems [1, 29]. Our archi-
tecture builds on knowledge representation tools, our prior 
work on integrating non-monotonic logical reasoning and 
deep learning for classification tasks in simulated images 
[31], and work in our group on explainable agency [22] and 
a theory of explanations [42] that has shown that the non-
monotonic logical reasoning paradigm used in this paper can 
be used to present information at the level of abstraction, 
verbosity, and specificity desired by the human participant 
[42].

Architecture

Figure 2 shows the overall architecture. Components to 
the left of the dashed vertical line combine non-monotonic 
logical reasoning and deep learning for classification tasks; 
an initial version of these components were described in 
a context of classification tasks in simulated images in 

Inputs: Simulated scenes

Outputs:

Labels
(training phase)

Human query

Features
extraction

Decision tree
induction Text/Audio

processingASP
program

Classification
block

Program
analyzer

Baxter

Explanations
(relational description)

Output labels

(occlusion, stability)

Relevant
axioms,
literals

Current state

Answer set

New axioms

Answer set,
domain
knowledge

Plan

Processed
text

Goal

Real scenes

Fig. 2  Architecture combines strengths of non-monotonic logical 
reasoning with incomplete commonsense domain knowledge, deep 
learning, and inductive learning. Components to the left of the dashed 
vertical line establish this combination, and those to the right of the 
dashed line support the desired explainability
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our conference paper [31]. Components to the right of the 
dashed line expand reasoning capabilities and answer ques-
tions about decisions and beliefs before, during, or after 
reasoning and learning. An initial version of some of these 
components were introduced in our recent conference paper 
[33]. Here, we describe all components, focusing primar-
ily on the tracing of beliefs and construction of explana-
tions, and highlighting recent changes and extensions in 
other components. We do so using the following illustrative 
domain.

Example Domain 1 [Robot Assistant (RA) Domain] A Baxter 
(see Fig. 1a): (1) estimates occlusion of scene objects and 
stability of object structures, and arranges objects in desired 
configurations; and (2) provides relational descriptions of 
decisions, beliefs, and hypothetical situations as responses to 
questions and commands. There is uncertainty in the robot’s 
perception and actuation, and the robot uses probabilistic 
algorithms to visually recognize and move objects. The 
robot has incomplete (and potentially imprecise) domain 
knowledge, which includes object attributes such as size 
(small, medium, large), surface (flat, irregular) and shape 
(cube, apple, duck); position and distance-based spatial rela-
tions between objects (above, below, front, behind, right, 
left, in); other domain attributes; and some axioms govern-
ing domain dynamics such as:

– Placing an object on top of an object with an irregular 
surface results in an unstable object configuration.

– For any given object, removing all other objects blocking 
its frontal face causes this object to be not occluded.

– An object that is positioned below another object cannot 
be picked up.

This knowledge may need to be revised, e.g., some actions, 
axioms, and the values of some attributes may be unknown, 
or the robot may observe that placing certain objects 
on an object with an irregular surface results in a stable 
configuration.

Knowledge Representation, Reasoning, 
and Learning

We first describe the knowledge representation, reasoning, 
and learning capabilities, i.e., the components to the left of 
the dashed vertical line in Fig. 2.

Feature extraction In our architecture, the sensor inputs are 
RGB images of simulated scenes, or noisy top and front 
views of scenes from the robot’s cameras; our prior work 
also considered RGB-D images of simple simulated scenes 
[31]. From each image, the ”Feature extraction” component 
in Fig. 2 uses a probabilistic algorithm to extract objects and 

their attributes. Also, the spatial relations between objects 
in the image are computed using our prior work that learned 
the grounding, i.e., the meaning in the physical world, for 
seven position-based prepositional words (in, above, below, 
front, behind, right, left) and three distance-based preposi-
tional words (touching, non-touching, far). This grounding 
is modeled in the form of 2D and 1D histograms, which are 
learned from labeled image data and revised over time based 
on human feedback. Given an input image, a measure of 
similarity computed between the histograms extracted from 
this image and the learned models is used to label the spatial 
relations between pairs of objects in the image. For more 
details about this grounding, please see [30].

Non-monotonic logical reasoning To represent and reason 
with domain knowledge, the ”ASP program” component in 
Fig. 2 uses CR-Prolog, an extension to Answer Set Prolog 
(ASP) that introduces consistency restoring (CR) rules; we 
use the terms “CR-Prolog” and “ASP” interchangeably in 
this paper. ASP is a declarative language that represents 
recursive definitions, defaults, causal relations, and con-
structs that are difficult to express in classical logic for-
malisms. ASP is based on the stable model semantics, and 
encodes default negation and epistemic disjunction, e.g., 
unlike “ ¬ a”, which implies that “a is believed to be false”, 
“not a” only implies that “a is not believed to be true” 
[13]. Each literal can hence be true, false, or unknown, and 
the robot only believes statements that it is forced to believe. 
ASP supports non-monotonic logical reasoning, i.e., add-
ing a statement can reduce the set of inferred consequences, 
which helps recover from errors caused by reasoning with 
incomplete domain knowledge. This is an appealing capa-
bility for robotics domains characterized by incomplete 
knowledge, dynamic changes, and noisy observations. ASP 
and other knowledge-based reasoning paradigms are often 
criticized for requiring comprehensive prior knowledge, and 
for being unwieldy in large, complex domains. However, 
ASP has been used by an international research commu-
nity to reason with incomplete domain knowledge in many 
applications, and modern ASP solvers have demonstrated the 
ability to reason efficiently with a large knowledge base [7].

