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Abstract 1

Many antibiotic resistance genes co-occur with resistance genes for transition metals, 2

such as copper, zinc, or mercury. In some environments, a positive correlation between 3

high metal concentration and high abundance of antibiotic resistance genes has been 4

observed, suggesting co-selection due to metal presence. Of particular concern is the use 5

of copper and zinc in animal husbandry, leading to potential co-selection for antibiotic 6

resistance in animal gut microbiomes, slurry, manure, or amended soils. For antibiotics, 7

predicted no effect concentrations have been derived from laboratory measured 8

minimum inhibitory concentrations and some minimal selective concentrations have 9

been investigated in environmental settings. However, minimal co-selection 10

concentrations for metals are difficult to identify. Here, we use mathematical modelling 11

to provide a general mechanistic framework to predict minimal co-selective 12

concentrations for metals, given knowledge of their toxicity at different concentrations. 13

We apply the method to copper (Cu), zinc (Zn), mercury (Hg), lead (Pb) and silver 14

(Ag), predicting their minimum co-selective concentrations in mg/L (Cu: 5.5, Zn: 1.6, 15

Hg: 0.0156, Pb: 21.5, Ag: 0.152). To exemplify use of these thresholds, we consider 16

metal concentrations from slurry and slurry-amended soil from a UK dairy farm that 17

uses copper and zinc as additives for feed and antimicrobial footbath: the slurry is 18

predicted to be co-selective, but not the slurry-amended soil. This modelling framework 19

could be used as the basis for defining standards to mitigate risks of antimicrobial 20

resistance applicable to a wide range of environments, including manure, slurry and 21

other waste streams. 22

Capsule 23

We provide a general framework to predict minimal co-selective concentrations for 24

metals as environmental co-selective agents for antibiotic resistance, using mechanistic 25

differential equations, and apply the method to copper, zinc, mercury, lead and silver. 26
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Introduction 27

The persistence and spread of antimicrobial resistance (AMR) is a major global threat, 28

with at least 700,000 deaths per year attributed to bacterial infections by drug-resistant 29

strains world-wide [1]. Reduction of antibiotic use, or cessation of use of some 30

veterinary antibiotics, is seen as critically important to mitigate the threat of AMR. A 31

classic example of this strategy has been the banning of avoparcin in poultry 32

production, e.g. Germany and Denmark in 1995, other EU countries by 1997 and 33

Taiwan in 2000. The success of this ban can be exemplified with Norwegian poultry 34

farms showing high abundance (99%) of vancomycin-resistant enterococci (VRE) in 35

farms exposed to avoparcin prior to the ban and lower abundance (11%) in samples 36

from unexposed farms [2], while in Taiwan there was a decrease from 25% farms having 37

vancomycin-resistant enterococci (VRE) in 2000 to 8.8% farms in 2003 [3]. 38

However, the continued presence of resistant strains suggests that there may be 39

other factors that promote persistence of antibiotic resistance genes (ARGs). One of 40

these factors is co-selection: selective pressure exerted by a toxicant that maintains 41

other ARGs. This can occur in different ways: (i) co-resistance, i.e., multiple genes 42

encoding resistance against different antibiotics and metals that are genetically linked, 43

often on a mobile genetic element, such as a plasmid; (ii) cross-resistance, i.e., the same 44

mechanism (e.g., efflux pumps) providing resistance against multiple toxicants; (iii) 45

co-regulation, which is the coordinated response to the presence of either antibiotic or 46

metal, this activates mechanisms necessary for the resistance against the other or 47

both [4]. Transition metals can provide co-selective pressure for antibiotic resistance or 48

multi-drug resistant plasmids, even at sublethal concentrations [5]. Lee et al. (2005) 49

showed that the mdt operon, which encodes for a multidrug resistance efflux pump in E. 50

coli was up-regulated in response to excess zinc [6]. Resistance to antibiotics is also 51

enriched in response to metal shock loading [7, 8], or due to long-term exposure to 52

metal [9, 10]. Song et al. (2017) [11] showed that adding copper and zinc to soil 53

microcosms can increase bacterial tetracycline resistance. Moreover, there are many 54

studies providing correlative evidence of co-selection for antibiotic resistance due to 55

metal presence, by evaluating co-occurrence of metal and antibiotic resistance, in many 56

environments, including oral and intestinal [12], sludge bioreactors [13], marine [14], 57
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soil [15, 16] and sediments [17]. 58

