

University of Birmingham

Integrated Commonsense Reasoning and Deep
Learning for Transparent Decision Making in
Robotics
Mota, Tiago; Sridharan, Mohan; Leonardis, Aleš

DOI:
10.1007/s42979-021-00573-0

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Mota, T, Sridharan, M & Leonardis, A 2021, 'Integrated Commonsense Reasoning and Deep Learning for
Transparent Decision Making in Robotics', SN Computer Science, vol. 2, no. 4, 242.
https://doi.org/10.1007/s42979-021-00573-0

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1007/s42979-021-00573-0
https://doi.org/10.1007/s42979-021-00573-0
https://birmingham.elsevierpure.com/en/publications/6e0fe8fd-94ce-4a72-b9a0-52e7ef781ddb

Vol.:(0123456789)

SN Computer Science (2021) 2:242
https://doi.org/10.1007/s42979-021-00573-0

SN Computer Science

ORIGINAL RESEARCH

Integrated Commonsense Reasoning and Deep Learning
for Transparent Decision Making in Robotics

Tiago Mota1 · Mohan Sridharan2 · Aleš Leonardis2

Received: 14 September 2020 / Accepted: 8 March 2021
© The Author(s) 2021

Abstract
A robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with
humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include
knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our
architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense
domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot
to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical
actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabili-
ties are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated
images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably
acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and
to provide accurate explanations in the presence of noisy sensing and actuation.

Keywords Explainable reasoning and learning · Non-monotonic logical reasoning · Deep learning · Scene understanding ·
Robotics

Introduction

Imagine a robot arranging objects in desired configurations
on a table, and estimating the occlusion of objects and stabil-
ity of object configurations. Figure 1a illustrates a scene in
this setting. An object is occluded if the view of any mini-
mal fraction of its frontal face is hidden by another object,

and an object configuration (i.e., a vertical stack of objects)
is unstable if any object in the configuration is unstable.
To perform these tasks, the robot extracts information from
on-board camera images, reasons with this information and
incomplete domain knowledge, and executes actions to
achieve desired outcomes. It also incrementally learns and
revises previously unknown constraints, and preconditions
and effects of actions, and responds to questions about its
plans, actions, decisions, and beliefs. For instance, assume
that the goal in Fig. 1b is to have the yellow ball on the
orange block, and that the plan is to move the blue block
to the table’s surface before placing the ball on the orange
block. When asked about a plan step, e.g., “why do you want
to pick up the blue block first?”, the robot answers “I have
to put the ball on the orange block, and the blue block is on
the orange block”; when asked, after plan execution, “why
did you not pick up the pig?”, the robot responds ”Because
the pig is not related to the goal”.

The motivating scenario described above poses key
knowledge representation, reasoning, learning, and control
challenges. In this paper, we focus on enabling a robot to
provide on-demand explanations of its decisions and beliefs

This article is part of the topical collection “Advances in
Multi-Agent Systems Research: EUMAS 2020 Extended
Selected Papers” guest edited by Nick Bassiliades and Georgios
Chalkiadakis.

 * Mohan Sridharan
 m.sridharan@bham.ac.uk

 Tiago Mota
 tmot987@aucklanduni.ac.nz

 Aleš Leonardis
 a.leonardis@bham.ac.uk

1 Electrical and Computer Engineering, The University
of Auckland, Auckland, New Zealand

2 School of Computer Science, University of Birmingham,
Birmingham, United Kingdom

http://orcid.org/0000-0002-2339-0270
http://orcid.org/0000-0001-9922-8969
http://orcid.org/0000-0003-0773-3277
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00573-0&domain=pdf

 SN Computer Science (2021) 2:242 242 Page 2 of 18

SN Computer Science

in the form of descriptions comprising relations between
relevant domain objects, object attributes, actions, and robot
attributes. Such “explainability” will help human designers
improve the underlying algorithms and establish account-
ability. Providing these explanations is particularly challeng-
ing in integrated robot systems that combine knowledge-
based reasoning methods (e.g., for planning) and data-driven
learning methods (e.g., for pattern recognition). Inspired by
research in cognitive systems that highlights the superior
capabilities provided by coupling different representa-
tions, reasoning methods, and learning methods [20, 43],
our architecture provides transparency in decision making
by integrating the principles of data-driven learning and
knowledge-driven reasoning. Building on our prior work
that combined non-monotonic logical reasoning and deep
learning for classification tasks in simulated images [31],
our architecture enables a robot to:

– Automatically learn axioms encoding previously
unknown state constraints, and action preconditions and
effects;

– Automatically trace the evolution of any given belief or
the non-selection of any given action at a given time by

inferring the relevant sequence of axioms and beliefs;
and

– Exploit the interplay between representation, reasoning,
and learning to describe decisions and beliefs related to
computed or executed plans and hypothetical situations.

Our recent conference paper provided proof of concept
evidence of our architecture’s ability to learn previously
unknown constraints and extract relevant information to con-
struct descriptions of decisions and beliefs [33]. Here, we
describe these capabilities in more detail, and introduce the
ability to acquire action preconditions and effects and trace
the evolution of beliefs. These capabilities are evaluated in
the context of performing planning tasks and scene under-
standing tasks in simulated scenes and on a physical robot
manipulating tabletop objects. Specifically, the robot: (1)
computes and executes plans to arrange objects in desired
configurations; and (2) estimates occlusion of scene objects
and stability of object configurations. Experimental results
indicate the ability to (1) incrementally reduce uncertainty in
the scene by learning previously unknown state constraints,
and preconditions and effects of actions; and (2) construct
explanations reliably and efficiently by automatically iden-
tifying and reasoning with the relevant knowledge despite
noisy sensing and actuation.

The remainder of this paper is organized as follows.
“Related Work” discusses related work to motivate the archi-
tecture described in “Architecture”. Experimental results
and conclusions are discussed in “Experimental Setup and
Results“ and “Conclusions”, respectively.

Related Work

Early work in explanation generation drew on research in
cognition, psychology, and linguistics to characterize expla-
nations in terms of factors such as generality, objectivity,
connectivity, relevance, and information content [11]. Sub-
sequent studies involving human subjects have also indicated
that the attributes of good explanations include coherence,
simplicity, generality, soundness, and completeness [36]. In
parallel, fundamental computational methods were devel-
oped for explaining unexpected outcomes by reasoning logi-
cally about potential causes [16].

With the increasing use of AI and machine learning meth-
ods in different domains, there is renewed interest in under-
standing the decisions of these methods1. This understand-
ing can be used to improve the underlying algorithms, and to

(a) Test scenario.

(b) Image from robot’s camera.

Fig. 1 a Motivating scenario of a Baxter robot arranging objects on a
tabletop; b image from the camera on the robot’s left gripper

1 For an interesting debate on whether interpretability is needed in
machine learning, please see: https:// www. youtu be. com/ watch?v=
93Xv8 vJ2acI.

https://www.youtube.com/watch?v=93Xv8vJ2acI
https://www.youtube.com/watch?v=93Xv8vJ2acI

SN Computer Science (2021) 2:242 Page 3 of 18 242

SN Computer Science

make automated decision-making more acceptable or trust-
worthy to humans [25]. Recent work in explainable AI and
explainable planning can be broadly categorized into two
groups [29]. Methods in one group modify or map learned
models or reasoning systems to make their decisions more
interpretable, e.g., by mapping decisions to input data [17],
explaining the predictions of classifiers by learning equiva-
lent interpretable models [37], or biasing a planning system
towards making decisions easier for humans to understand
[45]. Methods in the other group provide descriptions that
make a reasoning system’s decisions more transparent, e.g.,
describing planning decisions [5], combining reasoning
based on classical first order logic with interface design to
help humans understand a plan [4, 26], describing why a
particular solution was obtained for a given problem using
non-monotonic logical reasoning [8], or using rules made
of monotonic operators to define proof trees that provide a
declarative view (i.e., explanation) of the trace of a compu-
tation [9]. Researchers have also explored explanations for
non-monotonic rule-based systems in semantic web appli-
cations [2, 18]. Much of this research is agnostic to how an
explanation is structured or assumes comprehensive domain
knowledge. Also, they do not explore the interplay between
learning, representation, and reasoning to improve the qual-
ity of the explanations.

