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Abstract
We explore the extent to which the Fourier transform of an L p density supported on
the sphere in R

n can have large mass on affine subspaces, placing particular emphasis
on lines and hyperplanes. This involves establishing bounds on quantities of the form
X(|̂gdσ |2) and R(|̂gdσ |2), where X and R denote the X-ray and Radon transforms
respectively; here dσ denotes Lebesgue measure on the unit sphere S

n−1, and g ∈
L p(Sn−1). We also identify some conjectural bounds of this type that sit between
the classical Fourier restriction and Kakeya conjectures. Finally we provide some
applications of such tomography bounds to the theory of weighted norm inequalities
for ĝdσ , establishing some natural variants of conjectures of Stein and Mizohata–
Takeuchi from the 1970s. Our approach, which has its origins in work of Planchon
and Vega, exploits cancellation via Plancherel’s theorem on affine subspaces, avoiding
the conventional use of wave-packet and stationary-phase methods.
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120 J. Bennett, S. Nakamura

1 Introduction and statements of results

The purpose of this paper is to investigate ways in which basic ideas from tomography
may be used to further develop our understanding of the Fourier extension operator
from euclidean harmonic analysis. We begin this section with a brief introduction to
the necessary aspects of the classical theory of the Fourier extension operator (known
as restriction theory), and then proceed to present our results. These naturally divide
into three parts. The first and second are exploratory, and expose a natural interplay
between the Fourier extension operator and theRadon andX-ray transforms (Sects. 1.2
and 1.3 respectively). The third part (Sect 1.4) is driven by the prospect of applications
to existing problems in restriction theory, and culminates in some progress on well-
known conjectures of Stein and Mizohata–Takeuchi from the 1970s. Our work takes
its inspiration from that of Planchon and Vega in [35].

1.1 Background: the Fourier extension operator

Afundamental objective ofmodern harmonic analysis is to understand the integrability
properties of Fourier transforms of densities supported on “curved” submanifolds of
R
n . The primordial example of such a submanifold, and the subject of this paper,

is the unit sphere S
n−1, which serves as a model for quite general smooth compact

submanifolds of nonvanishing gaussian curvature.
Questions of this type are phrased in terms of the Fourier extension operator

g �→ ĝdσ ,

where

ĝdσ(x) =
∫
Sn−1

eix ·ξ g(ξ)dσ(ξ).

Here dσ denotes surfacemeasure on S
n−1, x ∈ R

n and g ∈ L p(Sn−1) for some p ≥ 1.
The extension operator is sometimes referred to as the adjoint Fourier restriction
operator since its (formal) adjoint is the mapping

f �→ f̂
∣∣∣
Sn−1

.

The celebrated restriction conjecture states that

‖ĝdσ‖Lq (Rn) � ‖g‖L p(Sn−1) (1.1)

whenever
1

q
<

n − 1

2n
and

1

q
≤ n − 1

n + 1

1

p′ . (1.2)

The restriction conjecture has been verified in dimension n = 2 (C. Fefferman and
Stein [22,36]; see also Zygmund [48]), and there has been considerable progress in
higher dimensions in recent years (see for example [26,39] for further discussion and
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Tomography bounds for the Fourier extension operator and applications 121

context). The necessity of the conditions (1.2) is straightforward to verify with simple
examples. In particular the condition 1

q < n−1
2n amounts to the assertion that (1.1)

holds with g ≡ 1. This is immediately apparent from the observation that

|̂σ(x)| =
∣∣∣
∫
Sn−1

eix ·ξdσ(ξ)

∣∣∣ ∼ (1 + |x |)− n−1
2 (1.3)

on a large portion of R
n . This well-known bound follows from the method of station-

ary phase—see [45] or [36] for example. Accordingly, it is also conjectured that an
endpoint inequality of the form

‖ĝdσ‖
L

2n
n−1 (BR)

�ε Rε‖g‖
L

2n
n−1 (Sn−1)

(1.4)

holds for all ε > 0; here BR denotes the ball of radius R centred at the origin. It is
well-known that (1.4) for all ε > 0 is virtually equivalent to the restriction conjecture
as stated above; see [41].

1.2 Radon transform bounds

Naively at least, the example g ≡ 1 above suggests that L2 (rather than L
2n
n−1 ) is

critical if we integrate on hyperplanes (rather than the whole of R
n). In other words,

it seems natural to seek bounds on the quantities

R(|̂gdσ |2) and R(1BR |̂gdσ |2), (1.5)

where R denotes the Radon transform,

R f (ω, t) :=
∫
x ·ω=t

f (x)dλω,t (x).

Here (ω, t) ∈ S
n−1 × R and the measure dλω,t (x) = δ(x · ω − t)dx is the Lebesgue

measure on the hyperplane {x ∈ R
n : x · ω = t}.

The quantities (1.5) turn out to be very natural from other points of view. In partic-
ular, elementary considerations reveal that R is often unable to distinguish between
|̂gdσ |2 and X∗

0(|g|2), where X0 denotes the restricted X-ray transform

X0 f (ω) =
∫
R

f (sω)ds; ω ∈ S
n−1. (1.6)

It should be noticed that

X∗
0 f (x) = |x |−(n−1)( f (x/|x |) + f (−x/|x |)), (1.7)

and soRX∗
0 f (ω, t)may be infinite unless the support of f is contained in {x ∈ S

n−1 :
x · ω �= 0}.
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122 J. Bennett, S. Nakamura

Theorem 1.1 For each δ ≥ 0, f ∈ L1(Sn−1) and ω ∈ S
n−1, let

Tδ f (ω) =
∫
Sn−1

f (x)

|x · ω| + δ
dσ(x).

Then,

(1) for any ω ∈ S
n−1, and g ∈ L2(Sn−1) supported in {x ∈ S

n−1 : x · ω > 0},

R(|̂gdσ |2)(ω, t) = RX∗
0(|g|2)(ω, t) = T0(|g|2)(ω) (1.8)

for all t �= 0, and
(2)

R(1BR |̂gdσ |2)(ω, t) � T1/R(|g|2)(ω), (1.9)

uniformly in (ω, t) ∈ S
n−1 × R and R > 0.

By symmetry, the identity (1.8) also holds for g supported in the “lower” hemisphere
{x ∈ S

n−1 : x · ω < 0}. We remark that the operator T0 appearing in Theorem 1.1 is
a variant of the spherical Radon (also known as Funk) transform

A0 f (ω) =
∫
Sn−1

f (x)δ(x · ω)dσ(x). (1.10)

However, T0 is more singular than A0 from certain points of view. For example, T01 is
identically infinite, recalling the need for some care in interpreting (1.8). As a result,
no Lebesgue space bounds on R(|̂gdσ |2) are possible. As a substitute, we have the
following near-uniform bounds on R(1BR |̂gdσ |2):
Theorem 1.2 If

p ≥ 2,
n − 2

2
+ 1

2q
≥ n − 1

p
,
n − 1

q
≥ 2

p
, (1.11)

then ∥∥R(1BR |̂gdσ |2)∥∥Lq
ωL∞

t
� log(R)‖g‖2L p(Sn−1)

(1.12)

for all R > 0.

Several remarks are in order. Firstly, the L∞ norm in t is necessary for the dependence
on R to be logarithmic, as may be seen quickly by considering the case g ≡ 1. This
is closely related to the simple observation that R(|̂gdσ |2)(ω, t) is independent of t
for certain g—see Theorem 1.1. Secondly, the range of exponents in (1.11) is best-
possible in the sense that the logarithmic growth must be replaced with power growth
outside of this range. Finally, the power of the logarithm in (1.12) is also best-possible.
Our proof of Theorem 1.2 will follow from (1.9) combined with sharp bounds on the
operator Tδ . As may be expected given the logarithmic growth in R, these bounds on
Tδ will follow from uniform bounds on the “uncentred” spherical Radon transforms

At f (ω) =
∫
Sn−1

f (x)dσω,t (x) (1.13)
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Tomography bounds for the Fourier extension operator and applications 123

for small t ; here dσω,t (x) = δ(x · ω − t)dσ(x). Several Lebesgue space estimates
for these operators were considered by Christ in [19], and our proof of Theorem 1.2
involves only modest additions to his results.

It should be remarked that Theorem 1.2 contains Lebesgue space bounds on the
composition (1.5) that are well beyond the scope of the restriction conjecture and
possible estimates for the Radon transform—the clearest example being the case p =
q = ∞. We also note that for n > 2, Theorem 1.2 has as an endpoint the inequality

∥∥R(1BR |̂gdσ |2)∥∥Ln
ωL

∞
t

� log(R)‖g‖2
L

2n
n−1 (Sn−1)

, (1.14)

which would follow (up to a factor of Rε) from the conjectured endpoint restriction
inequality (1.4), combined with a (missing) endpoint estimate for the Radon transform
(see [34]). Such “improvements” are to be expected as the compositionRX∗

0 is much
less singular than either of its factors.

The estimate (1.14) provides uswith an opportunity to drawattention to the potential
for ideas from tomography to be effective in addressing existing problems in restriction

theory. By the inversion formula for the Radon transform, f = cn(−�)
n−1
2 R∗R f ;

see for instance [25], which holds for a suitably regular function f on R
n and constant

cn , we may write

|̂gdσ |2γR = cn(−�)
n−1
2 R∗(R(|̂gdσ |2γR)),

where γR is a smooth bump function adapted to BR . Hence by (1.14), the restriction

conjecture (1.4) would follow if we knew that (−�)
n−1
2 R∗ : Ln

ωL
∞
t → L

n
n−1 . Unsur-

prisingly this is easily seen to fail, being equivalent to the statement that Ln(Rn) is
embedded in the homogeneous Sobolev space Ẇ 1,n−1(Rn). However, there are prece-
dents for this sort of approach to problems in the wider restriction theory—see the
forthcoming Sect. 1.4 for further discussion and applications.

1.3 X-ray transform bounds

As we have discussed, our motivation for considering integrals of |̂gdσ |2 on hyper-
planes comes from integrability considerations relating to examples that generate the
conditions (1.2). Of course the exponent 2 ceases to be critical in this regard if we
instead consider integrals on lines. If one is prepared to sacrifice the obvious advan-
tages of L2 line integrals, one is naturally led to look for bounds on

X(|̂gdσ | 2
n−1 ) or X(1BR |̂gdσ | 2

n−1 ), (1.15)

where X denotes the X-ray transform

X f (ω, v) =
∫
R

f (v + sω)ds. (1.16)
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124 J. Bennett, S. Nakamura

Here ω ∈ S
n−1 and v ∈ 〈ω〉⊥ parametrise the manifold M1,n of all doubly-infinite

lines in R
n in the natural way. In this setting there is a close conjectural analogue of

the endpoint estimate (1.14) that sits between the restriction and Kakeya conjectures;
see Sect. 4 for a statement of the latter.

Conjecture 1.3 For every ε > 0 there is a constant Cε < ∞ such that

∥∥X(1BR |̂gdσ | 2
n−1 )

∥∥
Ln

ωL
∞
v

≤ CεR
ε‖g‖

2
n−1

L
2n
n−1 (Sn−1)

(1.17)

for all R > 0.

Proposition 1.4

Restriction Conjecture ⇒ Conjecture 1.3 ⇒ Kakeya Maximal Conjecture.

For n = 2, Conjecture 1.3 follows from Theorem 1.2. For n ≥ 3, although (1.14) and
(1.17) are very similar, it is of course the quadratic character of the former that makes it
more tractable. However, despite the exponent 2 appearing to be subcritical in the con-
text of line integrals, it does turn out to be rather natural to consider X(|̂gdσ |2), as the
following elementary result illustrates (see also the forthcoming results in Sect. 1.4).