Selective pressure can be caused at concentrations lower than the minimal inhibitory 59

concentration (MIC). The FAO and WHO support the concept of minimum selective 60

concentration (MSC) for antibiotics, i.e., a threshold concentration above which the 61

resistance genes are selected. MSCs are available for antibiotics, based on standard 62

MICs, through both empirical and modelling approaches [18–21], although 63

environmental studies show the issue to be much more complex [22]. However, 64

co-selection pressure due to transition metals might mean that in some environments, 65

ARGs could be selected for and maintained in a bacterial community even with 66

antibiotic concentrations below MSC. Metal and antibiotic resistance genes co-occur in 67

environments where the metal contamination [23,24] is sufficiently high to provide 68

co-selection pressure for persistence and proliferation of antibiotic resistance [12, 25–27]. 69

The notion of Minimal Co-Selective Concentrations (MCSCs) for transition metals was 70

introduced by Seiler and Berendonk [17], who identified possible thresholds based upon 71

observations of metal concentrations in a range of environments. However, the lack of 72

appropriate MCSCs has been highlighted by the FAO and WHO [28]; indeed a rigorous 73

and consistent approach to defining MCSCs could be used, alongside toxicity, to inform 74

suitable standards for metal concentrations in agriculture or environmental contexts. 75

We address this research gap using a mathematical modelling approach. Models can 76

help to understand and predict the impact of co-selection under different scenarios, and 77

have already helped in understanding factors associated with AMR emergence and 78

spread such as mutation rates [29], antibiotic consumption [30], water troughs on 79

farms [31] as well as quantifying the importance of factors such as conjugation [32]. 80

Models have also accurately predicted MIC values of β-lactams against MRSA [33]. One 81

of the few mathematical models for co-selection studied the concentration of resistant 82

bacteria in the Poudre River in Colorado and determined that external input and 83

selection pressure solely due to tetracycline was insufficient to explain the observed 84

levels of resistant bacteria. A co-selection model, on the other hand, which considered 85

both tetracycline and metal concentrations reproduced the observed data [34]. 86

In this study, we developed a general model that we use to quantify the effect of 87

transition metal concentrations on persistence of resistance in a bacterial population. 88

The model encapsulates a causal mechanism for metal co-selection for antibiotic 89

January 21, 2021 4/33



resistance, through genetically linked resistance genes for antibiotic and metal resistance, 90

on the same mobile element. In fact, the approach could be used for any toxic 91

co-selective agent, including transition metals, metalloids or other chemical biocides, so 92

long as there is genetic linkage of the resistance genes, and toxicity data are available for 93

model calibration. We compare the results from deterministic (applicable to large 94

well-mixed populations) and stochastic versions (applicable to small populations where 95

random events may be significant) of the same model. We then analyse the effects of 96

metal toxicity and plasmid fitness cost on the persistence of resistance in each version of 97

the model. The model allows us to identify MCSCs for transition metals and how they 98

depend on the toxicity of the metal and the fitness cost of carrying resistance. We show 99

that both deterministic and stochastic versions of the model provide similar results, 100

with resistance lost only at high fitness costs and sufficiently dilute metal 101

concentrations, i.e. low toxicity. However, the stochastic model does suggest a higher 102

chance of persistence for several months without antibiotic selection. Finally, we 103

demonstrate the use of the MSCSs by applying them to measurements of copper and 104

zinc concentrations in dairy slurry and slurry-amended soil on the same farm. 105