A domain’s description in ASP comprises a system 
description D and a history H . D comprises a sorted sig-
nature Σ and axioms encoding the domain’s dynamics. In 
[31] we explored spatial relations between objects in the 
image for classification tasks; the Σ included basic sorts, 
e.g., object, robot, location size, relation, and surface; stat-
ics, i.e., domain attributes that do not change over time, e.g., 
objsize(object, size) for object size and objsurface(obj, surface) 
for object surface; and fluents, i.e., domain attributes whose 
values can be changed, e.g., loc(object, location)  implies 
that a particular object is at a particular location, and 
obj_relation(above, object, object) implies that a particular 
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object is above another particular object. In [33] and this 
paper, the robot also plans and executes actions that cause 
changes in the domain. We model the corresponding domain 
dynamics by first describing the expanded Σ and transition 
diagram in action language ALd [12] and then automatically 
translating this description to ASP statements. Action lan-
guages are formal models of parts of natural language used 
for specifying transition diagrams of dynamic domains. ALd 
supports three types of statements: causal law, state con-
straint, and executability condition, which are encoded as:

where a is an action, l is a literal, lin is an inertial literal, and 
p0,… , pm are domain literals. For the RA domain, Σ now 
also includes the sort step for temporal reasoning, fluents 
such as inhand(robot, object) , actions such as pickup(robot, 
object) and putdown(robot, object, location), and the rela-
tion holds(fluent, step) implying that a particular fluent holds 
true at a particular time step.

Given a signature, axioms in the system description cap-
ture the domain’s dynamics. For the RA domain, the axioms 
would include ALd statements such as: 

 where Statement 1(a) is a causal law implying that putting 
an object down on another object causes the first object to 
be on the second one; Statement 1(b) is a state constraint 
linking the spatial relations above and below between two 
objects; and Statement 1(c) is an executability condition 
implying that the robot cannot try to pick up an object that 
is below another object. The domain axioms also encode 
constraints that hold unless there is evidence to the contrary, 
e.g., “larger objects placed on smaller objects are unstable 
unless stated otherwise” is encoded as:

where “not” denotes default negation. In addition to these 
axioms, information extracted from the input images (e.g., 
spatial relations, object attributes) with sufficiently high 
probability is converted to ASP statements.

a ������ lin �� p0,… , pm

l �� p0,… , pm

���������� a0,… , ak �� p0,… , pm

(1a)
putdown(rob1, Ob1,Ob2) ������

obj_relation(on, Ob1, Ob2)

(1b)
obj_relation(above, Ob1, Ob2) ��

obj_relation(below,Ob2, Ob1)

(1c)
���������� pickup(rob1, Ob1) ��

obj_relation(below,Ob1, Ob2)

(2)
¬stable(A) �� obj_relation(above,A,B),

size(A, large), size(B, small), not stable(A)

The H of a dynamic domain typically comprises 
records of the form obs(fluent, boolean, step), i.e., fluents 
observed to be true or false at a particular time step, and 
hpd(action, step), i.e., an action’s execution at a particular 
time step. In [40], other work in our group expanded this 
notion to represent defaults describing the values of fluents 
in the initial state, e.g., “it is initially believed that a book is 
in the library”, and exceptions, e.g., “a cookbook is in the 
kitchen”.

To reason with domain knowledge, our architecture con-
structs the CR-Prolog program Π(D,H) , which includes 
Σ and axioms of D , inertia axioms, reality checks, closed 
world assumptions for actions, and observations, actions, 
and defaults from H . For instance, Statements 1(a–c) would 
be translated into ASP statements such as: 

 In addition, every default also has a CR rule to let the robot 
assume the default’s conclusion is false to restore consist-
ency under exceptional circumstances. For instance, the ASP 
statement:

is a CR rule that is only triggered under exceptional circum-
stances to assume a book is not in the library, e.g., as an 
explanation for an unexpected observation of a book outside 
the library. CR rules can also be used for diagnostics, i.e., to 
explore the reasons for any unexpected outcomes and to trig-
ger the learning and revision of axioms. We do not discuss it 
here to avoid confusion with our axiom induction approach 
described below; see [13, 41] for complete details.

Once Π is constructed, planning, diagnostics, and infer-
ence can be reduced to computing answer sets of Π after 
introducing some helper relations and axioms [13]. Any 
answer set represents the beliefs of the robot associated with 
Π ; it is a description of a possible world and the set of liter-
als of domain fluents and statics at any particular time step 
represents the domain state at that time step. The program 
for our RA domain is available in the ”Explanations” folder 
of our open-source online repository [34].

Note that incorrect inferences can be drawn due to incom-
plete knowledge, noisy sensor input, or when probabilis-
tic information is elevated to statements in the ASP pro-
gram. Non-monotonic logical reasoning enables the robot 

(3a)
holds(obj_relation(on, Ob1, Ob2), I + 1) ←

occurs(putdown(rob1, Ob1, Ob2), I)

(3b)
holds(obj_relation(above, Ob1, Ob2), I) ←

holds(obj_relation(below,Ob2, Ob1), I)

(3c)
¬occurs(pickup(rob1, Ob1), I) ←

holds(obj_relation(below,Ob1, Ob2), I)

(4)¬loc(X, library)
+

←−− book(X)
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to recover from such errors, and not be very sensitive to 
the choice of heuristic thresholds. Also, although we do not 
describe it here, our architecture supports the modeling of 
non-determinism (e.g., in action outcomes). In addition, 
work by others in our group has combined such logical rea-
soning at a coarse resolution with probabilistic reasoning 
over the relevant part of a finer resolution representation of 
the domain [40]. For ease of understanding and to focus on 
the interplay between reasoning and learning in the context 
of constructing explanations, we limit ourselves to logical 
reasoning at one resolution in this paper.

Classification Similar to our prior work [31], the ”Classi-
fication block” in Fig. 2 first tries to estimate the occlusion 
of objects and the stability of object configurations in any 
given image using ASP-based reasoning. If an answer is not 
found, or an incorrect answer is found for labeled training 
examples, the robot automatically extracts relevant regions 
of interest (ROIs) from the corresponding image. Parameters 
of existing Convolutional Neural Network (CNN) architec-
tures (e.g., Lenet [24], AlexNet [19]) are tuned to map infor-
mation from each such ROI to the corresponding classifica-
tion labels. An innovation of our prior work was to reason 
with knowledge of the task (e.g., estimating occlusion) to 
automatically identify and ground only the relevant axioms 
and relations in the image under consideration to determine 
the ROIs to be analyzed further [31]. In this paper, we build 
on this notion of relevance and reason over a sequence of 
steps to provide explanations, as described in “Relational 
Descriptions as Explanations”.