Theorem 1.5 For f ∈ L1(Sn−1) and ω ∈ S
n−1, let

S f (ω) =
(∫ 1

−1
(At f (ω))2dt

) 1
2

.

Then, for any v ∈ 〈ω〉⊥,

X(|̂gdσ |2)(ω, v) = 2π
∫ 1

−1
|̂gdσω,t (v)|2dt, (1.18)

and
sup

v∈〈ω〉⊥
X(|̂gdσ |2)(ω, v) ≤ X0(||̂g|dσ |2)(ω) = 2π S(|g|)(ω)2, (1.19)

with equality if g is single-signed. Here At and X0 are given by (1.13) and (1.6)
respectively.

Theorem 1.5 suggests looking for maximal X-ray estimates of the form

∥∥X(|̂gdσ |2)‖Lq
ωL∞

v
� ‖g‖2L p(Sn−1)

. (1.20)

For n = 3 at least, Theorem 1.5 allows us to provide a complete picture for the
inequality (1.20).
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Tomography bounds for the Fourier extension operator and applications 125

Theorem 1.6 Suppose n = 3 and p, q ≥ 1. Then

∥∥X(|̂gdσ |2)‖Lq
ωL∞

v
� ‖g‖2L p(S2)

(1.21)

holds if and only if

1

p
≤ min

{
1

2
+ 1

2q
,
3

4

}
,

(
1

p
,
1

q

)
�=
(
3

4
,
1

2

)
. (1.22)

Theorem 1.6 also contains estimates that lie far beyond what may be obtained by
applying known, or indeed possible, estimates for the extension operator and X-ray
transform. A simple example is the case (p, q) = (2,∞). Of course X : L p

� L∞
for any p, and so no bound of this type may be deduced from the restriction con-
jecture. Such “improvements” have a simple heuristic explanation based on the
standardwavepacket decomposition of the extension operator and awell-known (prob-
abilistic) link between the extension operator and the X -ray transform. This link,
which famously connects the restriction conjecture to the Kakeya conjecture, reveals
that |̂gdσ |2 is, in some average sense, comparable to X∗(|h|2) for some function
h : M1,n → C formed from the wavepacket decomposition of g. We refer the
reader to [3] or [42] for some clarification of these heuristics. The main point here
is that the composition XX∗ is much less singular than X . We remark that the case
(p, q) = (2,∞) mentioned here is straightforward to prove in the sharp form

‖X(|̂gdσ |2)‖L∞ ≤ 2π2‖g‖2L2(S2)
, (1.23)

where constant functions are among the extremisers—see Sect. 6.
The key ingredient in our proof of Theorem 1.6 is a power-weighted L p extension

inequality considered by Bloom and Sampson [12]. Our argument will require an
endpoint case left open in [12], which we present in the appendix.

1.4 Applications of tomography bounds to restriction theory

The basic principle of X-ray tomography is captured by the well-known inversion
formula,

f = cn X
∗(−�v)

1
2 X f , (1.24)

or the closely-related fact that c1/2n (−�v)
1/4X is an isometry between L2(Rn) and

L2(M1,n) for a certain dimensional constant cn . We might therefore expect that esti-
mates on X(|̂gdσ |2), or its variants, may be used to address existing problems in
restriction theory. A precedent for this approachmay be found in the work of Planchon
and Vega [35], where certain sharp Strichartz estimates for the Schrödinger equation
are obtained from identities involving the Radon transform of |u(·, t)|2, where u is a
solution to the free time-dependent Schrödinger equation; see also Beltran and Vega
[4], where their X-ray analysis is related to the recent sharp Stein–Tomas restriction
theorem of Foschi.
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126 J. Bennett, S. Nakamura

A particularly compelling candidate for such an application is a conjectural
weighted inequality attributed to Mizohata and Takeuchi [32] (see also [2]), which
states that ∫

Rn
|̂gdσ |2 w � ‖Xw‖L∞

∫
Sn−1

|g|2 (1.25)

for any weight functionw onR
n . This conjecture dates back to the 1970s, and remains

unknown for general weights even for n = 2 (if w is radial then it is known, being
equivalent to a certain uniform eigenvalue estimate involving Bessel functions – see
[2,17] or [1]). Motivated by the numerology of the standard Sobolev embeddings into
L∞, it is perhaps natural to embed (1.25) in a family of inequalities resembling

∫
Rn

|̂gdσ |2 w �
∥∥(−�v)

n−1
2q Xw

∥∥
L∞

ω Lq
v (M1,n)

∫
Sn−1

|g|2, (1.26)

where 1 ≤ q ≤ ∞. [Our reasoning here is of course merely heuristic—strictly speak-
ing the Sobolev embedding should involve the inhomogeneous derivative (1 − �)

raised to a power strictly larger than n−1
2q ]. Of course (1.25) is just the case q = ∞,

and so it is natural to try to establish a form of (1.26) for q as large as possible. To this
end we may use the aforementioned fact that c1/2n (−�v)

1/4X is an isometry between
L2(Rn) and L2(M1,n) to write

∫
Rn

|̂gdσ |2w = cn
〈
(−�v)

1
4 X(|̂gdσ |2), (−�v)

1
4 Xw

〉
L2(M1,n)

= cn
〈
(−�v)

1
2 (1− n−1

q )X(|̂gdσ |2), (−�v)
n−1
2q Xw

〉
L2(M1,n)

(1.27)

for all 1 ≤ q ≤ ∞. An application of Hölder’s inequality now leads to the bound

∫
Rn

|̂gdσ |2w �
∥∥(−�v)

n−1
2q Xw

∥∥
L∞

ω Lq
v

∥∥(−�v)
1
2 (1− n−1

q )X(|̂gdσ |2)∥∥
L1

ωL
q′
v
. (1.28)

The tentative estimate (1.26) may therefore be reduced to

∥∥(−�v)
1
2 (1− n−1

q )X(|̂gdσ |2)∥∥
L1

ωL
q′
v (M1,n)

� ‖g‖2L2(Sn−1)
. (1.29)

In order to ensure finiteness in (1.26) and (1.29) we consider here the validity of the
local variant

∫
BR

|̂gdσ |2 w � Rε
∥∥(−�v)

n−1
2q Xw

∥∥
L∞

ω Lq
v (M1,n)

∫
Sn−1

|g|2, (1.30)

formulated in the spirit of (1.4). Arguing as above, (1.30) would follow from the
estimate

∥∥(−�v)
1
2 (1− n−1

q )X(γR |̂gdσ |2)∥∥
L1

ωL
q′
v (M1,n)

� Rε‖g‖2L2(Sn−1)
, (1.31)
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where γR is a smooth bump function adapted to BR (satisfying certain technical
conditions that we clarify in Sect. 7). The first thing to notice is that (1.31), and hence
(1.30), with q = 1 and n = 2 is a direct consequence of Theorem 1.2. Our main result
here states that, for n = 2, the exponent q may be pushed up to 2.

Theorem 1.7 Let n = 2. Then (1.31), and hence (1.30), holds true as long as 1 ≤ q ≤
2. Moreover,

∥∥(−�v)
1
4 X(γR |̂gdσ |2)∥∥L1

ωL
2
v(M1,2)

� log R‖g‖2L2(S1)
, (1.32)

and hence

∫
BR

|̂gdσ |2 w � log R
∥∥(−�v)

1
4 Xw

∥∥
L∞

ω L2
v(M1,2)

∫
S1

|g|2. (1.33)

The first remark to make is that the tomography reduction presented above, as it stands
at least, fails to establish theMizohata–Takeuchi conjecture (1.25), even with a growth
factor of the form Rε in the truncation parameter R. Specifically, the estimate (1.31)
is easily seen to fail for n = 2 when q > 2, even for the function g ≡ 1; see the end
of the proof of Theorem 1.7 for more details. In this sense the estimate (1.32) in the
statement of Theorem 1.7 is best-possible.

We shall reduce Theorem 1.7 to a stronger two-weighted estimate for ĝdσ in the
spirit of a well-known conjecture of Stein [37]; see also Córdoba [20] and Carbery–
Soria–Vargas [18] for variants of this. In the context of the extension operator, Stein’s
conjecture takes the form

∫
BR

|̂gdσ |2w �
∫
Sn−1

|g|2Mw, (1.34)

where M is (possibly a variant of) the Kakeya-type maximal operator

M f (ω) = sup
v∈〈ω〉⊥

X | f |(ω, v), (1.35)

or equivalently,

MR f (ω) := sup
T ‖ω

∫
T

| f |,

where in this last expression the supremum is taken over all 1-neighbourhoods of line
segments in R

n of length R, parallel to the direction ω ∈ S
n−1. Of course (1.34),

with maximal operator given by (1.35), implies (1.25) since ‖Mw‖∞ = ‖Xw‖∞.
The proposed inequality (1.34) is intended to clarify the relationship between the
restriction and Kakeya conjectures, allowing the conjectural L p − Lq bounds for the
extension operator to follow from those forMR . Specifically, it is straightforward to
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128 J. Bennett, S. Nakamura

verify that the Kakeya (maximal) conjecture

‖MR f ‖Ln(Sn−1) �ε Rε‖ f ‖Ln(Rn), (1.36)

stated here in an equivalent scaled form,would imply the endpoint extension inequality
(1.4) via (1.34) by an elementary duality argument. We refer to [27,47] and the ref-
erences there for further discussion of the Kakeya conjecture, which is fully resolved
only when n = 2. We stress however that Stein’s conjecture, with a Kakeya-type
maximal operator M as above, is not satisfactorily resolved even for n = 2, unless
the weight w has some very specific structure—see, in particular, [1,2,7,17].

Our next theorem provides a variant of Stein’s conjecture for the extension operator
in the case n = 2. Its statement naturally involves a bilinear analogue of the linear
operator Tδ appearing in Sect. 1.2. Itwill be convenient to define this initially in abstract
terms, as this sort of bilinearisation will also arise in the context of the spherical Radon
transform At , also defined in Sect. 1.2. For an operator T , mapping functions on S

n−1

to functions on S
n−1, we define its bilinearisation BT by the formula

BT (g1, g2)(ω) = T (g1(·)g̃2(Rω(·))(ω), ω ∈ S
n−1, (1.37)

where g̃(ω) = g(−ω) and Rω(ξ) = ξ−2(ξ ·ω)ω is the reflection of ξ in the hyperplane
〈ω〉⊥.1 In particular we have

BTδ(g1, g2)(ω) =
∫
Sn−1

g1(ξ)g̃2(Rω(ξ))

|ω · ξ | + δ
dσ(ξ). (1.38)

Theorem 1.8 Let n = 2. Then for all R � 1,

∫
BR

|̂gdσ |2w �
∫
S1

BT1/R
(|g|21/R, |g|21/R

)
(ω)

1
2Sw(ω) dσ(ω)

+
∫
S1

BT1/R
(|g|21/R, |g|21/R

)
(ω⊥)

1
2Sw(ω) dσ(ω), (1.39)

where

Sw(ω) :=
(∫

〈ω〉⊥
∣∣(−�v)

1
4 Xw(ω, v)

∣∣2 dλω(v)

) 1
2

,

and |g|1/R is a suitable mollification of |g| at scale 1/R, such as that given by convo-
lution with the Poisson kernel on S

1.

