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Abstract
IncC from the low-copy number plasmid RK2, is a member of the ParA family of proteins required for partitioning DNA 
in many bacteria and plasmids. It is an ATPase that binds DNA and its ParB protein partner, KorB. Together, the proteins 
move replicated DNA to appropriate cellular positions, so that each daughter cell inherits a copy on cell division. IncC from 
RK2 is expressed in two forms. IncC2 is homologous to bacterial ParA proteins, while IncC1 has an N-terminal extension 
of 105 amino acids and is similar in length to ParA homologues in other plasmids. We have been examining the role of this 
extension, here called IncC NTD. We present its backbone NMR chemical shift assignments and show that it is entirely 
intrinsically disordered. The assignments were achieved using C-detected, CON-based spectra, complemented by HNN 
spectra to obtain connectivities from three adjacent amino acids. We also observed evidence of deamidation of the protein at 
a GNGG sequence, to give isoAsp, giving 2 sets of peaks for residues up to 5 amino acids on either side of the modification. 
We have assigned resonances from around the position of modification for this form of the protein.

Keywords  ParA · IncC · Deamidation · Intrinsic disorder · IsoAspartate

Biological context

The partitioning of DNA to daughter cells is a vital process 
for all dividing organisms. In most bacteria this requires 
an ATPase from the ParA family of proteins, and a DNA-
binding protein from the ParB family of proteins that rec-
ognises a specific, centromere-like, DNA site and stimu-
lates the activity of the ATPase. The exact mechanism of 
this process is poorly understood and much has been learnt 
from the study of the process in low copy number plasmids, 
such as RK2. Many plasmids encode ParA and ParB protein 

homologues, in most of which the ParA protein contains an 
N-terminal extension, not found in bacteria. IncC from RK2 
is unusual in that it is expressed in two forms from differ-
ent start codons within the same gene (Thomas and Smith 
1986). Both proteins are found, but in slightly different ratios 
in different hosts. The shorter IncC2 protein is similar to 
bacterial ParA proteins while IncC1 contains an additional 
105 amino acids, here called IncC NTD. The identical 
C-terminal sequence of the two proteins makes this a unique 
system to determine the effect of the N-terminal extension 
on protein structure and activity. This region of IncC1 is 
intrinsically disordered in the full-length protein. Regions of 
intrinsic disorder have frequently been found in DNA-bind-
ing proteins that bind multiple partners (Tantos et al. 2012). 
While largely disordered, they can fold on binding partners, 
or remain unfolded, due to slight structural preferences or 
charge effects. They have also sometimes been found to be 
involved in liquid–liquid phase separation processes. We 
have used carbon-detected NMR experiments in conjunction 
with HNN spectra to assign the isolated N-terminal exten-
sion of IncC as a first step towards examining any structural 
propensities in this region that may affect the function of the 
full-length protein.
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Methods and experiments

Protein expression and purification

IncC NTD was expressed in E. coli BL21 (λDE3) cells 
from the plasmid pSMB315, expressing the N-terminal 
105 amino acids of IncC with a 23 amino acid His-Tag 
from a modified pET28a vector (Batt et al. 2009). Bacteria 
were grown at 37 ºC in minimal M9 medium containing 
1 g/L 15N-NH4Cl, 2 g/L 13C6- labelled glucose and 50 µg/
mL kanamycin, and induced with 1 mM IPTG at mid 
log phase for 4 h before harvesting. The cells were lysed 
by sonication and centrifuged to remove cellular debris 
and ribosomes. The supernatant was purified using a Ni 
NTA column, in 20 mM Tris HCl buffer pH 7.5 contain-
ing 300 mM NaCl, eluting with an imidazole gradient. 
This was followed by size exclusion chromatography on 
Superdex 75, in 20 mM Tris HCl, buffer pH 7.5, 150 mM 
NaCl and 0.1 mM EDTA. The protein was concentrated by 
ultrafiltration with a 3 kDa cutoff membrane, and dialysed 
into 10 mM sodium phosphate buffer, pH 6.5, containing 
150 mM NaCl and 0.1 mM EDTA, for NMR experiments.