Materials and methods 106

Model description 107

The purpose of this analysis is to understand how the persistence of resistance genes is 108

dependent on the fitness cost of carrying the resistance genes (for example on a plasmid) 109

and the selective pressure from metals being present in the environment. We also 110

investigate how deterministic and stochastic modelling paradigms impact upon the 111

results. The models describe a generalised process of conjugation transferring the 112

resistance genes, how bacterial growth is affected by the fitness cost of plasmid carriage 113

(if present), and how death is affected by the concentration of metal in the environment. 114

We model a small (micro-scale) volume element representative of a larger system. 115

The complete macro-scale ecosystem can be considered to be made up of replicates of 116

the modelled domain [35,36]. The starting bacterial population is of primarily resistant 117

bacteria (99.32%), without antibiotic present, because we are interested in the 118
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persistence of resistance rather than the spread of resistance. The deterministic version 119

of the model is described by ordinary differential equations (ODEs) Eq (1)-(2). As in 120

Baker et al. [32], bacterial growth is defined by a logistic growth terms, affected by the 121

fitness cost (α) of the plasmid for the resistant cells. Conjugation uses a classic 122

Sensitive-Infected-Resistant/Recovered (SIR) model formulation for plasmid transfer, 123

with “infection” of sensitive cells (S) by resistant cells (R) with rate constant β. The 124

resistances to metal and antibiotics are modelled as genetically linked, so that cells are 125

either sensitive to both or resistant to both, and either agent will be co-selective for 126

both resistances. The differences from the Baker et al. model [32] are the inclusion of 127

death of sensitive (δS) and resistant bacteria (δR) - at different rates due to the 128

resistance to metal - and plasmid loss (ε) due to segregation upon cell division. 129

dS

dt
= r(1− N

Nmax
)S − δSS −

βSR

N
+ r(1− N

Nmax
)(1− α)εR (1)

dR

dt
= r(1− N

Nmax
)(1− α)(1− ε)R− δRR+

βSR

N
(2)

where N = S +R. The same model structure can be described by a set of discrete 130

events which define the stochastic simulation algorithm (SSA). Table 1 provides the 131

details of this SSA. Each event has a reaction rate which is the same as the rates 132

defined in ODEs Eq (1)-(2). 133

Table 1. Stochastic Simulation Algorithm for Eq (1) - (2)

Event Description Rate

S → 2S Growth of sensitive bacteria r(1− N
Nmax

)S

S → Death of sensitive bacteria δSS

R→ 2R Growth of resistant bacteria r(1− N
Nmax

)(1− α)R

R→ Death of resistant bacteria δRR

S → R Conjugation βSR
N

R→ S +R Plasmid loss due to segregation r(1− N
Nmax

)(1− α)εR

Events describing the lifecycle of the bacteria as well as the processes of conjugation
and plasmid loss. The rates for the different events are the same as in the ODE version
of the model.
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Estimation of metal toxicity parameter values 134

We estimated the parameters for bacterial death rate for both resistant and sensitive 135

bacteria under different metal concentrations using the metal toxicity values for E. coli 136

provided by Ivask et al. [37] and Equation (3). We used the SCO (Social Cognitive 137

Optimization) evolutionary solver in LibreOffice Calc to estimate the unknown 138

parameters Emax (maximum death rate due to metal), MIC (Minimum Inhibitory 139

Concentration) and H (Hill coefficient) for all metals; fits to metal toxicity data are 140

shown in Figure S5, demonstrating successful model calibration. 141

δS = δR +
EmaxM

H

MICH +MH
(3)

where, M is the metal concentration. Once the parameters were estimated (Table 2), 142

the concentrations of copper and zinc measured using the ICP-MS techniques, for both 143

slurry and slurry treated soil, were used to calculate the ratio of death rate of sensitive 144

to resistant bacteria (ζ). 145

Numerical solutions of the model 146

For the deterministic model, differential equations were simulated using the R [38] 147

deSolve package [39] LSODA algorithm and sensitivity analysis was performed using the 148

rootSolve [40,41], doParallel [42] and foreach [43] R packages. For the parameter 149

sensitivity analysis using the stochastic model, we used COPASI [44], and created shell 150

scripts to run each parameter combination one thousand times. The output of each run 151

was then imported into R to produce parameter sensitivity graphs with the ggplot2 [45] 152

package, with 5-dimensional data expressed as two spatial dimensions and three colour 153

dimensions, using an RGB combination for each point associated with each parameter 154

combination, red for persistence of resistance, blue for loss of resistance, and green for 155

total cell death. For example, if out of 1000 runs of the stochastic version of the model, 156