As we shall see in Sect. 7, the auxiliary bilinear operator BTδ in Theorem 1.8 is very
well behaved, satisfying the bounds

∥∥BTδ(g1, g2)
∥∥
L

1
2 (S1)

� log(δ−1)2‖g1‖L1(S1)‖g2‖L1(S1), (1.40)

1 It is instructive to observe that if H is the Hilbert transform on S
1 then BH becomes the classical bilinear

Hilbert transform on S
1; see [29]
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∥∥BTδ(g1, g2)
∥∥
L1(S1)

� log(δ−1)‖g1‖L2(S1)‖g2‖L2(S1). (1.41)

In particular, our Stein-type inequality (1.39), when combined with (1.40), imme-
diately implies our Mizohata–Takeuchi-type inequality (1.33). Similarly, (1.39) and
(1.41), combined with the Cauchy–Schwarz inequality, imply the n = 2 endpoint
restriction inequality (1.4), thanks to the fact that the controlling operator S, likeMR ,
satisfies suitable bounds on L2(R2)—indeed S is better behaved than MR in this
regard as ‖Sw‖L2(S1) ≡ √

2π‖w‖L2(R2).
The operatorsS andM have notable similarities and differences. They are of course

related via the numerology of the classical Hilbert–Sobolev embedding into L∞(R).
They differ in thatM is monotone in the sense thatM f ≤ M f̃ if 0 ≤ f ≤ f̃ , while
S, which involves derivatives, is not. It is interesting to compare Theorem 1.8, and
our approach to it, with the results and methods of Carbery and Seeger in [16].

In higher dimensions our results in the direction of Theorem 1.7 are more com-
plicated, although nonetheless they do constitute an improvement over what may be
obtained from assuming the restriction conjecture—see the forthcoming Theorem 7.2
for details.

It may be interesting to observe that our exploratory results from Sects. 1.2 and 1.3
also bear some relation to the conjectures of Stein and Mizohata–Takeuchi. First of
all, Theorem 1.1, and the self-adjointness of T0 imply that

∫
Rn

|̂gdσ |2R∗u =
∫
Sn−1

|g|2X0R∗u,

provided the functions g and u satisfy a certain mutual support condition, ensuring
finiteness of the expressions involved. This may be viewed as a certain improvement
of (1.25), or indeed (1.34), for weights w in the image of R∗.

Theorems 1.2 and 1.6 enjoy a rather different sort of interaction with (1.25). In
particular, (1.23) allows one to deduce the Stein–Tomas restriction theorem

‖ĝdσ‖L4(R3) � ‖g‖L2(S2) (1.42)

from (1.25)—one simply writes |̂gdσ |4 = |̂gdσ |2w where w = |̂gdσ |2. Similarly,
when n = 2, Theorem 1.2 shows that the endpoint restriction inequality (1.4) follows
from (1.25). We remark in passing that this very direct link between (1.25) and the
Stein–Tomas restriction theorem fails for n > 3 as the inequality

∥∥X(|̂gdσ | 4
n−1 )‖L∞ � ‖g‖

4
n−1

L2(Sn−1)
(1.43)

ceases to hold when the exponent 4
n−1 falls below 2.

Contextual remarks

This paper emerged from an interest in further exploring ways in which L2 methods
might be applied to Fourier restriction theory. There have been a number of impor-
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tant attempts to “reformulate” questions in restriction theory with either the input g
or output ĝdσ belonging to a space with quadratic characteristics. An early example
is the two-dimensional reverse Littlewood–Paley inequality of Córdoba and C. Fef-
ferman (see [20,23]), which is closely-related to the �2-decoupling inequalities (also
known as Wolff inequalities) developed recently by Bourgain, Demeter and others
[14]. These inequalities are intimately related to the multilinear restriction theory,
where the analogues of the endpoint estimate (1.4) are often on L2—see for example
[5,8,9,24]. Perhaps the most natural setting is that of weighted L2 spaces as discussed
above—see for example [2,7,17,21]. As we have already mentioned, particular inspi-
ration for our work is that of Planchon and Vega [35]—see also [4,6,44]. There are
points of contacts with other works, such as [10], where L p averages of the extension
operator over spheres are studied, or [15], where restrictions of eigenfunctions of the
Laplace–Beltrami operator to submanifolds are considered.

Finally, we remark that one might sensibly expect some of the above considerations
to generalise to Tk,n(|̂gdσ |2), where Tk,n denotes the k-plane transform in R

n with
1 < k < n − 1—indeed there are some related results of this type already in [4]. In
particular there is an evident (conjectural) k-plane generalisation of (1.14) and (1.17)
whose statement we leave to the reader.

Organisation

The proofs of the theorems and propositions stated above will be presented in the
following sections in the order that they appear.

2 Proof of Theorem 1.1

We begin by establishing the elementary identity (1.8), for which we may suppose
that ω = en by rotation-invariance. By the support condition on g we may write
ĝdσ(x ′, t) = Ĝt (x ′), where

Gt (ξ
′) = 1B(0,1)(ξ

′)g
(
ξ ′,

√
1 − |ξ ′|2)eit

√
1−|ξ ′|2(1 − |ξ ′|2)− 1

2 . (2.1)

Consequently, by Plancherel’s theorem on R
n−1,

R(|̂gdσ |2)(en, t) =
∫
Rn−1

|̂gdσ(x ′, t)|2 dx ′ =
∫
Sn−1

|g(ξ)|2
|ξn| dσ(ξ) = T0(|g|2)(en).

It remains to show that R(X∗
0 |g|2)(en, t) = T0(|g|2)(en) for all t �= 0. Using (1.7),

polar coordinates, and the support condition on g,

RX∗
0(|g|2)(en, t) =

∫
Sn−1

∫ ∞

0
δ(rξ · en − t)(|g(ξ)|2 + |g(−ξ)|2) drdσ(ξ)

= 1(0,∞)(t)
∫

{ξn>0}
|g(ξ)|2

|ξn | dσ(ξ) + 1(−∞,0)(t)
∫

{ξn<0}
|g(−ξ)|2

|ξn | dσ(ξ)
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= T0(|g|2)(en)

whenever t �= 0.
We now turn to (1.9), whichwill follow by similar reasoning to the above, combined

with a routine mollification argument. Again, by rotation-invariance, we may assume
that ω = en . Suppose that � ∈ C∞

c (Rn−1) is such that �̂ is equal to 1 on B(0, 1),
and �R(ξ ′) = Rn−1�(Rξ ′) for each R > 0. By Plancherel’s theorem and (2.1), we
have that

R(1BR |̂gdσ |2)(en, t) ≤
∫
Rn−1

|�R ∗ Gt (ξ
′)|2 dξ ′

�
∫
Rn−1

(∫
Sn−1

|�R(ξ ′ − η′)||g(η)| dσ(η)

)2

dξ ′.

By symmetry, it will suffice to bound the above expression with g supported in the
upper hemisphere S

n−1+ . By the Cauchy–Schwarz inequality,

(∫
S
n−1+

|�R(ξ ′ − η′)||g(η)| dσ(η)

)2

=
(∫

Rn−1
|�R(ξ ′ − η′)||g(η′,

√
1 − |η′|2)| dη′

(1 − |η′|2) 1
2

)2

≤ |�R | ∗ [(1 − | · |2)− 1
2
]
(ξ ′) · |�R | ∗ [ |g(·,

√
1 − | · |2)|2

(1 − | · |2) 1
2

]
(ξ ′),

and hence using Fubini’s theorem,

R(1BR |̂gdσ |2)(en, t) �
∫
Rn−1

|�R | ∗ |�R | ∗ [(1 − | · |2)− 1
2
]
(ξ ′) |g(ξ

′,
√
1 − |ξ ′|2)|2

(1 − |ξ ′|2) 1
2

dξ ′.

Since |�R(η′)| �N Rn−1(1 + |Rη′|)−N for any N ∈ N, an elementary computation
reveals that

|�R | ∗ |�R | ∗ [(1 − | · |2)− 1
2
]
(ξ ′) � ((1 − |ξ ′|2) 1

2 + R−1)−1,

which establishes (1.9).

3 Proof of Theorem 1.2

By Theorem 1.1, it suffices to prove the following:

Proposition 3.1 If 1 ≤ p, q ≤ ∞ and

1

p
≤ n − 1

q
,

1

q ′ ≤ n − 1

p′ , (3.1)
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then ∥∥Tδ f
∥∥
Lq (Sn−1)

� log

(
1

δ

)
‖ f ‖L p(Sn−1) (3.2)

for all δ > 0.

We shall prove this proposition by reducing it to an endpoint bound on the operator
At defined in (1.13). First of all, we note that if (3.2) holds for some p, q, then it
also holds for p̃, q̃ satisfying p̃ ≥ p, q̃ ≤ q by Hölder’s inequality. The case p = q
follows immediately from the elementary inequality

sup
x∈Sn−1

∫
Sn−1

dσ(y)

|x · y| + δ
� log

(
1

δ

)
,

and so, by interpolation, it is enough to prove (3.2) when p′ = q = n.
Of course,

Tδ f (ω) =
∫ 1

−1
At f (ω)

dt

|t | + δ
,

and so it will be enough to prove the following:

Lemma 3.2
‖At f ‖Ln(Sn−1) � ‖ f ‖

L
n

n−1 (Sn−1)
(3.3)

uniformly in t sufficiently small.

When n = 3, Lemma 3.2 was obtained in [19, Section 6], and moreover it was shown
that

‖At f ‖3 ≤ C(1 − t2)−
1
3 ‖ f ‖ 3

2
, t ∈ (−1, 1).

In general dimensions, (3.3) was established for t = 0, also in [19], and so we only
need to observe a proof of (3.3) that is suitably stable under perturbations of t about
0. For this we appeal to the well-known theory of Radon-like transforms satisfying a
rotational curvature condition. In order to state an appropriate result in this context,
we let ψ be a compactly-supported cut-off function on R

n−1 ×R
n−1 and suppose that

� ∈ C∞(Rn−1 × R
n−1) satisfies

rotcurv(�)(x, y) :=

∣∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎜⎝

� ∂x1� · · · ∂xn−1�

∂y1� ∂2x1,y1� · · · ∂2xn−1,y1�

...
...

. . .
...

∂yn−1� ∂2x1,yn−1
� · · · ∂2xn−1,yn−1

�

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
≥ ε > 0, (3.4)

for all (x, y) ∈ {�(x, y) = 0} ∩ supp(ψ).

123



Tomography bounds for the Fourier extension operator and applications 133

Lemma 3.3 If � satisfies the rotational curvature condition (3.4) on the support of ψ ,
then the averaging operator

S f (x) =
∫
Rn−1

f (y)ψ(x, y)δ(�(x, y)) dy

satisfies ‖S f ‖Ln(Rn−1) ≤ C(ε)‖ f ‖
L

n
n−1 (Rn−1)

.

We refer to [43] for a short proof of this well-known result, and to [36, Chap XI, Sec
3] for further context.

We now turn to the proof of Lemma 3.2.We begin by fixing a parameter 0 < η � 1,
which will be taken sufficiently small (depending on at most n), and let {Uα} be a cover
of S

n−1 by spherical caps

Uα = B(α; η) ∩ S
n−1,

indexed by a (maximal) O(η)-separated set of points {α} onS
n−1. Restricting attention

to |t | ≤ η, and writing Aα,β
t f = 1Uβ At (1Uα f ), we have

At f ≤
∑
α,β

Aα,β
t f .