NMR spectroscopy

Spectra were obtained with 300 μM double labelled pro-
tein in 10% D2O, 10 mM Sodium Phosphate, 150 mM 
NaCl, 0.1 mM EDTA, pH 6.5, at 298 K. Carbon-detected 
triple resonance experiments, CON (Bermel et al. 2006); 
(H)CANCO, (H)CBCACON and (H)CBCANCO (Ber-
mel et al. 2009, 2006) were used for IncC NTD backbone 
assignments, using a 600 MHz, Bruker spectrometer with 
a carbon-optimised TXO CryoProbe. Proton-detected 
experiments HNCO (Bermel et al. 2005; Kay et al. 1994), 
HNN and HNCN (Panchal et al. 2001) were used to com-
plete and to confirm the assignments, using a 900 MHz 
Bruker spectrometer and a TCI probe. HSQC spectra 
were collected before each 3D experiment to monitor any 
change in signals due to protein instability, Data were pro-
cessed using MddNMR (Orekhov and Jaravine 2011) and 
NMRpipe (Delaglio et al. 1995) software and analysed 
using CcpNmr Analysis ver. 2.4.2 (Vranken et al. 2005).

Extent of assignments and data deposition

IncC NTD contains more than 70% small and charged 
amino acids, which are found in abundance in intrinsi-
cally disordered proteins (Uversky 2013) and considered 
to promote disorder. Of the 105 amino acids in this region 

22 are Glycine, 12 are Alanine, and 13 are Arginine. There 
is only one Isoleucine and 2 Leucine residues that would 
normally form a hydrophobic core in a folded protein.

In the 1H–15N HSQC of IncC NTD, the peaks are 
crowded in a narrow ~ 1 ppm (7.7–8.7 ppm) region of the 
1H dimension and many peaks overlap (Fig. 1a). This shows 
that the protein is likely to be intrinsically disordered, as 
expected from its sequence. To overcome the overlap in 
the 1H dimension, and to assign the backbone, C-detected 
spectra were used; based on the CON experiment (Bermel 
et al. 2006) (Fig. 1b). Information from the (H)CANCO, (H)
CBCANCO and (H)CBCACON spectra (Bermel et al. 2009, 
2006) allowed adjacent amino acid pairs to be identified eas-
ily from the carbon shifts, but there are several duplicate 
pairs of amino acid in the sequence and little difference in 
backbone shifts for a given amino acid type. To complete the 
sequential assignments, and to obtain HN assignments, we 
used HNN and HNCN experiments to connect the 15N shifts 
of three adjacent amino acids (Panchal et al. 2001), with an 
HNCO experiment (Kay et al. 1994) to link the C’-based 
assignments to the HN-based ones. With this strategy we 
obtained consistent backbone assignments for all the resi-
dues in IncC NTD, apart from Met 1 which does not have 
a peak in HNCO, and assignments for many of the residues 
in the N-terminal extension from vector, apart from a gly-
cine residue and the series of His residues, that are probably 
overlapped. These assignments have been deposited in the 
BioMagResBank with ID 50740.

The secondary chemical shifts of unmodified IncC NTD 
were examined using several programmes, namely CSI 3.0 
(Hafsa et al. 2015), DANGLE (Cheung et al. 2010), TALOS-
N (Shen and Bax 2013), and SSP (Marsh et al. 2006). In 
each case, the analysis suggests that the protein is nearly 
entirely random coil. DANGLE suggested some alpha helix 
propensity at residues 30 and 31, while, instead, both SSP 
and TALOS predict some beta strand propensity around resi-
due 15, sequence 12-KPVPGGDPG-20, although the exact 
residues predicted with this propensity differ in the two pro-
grammes (Fig. 2a, b). SSP gives another region of greater 
than 20% beta strand propensity at residues 74–75; however 
overall it gives only 3.1% alpha structure and 3.9% beta 
structure. Calculations of the NH order parameter using the 
RCI method (Berjanskii and Wishart 2008) in TALOS-N, 
suggest that the protein is dynamic with only short stretches 
of amino acids, namely residues 1–5, 9–18, 46–51, 78–81, 
89 and 90, having order parameters above 0.6 (Fig. 2c). Only 
residues 11–16, at the PVP sequence with beta strand pro-
pensity, are predicted to have order parameters greater than 
0.7.