Given the use of deep networks and related algorithms
in different applications, methods are being developed to
understand the operation of these networks, e.g., by comput-
ing the features most relevant to a deep network’s outputs
[3]. As documented in a recent survey, these methods com-
pute gradients and decompositions in a network’s layers to
obtain heatmaps of the relevant features [38]. There has also
been work on reasoning with learned symbolic structure, or
with a learned graph encoding scene structure, in conjunc-
tion with deep networks to answer questions about images of
scenes [35, 44]. However, these approaches do not (1) fully
integrate reasoning and learning to inform and guide each
other; or (2) use the rich commonsense knowledge, which is
available in almost every domain, for reliable and efficient
reasoning, learning, and the generation of descriptions of
the decisions and beliefs of the system under consideration.

There is a well-established literature methods in AI for
learning logic-based representations of domain knowledge.
Examples include the incremental revision of a first-order
logic representation of action operators [14], the inductive
learning of domain knowledge represented as an Answer
Set Prolog program [15, 23], and work in our group on cou-
pling of non-monotonic logical reasoning, inductive learn-
ing, and relational reinforcement learning to incrementally
acquire actions and axioms [33, 41]. Our approach for
learning domain axioms is inspired by work in interactive
task learning, a general framework for acquiring domain
knowledge using labeled examples or reinforcement signals

obtained from domain observations, demonstrations, or
human instructions [6, 21]. However, unlike methods that
learn from many training examples, our approach learns
from limited training examples.

In this paper, we focus on integrated robot systems that
use knowledge-based methods and data-driven methods to
represent, reason with, and learn from incomplete domain
knowledge and noisy observations. We enable such robots
to generate relational descriptions of decisions and beliefs,
including hypothetical or counterfactual situations that are
often used by humans and computer systems to infer causal
relations [27]. Recent surveys indicate that these capabilities
are not supported by existing systems [1, 29]. Our archi-
tecture builds on knowledge representation tools, our prior
work on integrating non-monotonic logical reasoning and
deep learning for classification tasks in simulated images
[31], and work in our group on explainable agency [22] and
a theory of explanations [42] that has shown that the non-
monotonic logical reasoning paradigm used in this paper can
be used to present information at the level of abstraction,
verbosity, and specificity desired by the human participant
[42].

Architecture

Figure 2 shows the overall architecture. Components to
the left of the dashed vertical line combine non-monotonic
logical reasoning and deep learning for classification tasks;
an initial version of these components were described in
a context of classification tasks in simulated images in

Inputs: Simulated scenes

Outputs:

Labels
(training phase)

Human query

Features
extraction

Decision tree
induction Text/Audio

processingASP
program

Classification
block

Program
analyzer

Baxter

Explanations
(relational description)

Output labels

(occlusion, stability)

Relevant
axioms,
literals

Current state

Answer set

New axioms

Answer set,
domain
knowledge

Plan

Processed
text

Goal

Real scenes

Fig. 2 Architecture combines strengths of non-monotonic logical
reasoning with incomplete commonsense domain knowledge, deep
learning, and inductive learning. Components to the left of the dashed
vertical line establish this combination, and those to the right of the
dashed line support the desired explainability

 SN Computer Science (2021) 2:242 242 Page 4 of 18

SN Computer Science

our conference paper [31]. Components to the right of the
dashed line expand reasoning capabilities and answer ques-
tions about decisions and beliefs before, during, or after
reasoning and learning. An initial version of some of these
components were introduced in our recent conference paper
[33]. Here, we describe all components, focusing primar-
ily on the tracing of beliefs and construction of explana-
tions, and highlighting recent changes and extensions in
other components. We do so using the following illustrative
domain.

Example Domain 1 [Robot Assistant (RA) Domain] A Baxter
(see Fig. 1a): (1) estimates occlusion of scene objects and
stability of object structures, and arranges objects in desired
configurations; and (2) provides relational descriptions of
decisions, beliefs, and hypothetical situations as responses to
questions and commands. There is uncertainty in the robot’s
perception and actuation, and the robot uses probabilistic
algorithms to visually recognize and move objects. The
robot has incomplete (and potentially imprecise) domain
knowledge, which includes object attributes such as size
(small, medium, large), surface (flat, irregular) and shape
(cube, apple, duck); position and distance-based spatial rela-
tions between objects (above, below, front, behind, right,
left, in); other domain attributes; and some axioms govern-
ing domain dynamics such as:

– Placing an object on top of an object with an irregular
surface results in an unstable object configuration.

– For any given object, removing all other objects blocking
its frontal face causes this object to be not occluded.

– An object that is positioned below another object cannot
be picked up.

This knowledge may need to be revised, e.g., some actions,
axioms, and the values of some attributes may be unknown,
or the robot may observe that placing certain objects
on an object with an irregular surface results in a stable
configuration.

Knowledge Representation, Reasoning,
and Learning

We first describe the knowledge representation, reasoning,
and learning capabilities, i.e., the components to the left of
the dashed vertical line in Fig. 2.

Feature extraction In our architecture, the sensor inputs are
RGB images of simulated scenes, or noisy top and front
views of scenes from the robot’s cameras; our prior work
also considered RGB-D images of simple simulated scenes
[31]. From each image, the ”Feature extraction” component
in Fig. 2 uses a probabilistic algorithm to extract objects and

their attributes. Also, the spatial relations between objects
in the image are computed using our prior work that learned
the grounding, i.e., the meaning in the physical world, for
seven position-based prepositional words (in, above, below,
front, behind, right, left) and three distance-based preposi-
tional words (touching, non-touching, far). This grounding
is modeled in the form of 2D and 1D histograms, which are
learned from labeled image data and revised over time based
on human feedback. Given an input image, a measure of
similarity computed between the histograms extracted from
this image and the learned models is used to label the spatial
relations between pairs of objects in the image. For more
details about this grounding, please see [30].

Non-monotonic logical reasoning To represent and reason
with domain knowledge, the ”ASP program” component in
Fig. 2 uses CR-Prolog, an extension to Answer Set Prolog
(ASP) that introduces consistency restoring (CR) rules; we
use the terms “CR-Prolog” and “ASP” interchangeably in
this paper. ASP is a declarative language that represents
recursive definitions, defaults, causal relations, and con-
structs that are difficult to express in classical logic for-
malisms. ASP is based on the stable model semantics, and
encodes default negation and epistemic disjunction, e.g.,
unlike “ ¬ a”, which implies that “a is believed to be false”,
“not a” only implies that “a is not believed to be true”
[13]. Each literal can hence be true, false, or unknown, and
the robot only believes statements that it is forced to believe.
ASP supports non-monotonic logical reasoning, i.e., add-
ing a statement can reduce the set of inferred consequences,
which helps recover from errors caused by reasoning with
incomplete domain knowledge. This is an appealing capa-
bility for robotics domains characterized by incomplete
knowledge, dynamic changes, and noisy observations. ASP
and other knowledge-based reasoning paradigms are often
criticized for requiring comprehensive prior knowledge, and
for being unwieldy in large, complex domains. However,
ASP has been used by an international research commu-
nity to reason with incomplete domain knowledge in many
applications, and modern ASP solvers have demonstrated the
ability to reason efficiently with a large knowledge base [7].

A domain’s description in ASP comprises a system
description D and a history H . D comprises a sorted sig-
nature Σ and axioms encoding the domain’s dynamics. In
[31] we explored spatial relations between objects in the
image for classification tasks; the Σ included basic sorts,
e.g., object, robot, location size, relation, and surface; stat-
ics, i.e., domain attributes that do not change over time, e.g.,
objsize(object, size) for object size and objsurface(obj, surface)
for object surface; and fluents, i.e., domain attributes whose
values can be changed, e.g., loc(object, location) implies
that a particular object is at a particular location, and
obj_relation(above, object, object) implies that a particular

SN Computer Science (2021) 2:242 Page 5 of 18 242

SN Computer Science

object is above another particular object. In [33] and this
paper, the robot also plans and executes actions that cause
changes in the domain. We model the corresponding domain
dynamics by first describing the expanded Σ and transition
diagram in action language ALd [12] and then automatically
translating this description to ASP statements. Action lan-
guages are formal models of parts of natural language used
for specifying transition diagrams of dynamic domains. ALd
supports three types of statements: causal law, state con-
straint, and executability condition, which are encoded as:

where a is an action, l is a literal, lin is an inertial literal, and
p0,… , pm are domain literals. For the RA domain, Σ now
also includes the sort step for temporal reasoning, fluents
such as inhand(robot, object) , actions such as pickup(robot,
object) and putdown(robot, object, location), and the rela-
tion holds(fluent, step) implying that a particular fluent holds
true at a particular time step.