Using the support property of the distributional kernel of At , we have that A
α,β
t = 0

if α · β � η, and so it suffices to show that

‖Aα,β
t f ‖Ln(Sn−1) � ‖ f ‖

L
n

n−1 (Sn−1)
(3.5)

whenever α · β � η. By enlarging Uα and Uβ by a constant factor (depending on at
most n), and enlarging η by a suitable constant factor, we may reduce to proving (3.5)
in the case α · β = 0. By rotation-invariance, we may further suppose that α and β

are the standard basis vectors en−1 and en−2 respectively. Parametrising Uα and Uβ

in the natural way, namely via the mappings

B(0; η) � y �→ (y1, . . . , yn−1,

√
1 − |y|2)

and

B(0; η) � x �→ (x1, . . . , xn−2,
√
1 − |x |2, xn−1),

it suffices to prove that for η sufficiently small,

rotcurv(�t )(x, y) ≥ 1

2
(3.6)
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on B(0; η) × B(0; η), uniformly in |t | ≤ η, where �t (x, y) = �0(x, y) − t , and

�0(x, y) =
n−2∑
j=1

x j y j + xn−1

√
1 − |y|2 + yn−1

√
1 − |x |2.

An elementary calculation now reveals that rotcurv(�0)(0, 0) = 1, and so provided η

is taken sufficiently small (depending only onn), the inequality (3.6) follows for |t | ≤ η

for sufficiently small η by the smoothness of �0. Setting ψ(x, y) = 1Uα (y)1Uβ (x)
and � = �t , we conclude (3.5) by an application of Lemma 3.3.

We end this section by showing that the range of exponents (1.11) in Theorem 1.2
is best-possible using Knapp-type examples related to those in [43]. In view of (1.3),
the necessity of r = ∞ follows quickly by applying (1.12) with g ≡ 1. To obtain the
other conditions we define

gm(ξ) = 1{|(ξ1,...,ξn−m )|≤δ},
Sm = {x ∈ R

n : |(x1, . . . , xn−m)| ≤ δ−1, |(xn−m+1, . . . , xn)| ≤ δ−2} (3.7)

for each δ > 0 and 1 ≤ m ≤ n. A standard stationary phase argument reveals that

|ĝmdσ(x)|2 � δ2(n−1) (3.8)

on a large portion of Sm . On the other hand, elementary geometric considerations
reveal that

∥∥R(1Sm )
∥∥
Lq

θ L
∞
v

� max{δ−n−m+2, δ−(n−1+m)δ
m
q }

for all 1 ≤ m ≤ n. The first of these lower bounds takes account of only tangential
interactions between Sm and the (n − 1)-planes, while the second takes account of
only transversal interactions. Applying this lower bound to (1.12), along with (3.8)

and the fact that ‖gm‖2p ∼ δ
2 n−m

p , we obtain the necessary conditions

1

p
≤ 1

2
,

2(n − m)

p
≤ (n − 1) − m + m

q
,

for all 1 ≤ m ≤ n. The conditions (1.11) now follow by considering m = 1 and
m = n − 1 here.

4 Proof of Proposition 1.4

We begin by observing that (1.17) is equivalent to

∥∥X(1B1 |̂gdσ(R·)| 2
n−1 )

∥∥
Ln

ωL
∞
v

�ε RεR−1‖g‖
2

n−1

L
2n
n−1 (Sn−1)

(4.1)
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by scaling. As we clarify next, uncertainty principle considerations essentially allow
one to replace the integration along line segments in (4.1) by averaging on 1

R -
neighbourhoods of line segments, whereby the statement (4.1) may be rephrased in
terms of the classical Kakeya maximal function. While this may be expected, the
details of this reduction are not altogether routine for n > 3. The distinction arises
due to the fact that 2

n−1 < 1 when n > 3, and the subsequent inapplicability of
Minkowski’s inequality. A similar issue arises in the context of multilinear restriction
estimates, which typically have Lebesgue exponents below 1—see [40] for further
discussion.

For δ > 0, a locally integrable function f : R
n → C and ω ∈ S

n−1 we define the
Kakeya maximal function Kδ by

Kδ f (ω) = sup
T ‖ω

1

|T |
∫
T

| f |,

where the supremum is taken over all δ-tubes parallel to the direction ω. Here, as
usual, a δ-tube is δ-neighbourhood of a unit line segment, and its direction is that of
its central line. As is well-known [3,47], the restriction conjecture (1.4) implies the
estimate

‖Kδ f ‖Ln(Sn−1) � δ−ε‖ f ‖Ln(Rn), (4.2)

which is referred to as the Kakeya maximal conjecture; we refer back to (1.36) for
an equivalent statement where the tubes are scaled to have unit width. The following
lemma states, to all intents and purposes, that one may replace X by K1/R in (4.1).

Lemma 4.1 Let n ≥ 2 and Pt be the Poisson kernel for t > 0:

Pt (x) = �[ n+1
2 ]

π
n+1
2

t

(t2 + |x |2) n+1
2

.

(1) The inequality (4.1) implies

∥∥K1/R(1B1 |̂gdσ(R·)| 2
n−1 )

∥∥
Ln(Sn−1)

�ε RεR−1‖g‖
2

n−1

L
2n
n−1 (Sn−1)

. (4.3)

(2) Conversely, (4.1) follows from

∥∥K1/R
(
1B1(P1/R ∗ |̂gdσ(R·)|) 2

n−1
)∥∥

Ln(Sn−1)
�ε RεR−1‖g‖

2
n−1

L
2n
n−1 (Sn−1)

. (4.4)

Remark As we have already indicated, when n = 2, 3 the statement of Lemma 4.1
follows by an entirely standard mollification argument—indeed it is straightforward
to see that (4.1) and (4.3) are equivalent in those cases. As we shall see, the presence
of the Poisson kernel Pt above stems from the convenient fact that it is essentially
constant, or comparable to itself, at scale O(t); that is, Pt (y) � Pt (x) whenever
|x − y| � t , for suitably chosen implicit constants.
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Proof Part (1) is a direct consequence of the pointwise inequality K1/R f (ω) �
supv X f (ω, v), which holds for any nonnegative f with support in the unit ball, and
so we focus on Part (2). Since P1 is the Fourier transform of e−2π |·| we have that

ĝdσ = e2π P1 ∗ ĝdσ,

so that after scaling it follows that

|̂gdσ(Rx)| � P1/R ∗ |̂gdσ(R·)|(x).

Since P1/R is comparable to itself at scale O(R−1) as discussed above, we may
conclude that

|̂gdσ(Rx)| � P1/R ∗ |̂gdσ(R·)|(x ′)

whenever |x − x ′| � 1
R . Hence

X(1B1 |̂gdσ(R·)| 2
n−1 )(ω, v) � X(1B1(P1/R ∗ |̂gdσ(R·)|) 2

n−1 )(ω, v′)

whenever |v − v′| � 1
R , and so by averaging in such v′ we obtain

X(1B1 |̂gdσ(R·)| 2
n−1 )(ω, v) � K1/R(1B1(P1/R ∗ |̂gdσ(R·)|) 2

n−1 )(ω)

uniformly in v. ��

We now turn to the proof of Proposition 1.4, beginning with the assertion that the
restriction conjecture implies Conjecture 1.3. By Lemma 4.1 this may be reduced to
showing that (1.4) implies (4.4). Since (1.4) implies (4.2), we have

∥∥K1/R
(
1B1(P1/R ∗ |̂gdσ(R·)|) 2

n−1
)∥∥

Ln(Sn−1)
�ε Rε

∥∥1B1(P1/R ∗ |̂gdσ(R·)|)∥∥ 2
n−1

L
2n
n−1 (Rn)

≤ Rε
(
I1 +

∑
j≥2

I j
) 2
n−1 ,

where

I1 = ∥∥P1/R ∗ (1B2 |̂gdσ(R·)|)∥∥
L

2n
n−1 (B1)

and

I j = ∥∥P1/R ∗ (1|·|∼2 j |̂gdσ(R·)|)∥∥
L

2n
n−1 (B1)
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for j ≥ 2. For the first term, after using Minkowski’s inequality to remove the fixed
averaging operator P1/R∗, we have

I1 �
∥∥1B2 ĝdσ(R·)∥∥

L
2n
n−1 (Rn)

�ε RεR− n−1
2 ‖g‖

L
2n
n−1 (Sn−1)

by a further application of (1.4). The estimates for the remainder terms I j are similar
and summable in j thanks to the decay of Pt . Specifically, for each x ∈ B1,

P1/R ∗ (1|·|∼2 j |̂gdσ(R·)|)(x) ∼ 2− j(n+1)R−1
∫

|y|∼2 j
|̂gdσ(Ry)| dy

� 2− j(n+1)R−1(2 jn)
n+1
2n
( ∫

|y|∼2 j
|̂gdσ(Ry)| 2n

n−1 dy
) n−1

2n

= (2 j R)−
n+1
2 ‖1B2 j R ĝdσ‖

L
2n
n−1

.

Applying (1.4) we obtain

I j ≤ ∥∥P1/R ∗ (1|·|∼2 j |̂gdσ(R·)|)∥∥L∞(B1)
�ε (2 j R)−

n+1
2 +ε‖g‖

L
2n
n−1 (Sn−1)

≤ (2 j R)−
n−1
2 ‖g‖

L
2n
n−1 (Sn−1)

.

The inequality (4.4) now follows by combining the above estimates and summing in j .
To complete the proof of Proposition 1.4 it remains to show that (4.1) implies (4.2).

It is well known that (4.2) has an equivalent dual form which states that

∥∥∑
T∈T

1T
∥∥
L

n
n−1 (Rn)

�ε Rε
(
R− n−1

2 #T
) n−1

n (4.5)

holds true for all families T of R− 1
2 -tubes contained in an O(1) ball whose directions

form a R− 1
2 -separated subset of S

n−1; see [42] for instance. So it suffices to show
(4.5) assuming (4.1). We begin by establishing the natural Kakeya-type consequence
of (4.1), or equivalently (1.17), which follows by a routine randomisation argument.

Lemma 4.2 Suppose that (4.1) holds, the family of tubes T is as above and

F := (
∑
T∈T

1T )
1

n−1 .

Then ∥∥XF
∥∥
Ln

ωL
∞
v

�ε Rε
(
R− n−1

2 #T
) 1
n , (4.6)

where the implicit constant is independent of T.

Proof For a tube T ∈ T, let ω(T ) ∈ S
n−1 denote its direction, and let C(ω) =

B(ω, cR− 1
2 ) ∩ S

n−1 for some sufficiently small constant c depending only on the
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dimension. Elementary considerations reveal that for suitably chosen modulations eT ,
the functions φT := 1C(ω(T ))eT satisfy

|φ̂T dσ(x)| � R− n−1
2 1T (R−1x), (4.7)

uniformly in T ∈ T. Note also that the constant c may be chosen small enough so that

the caps {C(ω(T )}T∈T are disjoint, since the directions of tubes are R− 1
2 -separated.

Next we let ν = {νT }T∈T be a sequence of independent random variables taking values
in {−1, 1} with equal probability, and

gν =
∑
T∈T

νTφT .

Taking expectations, using Khintchine’s inequality and (4.7), we have

E(|ĝνdσ(Rx)| 2
n−1 ) ∼ (∑

T∈T
|φ̂T dσ(Rx)|2) 1

n−1 � R−1(∑
T∈T

1T (x)
) 1
n−1 = R−1F(x).