300 runs predicted persistence of resistance and 700 runs loss of resistance, then a 157

colour 30% red and 70% blue would be plotted. 158

For example environments, we took the measured values of copper and zinc 159
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concentrations in slurry and slurry amended soil and calculated the death rate ratio of 160

sensitive to resistant populations based on the metal toxicity values of E. coli [37], to 161

check resistance fixation conditions in each environment, as described in the Model 162

Overview section. 163

Multi-elemental analysis by ICP-MS 164

Slurry 165

Slurry samples (2 mL) were acid digested on a hot plate using 6 mL Primar Plus grade 166

HNO3 (68%) and 2 mL H2O2 (Thermo Fisher Scientific, Loughborough, UK). Samples 167

were diluted with Milli-Q water (18.2 MΩ cm) to 50 mL and syringe filtered to <0.2 µm 168

(Merck-Millipore, Burlington, USA) prior to analysis by inductively coupled plasma 169

mass spectrometry (icapQ model; Thermo Fisher Scientific, Bremen, Germany). 170

Samples were introduced (flow rate 1.2 mL min-1) from an autosampler (Cetac 171

ASX-520) incorporating an ASXpress rapid uptake module through a perfluoroalkoxy 172

(PFA) Microflow PFA-ST nebuliser (Thermo Fisher Scientific, Bremen, Germany). 173

Sample processing was undertaken using Qtegra software (Thermo-Fisher Scientific) 174

utilizing external cross-calibration between pulse-counting and analogue detector modes 175

when required. The ICP-MS was run employing two operational modes with in-sample 176

switching between a collision cell (i) charged with He gas with kinetic energy 177

discrimination (KED) to remove polyatomic interferences and (ii) using H2 gas as the 178

cell gas. The latter was used only for Se determination. Peak dwell times were 100 ms 179

with 150 scans per sample. 180

Internal standards, used to correct for instrumental drift, were introduced to the 181

sample stream on a separate line (equal flow rate) via the ASXpress unit and included 182

Sc (10µg/L), Ge (10 µg/L), Rh (5 µg/L) and Ir (5 µg/L). The matrix used for internal 183

standards, calibration standards and sample dilution was 2% Primar Plus grade HNO3 184

with 4% methanol (to enhance ionization of some elements such as Se). 185

Calibration standards included (i) a multi-element solution with Ag, Al, As, Ba, Be, 186

Cd, Ca, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Se, Sr, Ti, Tl, U, 187

V and Zn, in the range 0 to 100 µg/L (0, 20, 40, 100 µg/L) (Claritas-PPT grade 188

CLMS-2 from SPEX Certiprep Inc., Metuchen, NJ, USA); (ii) a bespoke external 189
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multi-element calibration solution (PlasmaCAL, SCP Science, France) with Ca, Mg, Na 190

and K in the range 0-30 mg/L and (iii) a mixed phosphorus, boron and sulphur 191

standard made in-house from salt solutions (KH2PO4, K2SO4 and H3BO3). 192

Soil 193

For extractable macro- and micro-elemental analysis, 1 g of soil was suspended in 9 mL 194

of 1 M NH4NO3 and mixed thoroughly by agitation using a rotary shaker for 1 hour. 195

Subsequently samples were centrifuged and 1 mL of the resulting supernatant was 196

diluted in 9 mL of 2% nitric acid. Finally, samples were passed through a 0.22 µm filter 197

before being loaded for inductively coupled plasma mass spectrometry (ICP-MS; 198

Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany) 199

Parameters used in the models 200

The parameters were taken to match the model parameters of Baker et al. [32], where 201

possible; other parameter values were taken from references in Table 2. The estimated 202

death rates for metals from the metal toxicity model are also listed. For sensitivity 203

analysis, the ratio of death rates (ζ) and the fitness cost of carrying the plasmid with 204

resistance genes are varied over a range. We also increased and decreased transfer 205

frequency and probability of segregational loss, to see the effects of these two 206

parameters on the output. 207

Results 208

In these simulations, we consider the persistence of the resistant strains following 209

withdrawal of antibiotic, but in the continued presence of metal. Therefore the 210

population starts at 99.3% resistant cells with only a small concentration of sensitive 211

cells. For the stochastic models, we consider a microcosm of this population. We vary 212

the ratio of death rates (sensitive/resistant) between 1.0, corresponding to an absence of 213

toxic metal, so sensitive and resistant cells die at the same rate, and thus there is no 214

selection pressure; and 10.0, corresponding to strong selective pressure, with sensitive 215

cells dying ten times faster than resistant cells due to high concentrations of toxic metal. 216

We vary the fitness cost between 0 (no fitness cost) and 1 (hosts carrying plasmid 217
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Table 2. All parameters used in equations (1)-(3).

Parameter Description Value (Range) Source
r Specific growth rate 0.5 h−1 [46–48]
Nmax Carrying capacity of liquid slurry 6.71× 107 CFU/L [49]
δR Death rate of resistant bacteria (base

rate)
0.025 h−1 [50]

δS Death rate of sensitive bacteria ζ · δR varied
ζ Ratio of δS to δR affected by metal

concentration
1.0 (1.0-10.0) varied

α Fitness cost for carrying resistance
as a fraction of r

0.1 (0-0.99) [47,51,52]

β Conjugation rate 0.001 h−1 [52, 53]
ε Plasmid loss probability 0.000144 [54]
Volume Volume of microcosm 2.5× 10−6 L Assumed

Copper (CuSO4)
MIC Minimum inhibitory concentration 212.79 mg/L Estimated
Emax Maximum death rate due to metal 1.74 h−1 Estimated
H Hill coefficient 1.54 Estimated

Zinc (ZnSO4)
MIC Minimum inhibitory concentration 2760.31 mg/L Estimated
Emax Maximum death rate due to metal 1.37 h−1 Estimated
H Hill coefficient 0.72 Estimated

Mercury (HgCl2)
MIC Minimum inhibitory concentration 1.85 mg/L Estimated
Emax Maximum death rate due to metal 5.89 h−1 Estimated
H Hill coefficient 1.44 Estimated

Lead (Pb(NO3)2)
MIC Minimum inhibitory concentration 1728.7 mg/L Estimated
Emax Maximum death rate due to metal 18.74 h−1 Estimated
H Hill coefficient 1.82 Estimated

Silver (AgNO3)
MIC Minimum inhibitory concentration 0.48 mg/L Estimated
Emax Maximum death rate due to metal 2.42 h−1 Estimated
H Hill coefficient 5.19 Estimated

Parameter values used for the model. The majority of the core parameter values are obtained from the
literature. No fixed parameter value is used for the death rate of sensitive cells (δS); rather this is allowed to
vary over a 10-fold range in order to explore model behaviour and identify MCSCs. The parameter values
associated with individual metals are estimated from data as described in the Methods.

cannot grow). This full range of fitness costs is included for analytical completeness so 218

that model behaviour can be fully understood; the typical biologically realistic range is 219

from 0.1 to 0.3 [47,51,52]. 220

To persist or not to persist and the role of chance 221

To demonstrate model behaviour, we show model simulations for the four bounding 222

values of fitness cost and death rate ratio used in the sensitivity analysis below. Thus 223
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all model behaviours in the sensitivity analysis lie in between these extremes. When the 224

fitness cost is 0, the resistant bacteria persist in the population, irrespective of the 225

death rate ratio (Fig 1(a) and (c)). When stochasticity is introduced into the model, 226

then in the absence of selection (i.e. death rate ratio of 1) then a small proportion of 227

simulations saw a loss of plasmid due to drift (2.6% of cases). Under strong selective 228

conditions (death rate ratio of 10), the plasmid is fully maintained in both the 229

deterministic and stochastic simulations. For extreme values of fitness cost (1), the 230

proportion of resistance cells decreases over time. The rate of decrease depends upon 231

the level of selective pressure. In the absence of selective pressure (death rate ratio of 1), 232

resistance persists for approximately 40 days, before decreasing sharply (Fig 1(b)). 233