Given a signature, axioms in the system description cap-
ture the domain’s dynamics. For the RA domain, the axioms
would include ALd statements such as:

 where Statement 1(a) is a causal law implying that putting
an object down on another object causes the first object to
be on the second one; Statement 1(b) is a state constraint
linking the spatial relations above and below between two
objects; and Statement 1(c) is an executability condition
implying that the robot cannot try to pick up an object that
is below another object. The domain axioms also encode
constraints that hold unless there is evidence to the contrary,
e.g., “larger objects placed on smaller objects are unstable
unless stated otherwise” is encoded as:

where “not” denotes default negation. In addition to these
axioms, information extracted from the input images (e.g.,
spatial relations, object attributes) with sufficiently high
probability is converted to ASP statements.

a ������ lin �� p0,… , pm

l �� p0,… , pm

���������� a0,… , ak �� p0,… , pm

(1a)
putdown(rob1, Ob1,Ob2) ������

obj_relation(on, Ob1, Ob2)

(1b)
obj_relation(above, Ob1, Ob2) ��

obj_relation(below,Ob2, Ob1)

(1c)
���������� pickup(rob1, Ob1) ��

obj_relation(below,Ob1, Ob2)

(2)
¬stable(A) �� obj_relation(above,A,B),

size(A, large), size(B, small), not stable(A)

The H of a dynamic domain typically comprises
records of the form obs(fluent, boolean, step), i.e., fluents
observed to be true or false at a particular time step, and
hpd(action, step), i.e., an action’s execution at a particular
time step. In [40], other work in our group expanded this
notion to represent defaults describing the values of fluents
in the initial state, e.g., “it is initially believed that a book is
in the library”, and exceptions, e.g., “a cookbook is in the
kitchen”.

To reason with domain knowledge, our architecture con-
structs the CR-Prolog program Π(D,H) , which includes
Σ and axioms of D , inertia axioms, reality checks, closed
world assumptions for actions, and observations, actions,
and defaults from H . For instance, Statements 1(a–c) would
be translated into ASP statements such as:

 In addition, every default also has a CR rule to let the robot
assume the default’s conclusion is false to restore consist-
ency under exceptional circumstances. For instance, the ASP
statement:

is a CR rule that is only triggered under exceptional circum-
stances to assume a book is not in the library, e.g., as an
explanation for an unexpected observation of a book outside
the library. CR rules can also be used for diagnostics, i.e., to
explore the reasons for any unexpected outcomes and to trig-
ger the learning and revision of axioms. We do not discuss it
here to avoid confusion with our axiom induction approach
described below; see [13, 41] for complete details.

Once Π is constructed, planning, diagnostics, and infer-
ence can be reduced to computing answer sets of Π after
introducing some helper relations and axioms [13]. Any
answer set represents the beliefs of the robot associated with
Π ; it is a description of a possible world and the set of liter-
als of domain fluents and statics at any particular time step
represents the domain state at that time step. The program
for our RA domain is available in the ”Explanations” folder
of our open-source online repository [34].

Note that incorrect inferences can be drawn due to incom-
plete knowledge, noisy sensor input, or when probabilis-
tic information is elevated to statements in the ASP pro-
gram. Non-monotonic logical reasoning enables the robot

(3a)
holds(obj_relation(on, Ob1, Ob2), I + 1) ←

occurs(putdown(rob1, Ob1, Ob2), I)

(3b)
holds(obj_relation(above, Ob1, Ob2), I) ←

holds(obj_relation(below,Ob2, Ob1), I)

(3c)
¬occurs(pickup(rob1, Ob1), I) ←

holds(obj_relation(below,Ob1, Ob2), I)

(4)¬loc(X, library)
+

←−− book(X)

 SN Computer Science (2021) 2:242 242 Page 6 of 18

SN Computer Science

to recover from such errors, and not be very sensitive to
the choice of heuristic thresholds. Also, although we do not
describe it here, our architecture supports the modeling of
non-determinism (e.g., in action outcomes). In addition,
work by others in our group has combined such logical rea-
soning at a coarse resolution with probabilistic reasoning
over the relevant part of a finer resolution representation of
the domain [40]. For ease of understanding and to focus on
the interplay between reasoning and learning in the context
of constructing explanations, we limit ourselves to logical
reasoning at one resolution in this paper.

Classification Similar to our prior work [31], the ”Classi-
fication block” in Fig. 2 first tries to estimate the occlusion
of objects and the stability of object configurations in any
given image using ASP-based reasoning. If an answer is not
found, or an incorrect answer is found for labeled training
examples, the robot automatically extracts relevant regions
of interest (ROIs) from the corresponding image. Parameters
of existing Convolutional Neural Network (CNN) architec-
tures (e.g., Lenet [24], AlexNet [19]) are tuned to map infor-
mation from each such ROI to the corresponding classifica-
tion labels. An innovation of our prior work was to reason
with knowledge of the task (e.g., estimating occlusion) to
automatically identify and ground only the relevant axioms
and relations in the image under consideration to determine
the ROIs to be analyzed further [31]. In this paper, we build
on this notion of relevance and reason over a sequence of
steps to provide explanations, as described in “Relational
Descriptions as Explanations”.

Axiom induction Images used to train the CNNs are con-
sidered to contain information about missing or incorrect
constraints related to occlusion and stability. In the ”Deci-
sion tree induction” component in Fig. 2, image features and
spatial relations extracted from ROIs in each such image,
along with the known labels for occlusion and stability
(during training), are used to incrementally learn a decision
tree summarizing the corresponding state transitions. The
learning process repeatedly splits a node based on an unused
attribute likely to provide the highest reduction in entropy.
Next, branches of the tree that satisfy minimal thresholds on
purity at the leaf (≥ 95% samples in one class) and on the
level of support from labeled examples (≥ 5%) are used to
construct candidate axioms. Candidates are validated and
those with less than a minimal level of support (i.e., < 5%)
on a separate set of unseen examples are removed. These
thresholds are set to identify a small number of highly likely
axioms, and small changes to thresholds do not affect per-
formance. The thresholds can be revised to achieve other
outcomes, e.g., they can be lowered significantly to identify
default constraints.

Unlike our prior work [31, 33], we introduce new strat-
egies to process noisy images of more complex scenes.
First, we use a homogeneous ensemble learning approach,
retaining only axioms that are identified over a number of
cycles of applying the decision tree induction approach
for learning and validation on different subsets of data.
Second, different versions of the same axiom are merged
to remove over-specifications. As an example, consider
the statements:

 where Statement 5(b) can be removed because the size of
the object at the bottom of a stack does not provide any
additional information about instability given that it has
an irregular surface. If the robot later observes that a large
object, even with an irregular surface, can support a small
object, the axiom will be revised suitably. Specifically, axi-
oms with the same head and at least one common literal in
the body are grouped. Each combination of one axiom from
each group is encoded in an ASP program along with axioms
that are not in any group. Each such ASP program is used
to classify ten labeled scenes, retaining the axioms in the
program that provides the highest accuracy on these scenes.
Third, to filter axioms that cease to be useful, the robot asso-
ciates each axiom with a strength that decays exponentially
over time if it is not reinforced, i.e., not used or learned
again. Any axiom whose strength falls below a threshold is
eventually removed.

Unlike our prior work that only learned state constraints
[33], the robot now also learns previously unknown causal
laws and executability conditions if there is any mismatch
between the expected and observed state after an action is
executed. Any expected but unobserved fluent literal indi-
cates missing executability condition(s), and any observed
unexpected fluent literal indicates missing causal law(s).
Given the distributed representation of axioms in our
architecture, axioms of any particular type (e.g., causal
law) are learned by constructing decision trees in a suita-
ble format for each candidate action. The learning is based
on the following methodology:

1. To explore missing executability conditions, the robot
simulates the execution of the action (that caused the
inconsistency) in different initial states and stores: (a)
the relevant information from the initial state; (b) the
executed action; and (c) a label indicating the presence

(5a)
¬stable(A) ← obj_relation(above,A,B),

obj_surface(B, irregular)

(5b)

¬stable(A) ← obj_relation(above,A,B),

obj_surface(B, irregular),

obj_size(B, large)

SN Computer Science (2021) 2:242 Page 7 of 18 242

SN Computer Science

or absence of inconsistency, which is used as the out-
put label for the sample in the decision tree. Any fluent
literal that exists in the answer set or initial state, and
has an object constant that occurs in the action under
consideration, is considered to be relevant; it is stored
with variables replacing ground terms. These simula-
tions correspond to the execution of the action in some
initial state based on the model provided by the ASP
program.