Axiom induction Images used to train the CNNs are con-
sidered to contain information about missing or incorrect 
constraints related to occlusion and stability. In the ”Deci-
sion tree induction” component in Fig. 2, image features and 
spatial relations extracted from ROIs in each such image, 
along with the known labels for occlusion and stability 
(during training), are used to incrementally learn a decision 
tree summarizing the corresponding state transitions. The 
learning process repeatedly splits a node based on an unused 
attribute likely to provide the highest reduction in entropy. 
Next, branches of the tree that satisfy minimal thresholds on 
purity at the leaf ( ≥ 95% samples in one class) and on the 
level of support from labeled examples ( ≥ 5% ) are used to 
construct candidate axioms. Candidates are validated and 
those with less than a minimal level of support (i.e., < 5% ) 
on a separate set of unseen examples are removed. These 
thresholds are set to identify a small number of highly likely 
axioms, and small changes to thresholds do not affect per-
formance. The thresholds can be revised to achieve other 
outcomes, e.g., they can be lowered significantly to identify 
default constraints.

Unlike our prior work [31, 33], we introduce new strat-
egies to process noisy images of more complex scenes. 
First, we use a homogeneous ensemble learning approach, 
retaining only axioms that are identified over a number of 
cycles of applying the decision tree induction approach 
for learning and validation on different subsets of data. 
Second, different versions of the same axiom are merged 
to remove over-specifications. As an example, consider 
the statements: 

 where Statement 5(b) can be removed because the size of 
the object at the bottom of a stack does not provide any 
additional information about instability given that it has 
an irregular surface. If the robot later observes that a large 
object, even with an irregular surface, can support a small 
object, the axiom will be revised suitably. Specifically, axi-
oms with the same head and at least one common literal in 
the body are grouped. Each combination of one axiom from 
each group is encoded in an ASP program along with axioms 
that are not in any group. Each such ASP program is used 
to classify ten labeled scenes, retaining the axioms in the 
program that provides the highest accuracy on these scenes. 
Third, to filter axioms that cease to be useful, the robot asso-
ciates each axiom with a strength that decays exponentially 
over time if it is not reinforced, i.e., not used or learned 
again. Any axiom whose strength falls below a threshold is 
eventually removed.

Unlike our prior work that only learned state constraints 
[33], the robot now also learns previously unknown causal 
laws and executability conditions if there is any mismatch 
between the expected and observed state after an action is 
executed. Any expected but unobserved fluent literal indi-
cates missing executability condition(s), and any observed 
unexpected fluent literal indicates missing causal law(s). 
Given the distributed representation of axioms in our 
architecture, axioms of any particular type (e.g., causal 
law) are learned by constructing decision trees in a suita-
ble format for each candidate action. The learning is based 
on the following methodology: 

1. To explore missing executability conditions, the robot 
simulates the execution of the action (that caused the 
inconsistency) in different initial states and stores: (a) 
the relevant information from the initial state; (b) the 
executed action; and (c) a label indicating the presence 

(5a)
¬stable(A) ← obj_relation(above,A,B),

obj_surface(B, irregular)

(5b)

¬stable(A) ← obj_relation(above,A,B),

obj_surface(B, irregular),

obj_size(B, large)
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or absence of inconsistency, which is used as the out-
put label for the sample in the decision tree. Any fluent 
literal that exists in the answer set or initial state, and 
has an object constant that occurs in the action under 
consideration, is considered to be relevant; it is stored 
with variables replacing ground terms. These simula-
tions correspond to the execution of the action in some 
initial state based on the model provided by the ASP 
program.

2. To explore a missing causal law, training samples 
are collected as in Step 1, but the output label is the 
observed, unexpected fluent literal from the resultant 
state.

3. Separate decision trees are created with the relevant 
information from the initial state as the attributes (i.e., 
nodes); the output label is the presence or the absence of 
inconsistency for any executability conditions, and the 
unexpected fluent for any causal law. The root node of 
the tree is the executed action.

Figure 3 shows part of a decision tree obtained using the 
method described above when the executability condition 
in Statement 3(c) is missing; the learned axiom is along 
the path shaded grey. The label consistent (inconsistent) 
implies that for ≥ 50% of the examples at the leaf, observa-
tions match (do not match) the expected outcomes. It is pos-
sible for the robot to observe a transition to an unexpected 
state due to hardware problems (e.g., mechanical failure), 
but such failures are assumed to be infrequent and are con-
sidered to be exceptions that do not trigger or influence the 
axiom learning approach. When such failures occur, the 
robot is expected to create a new plan to achieve the goal 
once the failure has been fixed.

Relational Descriptions as Explanations

The components of our architecture on the right side of the 
dashed line in Fig. 2 exploit the interplay between repre-
sentation, reasoning, and learning to provide the desired 
on-demand relational descriptions of decisions and beliefs.

Interaction interface and control loop Human interaction 
with our architecture through speech or text input is handled 
by the ”Text/audio processing” component in Fig. 2. Exist-
ing software implementations and a controlled (domain-
specific) vocabulary are used to parse human verbal input. 
Specifically, verbal input from a human is transcribed into 
text drawn from the controlled vocabulary. This (or the 
input) text is labeled using a part-of-speech (POS) tagger, 
and normalized with the lemma list [39] and related syno-
nyms and antonyms from WordNet [28]. The processed text 
helps identify the type of request, which may correspond 
to a desired goal or a question/command about decisions 
and beliefs. In the former case, the goal is sent to the ASP 
program for planning. The robot computes and executes the 
plan, replanning when unexpected action outcomes cannot 
be explained, until the desired goal is achieved or learning 
is triggered. In the latter case, i.e., when given a question 
about the decisions and beliefs, the “Program Analyzer” 
considers the current knowledge (including inferred beliefs) 
and parsed human input to automatically identify relevant 
axioms and literals. These literals are inserted into generic 
response templates based on the controlled vocabulary, 
resulting in human-understandable (textual) descriptions 
that are converted to synthetic speech if needed.