(4.8)
By the linearity of X , the inequality (4.8), Minkowski’s inequality and (4.1), we
conclude that

∥∥XF
∥∥
Ln

ωL
∞
v

� R
∥∥E(X(1B1 |ĝνdσ(R·)| 2

n−1 ))
∥∥
Ln

ωL
∞
v

� R E
(∥∥X(1B1 |ĝνdσ(R·)| 2

n−1 )
∥∥
Ln

ωL
∞
v

)

�ε Rε E(‖gν‖
2

n−1
2n
n−1

) ∼ Rε
(
R− n−1

2 #T
) 1
n ,

as required. ��
In light of Lemma 4.2 we have only to show the implication from (4.6) to (4.5). Using
(4.6) and the fact that KR−1/2F(ω) � supv XF(ω, v), we have

∥∥KR−1/2F
∥∥
Ln(Sn−1)

�ε Rε
(
R− n−1

2 #T
) 1
n . (4.9)

Since KR−1/2F is essentially constant at scale R− 1
2 , and |C(ω(T ))| ∼ R− n−1

2 ,

∥∥∑
T∈T

1T
∥∥ n

n−1

L
n

n−1 (Rn)
=
∫
Rn

∑
T∈T

1T (x)F(x) dx

� R− n−1
2

∑
T∈T

KR−1/2F(ω(T ))

∼
∑
T∈T

∫
C(ω(T ))

KR−1/2F(ω) dσ(ω).
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Here the caps C(ω) are as in the proof of Lemma 4.2. Using Hölder’s inequality, (4.9)
and the fact that

|
⋃
T∈T

C(ω(T ))| ∼ R− n−1
2 #T,

we conclude that

∥∥∑
T∈T

1T
∥∥ n

n−1

L
n

n−1 (Rn)
�
∥∥KR−1/2F

∥∥
Ln(Sn−1)

|
⋃
T∈T

C(ω(T ))| n−1
n

�ε Rε
(
R− n−1

2 #T
) 1
n
(
R− n−1

2 #T
) n−1

n ,

as claimed. ��

5 Proof of Theorem 1.5

By Fubini’s theorem,

∫
g(ξ)dσ(ξ) =

∫ 1

−1

∫
g(ξ)dσω,t (ξ)dt, (5.1)

Consequently,

ĝdσ(x) =
∫ 1

−1
ĝdσω,t (x)dt .

Defining the projection πω by πω(ξ) = ξ − (ξ · ω)ω, we have

ĝdσω,t (x) =
∫

g(ξ)eix ·((ω·ξ)ω+πω(ξ))dσω,t (ξ) = eitx ·ω ĝdσω,t (πω(x)).

Hence

ĝdσ(x) =
∫ 1

−1
eitx ·ω ĝdσω,t (πω(x))dt,

and so,

X(|̂gdσ |2)(ω, v) =
∫
R

∣∣∣∣
∫ 1

−1
eist ĝdσω,t (v)dt

∣∣∣∣
2

ds = 2π
∫ 1

−1
|̂gdσω,t (v)|2dt,

(5.2)

establishing (1.18). To establish (1.19) from (1.18)wefirst apply the elementary bound

|̂gdσω,t (v)| ≤
∫

|g|dσω,t = At (|g|)(ω),
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to obtain
sup

v∈〈ω〉⊥
X(|̂gdσ |2)(ω, v) ≤ 2π S(|g|)(ω)2. (5.3)

Note that there is equality in (5.3) if g is single-signed as X(|̂gdσ |2)(ω, 0) =
2π S(|g|)(ω)2 in that case. Since At (|g|)(ω) = |̂g|dσω,t (0), it follows that

2π S(|g|)(ω)2 = X0(||̂g|dσ |2)(ω),

by reversing the argument in (5.2).

6 Proof of Theorem 1.6

Although Theorem 1.6 makes reference to three dimensions only, much of our argu-
ment continues to function in all dimensions n ≥ 2. In particular, we shall reduce
Theorem 1.6 to certain weighted inequalities for the extension operator, which are
potentially of independent value, and are naturally presented in any dimension. Con-
sequently we shall work in general n ≥ 2 dimensions much of the time. Of course, the
necessity of the logarithmic-loss in Theorem 1.2 establishes that no global estimates
of the form (1.20) are available when n = 2, since R = X in that case. For n > 3,
our argument does yield estimates of the form (1.20), although it appears to fall short
of providing a full characterisation of the admissible exponents.

As we shall see next, Theorem 1.5 allows us to reduce the estimate (1.20) to a
weighted estimate for the extension operator. This is the content of our next lemma,
which is phrased in terms of the classical Lorentz spaces, see [39].

Lemma 6.1 For all q ∈ [1,∞),

∥∥∥ sup
v∈〈ω〉⊥

X(|̂gdσ |2)
∥∥∥
Lq

ω(Sn−1)
�
∥∥|̂g|dσ(·)| · | 12− n

2q
∥∥2
L2q,2(Rn)

. (6.1)

Moreover, equality holds in (6.1) when g is single-signed and q = 1.

Proof By (1.19),

∥∥∥ sup
v∈〈ω〉⊥

X(|̂gdσ |2)
∥∥∥
Lq (Sn−1)

≤ ‖X0(||̂g|dσ |2)‖Lq (Sn−1), (6.2)

with equality when g is single-signed. Furthermore, (6.2) allows us to assume g ≥ 0
for the remainder of our argument. Estimating further, we have

∥∥X0(|̂gdσ |2)∥∥qLq (Sn−1)
=2

∫
Rn

|̂gdσ(x)|2X0(|̂gdσ |2)(x/|x |)q−1|x |−(n−1) dx

�
∥∥|̂gdσ |2| · |−(n−1)+ n

q′ ∥∥
Lq,1(Rn )

∥∥X0(|̂gdσ |2)(x/|x |)q−1|x |− n
q′ ∥∥

Lq′,∞
x (Rn )

=∥∥ĝdσ | · |− n−1
2 + n

2q′ ∥∥2
L2q,2(Rn )

∥∥X0(|̂gdσ |2)∥∥q−1
Lq (Sn−1)

.
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Here we have used the change of variables (r , ω) ∈ R+ × S
n−1 �→ x ∈ R

n , Hölder’s

inequality on Lorentz spaces and the fact that | · |− n
q′ ∈ Lq ′,∞(Rn). Hence

∥∥X0(|̂gdσ |2)∥∥Lq (Sn−1)
≤ C

∥∥ĝdσ | · |− n−1
2 + n

2q′ ∥∥2
L2q,2(Rn)

,

which, together with (6.2), concludes the proof of (6.1). Finally we note that every
inequality in the above may be replaced by an equality when q = 1 and g is single-
signed. ��

As we shall clarify below, Lemma 6.1 allows us to reduce Theorem 1.6 to the
following proposition.

Proposition 6.2 Let X = ( 23 ,
1
3 ),Y = ( 34 ,

1
2 ), Z = ( 34 , 1) and γ = γ (p, q) = 1

q − 1
p′ .

Then ∥∥ĝdσ 〈·〉−γ
∥∥
L2q,2(R3)

� ‖g‖L p(S2), (6.3)

for all ( 1p , 1
q ) ∈ (X ,Y ) ∪ (Y , Z). Here we use (A, B) to denote the open line segment

between two points A, B ∈ [0, 1]2, and 〈x〉 = (1 + |x |2) 1
2 .

Proposition 6.2 includes an endpoint case of some classical results of Bloom and
Sampson [10]. We refer the reader to the appendix for further discussion and proofs
of such statements in all dimensions.

It remains to deduce Theorem 1.6 from Proposition 6.2. We have only to establish
(1.21) at the endpoint ( 12 , 0) and points in (X ,Y )∪(Y , Z), since the remaining bounds
follow from these by Hölder’s inequality and interpolation. We begin with the point
( 12 , 0), which follows quickly from Theorem 1.5, and indeed holds in all dimensions

n ≥ 3. As is well-known, the distribution dσω,t has total mass Cn(1 − t2)
n−3
2 , where

Cn = |Sn−3|
∫ 1

0

tn−3

√
1 − t2

dt .

Hence by the Cauchy–Schwarz inequality,

|̂gdσω,t (v)|2 ≤
(∫

|g|dσω,t

)2

≤ Cn(1 − t2)
n−3
2

∫
|g|2dσω,t ≤ Cn

∫
|g|2dσω,t ,

(6.4)
and so

X(|̂gdσ |2)(ω, v) ≤ 4πCn‖g‖22
by (1.18). We note that in the case n = 3 we obtain the sharp inequality (1.23)
since C3 = π

2 . Indeed, if we choose g ≡ 1 and v = 0 ∈ 〈ω〉⊥, then we have from∫
S2

dσ(ξ) = 2π that

X(|d̂σ |2)(ω, 0)

‖1‖22
= 2π2.
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It remains to deduce (1.21) at an arbitrary point ( 1p , 1
q ) ∈ (X ,Y ) ∪ (Y , Z), beginning

with the segment (X ,Y ) where we have 1
p = 1

2 + 1
2q . By Lemma 6.1 it suffices to

establish

∥∥ĝdσ | · |−( 3
2q − 1

2 )
∥∥
L2q,2(R3)

� ‖g‖L p .

Since the exponent γ = 3
2q − 1

2 for ( 1p , 1
q ) ∈ (X ,Y ), this is a consequence of

Proposition 6.2 thanks to the elementary estimate

∥∥ĝdσ | · |−( 3
2q − 1

2 )1B(0,1)
∥∥
L2q,2(R3)

≤ ‖ĝdσ‖∞
∥∥| · |−( 3

2q − 1
2 )1B(0,1)

∥∥
L2q,2(R3)

� ‖g‖L p(S2).

The reduction for the segment (Y , Z) follows similarly.
We conclude this section by establishing the necessity of (1.22) in Theorem 1.6. To

this end, we employ the example (3.7) withm = 1. As before, we see from elementary
geometric considerations that

∥∥X(1S1)
∥∥
Lq

θ L
∞
v

� max{δ−1, δ−2δ
2
q }.

In view of (3.8) and ‖g1‖2p ∼ δ
4
p , (1.21) implies (1.22), with the exception of the

condition ( 1p , 1
q ) �= ( 34 ,

1
2 ). To see this, we need a more delicate lower bound on

‖X(1S1)‖L2
ωL

∞
v

which takes into account contributions from transversal interactions
at all scales. This reveals that

‖X(1S1)‖L2
ωL

∞
v

� log(δ−1)
1
2 δ−1, (6.5)

which of course forces ( 1p , 1
q ) �= ( 34 ,

1
2 ).

7 X-ray estimates with applications to restriction theory

Here we provide the proofs of Theorems 1.7 and 1.8, and establish some analogous
results in higher dimensions. We begin with a simple geometrical observation, valid
in all dimensions, and involving the operator BAt , the bilinear version of At given by
(1.37). Explicitly, for nonnegative functions g1, g2 onS

n−1, t ∈ (−1, 1) andω ∈ S
n−1,

we have

BAt (g1, g2)(ω) = At (g1(·)g̃2(Rω·))(ω) =
∫
Sn−1

δ(ω · ξ − t)g1(ξ)g̃2(Rω(ξ)) dσ(ξ).

(7.1)
This operator emerges naturally in this context since

(g1dσ) ∗ (g2dσ)(x) = cn
1B2(x)

|x | BA|x |/2(g1, g2)(x/|x |), (7.2)
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which follows from the fact that if ξ ∈ S
n−1 then x − ξ ∈ S

n−1 ⇔ x
|x | · ξ − |x |

2 = 0.
Of course (7.1) is rather special in the case n = 2 since

BAt (g1, g2)(ω) =g1
(
tω + √

1 − t2ω⊥)g2(tω − √
1 − t2ω⊥)

√
1 − t2

+ g1
(
tω − √

1 − t2ω⊥)g2(tω + √
1 − t2ω⊥)

√
1 − t2

.