2. To explore a missing causal law, training samples
are collected as in Step 1, but the output label is the
observed, unexpected fluent literal from the resultant
state.

3. Separate decision trees are created with the relevant
information from the initial state as the attributes (i.e.,
nodes); the output label is the presence or the absence of
inconsistency for any executability conditions, and the
unexpected fluent for any causal law. The root node of
the tree is the executed action.

Figure 3 shows part of a decision tree obtained using the
method described above when the executability condition
in Statement 3(c) is missing; the learned axiom is along
the path shaded grey. The label consistent (inconsistent)
implies that for ≥ 50% of the examples at the leaf, observa-
tions match (do not match) the expected outcomes. It is pos-
sible for the robot to observe a transition to an unexpected
state due to hardware problems (e.g., mechanical failure),
but such failures are assumed to be infrequent and are con-
sidered to be exceptions that do not trigger or influence the
axiom learning approach. When such failures occur, the
robot is expected to create a new plan to achieve the goal
once the failure has been fixed.

Relational Descriptions as Explanations

The components of our architecture on the right side of the
dashed line in Fig. 2 exploit the interplay between repre-
sentation, reasoning, and learning to provide the desired
on-demand relational descriptions of decisions and beliefs.

Interaction interface and control loop Human interaction
with our architecture through speech or text input is handled
by the ”Text/audio processing” component in Fig. 2. Exist-
ing software implementations and a controlled (domain-
specific) vocabulary are used to parse human verbal input.
Specifically, verbal input from a human is transcribed into
text drawn from the controlled vocabulary. This (or the
input) text is labeled using a part-of-speech (POS) tagger,
and normalized with the lemma list [39] and related syno-
nyms and antonyms from WordNet [28]. The processed text
helps identify the type of request, which may correspond
to a desired goal or a question/command about decisions
and beliefs. In the former case, the goal is sent to the ASP
program for planning. The robot computes and executes the
plan, replanning when unexpected action outcomes cannot
be explained, until the desired goal is achieved or learning
is triggered. In the latter case, i.e., when given a question
about the decisions and beliefs, the “Program Analyzer”
considers the current knowledge (including inferred beliefs)
and parsed human input to automatically identify relevant
axioms and literals. These literals are inserted into generic
response templates based on the controlled vocabulary,
resulting in human-understandable (textual) descriptions
that are converted to synthetic speech if needed.

Tracing beliefs/axioms A key capability of our architecture
is to infer the sequence of axioms and beliefs that explain
the evolution of any given belief or the non-selection of any
given ground action at a given time. This tracing of beliefs
and axioms is done by the “Program Analyzer” component
in Fig. 2, which uses the inferred sequence of axioms and
beliefs for building explanations. Others have constructed
such proof trees in the context of monotonic (i.e., classical
first order) logic statements used to explain observations [9].
We adapt this method to our domain representation based
on non-monotonic logic, and use the following methodology
to explain the evolution of any given belief and the non-
selection of any given action.

1. Select axioms whose head matches the belief or action
of interest.

Below(O1, O3)?¬ pickup(R1, O1) In hand(R1, O3)?

Inconsistent (100% of 6 samples)

Above(O1, O2)?
Consistent (100% of 14 samples)

Inconsistent (50% of 4 samples)

Inconsistent (100% of 26 samples)

False True

False

True

True

False

Fig. 3 Example illustrating part of the decision tree created for the missing executability condition encoded by Statement 3(c)

 SN Computer Science (2021) 2:242 242 Page 8 of 18

SN Computer Science

2. Ground the literals in the body of each selected axiom
and check whether these are supported by the answer set
under consideration.

3. Create a new branch in a proof tree (with the target belief
or action as the root node) for each selected axiom sup-
ported by the answer set, and store the axiom and the
related supporting ground literals in suitable nodes.

4. Repeats Steps 1–3 with the supporting ground literals in
Step 3 as target beliefs in Step 1, until all branches reach
a leaf node without further supporting axioms.

The paths from the root to the leaves in these proof trees
help construct the desired explanations. If multiple such
supporting branches exist, they are not compared with
each other for choosing the one that best explains a target
belief. Instead, the algorithm randomly selects any branch
to compose the required answers, leaving a comparison of
the available options as a direction for future work. As an
example, consider the initial scenario in Fig. 1b with the
goal of having the yellow ball on the orange cube. The
robot computes a plan that has in it move the blue cube on
top of the purple cube (behind the pig) and then move the

Support axiom
¬occurs(pickup(R,O1), I) ←

holds(relation(below,O1, O2), I).

Target belief

¬occurs(pickup(rob1, purple cube), 3).

Support axiom
¬occurs(pickup(R,O1), I) ←
holds(in hand(R,O2), I).

Extended belief

holds(relation(below, purple cube, blue cube), 3)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief
holds(relation(above, blue cube, purple cube), 3),

complement(above, below)

Support axiom

holds(relation(above, O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, blue cube, purple cube), 3)

Support axiom
holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief
holds(relation(below, purple cube, blue cube), 3),

complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, blue cube, purple cube), 2)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above, O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, blue cube, purple cube), 3)

Fig. 4 Example of belief tracing to explain non-selection of a particular action

SN Computer Science (2021) 2:242 Page 9 of 18 242

SN Computer Science

ball on top of the orange cube. If the robot is asked (after
plan execution) why it did not pick up the purple block at
time step 3, part of the corresponding proof tree would be
as shown in Fig. 4; the path highlighted in green contains
the information needed for the answer; in this example, the

purple cube could not be picked up because the blue cube
had just been placed on top of it. As another example con-
sider the goal of having the pig on the red cube. The plan
is to move the blue cube to the table and then the orange
cube on top of the purple cube before moving the pig on
top of the red cube. Now, if the robot is asked to explain
why it believed that the purple cube was below the orange
cube at time step 5, part of the corresponding proof tree
would be as shown in Fig. 5, with the path highlighted in
green providing the information needed to construct the
answer.

Target belief

holds(relation(below, purple cube, orange cube), 5)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief
holds(relation(above, orange cube, purple cube), 5),

complement(above, below)

Support axiom

holds(relation(above, O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, orange cube, purple cube), 5)

Support axiom
holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief
holds(relation(below, purple cube, orange cube), 5),

complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, orange cube, purple cube), 4)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above,O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, orange cube, purple cube), 5)

Fig. 5 Example of belief tracing to explain a particular belief

 SN Computer Science (2021) 2:242 242 Page 10 of 18

SN Computer Science

Program analyzer Algorithm 1 describes the approach for
automatically identifying and reasoning with the relevant
information to construct relational descriptions in response
to questions or requests. It does so in the context of four
types of explanatory requests or questions. The first three
were introduced in prior work as questions to be considered

by any explainable planning system [10]; in addition, we
consider a question about the robot’s beliefs at any given
point in time.

1. Plan description When asked to describe a particu-
lar plan, the robot parses the related answer set(s) to
extract a sequence of actions occurs(action1, step1) ,
… , occurs(actionN , stepN) (line 3, Algorithm 1). These
actions are used to construct the response.

2. Action justification: Why action X at step I? To justify
the execution of any particular action at a particular time
step, the robot considers the actions or states that this
action enables, and proceeds as follows:

(a) For each action that occurred after step I, the robot
examines relevant axioms (e.g., executability con-
ditions, causal laws) and identifies literal(s) that
would prevent this action’s execution (lines 5–7,
Algorithm 1). For example, assume that for the
goal of placing the orange_block on the table in
Fig. 1b, the following plan is executed:

 If asked to justify the execution of the first pickup
action in this plan, i.e., if posed the question “Why
did you pick up the blue block at time step 0?”,
one of the relevant axioms is the following exe-
cutability condition related to the second pickup
action in the plan (line 6):

 which i s g round in the image or
scene under considera t ion to obta in
obj_relation(below, orange_block, blue_block) as
a literal of interest in this example.

(b) If any such identified literal is in the answer set at
the time step of interest (0 in the current example),
and is absent (or its negation is present) in the next
time step, it is taken to be a reason for executing
the action under consideration (line 7).

(c) The identified reason is paired with the subsequent
action to construct the answer to the question (line
8). In the current example, the robot’s answer
includes “I had to pick up the orange block, and
the orange block was located below the blue
block”.

occurs(pickup(robot, blue_block), 0),

occurs(putdown(robot, blue_block, table), 1),

occurs(pickup(robot, orange_block), 2).