Under strong selection pressure (death rate ratio of 10), resistance persists for longer, 234

declining after about 80 days (Fig 1(d)). In the stochastic model under these conditions, 235

both sensitive and resistant cells die, and no meaningful results can be shown. From 236

these graphs, it can be inferred that under intermediate values of fitness cost and death 237

rate ratio, resistance will persist for different periods of time. This is explored fully next. 238

Effect of toxicity and fitness cost on persistence of resistance 239

In order to evaluate persistence of resistance due to co-selection, we carried out a 240

sensitivity analysis for two parameters, metal toxicity and fitness cost for plasmid 241

carriage, first using the deterministic version of the model. We measured the time for 242

the resistant population to drop from 99.32% to 50% (Fig 2). The dominant outcome 243

for higher levels of metal toxicity (i.e. higher concentrations) and lower levels of fitness 244

cost is persistence of resistance (grey zone in Fig 2). The coloured zone represents those 245

simulations where resistance is lost, ranging from blue (rapid loss) to red (slower loss). 246

A key feature to note is the steep rise in the boundary between the two zones: as the 247

level of toxicity increases, the minimum fitness cost required for loss of resistance also 248

increases sharply. This suggests that co-selection can occur even at low metal 249

concentrations. 250

Compared to the deterministic model with a single outcome for a set of parameter 251

values, a stochastic model may result in different outcomes on repeated runs with same 252

parameter values. Thus, in order to assess the impact of stochasticity, the probability of 253
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Fig 1. Time series of proportion of resistant bacteria for the bounding values of fitness cost
and death rate ratio. Time series curves up to 100 days for select values of fitness cost and death rate
ratio of sensitive to resistant bacteria, both for deterministic (black) and stochastic (red and blue dashed)
versions of the model. The four figures correspond to the bounding values for the ranges fitness cost and
death rate ratio used in later simulations. With no fitness cost ((a) and (c)) deterministic version results in
persistence of resistance, but there might be some loss (2.6% cases) in the stochastic model in the absence of
selection due to drift ((a)). With high fitness cost ((b) and (d)), there is loss of resistance, with the time for
loss dependant on death rate ratio. The stochastic version in this scenario, however, leads to loss of both
sensitive and resistant bacteria.

different outcomes was coded as different colours on the RGB scale, with red denoting 254

resistant bacteria at more than 50%, blue denoting resistant bacteria less than 50% and 255

green denoting loss of all bacteria (Fig 3). Thus, a mix of these colours at a point 256

signifies that the same parameter combination resulted in different outcomes. As can be 257

seen in Fig 3(a), after 100 days there is a greater chance of persistence (red) rather than 258

loss (blue), whereas after a 1000 days (i.e. 3 years) or 105 days (chosen as a very long 259

period to allow the model to equilibriate), there was a clear pattern of resistance loss or 260
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Fig 2. Sensitivity analysis of the deterministic model. The figure shows the number of days for the
resistant population to drop to 50% total population from the same starting point of 99.32% resistant
population, in the absence of antibiotic. The x-axis represents metal toxicity in terms of ratio of sensitive
against resistant bacterial death rate. As can be seen, co-selection pressure causes persistence of resistance at
low fitness cost and high metal toxicity. Loss of resistance is seen only with high fitness cost or with no metal
- ratio of death rates equal to 1. The vertical lines represent the death rate ratio for copper (green) and zinc
(black) concentrations in the example environments of slurry (solid lines) and slurry amended soil (dashed
lines at almost identical x- coordinates) as measured by the method mentioned before. For both metals, the
observed concentrations lead to similar death rate ratios, with higher chance of persistence in slurry than
slurry amended soil.