In particular, when n = 2 and g : S
1 → [0,∞), we have

(gdσ)∗(gdσ)(2x) = c
1B1(x)

|x |√1 − |x |2 g(|x |ex+
√
1 − |x |2e⊥

x )g(|x |ex−
√
1 − |x |2e⊥

x ),

(7.3)
where ex = x

|x | .

7.1 Proof of Theorem 1.8

By the tomography reduction (1.27), the proof of Theorem 1.8 may be reduced to
the following lemma. We clarify first that the cutoff function γR in the statement of
Theorem 1.8 should be taken of the form γR(x) = γ (x/R), where γ (x) = ψ(x)3 for
some ψ ∈ S(R2) such that ψ̂ is nonnegative, radially decreasing and supported in the
unit ball. As will become clear, this specific structure is imposed merely for technical
convenience.

Lemma 7.1 For R � 1, ω ∈ S
1, and g : S

1 → C,

∥∥(−�v)
1
4 X(γR |̂gdσ |2)(ω, ·)∥∥L2

v(〈ω〉⊥)

� BT1/R(|g|21/R, |g|21/R)(ω)
1
2 + BT1/R(|g|21/R, |g|21/R)(ω⊥)

1
2 .

Proof By elementary considerations we may reduce to the situation where g is non-
negative and symmetric in the sense that g(−·) = g. By the rotation invariance of the
expressions involved, it suffices to handle the caseω = e2. Moreover, since γR = ψ3

R ,

γR |̂gdσ |2 = ψR · ψR ĝdσ · ψR ĝdσ .

With this in mind, by Plancherel’s theorem we have

∥∥(−�v)
1
4 X(γR |̂gdσ |2)(e2, ·)

∥∥2
L2

v(〈e2〉⊥)

∼
∫
R

|η| (ψ̂R ∗ ψ̂R ∗ (gdσ) ∗ ψ̂R ∗ (gdσ)(η, 0)
)2

dη.

First we claim that

ψ̂R ∗ (gdσ)(x) � Rg1/R(x/|x |), x ∈ R
2, (7.4)
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where g1/R is the function g mollified at scale 1/R using the Poisson kernel on S
1.

To see this we write x = r(cos θ, sin θ) and y = (cosφ, sin φ), and observe that

ψ̂R ∗ (gdσ)(x) = R2
∫ 2π

0
ψ̂(R(r cos θ − cosφ, r sin θ − sin φ))g(cosφ, sin φ) dφ.

Since ψ̂ is assumed to be radially decreasing and supported in the unit ball, that is,
ψ̂(x) = h(|x |) for some smooth and decreasing function h supported on [0, 1], we
have that

ψ̂R ∗ (gdσ)(x) = R2
∫ 2π

0
h(R

√
r2 − 2r cos(θ − φ) + 1)g(cosφ, sin φ) dφ.

Once we see

h(R
√
r2 − 2r cos(θ − φ) + 1) � R−1 p1−1/R(θ − φ), (7.5)

then (7.4) follows, where ps(θ) = (1 − s2)/(1 − 2s cos θ + s2), 0 ≤ s < 1, is the
Poisson kernel. Since h is supported on [0, 1] and R � 1, we only need to consider
the case when r2 − 2r cos(θ − φ) + 1 � R−2. In particular, it suffices to show (7.5)
when r = 1 + O(R−1) and θ − φ = O(R−1). Minimising with respect to r we have
r2 − 2r cos(θ − φ) + 1 ≥ sin2(θ − φ), and so

h(R
√
r2 − 2r cos(θ − φ) + 1) ≤ h(R| sin(θ − φ)|) � 1

1 + (
R sin(θ − φ)

)2 .

On the other hand, since R � 1 and θ − φ = O(R−1), we have

p1−1/R(θ − φ) = R(2 − 1/R)

1 + 4(1 − 1/R)
(
R sin((θ − φ)/2)

)2 ∼ R
1

1 + (
R sin(θ − φ)

)2 ,

which yields (7.5) and hence (7.4). Using this, polar coordinates, and the assumption
that ψ has Fourier support in the unit ball, we have

ψ̂R ∗ (gdσ) ∗ ψ̂R ∗ (gdσ)(x)

� R2
∫
R2

χ(1−R−1,1+R−1)(|x − y|)χ(1−R−1,1+R−1)(|y|)g1/R(ex−y)g1/R(ey) dy

� R2
∫ 1+R−1

1−R−1
χ(1−R−1,1+R−1)(|x − tξ |)

∫
S1

g1/R(ex−tξ )g1/R(ξ) dσ(ξ)dt .
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Consequently, by further use of polar coordinates,

ψ̂R ∗ ψ̂R ∗ (gdσ) ∗ ψ̂R ∗ (gdσ)(z)

� R2
∫
R2

∫ 1+R−1

1−R−1∫
S1

ψ̂R(z − (x − tξ))χ(1−R−1,1+R−1)(|x |)g1/R(ex )g1/R(ξ) dσ(ξ)dtdx

∼ R2
∫ 1+R−1

1−R−1

∫ 1+R−1

1−R−1∫
S1

ψ̂R(z − (sξ̃ − tξ))

∫
S1

g1/R(ξ̃ )g1/R(ξ) dσ(ξ)dσ(ξ̃ )dsdt .

Dominating ψ̂R pointwise by a suitable constant multiple of the function

�1/R(x) := R2

(1 + |Rx |2)N

for a suitably large natural number N , we have

ψ̂R ∗ ψ̂R ∗ (gdσ) ∗ ψ̂R ∗ (gdσ)(z)

�
∫
S1

∫
S1

�1/R(z − (ξ̃ − ξ))g1/R(ξ̃ )g1/R(ξ) dσ(ξ)dσ(ξ̃ )

=
∫
R2

�1/R(z − ξ̃ )

∫
S1

g1/R(ξ̃ − ξ)δ(1 − |ξ̃ − ξ |2)g1/R(ξ) dσ(ξ)d ξ̃

=�R ∗ (g1/Rdσ) ∗ (g1/Rdσ)(z),

where we have used the local constancy property of the function �1/R at scale 1/R.
Using the formula (7.3) and the locally constant property of g1/R at scale R−1 we
obtain

ψ̂R ∗ ψ̂R ∗ (gdσ) ∗ ψ̂R ∗ (gdσ)(z)

�
∫
R2

�1/R(z − y)
1|y|<1

|y|√1 − |y|2 g1/R(|y|ey +
√
1 − |y|2e⊥

y )

g1/R(|y|ey −
√
1 − |y|2e⊥

y ) dy

∼
∫
R2

�1/R(z − y)
1|y|<1

|y|√1 − |y|2 dy

g1/R(|z|ez +
√
1 − |z|2e⊥

z )g1/R(|z|ez −
√
1 − |z|2e⊥

z )

∼ 1|z|<1

(|z| + R−1)
√
1 − |z|2 + R−1

g1/R(|z|ez +
√
1 − |z|2e⊥

z )g1/R(|z|ez −
√
1 − |z|2e⊥

z ).
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Consequently we conclude that

∥∥(−�v)
1
4 X(γR |̂gdσ |2)(e2, ·)

∥∥2
L2

v(〈e2〉⊥)

�
∫
R

1|η|<1

(|η| + R−1)(1 − |η|2 + R−1)
g1/R(|η|,

√
1 − |η|2)2

g1/R(|η|,−
√
1 − |η|2)2 dη

�
∫
S1

g1/R(ξ)2 g̃1/R(Re1(ξ))2
dσ(ξ)

|ξ · e1| + R−1

+
∫
S1

g1/R(ξ)2g̃1/R(Re2(ξ))2
dσ(ξ)

|ξ · e2| + R−1 ,

since g is assumed to be symmetric. ��

7.2 Proof of Theorem 1.7

As we observe in the introduction, (1.31) with q = 1 follows immediately from
Theorem 1.2, and hence it suffices to prove (1.32). As we explain in the introduction,
thanks to Theorem 1.8, the proof of Theorem 1.7 may be reduced to establishing
(1.40).

Proof of (1.40) We assume, as we may, that g1, g2 are nonnegative and symmetric.
Writing ω = (cos θ, sin θ) and ξ = (cosϕ, sin ϕ) in (1.38), we have

BTδ(g1, g2)(ω) =
∫ 2π

0

G1(ϕ)G2(2θ − ϕ)

| cos(θ − ϕ)| + δ
dϕ =

∫ 2π

0

G1(θ − ϕ)G2(θ + ϕ)

| cosϕ| + δ
dϕ,

where Gi (ϕ) = gi (cosϕ, sin ϕ) for i = 1, 2. After considering suitable rotations, the
inequality (1.40) may be reduced to showing that

∫ 2π

0

(∫ 1/100

10R−1

h1(θ + ϕ)h2(θ − ϕ)

ϕ
dϕ

) 1
2

dθ � log(R)‖h1‖
1
2
1 ‖h2‖

1
2
1 . (7.6)

To do this we use a localisation argument of Kenig and Stein from their analysis of
bilinear fractional integrals in [28]. Since we allow a logarithmic loss in R, and have

∫ 2π

0

(∫ 1/100

10R−1

h1(θ + ϕ)h2(θ − ϕ)

ϕ
dϕ

) 1
2

dθ

�
log(R)∑
k=0

∫ 2π

0

(
−
∫

ϕ∼2−k
h1(θ + ϕ)h2(θ − ϕ) dϕ

) 1
2

dθ,
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it suffices to prove that

∫ 2π

0

(
−
∫

ϕ∼λ

h1(θ + ϕ)h2(θ − ϕ) dϕ

) 1
2

dθ � ‖h1‖
1
2
1 ‖h2‖

1
2
1 , (7.7)

uniformly in the (dyadic) scale 0 < λ < 1. For each λ, we decompose [0, 2π ] =⋃O(λ−1)
i=1 Ii (λ), where Ii (λ) = [(i − 1)λ, iλ], and use the Cauchy–Schwarz inequality

to obtain

∫ 2π

0

(
−
∫

ϕ∼λ

h1(θ + ϕ)h2(θ − ϕ) dϕ

) 1
2

dθ

=
∑
i

∫
Ii (λ)

(
−
∫

ϕ∼λ

h1(θ + ϕ)h2(θ − ϕ) dϕ

) 1
2

dθ

≤ λ
1
2
∑
i

(∫
Ii (λ)

−
∫

ϕ∼λ

h1(θ + ϕ)h2(θ − ϕ) dϕdθ

) 1
2

.