¬occurs(pickup(robot,A), I) ←

holds(obj_relation(below,A,B), I)

SN Computer Science (2021) 2:242 Page 11 of 18 242

SN Computer Science

 A similar approach is used to justify any particular
action in any particular plan that has been computed but
not yet executed.

3. Hypothetical actions: Why not action X at step I? For
questions about a particular action not included in the
plan and not considered for execution at a particular time
step, the robot proceeds as follows to identify condi-
tions that would have prevented it from considering the
action:

(a) The robot identifies executability conditions with
the hypothetical action in the head, i.e., conditions
that would prevent the action from being selected
during planning (line 10 in Algorithm 1).

(b) For each identified executability condition, the
robot examines whether literals in the body are
satisfied in the corresponding answer set (line
11). If so, these literals are used to construct the
answer.

 In the plan described above for the goal of hav-
ing the orange block on the table in Fig. 1b, action
putdown(robot, blue_block, table) occurred at step 1.
For the question “Why did you not put the blue cube on
the tennis ball at time step 1?”, the following execut-
ability condition is identified as being relevant:

 which implies that an object cannot be placed on
another object with an irregular surface. The answer set
indicates that the tennis ball has an irregular surface.
The robot provides the answer “Because the tennis ball
has an irregular surface”. Note that to answer to this
question, the robot has to use the approach described
earlier to trace a sequence of related axioms and beliefs.

4. Belief query: Why belief Y at step I? To explain any
particular belief held at a particular time step, the robot
uses the belief tracing approach described earlier to trace
the sequence of axioms that were activated. These sup-
porting axioms and relevant literals are used to construct
the answer.

 For instance, if the robot is asked the question “why
do you believe object ob1 is unstable at step I?”, it finds
the following support axiom:

 Assume that the robot’s beliefs includes a statement
about ob1 having a small base. Searching for why ob1

¬occurs(putdown(robot, A, B), I) ←

has_surface(B, irregular)

¬holds(stable(ob1), I) ← holds(small_base(ob1), I)

is believed to have a small base identifies the following
relevant axiom:

 As a result, the robot provides the following answer
“Because object ob2 is below object ob1 , ob2 is small,
and ob1 is big”.

Robot platform As stated earlier, in addition to images of simu-
lated scenes, this paper considers a physical robot that plans
and executes actions to achieve the desired goals. For the robot
experiments, we use a Baxter robot that manipulates objects
on a tabletop; this is the ”Baxter” component in Fig. 2. The
Baxter uses probabilistic algorithms to process inputs from
its cameras, e.g., to extract information about the presence
of objects, their attributes, and the spatial relations between
objects, from images such as Fig. 1b. The Baxter also uses
built-in probabilistic motion planning algorithms to execute
primitive manipulation actions, e.g., to grasp, pick up, and
move objects. Observations obtained with a high probability
(e.g., ≥ 0.9) are elevated to literals associated with complete
certainty in the ASP program.

Recall that non-monotonic logical reasoning enables the
robot to identify and recover from errors caused by incomplete
or incorrect information. For instance, consider the situation
in which robot rob1 has been asked to move book book2 from
the library to the office . Since the sensor in the robot’s arm is
unreliable in detecting when an object is in its grip, the value
of the fluent in_hand(rob1, book2) is unknown after the robot
has executed pickup(rob1, book2) and book2 is actually in the
robot’s hand. This outcome does not match the expected out-
come and would create an inconsistency. Even if the sensor
in the robot’s arm provides an incorrect observation when the
robot is about to put book2 down in the office, it would be pre-
vented from doing so by the following executability condition:

which uses default negation (i.e., not) in the body to encode
a stronger constraint than the use of classical negation (i.e.,
¬); it implies that it is impossible for the robot to put a par-
ticular object down in a particular location if it does not
know whether the object is in its hand or not, and not just
when it is sure that it is not in its hand. In such situations, the
robot can perform diagnostics to figure out the cause for the
observed inconsistency by reasoning or executing actions to
gather more information.

holds(small_base(ob1), I) ←

holds(relation(below, ob2, ob1), I),

has_size(ob2, small), has_size(ob1, big)

¬occurs(putdown(robot, object, location), I) ←

not holds(in_hand(robot, object), I)

 SN Computer Science (2021) 2:242 242 Page 12 of 18

SN Computer Science

Experimental Setup and Results

In this section, we discuss the results of evaluating our
architecture’s ability to reason with incomplete knowledge,
learn previously unknown axioms, and construct relational
descriptions of decisions and beliefs. Specifically, “Exper-
imental Setup” describes the setup for different experi-
ments, “Execution Trace” describes some execution traces,
and “Experimental Results” discusses quantitative results.

Experimental Setup

We evaluated the following hypotheses:

H1 : our architecture enables the robot to accurately learn
previously unknown axioms;

H2 : reasoning with incrementally learned axioms
improves the quality of plans generated;

H3 : the beliefs tracing approach accurately retrieves the
supporting axioms and beliefs; and

H4 : exploiting the links between reasoning and learning
improves the accuracy of the explanatory descriptions.

 These hypotheses and the underlying capabilities were
evaluated considering the four types of explanatory
requests and questions described earlier: (1) describing
the plan; (2) justifying the execution of an action at a given
time step; (3) justifying not choosing an action at a given
time step; and (4) justifying any given belief. As stated
earlier, the same methodology can also be adapted to
address other types of requests and questions. The quality
of a plan was measured in terms of the ability to compute
minimal plans, i.e., plans with the least number of actions
to achieve the desired goals. The quality of an explana-
tion was measured in terms of precision and recall of the
literals in the answer provided by our architecture in com-
parison with the expected (i.e., “ground truth”) response
provided in a semi-supervised manner based on manual
input and automatic selection of relevant literals.

Experimental trials considered images from the robot’s
camera and simulated images. Real world images con-
tained 5–7 objects of different colors, textures, shapes,
and sizes in the RA domain of Example 1. The objects
included cubes, a pig, a capsicum, a tennis ball, an apple,
an orange, and a pot. These objects were either stacked
on each other or spread on the table—see Fig. 1b. A total
of 40 configurations were created, each with five differ-
ent goals for planning and four different questions for
each plan, resulting in a total of 200 plans and 800 ques-
tions. For real scenarios, the states were measured using
the robot’s cameras before and after the execution of its
actions. Since evaluating applicability to a wide range

of objects and scenes is difficult on robots, we also used
a real-time physics engine (Bullet) to create 40 simu-
lated images, each with 7–9 objects (3–5 stacked and the
remaining on a flat surface). Objects included cylinders,
spheres, cubes, a duck, and five household objects from the
Yale-CMU-Berkeley dataset (apple, pitcher, mustard bot-
tle, mug, and box of crackers). We once again considered
five different goals for planning and four different ques-
tions for each plan, resulting in the same number of plans
(200) and questions (800) as with the real world data.

To explore the interplay between reasoning and learn-
ing, we focused on the effect of learned knowledge on
planning and constructing explanations. Specifically,
we ran experiments with and without providing the
robot knowledge of some domain constraints. The robot
equipped with our architecture learned and revised the
missing constraints over time as described in “Knowl-
edge Representation, Reasoning, and Learning”, whereas
the missing constraints were not used by the baselines for
planning and explanation generation. During planning, we
measured the number of optimal, sub-optimal, and incor-
rect plans, and the planning time. An optimal plan is a
minimal plan that achieves the goal; a sub-optimal plan
requires more than the minimum number of steps and/or
has to assume an unnecessary exception to default knowl-
edge; and an incorrect plan fails to achieve the desired
goal.

To test hypothesis H1 we removed five axioms (three exe-
cutability conditions and two causal laws) from the agent’s
knowledge, and ran the learning algorithm 20 times. One of
these axioms is the executability condition encoded by State-
ment 3c, and the rest by the following statements:

 The robot executed actions to learn all the missing axioms
each time. Each run was terminated if the robot executed a
number of actions without detecting any inconsistency, or
if a maximum number of decision trees were constructed.
The overall precision and recall of learning the missing axi-
oms were then computed. Before we describe the details

(6a)
¬occurs(pickup(rob1, Ob1), I) ←

holds(in_hand(rob1, Ob2), I)

(6b)
¬occurs(putdown(rob1, Ob1, Ob2), I) ←

¬holds(in_hand(rob1, Ob1), I)

(6c)
holds(in_hand(rob1, Ob1), I + 1) ←

occurs(pickup(rob1, Ob1), I)

(6d)
¬holds(in_hand(rob1, Ob1), I + 1) ←

occurs(putdown(rob1, Ob1, Ob2), I)

SN Computer Science (2021) 2:242 Page 13 of 18 242

SN Computer Science

of other experiments and discuss the quantitative results of
these experimental trials, we first describe some execution
traces illustrating our architecture’s operation.