Tracing beliefs/axioms A key capability of our architecture 
is to infer the sequence of axioms and beliefs that explain 
the evolution of any given belief or the non-selection of any 
given ground action at a given time. This tracing of beliefs 
and axioms is done by the “Program Analyzer” component 
in Fig. 2, which uses the inferred sequence of axioms and 
beliefs for building explanations. Others have constructed 
such proof trees in the context of monotonic (i.e., classical 
first order) logic statements used to explain observations [9]. 
We adapt this method to our domain representation based 
on non-monotonic logic, and use the following methodology 
to explain the evolution of any given belief and the non-
selection of any given action. 

1. Select axioms whose head matches the belief or action 
of interest.

Below(O1, O3)?¬ pickup(R1, O1) In hand(R1, O3)?

Inconsistent (100% of 6 samples)

Above(O1, O2)?
Consistent (100% of 14 samples)

Inconsistent (50% of 4 samples)

Inconsistent (100% of 26 samples)

False True

False

True

True

False

Fig. 3  Example illustrating part of the decision tree created for the missing executability condition encoded by Statement 3(c)
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2. Ground the literals in the body of each selected axiom 
and check whether these are supported by the answer set 
under consideration.

3. Create a new branch in a proof tree (with the target belief 
or action as the root node) for each selected axiom sup-
ported by the answer set, and store the axiom and the 
related supporting ground literals in suitable nodes.

4. Repeats Steps 1–3 with the supporting ground literals in 
Step 3 as target beliefs in Step 1, until all branches reach 
a leaf node without further supporting axioms.

The paths from the root to the leaves in these proof trees 
help construct the desired explanations. If multiple such 
supporting branches exist, they are not compared with 
each other for choosing the one that best explains a target 
belief. Instead, the algorithm randomly selects any branch 
to compose the required answers, leaving a comparison of 
the available options as a direction for future work. As an 
example, consider the initial scenario in Fig. 1b with the 
goal of having the yellow ball on the orange cube. The 
robot computes a plan that has in it move the blue cube on 
top of the purple cube (behind the pig) and then move the 

Support axiom
¬occurs(pickup(R,O1), I) ←

holds(relation(below,O1, O2), I).

Target belief

¬occurs(pickup(rob1, purple cube), 3).

Support axiom
¬occurs(pickup(R,O1), I) ←
holds(in hand(R,O2), I).

Extended belief

holds(relation(below, purple cube, blue cube), 3)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief
holds(relation(above, blue cube, purple cube), 3),

complement(above, below)

Support axiom

holds(relation(above, O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, blue cube, purple cube), 3)

Support axiom
holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief
holds(relation(below, purple cube, blue cube), 3),

complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, blue cube, purple cube), 2)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above, O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, blue cube, purple cube), 3)

Fig. 4  Example of belief tracing to explain non-selection of a particular action
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ball on top of the orange cube. If the robot is asked (after 
plan execution) why it did not pick up the purple block at 
time step 3, part of the corresponding proof tree would be 
as shown in Fig. 4; the path highlighted in green contains 
the information needed for the answer; in this example, the 

purple cube could not be picked up because the blue cube 
had just been placed on top of it. As another example con-
sider the goal of having the pig on the red cube. The plan 
is to move the blue cube to the table and then the orange 
cube on top of the purple cube before moving the pig on 
top of the red cube. Now, if the robot is asked to explain 
why it believed that the purple cube was below the orange 
cube at time step 5, part of the corresponding proof tree 
would be as shown in Fig. 5, with the path highlighted in 
green providing the information needed to construct the 
answer.

Target belief

holds(relation(below, purple cube, orange cube), 5)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief
holds(relation(above, orange cube, purple cube), 5),

complement(above, below)

Support axiom

holds(relation(above, O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, orange cube, purple cube), 5)

Support axiom
holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief
holds(relation(below, purple cube, orange cube), 5),

complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, orange cube, purple cube), 4)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above,O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, orange cube, purple cube), 5)

Fig. 5  Example of belief tracing to explain a particular belief
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Program analyzer Algorithm 1 describes the approach for 
automatically identifying and reasoning with the relevant 
information to construct relational descriptions in response 
to questions or requests. It does so in the context of four 
types of explanatory requests or questions. The first three 
were introduced in prior work as questions to be considered 

by any explainable planning system [10]; in addition, we 
consider a question about the robot’s beliefs at any given 
point in time. 

1. Plan description When asked to describe a particu-
lar plan, the robot parses the related answer set(s) to 
extract a sequence of actions occurs(action1, step1) , 
… , occurs(actionN , stepN) (line 3, Algorithm 1). These 
actions are used to construct the response.

2. Action justification: Why action X at step I? To justify 
the execution of any particular action at a particular time 
step, the robot considers the actions or states that this 
action enables, and proceeds as follows: 

(a) For each action that occurred after step I, the robot 
examines relevant axioms (e.g., executability con-
ditions, causal laws) and identifies literal(s) that 
would prevent this action’s execution (lines 5–7, 
Algorithm 1). For example, assume that for the 
goal of placing the orange_block on the table in 
Fig. 1b, the following plan is executed: 

 If asked to justify the execution of the first pickup 
action in this plan, i.e., if posed the question “Why 
did you pick up the blue block at time step 0?”, 
one of the relevant axioms is the following exe-
cutability condition related to the second pickup 
action in the plan (line 6): 

 which  i s  g round in  the  image or 
scene  under  considera t ion  to  obta in 
obj_relation(below, orange_block, blue_block ) as 
a literal of interest in this example.

(b) If any such identified literal is in the answer set at 
the time step of interest (0 in the current example), 
and is absent (or its negation is present) in the next 
time step, it is taken to be a reason for executing 
the action under consideration (line 7).

(c) The identified reason is paired with the subsequent 
action to construct the answer to the question (line 
8). In the current example, the robot’s answer 
includes “I had to pick up the orange block, and 
the orange block was located below the blue 
block”.

occurs(pickup(robot, blue_block), 0),

occurs(putdown(robot, blue_block, table), 1),

occurs(pickup(robot, orange_block), 2).

¬occurs(pickup(robot,A), I) ←

holds(obj_relation(below,A,B), I)
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   A similar approach is used to justify any particular 
action in any particular plan that has been computed but 
not yet executed.