persistence, similar to the pattern for the deterministic model. Thus, the outcomes in 261

Fig. 1 with loss of resistance in less than 100 days, have a low probability, as inferred 262

from Fig 3(a). Even then, the fitness cost required for such loss, is higher than typical 263

costs of stable plasmids [47,51,52]. 264

Our previous work highlighted the importance of gene transfer rate on spread of 265

resistance [32]. Therefore, to assess the robustness of the outcomes shown in Fig 2 to 266

changes in the conjugation rate parameter, we conducted similar sensitivity analyses 267
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with conjugation frequency 10 times higher (Fig. S1) and lower (Fig. S2). The result 268

with lower conjugation frequency is almost identical, probably because conjugation is 269

not an important factor when resistance is already high. On the other hand, with 270

increased conjugation frequency, there is increased persistence of resistance. However, 271

the default conjugation frequency (0.001 h-1) is already at the upper end of observed 272

values, so higher values are unlikely to be realistic. Therefore, we are confident that the 273

results shown are robust to variations in transfer rate. We also varied the value of 274

probability of plasmid loss due to segregation, showing that a higher loss probability 275

speeds up loss of resistance (Fig. S3), whereas a lower loss probability has similar 276

outcome (Fig. S4). Again, higher rates of plasmid loss are not likely to be especially 277

relevant because of plasmid addiction systems, and so we are confident that our results 278

are robust to variations in this parameter too. Changing growth rate had no effect on 279

the output (data not shown). 280

Estimating minimum co-selective concentrations (MCSCs) 281

We presented model outcomes in terms of the ratio of death rates at different metal 282

concentrations (Fig 2); these can be used to predict minimal co-selection concentrations 283

for specific metal, bacterial and plasmid combinations, using a metal toxicity model (Eq. 284

(3)), and knowledge of the fitness cost of carriage. For these calculations, we used a 285

fitness cost of 0.25, which is within the reasonable range of expected values [47,51,52], 286

although this could be reduced to produce more stringent MCSCs. Thus, the death rate 287

ratio selected was 1.25. Using the estimated parameter values, we calculated the MCSC 288

value based on this ratio. The data is presented in Table 3 for copper, zinc, mercury, 289

lead and silver using E. coli as an exemplar. 290

In reference to our example environments, measured zinc concentrations are 32.16 291

mg/L (slurry) and 0.3 mg/L (soil), and copper concentrations are 22.32 mg/L (slurry) 292

and 0.17 mg/L (soil). Therefore the metal concentration in slurry is above the MCSC 293

for both metals, hence this will be classified as a co-selective environment; however, the 294

metal concentration is below the MCSC for both metals in slurry-amended soil, so that 295

would not be a co-selective environment. Similarly, the measured concentrations of lead 296

and silver in slurry are both below the MCSC threshold and so these metals are not 297
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Table 3. Metal MCSC and measured concentrations

Metal MCSC
(mg/L)

Farm Soil
(mg/kg)

Dairy Slurry
(mg/L)

ALS Environmental
soil guidelines (mg/kg)

Copper (Cu) 5.5 0.068 22.32
80 (5.0<pH<5.4)
200 (pH≥7.1)

Zinc (Zn) 1.6 0.16 32.16
200 (5.0<pH<5.4)
450 (pH≥7.1)

Mercury (Hg) 0.0156 NA NA 1 (pH>5.0)
Lead (Pb) 21.5 NA 0.047 300 (pH>5.0)
Silver (Ag) 0.152 NA 0.00026 NA

The MCSC threshold is calculated by assuming death rate ratio of 1.25, which corresponds to fitness cost of
0.25 for predicted loss of resistance in Fig. 2. A metal concentration above this threshold is predicted to
provide co-selective pressure and lead to persistence of resistance. With our farm example data,
concentrations of copper and zinc are predicted to be coselective in the slurry, but not slurry amended soil.
Measured concentrations of lead and silver in the slurry are predicted not to be coselective.