Execution Trace

The following execution traces illustrate our architecture’s
ability to construct relational descriptions of its decisions
and beliefs during reasoning and learning.

Execution Example 1 [Plans, actions, and beliefs] Con-
sider a robot that starts with objects as shown in Fig. 1b.
The robot is assigned the goal of achieving a state in
which the red cube is on top of the orange cube, i.e.,
holds(relation(on, redcube, orangecube), I) . The following inter-
action takes place after the robot has executed a plan and
successfully achieved the assigned goal.

• Human “Please describe the plan.”
• Baxter “I picked up the blue cube. I put the blue cube

on the table. I picked up the orange cube. I put the
orange cube on the table. I picked up the red cube. I put
the red cube on the orange cube.”

• The human may ask the robot to justify a particular
action in the executed plan.

• Human “Why did you pick up the blue cube at step 0?”
• Baxter “Because I had to pick up the red cube, and it

was below the blue cube.”
 The answer constructed in response to the question is

also used to automatically highlight the relevant image
regions that influenced this answer, as illustrated in
Fig. 6a.

• The human now may ask about particular actions that
were not considered.

 Human ”Why did you not put down the orange cube
on the blue cube?”

 Baxter “Because the blue cube is small.” In the
absence of any reference to a particular time step, the
robot answers the question based on the single instance
(in the executed plan) of putting the orange cube on
another cube or surface. The answer is also based on
learned default knowledge that any large object with a
small base, i.e., when placed on a small object, is typi-
cally unstable.

• The human may also ask the robot to justify particular
beliefs.

 Human ”Why did you believe that the red cube was
below the blue cube in the initial state?”

 Baxter “Because I observed the red cube below the
blue cube in step zero.”

Execution Example 2 [Reasoning and explanation genera-
tion] Continuing with the previous example, the subsequent
interactions are as follows:

– Human “Put the tennis ball on the blue cube.”
 The goal holds(relation(on, ball, blue_cube), I) is

encoded in the ASP program for planning. The default
axiom about configurations with small bases being unsta-
ble acts as a constraint that prevents the robot from plac-
ing objects on the blue cube. At the same time, the robot
has to compute plans to achieve the assigned goal. This

(a) Execution Example 1.

(b) Execution Example 3.

(c) Additional example.

Fig. 6 a Relation between blue cube and red cube is important for the
explanation in execution Example 1; b The rubber duck is the focus
of attention in execution Example 3; and c Example of a trial (not
described in this paper) in which a tennis ball plays an important role
in the explanation constructed

 SN Computer Science (2021) 2:242 242 Page 14 of 18

SN Computer Science

causes an inconsistency that is resolved by invoking the
corresponding CR rule and planning to place the ball on
the blue cube. The following interaction takes place after
this plan is executed.

– Human “Please describe the plan that you executed.”
 Robot ”I picked up the ball. I put the ball on the blue

cube.”
– The human may now explore the robot’s belief related to

the exception to default knowledge that the robot had to
invoke:

 Human ”Why do you believe that the ball is on the
blue cube?”

 Robot “Because I observed the ball on the blue cube
in step 2.”

Combining reasoning with the approach for constructing
explanations thus allows the robot to adapt to unforeseen
exceptions.

Execution Example 3 [Learning and explanation] In some
situations, the robot may be unable to execute the human
request because a learned constraint makes it impossible
to achieve the desired object configuration or belief. Even
in such cases, our architecture enables the robot to answer
questions about the decisions. For instance, consider the
simulated scene in Fig. 6b, with the following interaction:

– Human “Please put the pitcher on the duck.”
 This action is not executed because a constraint

learned earlier implies that any object configuration with
an object on another with an irregular surface is unstable.

– The robot can justify not executing the action.
 Human “Why did you not put the pitcher on the

duck?”.
 Robot ”Because the duck has an irregular surface.”
 The image region(s) relevant to the construction of the

robot’s answer to the human query is (are) automatically
highlighted in the corresponding image, as illustrated
by Fig. 6b for the current example. This example also
illustrates how integrating reasoning and learning helps
justify the decision to not execute a requested action
because it will have an unfavorable outcome.

Continuing with the scenario illustrated in the Fig. 6b, the
robot is now asked to move the duck on top of the red cube.
A possible plan to achieve this goal would be: pick up the
green cylinder, put it on the table, pick up the white cube,
put it on the top of the green cylinder, pick up the duck, and
put it down on the top of the red cube. Considering that
each action is executed in one time step, this plan contains
six time steps. Consider the following interaction after the
execution of such a plan:

– Human: “Why did you not pick up green cylinder at step
5?”

 Since this question is about a hypothetical action not
actually executed by the robot, it explores the related sce-
nario by creating a proof tree, as described in “Relational
Descriptions as Explanations”, and provides the follow-
ing answer:

 Robot ”Because the white cube was on the green cyl-
inder.”

 The human may ask for further details:
 Human ”Why did you believe the white cube was on

the green cylinder?”
 To answer this question the robot has to know the

causal relationship between the action putdown and the
spatial relation on—see Statement 3(a). Since the robot
has learned this causal law, it constructs the correct
answer:

 Robot ”Because I put the white cube on the green cyl-
inder at time step 4.”

This example illustrates the benefit of exploiting the inter-
play between reasoning and learning to justify particular
beliefs.

Execution Example 4 [Belief tracing and explanation genera-
tion] We continue with our previous example:

• Human “Why did you not pick up the white cube at step
0?”

 The robot uses belief tracing to construct a proof tree
with the relation ¬occurs(pickup(rob1, white_cube), 0)
as the root. For each axiom in which this ground literal
matches the head, it checks if its body is supported by the
answer set. If yes, ground literals in the body are used to
expand the tree. Based on the axiom encoded by State-
ment 3(c), one of the beliefs identified as being relevant
is holds(obj_rel(below,white_cube, green_cylinder), 0) .
These steps are repeated until no further sup-
porting axioms are found. The ground literal
holds(relation(on, white_cube, green_cylinder), 0) is out-
put as the leaf of the proof tree, and the robot answers the
query.

• Robot “Because I observed the green cylinder on the
white cube at step 0.”

Overall, these examples illustrate the ability to focus on
relevant knowledge, incrementally learn and revise axioms,
trace relevant beliefs, and identify attributes and actions rel-
evant to a given scenario. They also support hypothesis H3.
Since the same samples are used to learn axioms and train
the deep networks, our approach also helps understand the
behavior of the deep networks.

SN Computer Science (2021) 2:242 Page 15 of 18 242

SN Computer Science

Experimental Results

The first set of experiments evaluated H1. We removed five
axioms (two causal laws and three executability conditions,
as described above) from the robot’s knowledge, and ran
the learning algorithm 20 times. We measured the precision
and recall of learning the missing axioms in each run, and
Table 1 summarizes the results. The row labeled ”Strict”
provides results when any variation in the target axiom is
considered an error. In this case, even over-specified axioms,
i.e., axioms that have some additional irrelevant literals, are
considered to be incorrect. The following is an example
axiom in which the second literal in the body is irrelevant.

The row labeled ”Relaxed” reports results when over-spec-
ifications are not considered errors; the high precision and
recall support H1.

The second set of experiments was designed to evaluate
hypothesis H2.

1. As stated earlier, 40 initial object configurations were
created. The Baxter automatically extracted informa-
tion (e.g., attributes, spatial relations) from images cor-
responding to top and frontal views (i.e., images from
cameras on the left and right grippers), and encoded it
in the ASP program as the initial state.

2. For each initial state, five goals were chosen randomly.
The robot reasoned with the existing knowledge to cre-
ate plans for these 200 combinations (40 initial states,
five goals).

3. The computed plans were evaluated to determine the
number of optimal, sub-optimal, and incorrect plans,
and planning time.