3. Hypothetical actions: Why not action X at step I? For 
questions about a particular action not included in the 
plan and not considered for execution at a particular time 
step, the robot proceeds as follows to identify condi-
tions that would have prevented it from considering the 
action: 

(a) The robot identifies executability conditions with 
the hypothetical action in the head, i.e., conditions 
that would prevent the action from being selected 
during planning (line 10 in Algorithm 1).

(b) For each identified executability condition, the 
robot examines whether literals in the body are 
satisfied in the corresponding answer set (line 
11). If so, these literals are used to construct the 
answer.

   In the plan described above for the goal of hav-
ing the orange block on the table in Fig. 1b, action 
putdown(robot, blue_block, table ) occurred at step 1. 
For the question “Why did you not put the blue cube on 
the tennis ball at time step 1?”, the following execut-
ability condition is identified as being relevant: 

 which implies that an object cannot be placed on 
another object with an irregular surface. The answer set 
indicates that the tennis ball has an irregular surface. 
The robot provides the answer “Because the tennis ball 
has an irregular surface”. Note that to answer to this 
question, the robot has to use the approach described 
earlier to trace a sequence of related axioms and beliefs.

4. Belief query: Why belief Y at step I? To explain any 
particular belief held at a particular time step, the robot 
uses the belief tracing approach described earlier to trace 
the sequence of axioms that were activated. These sup-
porting axioms and relevant literals are used to construct 
the answer.

  For instance, if the robot is asked the question “why 
do you believe object ob1 is unstable at step I?”, it finds 
the following support axiom: 

 Assume that the robot’s beliefs includes a statement 
about ob1 having a small base. Searching for why ob1 

¬occurs(putdown(robot, A, B), I) ←

has_surface(B, irregular)

¬holds(stable(ob1), I) ← holds(small_base(ob1), I)

is believed to have a small base identifies the following 
relevant axiom: 

 As a result, the robot provides the following answer 
“Because object ob2 is below object ob1 , ob2 is small, 
and ob1 is big”.

Robot platform As stated earlier, in addition to images of simu-
lated scenes, this paper considers a physical robot that plans 
and executes actions to achieve the desired goals. For the robot 
experiments, we use a Baxter robot that manipulates objects 
on a tabletop; this is the ”Baxter” component in Fig. 2. The 
Baxter uses probabilistic algorithms to process inputs from 
its cameras, e.g., to extract information about the presence 
of objects, their attributes, and the spatial relations between 
objects, from images such as Fig. 1b. The Baxter also uses 
built-in probabilistic motion planning algorithms to execute 
primitive manipulation actions, e.g., to grasp, pick up, and 
move objects. Observations obtained with a high probability 
(e.g., ≥ 0.9 ) are elevated to literals associated with complete 
certainty in the ASP program.

Recall that non-monotonic logical reasoning enables the 
robot to identify and recover from errors caused by incomplete 
or incorrect information. For instance, consider the situation 
in which robot rob1 has been asked to move book book2 from 
the library to the office . Since the sensor in the robot’s arm is 
unreliable in detecting when an object is in its grip, the value 
of the fluent in_hand(rob1, book2) is unknown after the robot 
has executed pickup(rob1, book2) and book2 is actually in the 
robot’s hand. This outcome does not match the expected out-
come and would create an inconsistency. Even if the sensor 
in the robot’s arm provides an incorrect observation when the 
robot is about to put book2 down in the office, it would be pre-
vented from doing so by the following executability condition:

which uses default negation (i.e., not) in the body to encode 
a stronger constraint than the use of classical negation (i.e., 
¬ ); it implies that it is impossible for the robot to put a par-
ticular object down in a particular location if it does not 
know whether the object is in its hand or not, and not just 
when it is sure that it is not in its hand. In such situations, the 
robot can perform diagnostics to figure out the cause for the 
observed inconsistency by reasoning or executing actions to 
gather more information.

holds(small_base(ob1), I) ←

holds(relation(below, ob2, ob1), I),

has_size(ob2, small), has_size(ob1, big)

¬occurs(putdown(robot, object, location), I) ←

not holds(in_hand(robot, object), I)
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Experimental Setup and Results

In this section, we discuss the results of evaluating our 
architecture’s ability to reason with incomplete knowledge, 
learn previously unknown axioms, and construct relational 
descriptions of decisions and beliefs. Specifically, “Exper-
imental Setup” describes the setup for different experi-
ments, “Execution Trace” describes some execution traces, 
and “Experimental Results” discusses quantitative results.

Experimental Setup

We evaluated the following hypotheses: 

H1  : our architecture enables the robot to accurately learn 
previously unknown axioms;

H2  : reasoning with incrementally learned axioms 
improves the quality of plans generated;

H3  : the beliefs tracing approach accurately retrieves the 
supporting axioms and beliefs; and

H4  : exploiting the links between reasoning and learning 
improves the accuracy of the explanatory descriptions.

 These hypotheses and the underlying capabilities were 
evaluated considering the four types of explanatory 
requests and questions described earlier: (1) describing 
the plan; (2) justifying the execution of an action at a given 
time step; (3) justifying not choosing an action at a given 
time step; and (4) justifying any given belief. As stated 
earlier, the same methodology can also be adapted to 
address other types of requests and questions. The quality 
of a plan was measured in terms of the ability to compute 
minimal plans, i.e., plans with the least number of actions 
to achieve the desired goals. The quality of an explana-
tion was measured in terms of precision and recall of the 
literals in the answer provided by our architecture in com-
parison with the expected (i.e., “ground truth”) response 
provided in a semi-supervised manner based on manual 
input and automatic selection of relevant literals.

Experimental trials considered images from the robot’s 
camera and simulated images. Real world images con-
tained 5–7 objects of different colors, textures, shapes, 
and sizes in the RA domain of Example 1. The objects 
included cubes, a pig, a capsicum, a tennis ball, an apple, 
an orange, and a pot. These objects were either stacked 
on each other or spread on the table—see Fig. 1b. A total 
of 40 configurations were created, each with five differ-
ent goals for planning and four different questions for 
each plan, resulting in a total of 200 plans and 800 ques-
tions. For real scenarios, the states were measured using 
the robot’s cameras before and after the execution of its 
actions. Since evaluating applicability to a wide range 

of objects and scenes is difficult on robots, we also used 
a real-time physics engine (Bullet) to create 40 simu-
lated images, each with 7–9 objects (3–5 stacked and the 
remaining on a flat surface). Objects included cylinders, 
spheres, cubes, a duck, and five household objects from the 
Yale-CMU-Berkeley dataset (apple, pitcher, mustard bot-
tle, mug, and box of crackers). We once again considered 
five different goals for planning and four different ques-
tions for each plan, resulting in the same number of plans 
(200) and questions (800) as with the real world data.