Notice that θ ± ϕ ∈ Ji (λ) := [(i − 10)λ, (i + 10)λ] whenever θ ∈ Ii (λ) and ϕ ∼ λ,
and so we conclude that

∫ 2π

0

(
−
∫

ϕ∼λ

h1(θ + ϕ)h2(θ − ϕ) dϕ

) 1
2

dθ

�
∑
i

(∫ 2π

0

∫ 2π

0
h1 · 1Ji (λ)(θ + ϕ)h2 · 1Ji (λ)(θ − ϕ) dϕdθ

) 1
2

∼
∑
i

(‖h1 · 1Ji (λ)‖1‖h2 · 1Ji (λ)‖1
) 1
2

� ‖h1‖
1
2
1 ‖h2‖

1
2
1 ,

thanks to the almost disjointness of the intervals Ji (λ). ��

Remark (1) The argument above raises the question of the validity of weighted
inequalities of the form

∫ 2π

0

(∫ 2π

0

f1(θ − ϕ) f2(θ + ϕ)

|ϕ| + δ
dϕ

) 1
2

w(θ)dθ

� log(δ−1)

(∫ 2π

0
| f1|w

) 1
2
(∫ 2π

0
| f2|w

) 1
2

.
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Indeed, if this were true with a weight of the form Sw, then (1.39) would reduce
to

∫
BR

|̂gdσ |2w � log(R)

∫
S1

|g|1/R(ω)2Sw(ω) dσ(ω),

which is closer to the intended form of Stein’s conjecture than (1.39). Perhaps
more realistically one might look for a Fefferman–Stein type estimate of the form

∫ 2π

0

(∫ 2π

0

f1(θ − ϕ) f2(θ + ϕ)

|ϕ| + δ
dϕ

) 1
2

w(θ)dθ

� log(δ−1)

(∫ 2π

0
| f1|Mw

) 1
2
(∫ 2π

0
| f2|Mw

) 1
2

,

for an appropriate maximal operator M . We do not pursue this here, but note
some closely-related results in the context of bilinear fractional integrals—see, for
example [33], and the references there.

(2) As promised in the introduction, here we clarify the necessity of q ≤ 2 for (1.31).
It suffices to show that

∥∥|∂v|X(γR |d̂σ |2)(e2, ve1)
∥∥
Lq′

v (R)
�
{
R

1
2 ( 1

q′ − 1
2 )

, if q �= 2
log R, if q = 2.

(7.8)

Here we are identifying 〈e2〉⊥ with R in the natural way. The first thing to notice
is that

∂x1(|d̂σ |2)(x) = −8π2 x1
|x | J0(|x |)J1(|x |), (7.9)

where J0 and J1 are the Bessel functions of order 0 and 1 respectively, and x =
(x1, x2). Since |J0(r)|, |J1(r)| � (1 + |r |)− 1

2 ([45]), it follows that

∣∣X(∂x1(|d̂σ |2))(e2, ve1)
∣∣ �

∫ ∞

0

|v|
v2 + s2

ds ∼ 1.

Let ν ∈ S(R) be a bump function whose Fourier support is contained in [−1, 1].
By the boundedness of the Hilbert transform, and the fact that ∂vX f (e2, ve1) =
X(∂x1 f )(e2, ve1),

∥∥|∂v|X(γR |d̂σ |2)(e2, ve1)
∥∥
Lq′

v (R)

∼ ∥∥∂vX(γR |d̂σ |2)(e2, ve1)
∥∥
Lq′

v (R)

= ∥∥X([∂x1γR] · |d̂σ |2 + γR · ∂x1(|d̂σ |2))(e2, ve1)
∥∥
Lq′

v (R)

≥ ∥∥X(γR∂x1(|d̂σ |2))(e2, ve1)
∥∥
Lq′

v (R)

− ∥∥X([∂x1γR]|d̂σ |2)(e2, ve1)
∥∥
Lq′

v (R)
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≥ ∥∥X(γR∂x1(|d̂σ |2))(e2, ve1)ν√
R

∥∥
Lq′

v (R)

− ∥∥X([∂x1γR]|d̂σ |2)(e2, ve1)
∥∥
Lq′

v (R)

≥ ∥∥X(∂x1(|d̂σ |2))(e2, ve1)ν√
R

∥∥
Lq′

v (R)

− ∥∥X((1 − γR)∂x1(|d̂σ |2))(e2, ve1)ν√
R

∥∥
Lq′

v (R)

− ∥∥X([∂x1γR]|d̂σ |2)(e2, ve1)
∥∥
Lq′

v (R)

=: I1 − I2 − I3.

Using the formula (7.9) it is straightforward to see that I2 + I3 = O(1). Note
that we used the auxiliary scale

√
R here to ensure that I2 = O(1). For I1, an

application of the Fourier inversion formula and (7.3) reveals that

HX(∂x1(|d̂σ |2))(e2, ve1) = X(|∂x1 |(|d̂σ |2))(e2, ve1)
= 1

2π

∫ 1

−1
e2ivη dη√

1 − η2
= 1

2
J0(2v), (7.10)

where H is the Hilbert transformwith respect to v. With this in mind, we introduce
a large parameter u > 100 and write

I1 = ∥∥H(
X(|∂x1 |(|d̂σ |2))(e2, ve1)

)
ν√

R

∥∥
Lq′

v (R)
= 1

2

∥∥H(J0(2·))eiu·ν√
R

∥∥
Lq′

v (R)
.

Since the Fourier supports of eiu·ν√
R and J0(2·) are contained in [− 1√

R
+ u, u +

1√
R
] and [−2, 2] respectively, an application of Bedrosian’s theorem gives that

H(J0(2·))eiu·ν√
R = H

(
J0(2·)eiu·ν√

R

)
.

A further application of the boundedness of the Hilbert transform now yields

I1 ∼ ∥∥J0(2·)eiu·ν√
R

∥∥
Lq′

v (R)
∼
{
R

1
2 ( 1

q′ − 1
2 )

, q �= 2,
log R, q = 2,

which, when combined with the estimates for I2, I3, establishes (7.8).

7.3 Results in dimensions n ≥ 3

We conclude this section with a higher dimensional analogue of Theorem 1.7. From a
technical point of view relating to finiteness, it will be a little more convenient here to
include a slightly higher power of−�v in our estimates, rather than insert a truncation
factor inside the X -ray transform as we did for n = 2.
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Theorem 7.2 Let n ≥ 3 and pn = 4(n − 1)/(2n − 3). Then the inequality

∥∥(−�v)
1
2 (1− n−1

2 )+εX(|̂gdσ |2)∥∥L1
ωL

2
v(M1,n)

�ε ‖g‖2L p(Sn−1)
(7.11)

holds for all ε > 0 if and only if p ≥ pn. Furthermore,

∥∥(−�v)
1
2 (1− n−1

2 )+εX(|̂gdσ |2)∥∥L2
ω,v(M1,n)

�ε ‖g‖2L pn (Sn−1)
. (7.12)

Remark As c1/2n (−�)1/4X is an isometry,

∥∥(−�v)
α
2 X f

∥∥
L2

ω,v(M1,2)
= c

1
2
n
∥∥(−�x )

1
2 (α− 1

2 ) f
∥∥
L2(Rn)

for all α ∈ R, and so (7.12) is equivalent to

∥∥(−�x )
− n−2

4 +ε |̂gdσ |2∥∥L2
ω,v(M1,n)

�ε ‖g‖2L pn (Sn−1)
. (7.13)

Using the boundedness of the Riesz potential (−�x )
− n−2

4 +ε: L p(ε)/2(Rn) → L2(Rn),
where p(ε) ↘ 2n

n−1 as ε → 0, the left-hand side of (7.12) may be controlled by

‖ĝdσ‖2
L p(ε)(Rn)

. Therefore if the restriction conjecture (1.1) is true then, we have

∥∥(−�x )
− n−2

4 +ε |̂gdσ |2∥∥L2
ω,v(M1,n)

�ε ‖g‖2
L

2n
n−1 (Sn−1)

for arbitrary small ε > 0. Since 2n/(n − 1) > pn , this bound is weaker than (7.13),
providing a further illustration of the improvements available to the composition of X
with |̂gdσ |2.

Applying the tomography reduction (1.27), Theorem 7.2 implies the following.

Corollary 7.3 Let n ≥ 3. For every ε > 0,

∫
Rn

|̂gdσ |2w �ε

∥∥(−�v)
n−1
4 −εXw

∥∥
L2

ω,v(M1,n)
‖g‖2

L
4(n−1)
2n−3 (Sn−1)

.

In particular, we have the following weak version of (1.26) with q = 2:

∫
Rn

|̂gdσ |2w �ε

∥∥(−�v)
n−1
4 −εXw

∥∥
L∞

ω L2
v(M1,n)

‖g‖2
L

4(n−1)
2n−3 (Sn−1)

.

We prove Theorem 7.2 by first reducing it to a statement involving BAt defined by
(7.1). In what follows we write S

n−2
ω = S

n−1∩〈ω〉⊥ and dσ
S
n−2
ω

(ξ) = δ(1−|ξ |2)δ(ξ ·
ω)dξ .
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Lemma 7.4 Let n ≥ 3 and 1 ≤ q < ∞. Then for ε > 0,

∥∥(−�v)
1
2 (1− n−1

2 )+εX(|̂gdσ |2)∥∥q
Lq

ωL2
v(M1,n)

∼
∫
Sn−1

(∫
S
n−2
ω

∫ 1

0
BAt (g, g)(u)2 t−1+2εdtdσ

S
n−2
ω

(u)

) q
2

dσ(ω),

where the implicit constant depends only on n and q.

Proof We again suppose g is symmetric. By Plancherel’s theorem on 〈ω〉⊥, we have
∥∥(−�v)

1
2 (1− n−1

2 )+εX(|̂gdσ |2)∥∥q
Lq

ωL2
v(M1,n)

=
∫
Sn−1

(∫
〈ω〉⊥

|η|−(n−3)+2ε(gdσ) ∗ (gdσ)(η)2 dλω(η)

) q
2

dσ(ω).

Using polar coordinates on 〈ω〉⊥ and the identity (7.2), we conclude that

∥∥(−�v)
1
2 (1− n−1

2 )+εX(|̂gdσ |2)∥∥q
Lq

ωL2
v(M1,n)

∼
∫
Sn−1

(∫
S
n−2
ω

∫ ∞

0
t−(n−3)+2ε(gdσ) ∗ (gdσ)(tu)2 tn−2dtdσ

S
n−2
ω

(u)

) q
2

dσ(ω)

∼
∫
Sn−1

(∫
S
n−2
ω

∫ 1

0
BAt (g, g)(u)2 t−1+2εdtdσ

S
n−2
ω

(u)

) q
2

dσ(ω).

��
Proof of Theorem 7.2 We begin with the sufficiency of the condition p ≥ pn . By
Lemma 7.4 it suffices to show that

∫
Sn−1

∫ 1

0
BAt (g, g)(ω)2t−1+2ε dtdσ(ω) �ε ‖g‖4pn , (7.14)

since
∫
Sn−1

∫
S
n−2
ω

F(u) dσ
S
n−2
ω

(u)dσ(ω) =
∫
Sn−1

F(ω) dσ(ω).

By the Cauchy–Schwarz inequality,

BAt (g, g)(ω) ≤ At (g
2)(ω)

1
2 A−t (g

2)(ω)
1
2 ,

and so, by a further use of the Cauchy–Schwarz inequality,

∫
Sn−1

BAt (g, g)(ω)2 dσ(ω) �
∫
Sn−1

At (g
2)(ω)2 dσ(ω).
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Next we recall from Lemma 3.2 that there is a tn > 0 such that

sup
0<t<tn

‖At g‖Ln(Sn−1) � ‖g‖ n
n−1

.

Further, it is straightforward to verify that for n ≥ 3,

‖At g‖L1(Sn−1) � ‖g‖1,

uniformly in 0 < t < 1. Interpolating these two estimates, we have

sup
0<t<tn

‖At g‖L2(Sn−1) � ‖g‖ 2(n−1)
2n−3

,

and so

sup
0<t<tn

‖BAt (g, g)‖L2(Sn−1) � ‖g‖2pn .