4. Trials were repeated with and without including the
learned axioms for reasoning.

Since the number of plans and planning time vary depend-
ing on the initial conditions and the goal, we conducted
paired trials with and without the learned axioms being
included in the ASP program used for reasoning. The

(7)

¬holds(in_hand(R1,O1), I + 1) ←

occurs(putdown(R1,O1,O2), I),

¬holds(in_hand(R1,O5), I).

initial conditions and goal were identical in each paired
trial, but differed between paired trials. Then, we expressed
the number of plans and the planning time with the learned
axioms included for reasoning as a fraction of the corre-
sponding values obtained by not using the learned axioms
for reasoning. The average of these fractions over all trials
is reported in Table 2. We also computed the number of
optimal, sub-optimal, and incorrect plans in each trial as
a fraction of the total number of plans; this too was done
with and without using the learned axioms for reasoning,
and the average over all trials is summarized in Table 3.

These results indicate that for images of real scenes,
using the learned axioms for reasoning significantly
reduced the search space, resulting in a much smaller num-
ber of plans and a reduction in the planning time. The use
of the learned axioms does not seem to make any signifi-
cant difference with the simulated scenes. This is under-
standable because simulated images have more objects
with several of them being small objects. This increases
the number of possible plans to achieve any given goal.
In addition, when the robot used the learned axioms for
reasoning, it reduced the number of sub-optimal plans and
eliminated all incorrect plans. Also, almost every sub-
optimal plan was created when the corresponding goal
could not be achieved without creating an exception to a
default. Without the learned axioms, a larger fraction of
the plans are sub-optimal or incorrect. Note that the num-
ber of sub-optimal plans is higher for simulated scenes
that have more objects to consider. These results support

Table 1 Precision and recall of learning previously unknown axioms
using decision tree induction, as described in “Relational Descrip-
tions as Explanations”

Missing axioms Precision (%) Recall (%)

Strict 69.2 78.3
Relaxed 96 95.1

Table 2 Number of plans and planning time with the learned axioms
used for reasoning expressed as a fraction of the values without using
the learned axioms for reasoning

Measures Ratio (with/without)

Real scenes Simu-
lated
scenes

Number of steps 1.15 1.23
Number of plans 0.81 1.08
Planning time 0.96 1.02

Table 3 Number of optimal, sub-optimal, and incorrect plans
expressed as a fraction of the total number of plans. Reasoning with
the learned axioms improves performance

Plans Real Scenes Simulated scenes

Without With Without With

Optimal 0.4 0.9 0.14 0.3
Sub-optimal 0.11 0.1 0.46 0.7
Incorrect 0.49 0 0.4 0

 SN Computer Science (2021) 2:242 242 Page 16 of 18

SN Computer Science

hypothesis H2 but also indicate the need to explore com-
plex scenes further.

The third set of experiments was designed as follows to
evaluate hypothesis H4:

1. For each of the 200 combinations (40 configurations,
five goals) from the first set of experiments with real-
world data, we considered knowledge bases with and
without the learned axioms and had the robot compute
plans to achieve the goals.

2. The robot had to describe the plan and justify the choice
of a particular action (chosen randomly) in the plan.
Then, one parameter of the chosen action was changed
randomly to pose a question about why this new action
could not be applied. Finally, a belief related to the pre-
vious two questions had to be justified.

3. The literals present in the answers were compared with
the expected literals in the ”ground truth” response, with
the average precision and recall scores shown in Table 4.

4. Similar experiments were performed with simulated
images; results are in Table 5.

Tables 4 and 5 show that when the learned axioms were
used for reasoning, the precision and recall of relevant liter-
als (for constructing the explanation) were higher than when
the learned axioms were not included. The improvement in

performance is particularly pronounced when the robot has
to answer questions about actions that it has not actually
executed. The precision and recall rates were reasonable
even when the learned axioms were not included; this is
because not all the learned axioms are needed to accurately
answer each question. When the learned axioms were used
for reasoning, errors were very rare and corresponded to
some additional literals being included in the answer (i.e.,
over-specified explanations). In addition, when we specifi-
cally removed axioms related to the goal under consider-
ation, precision and recall values were much lower. Fur-
thermore, there was noise in both sensing and actuation,
especially in the robot experiments. For instance, recogni-
tion of spatial relations, learning of constraints, and manipu-
lation have approximate error rates of 15% , 5–10% , and 15%
respectively. The experimental results summarized above
thus indicate the ability of our architecture to provide good
performance in the presence of noise in sensing and actua-
tion on physical robots. These results also indicate that rea-
soning and learning inform and guide each other to provide
accurate relational descriptions of decisions, beliefs, and the
outcomes of hypothetical actions. Overall, these results pro-
vide evidence in support of hypothesis H4. For additional
examples of images, and experimental results of classifica-
tion and explanation generation, please see our open source
repository [34].

Conclusions

This paper described an approach inspired by cognitive sys-
tems research for an integrated robot system to explain its
decisions and beliefs, including the outcomes of hypothetical
actions. The explanations are constructed on-demand before,
during, or after reasoning or learning, in the form of descrip-
tions of relations between relevant objects, actions, and
attributes of the domain. We implemented this approach in
an architecture that combines the complementary strengths
of non-monotonic logical reasoning with incomplete com-
monsense domain knowledge, deep learning, and induc-
tive learning. In the context of some scene understanding
and planning tasks performed in simulation and a physical
robot, we have demonstrated that our architecture exploits
the interplay between knowledge-based reasoning and data-
driven learning. It automatically identifies and reasons with
the information relevant to the tasks at hand to efficiently
construct the desired explanations. Also, both the planning
and explanation generation performance improves signifi-
cantly when the robot incrementally learns and uses previ-
ously unknown axioms for reasoning.

Our architecture opens up multiple avenues for further
research. First, we will extend the ability to learn other
kinds of axioms and consider actions with delayed rewards.

Table 4 (Real scenes) Precision and recall of retrieving relevant liter-
als for constructing answers to questions with and without using the
learned axioms for reasoning. Using the learned axioms significantly
improves the ability to provide accurate explanations

 Query type Precision Recall

Without (%) With (%) Without (%) With (%)

Plan description 78.54 10 67.52 100
Why X? 76.29 95.25 66.75 95.25
Why not X? 96.61 96.55 64.04 100
Belief 96.67 99.02 95.6 100

Table 5 (Simulated scenes) Precision and recall of retrieving rel-
evant literals for constructing answers to questions with and without
reasoning with the learned axioms. Learned axioms significantly
improve the accuracy of the explanations

Query type Precision Recall

Without (%) With (%) Without (%) With (%)

Plan description 70.78 100 57.98 100
Why X? 65.63 93.0 57.75 93.0
Why not X? 90.53 96.38 65.15 100
Belief 92.73 98.44 90.27 99.21

SN Computer Science (2021) 2:242 Page 17 of 18 242

SN Computer Science

We will do so by building on the architecture developed
by others in our group by combining non-monotonic logi-
cal reasoning and relational reinforcement learning [41].
Second, we will explore more complex domains, tasks, and
explanations, reasoning with logic-based and probabilistic
representations of relevant knowledge at different tightly-
coupled resolutions for scalability [40]. We are specifically
interested in exploring scenarios in which there is ambigu-
ity in the questions (e.g., it is unclear which of two occur-
rences of the pickup action the human is referring to), and
scenarios in which the human user wants the explanation
at a different level of abstraction, specificity, or verbosity.
We will do so by building on our proof of concept work on
disambiguation [32], and work in our group on a related
theory of explanations [42]. Third, we will use our architec-
ture to better understand the behavior of deep networks. The
key advantage of our architecture is that it uses reasoning
to guide learning; unlike “end-to-end” data-driven methods
based on deep networks, our architecture uses reasoning to
trigger learning only when existing knowledge is insufficient
to perform the desired task(s). The long-term objective is
to develop an architecture that exploits the complementary
strengths of knowledge-based reasoning and data-driven
learning for reliable and efficient operation in complex,
dynamic domains.

Funding This work was supported in part by the Asian Office of Aero-
space Research and Development award FA2386-16-1-4071, the U.S.
Office of Naval Research Science of Autonomy Awards N00014-17-
1-2434 and N00014-20-1-2390, and the UK Engineering and Physical
Sciences Research Council Award EP/S032487/1. Opinions and con-
clusions reported in this paper are those of the authors alone.

Declarations

Conflict of interest The authors (Tiago Mota, Mohan Sridharan, Aleš
Leonardis) do not have any conflict of interest to declare.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Anjomshoae S, Najjar A, Calvaresi D, Framling K. Explainable
agents and robots: results from a systematic literature review. In:
International conference on autonomous agents and multiagent
systems. Montreal, Canada. 2019.

 2. Antoniou G, Bikakis A, Dimaresis N, Genetzakis M, Georgalis
G, Governatori G, Karouzaki E, Kazepis N, Kosmadakis D, Krit-
sotakis M, et al. Proof explanation for a nonmonotonic semantic
web rules language. Data Knowl Eng. 2008;64(3):662–87.