To explore the interplay between reasoning and learn-
ing, we focused on the effect of learned knowledge on 
planning and constructing explanations. Specifically, 
we ran experiments with and without providing the 
robot knowledge of some domain constraints. The robot 
equipped with our architecture learned and revised the 
missing constraints over time as described in “Knowl-
edge Representation, Reasoning, and Learning”, whereas 
the missing constraints were not used by the baselines for 
planning and explanation generation. During planning, we 
measured the number of optimal, sub-optimal, and incor-
rect plans, and the planning time. An optimal plan is a 
minimal plan that achieves the goal; a sub-optimal plan 
requires more than the minimum number of steps and/or 
has to assume an unnecessary exception to default knowl-
edge; and an incorrect plan fails to achieve the desired 
goal.

To test hypothesis H1 we removed five axioms (three exe-
cutability conditions and two causal laws) from the agent’s 
knowledge, and ran the learning algorithm 20 times. One of 
these axioms is the executability condition encoded by State-
ment 3c, and the rest by the following statements: 

 The robot executed actions to learn all the missing axioms 
each time. Each run was terminated if the robot executed a 
number of actions without detecting any inconsistency, or 
if a maximum number of decision trees were constructed. 
The overall precision and recall of learning the missing axi-
oms were then computed. Before we describe the details 

(6a)
¬occurs(pickup(rob1, Ob1), I) ←

holds(in_hand(rob1, Ob2), I)

(6b)
¬occurs(putdown(rob1, Ob1, Ob2), I) ←

¬holds(in_hand(rob1, Ob1), I)

(6c)
holds(in_hand(rob1, Ob1), I + 1) ←

occurs(pickup(rob1, Ob1), I)

(6d)
¬holds(in_hand(rob1, Ob1), I + 1) ←

occurs(putdown(rob1, Ob1, Ob2), I)
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of other experiments and discuss the quantitative results of 
these experimental trials, we first describe some execution 
traces illustrating our architecture’s operation.

Execution Trace

The following execution traces illustrate our architecture’s 
ability to construct relational descriptions of its decisions 
and beliefs during reasoning and learning.

Execution Example 1 [Plans, actions, and beliefs] Con-
sider a robot that starts with objects as shown in Fig. 1b. 
The robot is assigned the goal of achieving a state in 
which the red cube is on top of the orange cube, i.e., 
holds(relation(on, redcube, orangecube), I) . The following inter-
action takes place after the robot has executed a plan and 
successfully achieved the assigned goal.

• Human “Please describe the plan.”
• Baxter “I picked up the blue cube. I put the blue cube 

on the table. I picked up the orange cube. I put the 
orange cube on the table. I picked up the red cube. I put 
the red cube on the orange cube.”

• The human may ask the robot to justify a particular 
action in the executed plan.

• Human “Why did you pick up the blue cube at step 0?”
• Baxter “Because I had to pick up the red cube, and it 

was below the blue cube.”
  The answer constructed in response to the question is 

also used to automatically highlight the relevant image 
regions that influenced this answer, as illustrated in 
Fig. 6a.

• The human now may ask about particular actions that 
were not considered.

  Human ”Why did you not put down the orange cube 
on the blue cube?”

  Baxter “Because the blue cube is small.” In the 
absence of any reference to a particular time step, the 
robot answers the question based on the single instance 
(in the executed plan) of putting the orange cube on 
another cube or surface. The answer is also based on 
learned default knowledge that any large object with a 
small base, i.e., when placed on a small object, is typi-
cally unstable.

• The human may also ask the robot to justify particular 
beliefs.

  Human ”Why did you believe that the red cube was 
below the blue cube in the initial state?”

  Baxter “Because I observed the red cube below the 
blue cube in step zero.”

Execution Example 2 [Reasoning and explanation genera-
tion] Continuing with the previous example, the subsequent 
interactions are as follows:

– Human “Put the tennis ball on the blue cube.”
  The goal holds(relation(on, ball, blue_cube), I  ) is 

encoded in the ASP program for planning. The default 
axiom about configurations with small bases being unsta-
ble acts as a constraint that prevents the robot from plac-
ing objects on the blue cube. At the same time, the robot 
has to compute plans to achieve the assigned goal. This 

(a) Execution Example 1.

(b) Execution Example 3.

(c) Additional example.

Fig. 6  a Relation between blue cube and red cube is important for the 
explanation in execution Example 1; b The rubber duck is the focus 
of attention in execution Example  3; and c Example of a trial (not 
described in this paper) in which a tennis ball plays an important role 
in the explanation constructed
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causes an inconsistency that is resolved by invoking the 
corresponding CR rule and planning to place the ball on 
the blue cube. The following interaction takes place after 
this plan is executed.

– Human “Please describe the plan that you executed.”
  Robot ”I picked up the ball. I put the ball on the blue 

cube.”
– The human may now explore the robot’s belief related to 

the exception to default knowledge that the robot had to 
invoke:

  Human ”Why do you believe that the ball is on the 
blue cube?”

  Robot “Because I observed the ball on the blue cube 
in step 2.”

Combining reasoning with the approach for constructing 
explanations thus allows the robot to adapt to unforeseen 
exceptions.

Execution Example 3 [Learning and explanation] In some 
situations, the robot may be unable to execute the human 
request because a learned constraint makes it impossible 
to achieve the desired object configuration or belief. Even 
in such cases, our architecture enables the robot to answer 
questions about the decisions. For instance, consider the 
simulated scene in Fig. 6b, with the following interaction:

– Human “Please put the pitcher on the duck.”
  This action is not executed because a constraint 

learned earlier implies that any object configuration with 
an object on another with an irregular surface is unstable.