A few residues were observed to have two sets of peaks 
in the spectra, usually with very close chemical shifts, so 
unlikely to be in exchange. From the HNN spectra, most 
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of these peaks come from a series of adjacent amino acids, 
at residues 74–83. For the Asn79-Gly 80 pair in the set of 
extra peaks, the (H)CaNCO spectrum shows the Cβ of resi-
due 79, rather than the Cα, and the HNN spectra of Gly 77 
shows no connectivity to residue 79. From this we conclude 

that these additional peaks come from IncC NTD where 
Asn79 has been deamidated to give iso-Asp, with the beta 
carboxyl linked to Gly80. Deamidation of Asn residues 
occurs spontaneously in solution at neutral pH, particularly 
at Asn-Gly sequences where there is no steric hindrance, and 

Fig. 1   NMR Spectra of IncC NTD in 10% D2O, 10  mM Sodium 
Phosphate, 150  mM NaCl, 0.1  mM EDTA, pH 6.5, at 298  K. a 
1H–15N HSQC spectrum, taken at 900  MHz, with NH assignments 
labelled with residue number and amino acid type. Peaks from the 
amide side chain resonances and tryptophan side chain resonance are 
not shown. Peaks from the N-terminal tag are labelled with negative 
numbers and in italics. Peaks from residues 74–83 of the deamidated 
species, with IsoAsp (X) are labelled with prime (′), italics and nar-
row font. The peaks from 79X and 80G′ are boxed. Unassigned peaks 
at the lower right hand side of the spectrum are thought to be from 

peptide degradation products. b CON spectrum taken at 600  MHz, 
labelled with the residue number and amino acid type of the N reso-
nance. Peaks from the N-terminal tag are labelled with negative num-
bers and in italics. Peaks from residues 74–83 of the deamidated spe-
cies, with IsoAsp (X) are labelled with prime (′), italics and narrow 
font. The peaks from 79X and 80G′ are boxed. Peaks from the Asn 
side chains are boxed with dotted lines and labelled Nδ; peaks from 
the Gln side chains are not shown. The proline imide N resonates at 
below 135 ppm and the CON peaks from these are shown in a sepa-
rate box
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in phosphate buffer (Geiger and Clarke 1987). The deami-
dation reaction goes via a succinimide intermediate and 
predominantly gives iso-Asp rather than Asp (3:1), and can 
also cause L- to D-isomerisation (Meinwald et al. 1986). In 
IncC NTD, the sequence around this residue is 78 Gly-Asn-
Gly-Gly 81, so it will be highly prone to deamidation. It has 
been shown that deamidation in vivo is a signal for protein 
degradation in cytochrome c, and it has been proposed to 
act as a timer for other processes (Robinson and Robinson 
2001), thus this modification may be functional in vivo.

Comparison of the chemical shifts of the residues in 
the modified and the unmodified peptide (Table 1) show 
that, while the largest differences in chemical shifts are, 
not surprisingly, at residues 79 and 80 and the differences 
in N shifts decrease either side of that, differences in C 
shifts vary across the range of residues. We were unable 
to assign a CON peak, or CCN peaks for the Gly 81/Ser 
82 pair in the isoAsp peptide but did observe peaks cor-
responding to the ones expected in the nitrogen-based 
spectra. The carbon peaks of this pair most likely overlap 
with the pair in the unmodified peptide. Formation of an 
isoAsp at 79 changes both the backbone and the charge of 
the region. The effects on Arg 76, and Ser 82 may be due 
to the new carboxyl group forming a charge-charge inter-
action, or a hydrogen-bond to these residues, respectively.

A few peaks were observed in the CON spectrum and 
HNN spectra that have yet to be identified. In particu-
lar, there are 3 C′ shifts between 169 and 171 ppm that 
appear to belong to a Gly/Val, a Gly/Ser and a Ser/Ser 
pair, respectively. These C’ shifts, and those of the Gly 
Cα in these pairs at ~ 44.5 ppm are similar to those of a 
glycine next to a succinimide (Grassi et al. 2017), but the 
expected sequence after the succinimide is Gly 80/Gly 81, 
so their identity is unclear. There may be additional chemi-
cal modifications of the peptide.

The backbone shifts of the unmodified peptide have been 
deposited in the BMRB data base with ID 50740. These 
shifts extend the data for intrinsically disordered proteins 
and lay the basis for NMR studies of protein and DNA inter-
actions with IncC NTD.

Fig. 2   Secondary structure propensity and RCI-S2 order prediction 
from the backbone chemical shifts. a Secondary structure propensity 
of IncC NTD calculated by SSP (Marsh et al. 2006) from the Cα and 
Cβ shifts, with a reference offset of 0.106 ppm. Positive values indi-
cate helical propensity while negative values indicate beta strand pro-
pensity. b Secondary structure of IncC NTD predicted by TALOS-N 
(Shen and Bax 2013) from the backbone chemical shifts. Black cir-
cles, helical propensity; white triangles, beta strand propensity; black 
squares, loop propensity. c RCI-S2 order number for the NH groups of 
IncC NTD predicted by TALOS-N based on the RCI method (Berjan-
skii and Wishart 2008) from the backbone chemical shifts
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