 3. Assaf R, Schumann A. Explainable deep neural networks for mul-
tivariate time series predictions. In: International joint conference
on artificial intelligence, Macao, China, pp. 6488–6490. 2019.

 4. Bercher P, Biundo S, Geier T, Hoernle T, Nothdurft F, Richter
F, Schattenberg B. Plan, repair, execute, explain - how planning
helps to assemble your home theater. In: Twenty-fourth interna-
tional conference on automated planning and scheduling. 2014

 5. Borgo R, Cashmore M, Magazzeni D. Towards providing explana-
tions for AI planner decisions. In: IJCAI workshop on explainable
artificial intelligence, pp. 11–17. 2018.

 6. Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G. Language
to action: towards interactive task learning with physical agents.
In: International joint conference on artificial intelligence. 2018.

 7. Erdem E, Patoglu V. Applications of ASP in robotics. Kunstliche
Intelligenz. 2018;32(2–3):143–9.

 8. Fandinno J, Schulz C. Answering the “Why’’ in answer set pro-
gramming: a survey of explanation approaches. Theory and Prac-
tice of Logic Programming. 2019;19(2):114–203.

 9. Ferrand G, Lessaint W, Tessier A. Explanations and proof trees.
Comput Inform. 2006;25:1001–21.

 10. Fox M, Long D, Magazzeni D. Explainable planning. In: IJCAI
workshop on explainable AI. 2017.

 11. Friedman M. Explanation and scientific understanding. Philoso-
phy. 1974;71(1):5–19.

 12. Gelfond M, Inclezan D. Some properties of system descriptions
of AL

d
 . J Appl Non Class Logics Spec Issue Equilib Logic Answ

Set Programm. 2013;23(1–2):105–20.
 13. Gelfond M, Kahl Y. Knowledge representation, reasoning and the

design of intelligent agents. Cambridge: Cambridge University
Press; 2014.

 14. Gil Y. Learning by experimentation: incremental refinement of
incomplete planning domains. In: International conference on
machine learning, pp. 87–95. 1994.

 15. Katzouris N, Artikis A, Paliouras G. Online learning of event
definitions. Theory Pract Logic Programm. 2016;16(5–6):817–33.

 16. de Kleer J, Williams BC. Diagnosing multiple faults. Artif Intell.
1987;32:97–130.

 17. Koh PW, Liang P. Understanding black-box predictions via influ-
ence functions. In: International conference on machine learning.
pp. 1885–1894. 2017.

 18. Kontopoulos E, Bassiliades N, Antoniou G. Visualizing semantic
web proofs of defeasible logic in the dr-device system. Knowl
Based Syst. 2011;24(3):406–19.

 19. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification
with deep convolutional neural networks. In: Neural information
processing systems, pp. 1097–1105. 2012.

 20. Laird JE. The soar cognitive architecture. Cambridge: The MIT
Press; 2012.

 21. Laird JE, Gluck K, Anderson J, Forbus KD, Jenkins OC, Leb-
iere C, Salvucci D, Scheutz M, Thomaz A, Trafton G, Wray RE,
Mohan S, Kirk JR. Interactive task learning. IEEE Intell Syst.
2017;32(4):6–21.

http://creativecommons.org/licenses/by/4.0/

 SN Computer Science (2021) 2:242 242 Page 18 of 18

SN Computer Science

 22. Langley P, Meadows B, Sridharan M, Choi D. Explainable agency
for intelligent autonomous systems. In: Innovative applications of
artificial intelligence. Cambridge: AAAI Press; 2017.

 23. Law M, Russo A, Broda K. The ILASP system for inductive
learning of answer set program. Technical report on arXiV. 2020.
https:// arxiv. org/ abs/ 2005. 00904.

 24. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based
learning applied to document recognition. Proc IEEE.
1998;86(11):2278–324.

 25. Lewandowsky S, Mundy M, Tan G. The dynamics of trust: com-
paring humans to automation. J Exp Psychol Appl. 2000;6(2):104.

 26. McGuinness DL, Glass A, Wolverton M, Da Silva PP. Explaining
task processing in cognitive assistants that learn. In: AAAI spring
symposium: interaction challenges for intelligent assistants, pp.
80–87. 2007.

 27. Menzies P, Beebee H. Counterfactual theories of causation. In:
Zalta EN, editor. The Stanford encyclopedia of philosophy. 2020th
ed. Stanford: Stanford University; 2020.

 28. Miller GA. WordNet: a lexical database for English. Commun
ACM. 1995;38(11):39–41.

 29. Miller T. Explanations in artificial intelligence: insights from the
social sciences. Artif Intell. 2019;267:1–38.

 30. Mota T, Sridharan M. Incrementally grounding expressions for
spatial relations between objects. In: International joint conference
on artificial intelligence, pp. 1928–1934. 2018.

 31. Mota T, Sridharan M. Commonsense reasoning and knowledge
acquisition to guide deep learning on robots. In: Robotics science
and systems. 2019.

 32. Mota T, Sridharan M. Answer me this: constructing disambigua-
tion queries for explanation generation in robotics. In: Workshop
of the UK planning and scheduling special interest group. 2020.

 33. Mota T, Sridharan M. Commonsense reasoning and deep learning
for transparent decision making in robotics. In: European confer-
ence on multiagent systems. 2020.

 34. Mota T, Sridharan M. Scene understanding, reasoning, and expla-
nation generation. 2020. https:// github. com/ tmot9 87/ Scenes-
Under stand ing

 35. Norcliffe-Brown W, Vafeais E, Parisot S. Learning conditioned
graph structures for interpretable visual question answering. In:
Bengio S, Wallach H, Larochelle H,Grauman K, Cesa-Bianchi
N, Garnett R. editors. Advances in neural information processing
systems, vol. 31. Montreal, Canada. 2018.

 36. Read SJ, Marcus-Newhall A. Explanatory coherence in social
explanations: a parallel distributed processing account. Pers Soc
Psychol. 1993;65(3):429.

 37. Ribeiro M, Singh S, Guestrin C. Why should I trust you? Explain-
ing the predictions of any classifier. In: International conference
on knowledge discovery and data mining, pp. 1135–1144. 2016.

 38. Samek W, Wiegand T, Müller KR. Explainable artificial intelli-
gence: understanding, visualizing and interpreting deep learning
Models. ITU J ICT Discov Impact Artif Intell Commun Netw
Serv. 2017;1:1–10.

 39. Someya Y. Lemma list for English language. 1998.
 40. Sridharan M, Gelfond M, Zhang S, Wyatt J. REBA: a refinement-

based architecture for knowledge representation and reasoning in
robotics. J Artif Intell Res. 2019;65:87–180.

 41. Sridharan M, Meadows B. Knowledge representation and interac-
tive learning of domain knowledge for human-robot collaboration.
Adv Cogn Syst. 2018;7:1–20.

 42. Sridharan M, Meadows B. Towards a theory of explana-
tions for human-robot collaboration. Kunstliche Intelligenz.
2019;33(4):331–42.

 43. Winston PH, Holmes D. The genesis enterprise: taking artificial
intelligence to another level via a computational account of human
story understanding. In: Computational models of human intel-
ligence report 1. Cambridge: Massachusetts Institute of Technol-
ogy; 2018.

 44. Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum JB. Neural-
symbolic VQA: disentangling reasoning from vision and language
understanding. In: Bengio S, Wallach H, Larochelle H, Grauman
K, Cesa-Bianchi N, and Garnett R. editors. Advances in neural
information processing systems. Montreal, Canada. 2018.

 45. Zhang Y, Sreedharan S, Kulkarni A, Chakraborti T, Zhuo HH,
Kambhampati S. Plan explicability and predictability for robot
task planning. In: Bengio S, Wallach H, Larochelle H, Grauman
K, Cesa-Bianchi N, Garnett R editors. International conference
on robotics and automation, vol. 31, pp. 313–1320. 2017.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/2005.00904
https://github.com/tmot987/Scenes-Understanding
https://github.com/tmot987/Scenes-Understanding

	Integrated Commonsense Reasoning and Deep Learning for Transparent Decision Making in Robotics
	Abstract
	Introduction
	Related Work
	Architecture
	Knowledge Representation, Reasoning, and Learning
	Relational Descriptions as Explanations

	Experimental Setup and Results
	Experimental Setup
	Execution Trace
	Experimental Results

	Conclusions
	References