– The robot can justify not executing the action.
  Human “Why did you not put the pitcher on the 

duck?”.
  Robot ”Because the duck has an irregular surface.”
  The image region(s) relevant to the construction of the 

robot’s answer to the human query is (are) automatically 
highlighted in the corresponding image, as illustrated 
by Fig. 6b for the current example. This example also 
illustrates how integrating reasoning and learning helps 
justify the decision to not execute a requested action 
because it will have an unfavorable outcome.

Continuing with the scenario illustrated in the Fig. 6b, the 
robot is now asked to move the duck on top of the red cube. 
A possible plan to achieve this goal would be: pick up the 
green cylinder, put it on the table, pick up the white cube, 
put it on the top of the green cylinder, pick up the duck, and 
put it down on the top of the red cube. Considering that 
each action is executed in one time step, this plan contains 
six time steps. Consider the following interaction after the 
execution of such a plan:

– Human: “Why did you not pick up green cylinder at step 
5?”

  Since this question is about a hypothetical action not 
actually executed by the robot, it explores the related sce-
nario by creating a proof tree, as described in “Relational 
Descriptions as Explanations”, and provides the follow-
ing answer:

  Robot ”Because the white cube was on the green cyl-
inder.”

  The human may ask for further details:
  Human ”Why did you believe the white cube was on 

the green cylinder?”
  To answer this question the robot has to know the 

causal relationship between the action putdown and the 
spatial relation on—see Statement 3(a). Since the robot 
has learned this causal law, it constructs the correct 
answer:

  Robot ”Because I put the white cube on the green cyl-
inder at time step 4.”

This example illustrates the benefit of exploiting the inter-
play between reasoning and learning to justify particular 
beliefs.

Execution Example 4 [Belief tracing and explanation genera-
tion] We continue with our previous example:

• Human “Why did you not pick up the white cube at step 
0?”

  The robot uses belief tracing to construct a proof tree 
with the relation ¬occurs(pickup(rob1, white_cube), 0) 
as the root. For each axiom in which this ground literal 
matches the head, it checks if its body is supported by the 
answer set. If yes, ground literals in the body are used to 
expand the tree. Based on the axiom encoded by State-
ment 3(c), one of the beliefs identified as being relevant 
is holds(obj_rel(below,white_cube, green_cylinder), 0) . 
These steps are repeated until no further sup-
porting axioms are found. The ground literal 
holds(relation(on, white_cube, green_cylinder), 0) is out-
put as the leaf of the proof tree, and the robot answers the 
query.

• Robot “Because I observed the green cylinder on the 
white cube at step 0.”

Overall, these examples illustrate the ability to focus on 
relevant knowledge, incrementally learn and revise axioms, 
trace relevant beliefs, and identify attributes and actions rel-
evant to a given scenario. They also support hypothesis H3. 
Since the same samples are used to learn axioms and train 
the deep networks, our approach also helps understand the 
behavior of the deep networks.
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Experimental Results

The first set of experiments evaluated H1. We removed five 
axioms (two causal laws and three executability conditions, 
as described above) from the robot’s knowledge, and ran 
the learning algorithm 20 times. We measured the precision 
and recall of learning the missing axioms in each run, and 
Table 1 summarizes the results. The row labeled ”Strict” 
provides results when any variation in the target axiom is 
considered an error. In this case, even over-specified axioms, 
i.e., axioms that have some additional irrelevant literals, are 
considered to be incorrect. The following is an example 
axiom in which the second literal in the body is irrelevant.

The row labeled ”Relaxed” reports results when over-spec-
ifications are not considered errors; the high precision and 
recall support H1.

The second set of experiments was designed to evaluate 
hypothesis H2. 

1. As stated earlier, 40 initial object configurations were 
created. The Baxter automatically extracted informa-
tion (e.g., attributes, spatial relations) from images cor-
responding to top and frontal views (i.e., images from 
cameras on the left and right grippers), and encoded it 
in the ASP program as the initial state.

2. For each initial state, five goals were chosen randomly. 
The robot reasoned with the existing knowledge to cre-
ate plans for these 200 combinations (40 initial states, 
five goals).

3. The computed plans were evaluated to determine the 
number of optimal, sub-optimal, and incorrect plans, 
and planning time.

4. Trials were repeated with and without including the 
learned axioms for reasoning.

Since the number of plans and planning time vary depend-
ing on the initial conditions and the goal, we conducted 
paired trials with and without the learned axioms being 
included in the ASP program used for reasoning. The 

(7)

¬holds(in_hand(R1,O1), I + 1) ←

occurs(putdown(R1,O1,O2), I),

¬holds(in_hand(R1,O5), I).

initial conditions and goal were identical in each paired 
trial, but differed between paired trials. Then, we expressed 
the number of plans and the planning time with the learned 
axioms included for reasoning as a fraction of the corre-
sponding values obtained by not using the learned axioms 
for reasoning. The average of these fractions over all trials 
is reported in Table 2. We also computed the number of 
optimal, sub-optimal, and incorrect plans in each trial as 
a fraction of the total number of plans; this too was done 
with and without using the learned axioms for reasoning, 
and the average over all trials is summarized in Table 3.

These results indicate that for images of real scenes, 
using the learned axioms for reasoning significantly 
reduced the search space, resulting in a much smaller num-
ber of plans and a reduction in the planning time. The use 
of the learned axioms does not seem to make any signifi-
cant difference with the simulated scenes. This is under-
standable because simulated images have more objects 
with several of them being small objects. This increases 
the number of possible plans to achieve any given goal. 
In addition, when the robot used the learned axioms for 
reasoning, it reduced the number of sub-optimal plans and 
eliminated all incorrect plans. Also, almost every sub-
optimal plan was created when the corresponding goal 
could not be achieved without creating an exception to a 
default. Without the learned axioms, a larger fraction of 
the plans are sub-optimal or incorrect. Note that the num-
ber of sub-optimal plans is higher for simulated scenes 
that have more objects to consider. These results support 

Table 1  Precision and recall of learning previously unknown axioms 
using decision tree induction, as described in “Relational Descrip-
tions as Explanations”

Missing axioms Precision (%) Recall (%)

Strict 69.2 78.3
Relaxed 96 95.1

Table 2  Number of plans and planning time with the learned axioms 
used for reasoning expressed as a fraction of the values without using 
the learned axioms for reasoning

Measures Ratio (with/without)

Real scenes Simu-
lated 
scenes

Number of steps 1.15 1.23
Number of plans 0.81 1.08
Planning time 0.96 1.02

Table 3  Number of optimal, sub-optimal, and incorrect plans 
expressed as a fraction of the total number of plans. Reasoning with 
the learned axioms improves performance

Plans Real Scenes Simulated scenes

Without With Without With

Optimal 0.4 0.9 0.14 0.3
Sub-optimal 0.11 0.1 0.46 0.7
Incorrect 0.49 0 0.4 0
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hypothesis H2 but also indicate the need to explore com-
plex scenes further.