Hence by splitting the integral in (7.14), we have

∫
Sn−1

∫ 1

0
BAt (g, g)(ω)2t−1+2ε dtdσ(ω)

�
∫ tn

0
‖g‖4pn t−1+2ε dt

+
∫
Sn−1

∫ 1

tn
B At (g, g)(ω)2t−1+2ε dtdσ(ω)

�ε ‖g‖4pn +
∫
Sn−1

∫ 1

0
BAt (g, g)(ω)2 dtdσ(ω).

To bound the second term above, we write

∫
Sn−1

∫ 1

0
BAt (g1, g2)(ω)2 dtdσ(ω)

=
∫
Sn−1

∫
Sn−1×Sn−1

g1(ξ)g̃2(Rω(ξ))g1(η)g̃2(Rω(η))δ((ξ − η) · ω) dσ(ξ)dσ(η)dσ(ω)

� ‖g2‖2∞
∫
Sn−1×Sn−1

g1(ξ)g1(η)|ξ − η|−1 dσ(ξ)dσ(η).

Applying the Hardy–Littlewood–Sobolev inequality on the sphere (see for instance
[31]), we obtain

∫
Sn−1

∫ 1

0
BAt (g1, g2)(ω)2 dtdσ(ω) � ‖g1‖2pn

2
‖g2‖2∞.
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Using the symmetry property BAt (g1, g2) = BAt (g2, g1), and bilinear interpolation,
we conclude that

∫
Sn−1

∫ 1

0
BAt (g1, g2)(ω)2 dtdσ(ω) � ‖g1‖2pn‖g2‖2pn ,

as required.
Finally we turn to the necessity of p ≥ pn . In view of Lemma 7.4, it suffices to

consider necessary conditions for the estimate

∫
Sn−1

(∫
S
n−2
ω

∫ 1

0
BAt (g, g)(u)2 t−1+2εdtdσ

S
n−2
ω

(u)

) 1
2

dσ(ω) �ε ‖g‖2p,
(7.15)

where ε > 0 is arbitrary small. Applying this to the function g = 1|(ξ1,...,ξn−1)|≤δ we
have

∫
Sn−1

(∫
S
n−2
ω

∫ 1

0
BAt (1|(ξ1,...,ξn−1)|≤δ, 1|(ξ1,...,ξn−1)|≤δ)(u)2 t−1+2εdtdσ

S
n−2
ω

(u)

) 1
2

dσ(ω)

�ε δ
2(n−1)

p .

Next we observe that for all 0 < t < δ,

BAt (1|(ξ1,...,ξn−1)|≤δ, 1|(ξ1,...,ξn−1)|≤δ)(u) ∼ A0(1|(ξ1,...,ξn−1)|≤δ)(u) ∼ δn−21Eδ (u),

where Eδ = {ξ ∈ S
n−1 : |ξn| ≤ δ/10}. Hence the left hand side of (7.15) is bounded

from below by

δn−2
∫
Sn−1

(∫
S
n−2
ω

∫ δ

0
1Eδ (u) t−1+2εdtdσ

S
n−2
ω

(u)

) 1
2

dσ(ω)

∼ δn−2δε

∫
Sn−1

σ
S
n−2
ω

(Eδ)
1
2 dσ(ω).

Since n ≥ 3, a simple geometrical observation reveals that

σ
S
n−2
ω

(Eδ) � δ

uniformly in ω ∈ S
n−1. This gives a lower bound of δn−2+εδ1/2 for the left-hand

side of (7.15). This implies that δ(n−3)/2+ε � δ2(n−1)/p for all δ, and so 1/p ≤
1/pn + ε/(2n − 2) for all ε > 0, from which the necessity of p ≥ pn follows.

��
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Appendix: endpoint Bloom–Sampson estimates

Here we consider the validity of inequalities of the form

∥∥ĝdσ 〈·〉−γ
∥∥
Lq (Rn)

� ‖g‖L p(Sn−1), (7.16)

and their Lorentz space variants; here p, q ≥ 1 and γ ∈ R. In particular we prove a
general result, which upon specialising to n = 3, implies Proposition 6.2. Of course
when γ = 0, this problem becomes the classical restriction problem (1.1), and so a
complete understanding of (7.16) is not currently expected. However, if one restricts
attention to p ≤ 2, then the complexity essentially amounts to that of the classical
Stein-Tomas restriction theorem and the trace lemma. This was largely clarified by
Bloom and Sampson in [12]. Following their notation we distinguish the points

A = ( 1
2 ,

1
2

)
, B =

(
1
2 ,

n−1
2(n+1)

)
, C = ( 1

2 , 0
)
, D = (1, 0), E = (

1, 1
2

)

in ( 1p , 1
q ) space, noting that A with γ > 1 essentially corresponds to the trace lemma,

and B with γ = 0 corresponds to the Stein–Tomas restriction theorem.

Theorem 7.5 ([12]) Let n ≥ 2.

(1) If ( 1p , 1
q ) = A, then (7.16) holds if and only if γ > 1

q .

(2) If ( 1p , 1
q ) ∈ int BCD ∪ (B,C), then (7.16) holds if and only if γ ≥ 0.

(3) If ( 1p , 1
q ) ∈ int ADE ∪ (A, E), then (7.16) holds if and only if

γ ≥ n

q
− n − 1

p′ .

(4) If ( 1p , 1
q ) ∈ ABD \ {A}, then (7.16) holds if

γ >
n + 1

2q
− n − 1

2p′

and only if

γ ≥ n + 1

2q
− n − 1

2p′ .

In the above theorem the case ( 1p , 1
q ) ∈ ABD \ {A} with the critical power γ =

n+1
2q − n−1

2p′ is clearlymissing.Ourmain result in this section addresses this. In particular
we establish this critical estimate on the interior of ABD, and prove a restricted weak
type estimate on (A, B) ∪ (A, D). Our results are phrased in terms of the classical
Lorentz spaces Lq,r , 0 < q, r ≤ ∞.

Theorem 7.6 Let n ≥ 2.
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(1) If ( 1p , 1
q ) ∈ int ABD ∪ (B, D), then for all r ∈ [1,∞],

∥∥ĝdσ 〈·〉−γ
∥∥
Lq,r (Rn)

� ‖g‖L p,r (Sn−1) (7.17)

holds with

γ = n + 1

2q
− n − 1

2p′ . (7.18)

In particular, (7.16) holds with the same exponents.
(2) If ( 1p , 1

q ) ∈ (A, B) ∪ (A, D), then

∥∥ĝdσ 〈·〉−γ
∥∥
Lq,∞(Rn)

� ‖g‖L p,1(Sn−1) (7.19)

holds with γ given by (7.18).

Some brief remarks are in order. First of all, for the purposes of deducing Proposition
6.2 it suffices to choose r = 2 in (7.17) and use the embedding L p ⊂ L p,2, which
holds as long as p ≤ 2. Second, if ( 1p , 1

q ) ∈ [B, D] then the resulting estimate is
a consequence of the Stein–Tomas restriction theorem, and so we may restrict our
attention to the region ABD \ [B, D]. Finally, setting r = q in (7.17) and using the
embedding L p ⊂ L p,q , which holds whenever p ≤ q, yields (7.16) on int ABD ∪
[B, D] with the critical power (7.18).
Proof of Theorem 7.6 It is convenient to begin with Part (2). We first prove (7.19) for
( 1p , 1

q ) ∈ (A, D), where q = p′. Our goal is therefore to show that

∥∥ĝdσ 〈·〉− 1
q
∥∥
Lq,∞(Rn)

� ‖g‖Lq′,1(Sn−1)
(7.20)

for 2 < q < ∞. From now on, we fix an arbitrary q∗ ∈ (2,∞) and prove (7.20) with
q = q∗. The first step is to write

R
n =

∞⋃
j=0

A j ,

where

A0 = B(0, 1), A j = B(0, 2 j+1)\B(0, 2 j ),

and show that ∥∥ĝdσ 〈·〉− 1
q 1A j

∥∥
Lq (Rn)

� ‖g‖Lq′
(Sn−1)

(7.21)

for all 2 ≤ q ≤ ∞, uniformly in j . By analytic interpolation this will follow from the
extreme cases q = 2 and q = ∞. The latter follows immediately from the elementary
estimate‖ĝdσ‖∞ � ‖g‖1. Forq = 2weapply theweighted extension estimate (1.25),
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which is known for radial weights (see [2,17]), with weight w(x) = 〈x〉−11A j (x).
This results in

∥∥ĝdσ 〈·〉− 1
2 1A j

∥∥
L2(Rn)

�
∥∥X [〈·〉−11A j ]

∥∥∞‖g‖2 ∼ 2− j
∥∥X [1A j ]

∥∥∞‖g‖2 ∼ ‖g‖2,

uniformly in j , as required. In order to use the estimates (7.21) to bound the sum in
j , we use an argument of Bourgain [13], and in particular, Lemma 2.3 of Lee and Seo
[30]. Let us write

∥∥ĝdσ 〈·〉− 1
q∗
∥∥
Lq∗,∞(Rn)

∼
∥∥∥∥
∑
j

2− j
q∗ ĝdσ1A j

∥∥∥∥
Lq∗,∞(Rn)

=:
∥∥∥∥
∑
j

f j

∥∥∥∥
Lq∗,∞(Rn)

,

and choose q0, q1 satisfying 2 < q0 < q∗ < q1 < ∞. By (7.21),

‖ f j‖Lqi (Rn) ∼ 2
j( 1

qi
− 1

q∗ )∥∥ĝdσ 〈·〉− 1
qi 1A j

∥∥
Lqi (Rn)

� 2
j( 1

qi
− 1

q∗ )‖g‖
Lq′

i (Sn−1)
,

uniformly in j , for each i = 0, 1. Since 1
q 1

− 1
q∗ < 0 < 1

q0
− 1

q∗ , by Lemma 2.3 of
[30], we conclude that

∥∥∥∥
∑
j

f j

∥∥∥∥
Lq∗,∞(Rn)

� ‖g‖Lq∗,1(Sn−1).

This completes the proof of (7.20) with q = q∗.
To complete the proof of Part (2), we must also establish (7.19) on the segment

(A, B). However, this argument is similar to that for (A, D) above, and so we leave
the details to the reader.

We now turn to Part (1). As a simple remark, we note that (7.16) and hence (7.19)
hold along the line [B, D] from the classical Stein-Tomas’s theorem. With this in
mind, by Part (2) and complex interpolation, (7.19) holds for all ( 1p , 1

q ) ∈ ABD \ {A}
under the condition (7.18). So our task is to improve (7.19) with respect to Lorentz
exponents, and we do this using a real interpolation argument. For each γ ∈ R we
define the line

�(γ ) = {
(x, y) ∈ ABD : γ = n+1

2 y − n−1
2 (1 − x)

}
.

Note that (7.18) holds if ( 1p , 1
q ) ∈ �(γ ), and that �(0) = [B, D] and �( 12 ) = {A}. Fix

a γ∗ ∈ [0, 1
2 ) and denote by Tγ∗ the linear operator g �→ ĝdσ 〈·〉−γ∗ . Since

‖Tγ∗g‖Lq,∞(Rn) = ∥∥ĝdσ 〈·〉−γ∗∥∥
Lq,∞(Rn)

� ‖g‖L p,1(Sn−1) (7.22)

for all ( 1p , 1
q ) ∈ �(γ∗), real interpolation (see [11] for example) reveals that

‖Tγ∗g‖Lq,r (Rn) � ‖g‖L p,r (Sn−1)
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for all ( 1p , 1
q ) ∈ int �(γ∗) and all r ∈ [1,∞]. This establishes (7.17). ��
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