The third set of experiments was designed as follows to 
evaluate hypothesis H4: 

1. For each of the 200 combinations (40 configurations, 
five goals) from the first set of experiments with real-
world data, we considered knowledge bases with and 
without the learned axioms and had the robot compute 
plans to achieve the goals.

2. The robot had to describe the plan and justify the choice 
of a particular action (chosen randomly) in the plan. 
Then, one parameter of the chosen action was changed 
randomly to pose a question about why this new action 
could not be applied. Finally, a belief related to the pre-
vious two questions had to be justified.

3. The literals present in the answers were compared with 
the expected literals in the ”ground truth” response, with 
the average precision and recall scores shown in Table 4.

4. Similar experiments were performed with simulated 
images; results are in Table 5.

Tables 4 and 5 show that when the learned axioms were 
used for reasoning, the precision and recall of relevant liter-
als (for constructing the explanation) were higher than when 
the learned axioms were not included. The improvement in 

performance is particularly pronounced when the robot has 
to answer questions about actions that it has not actually 
executed. The precision and recall rates were reasonable 
even when the learned axioms were not included; this is 
because not all the learned axioms are needed to accurately 
answer each question. When the learned axioms were used 
for reasoning, errors were very rare and corresponded to 
some additional literals being included in the answer (i.e., 
over-specified explanations). In addition, when we specifi-
cally removed axioms related to the goal under consider-
ation, precision and recall values were much lower. Fur-
thermore, there was noise in both sensing and actuation, 
especially in the robot experiments. For instance, recogni-
tion of spatial relations, learning of constraints, and manipu-
lation have approximate error rates of 15% , 5–10% , and 15% 
respectively. The experimental results summarized above 
thus indicate the ability of our architecture to provide good 
performance in the presence of noise in sensing and actua-
tion on physical robots. These results also indicate that rea-
soning and learning inform and guide each other to provide 
accurate relational descriptions of decisions, beliefs, and the 
outcomes of hypothetical actions. Overall, these results pro-
vide evidence in support of hypothesis H4. For additional 
examples of images, and experimental results of classifica-
tion and explanation generation, please see our open source 
repository [34].

Conclusions

This paper described an approach inspired by cognitive sys-
tems research for an integrated robot system to explain its 
decisions and beliefs, including the outcomes of hypothetical 
actions. The explanations are constructed on-demand before, 
during, or after reasoning or learning, in the form of descrip-
tions of relations between relevant objects, actions, and 
attributes of the domain. We implemented this approach in 
an architecture that combines the complementary strengths 
of non-monotonic logical reasoning with incomplete com-
monsense domain knowledge, deep learning, and induc-
tive learning. In the context of some scene understanding 
and planning tasks performed in simulation and a physical 
robot, we have demonstrated that our architecture exploits 
the interplay between knowledge-based reasoning and data-
driven learning. It automatically identifies and reasons with 
the information relevant to the tasks at hand to efficiently 
construct the desired explanations. Also, both the planning 
and explanation generation performance improves signifi-
cantly when the robot incrementally learns and uses previ-
ously unknown axioms for reasoning.

Our architecture opens up multiple avenues for further 
research. First, we will extend the ability to learn other 
kinds of axioms and consider actions with delayed rewards. 

Table 4  (Real scenes) Precision and recall of retrieving relevant liter-
als for constructing answers to questions with and without using the 
learned axioms for reasoning. Using the learned axioms significantly 
improves the ability to provide accurate explanations

 Query type Precision Recall

Without (%) With (%) Without (%) With (%)

Plan description 78.54 10 67.52 100
Why X? 76.29 95.25 66.75 95.25
Why not X? 96.61 96.55 64.04 100
Belief 96.67 99.02 95.6 100

Table 5  (Simulated scenes) Precision and recall of retrieving rel-
evant literals for constructing answers to questions with and without 
reasoning with the learned axioms. Learned axioms significantly 
improve the accuracy of the explanations

Query type Precision Recall

Without (%) With (%) Without (%) With (%)

Plan description 70.78 100 57.98 100
Why X? 65.63 93.0 57.75 93.0
Why not X? 90.53 96.38 65.15 100
Belief 92.73 98.44 90.27 99.21
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We will do so by building on the architecture developed 
by others in our group by combining non-monotonic logi-
cal reasoning and relational reinforcement learning [41]. 
Second, we will explore more complex domains, tasks, and 
explanations, reasoning with logic-based and probabilistic 
representations of relevant knowledge at different tightly-
coupled resolutions for scalability [40]. We are specifically 
interested in exploring scenarios in which there is ambigu-
ity in the questions (e.g., it is unclear which of two occur-
rences of the pickup action the human is referring to), and 
scenarios in which the human user wants the explanation 
at a different level of abstraction, specificity, or verbosity. 
We will do so by building on our proof of concept work on 
disambiguation [32], and work in our group on a related 
theory of explanations [42]. Third, we will use our architec-
ture to better understand the behavior of deep networks. The 
key advantage of our architecture is that it uses reasoning 
to guide learning; unlike “end-to-end” data-driven methods 
based on deep networks, our architecture uses reasoning to 
trigger learning only when existing knowledge is insufficient 
to perform the desired task(s). The long-term objective is 
to develop an architecture that exploits the complementary 
strengths of knowledge-based reasoning and data-driven 
learning for reliable and efficient operation in complex, 
dynamic domains.
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