predicted to be co-selective. 298

Discussion 299

Several studies have shown that there is a correlation between presence of metals and 300

abundance of antibiotic resistance genes (ARGs) in soil, including in Scotland [55], 301

Western Autralia [56] and urban soils from Belfast area [15]. These correlations are 302

indicative of co-selection due to metal presence, although they do not prove a causal 303

link. The model described in this study provides a mechanistic insight into the different 304

factors which drive co-selection. Both deterministic and stochastic versions were defined 305

with similar assumptions and parameter values, because the inherent assumptions about 306

the biological processes in each methodology are different and hence might lead to 307

different results. The deterministic version shows that loss of resistance genes or 308

resistant bacteria is only possible in low toxicity (lower death rate ratio) environment, 309

or, in the rare case of cost prohibitive plasmids (high fitness cost). Most AMR 310

phenomena are observed in large scale environments such as guts, tanks, fields, farms, 311

hospitals [57], and the deterministic model can provide a reasonable approximation for 312

prediction of the behaviour of large scale populations if they are, or can be considered 313

to be, well-mixed. However, most environments are comprised of smaller, diverse, 314

microscopic bacterial communities, and so deterministic models may be less realistic; 315

thus stochasticity can play an important role [36]. The stochastic model in this work 316

leads to a similar general conclusion of the effects of metal toxicity and fitness cost, but 317
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stochasticity leads to a greater chance of persistence over a shorter (reasonable) 318

time-scale of antibiotic absence. 319

Importantly, the models we developed can be used to predict minimal co-selective 320

concentrations (MCSCs) for transition metals. These predictions can help inform metal 321

concentration thresholds for environments in which antibiotic resistant bacteria are 322

likely to be present — provided other organisms don’t have toxicity values much lower 323

than predicted MCSCs. The model has been developed using microbial parameter values 324

from dirty water (slurry) and toxicity values from liquid-phase experiments. While the 325

application of the model is best to dirty water (slurry, waste water, rivers etc), we make 326

comparisons also with soil guidelines, albeit with some caveats discussed below. Animal 327

agricultural waste is a prime example due to both metal and antibiotic use. The MCSC 328

determined here is low compared to the permissible concentrations set by established 329

guidelines. For example, the ALS Environmental guideline for soil concentrations has 330

the maximum permissible value for copper and zinc set at 80 mg/kg and 200 mg/kg, 331

respectively, for pH between 5.0-5.4 and 200 mg/kg and 450 mg/kg respectively at pH 332

of 7.1 or higher [58]. These concentrations are comparable with the findings of Song et 333

al., in which copper and zinc induced increased resistance to tetracycline at 333 mg/kg 334

and 500 mg/kg respectively [11]. The ALS report gives the concentrations for mercury 335

and lead at 1 mg/kg and 300 mg/kg, respectively, for pH 5.0 or higher. Similarly, Seiler 336

and Berendonk [17] suggest an MCSC for soil of 117 mg/kg fresh weight for copper. 337

Our study could indicate that current guidelines provided for soil metal concentrations 338

are not sufficiently stringent and might provide a co-selective environment. 339

On the other hand, guidelines for maximum permissible concentration (MPC) for 340

water - either freshwater, saltwater or groundwater (but not dirty water) - suggest 341

extremely low metal concentrations. Taking the example of the report by National 342

Institute of Public Health and the Environment Bilthoven, The Netherlands, we see 343

that MPCs provided for copper are 1.5, 1.4 and 2.4 µg/L [59], which is 1000 fold lower 344

than the MCSC value estimated by the model. This might be due to more sensitive 345

toxicity levels of other organisms found in these environments or the use of these 346

sources for drinkable water. Similar values are reported for other metals as well. These 347

figures are very similar to the MCMCs suggested by Seiler and Berendonk [17] for 348

copper and zinc (1.5 µg/L and 19.61 µg/L respectively), but these concentrations may 349
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be difficult to apply to dirty water (e.g. slurry). 350

These predicted MCSCs are open to empirical validation and refinement. There are 351

many possible approaches, with aqueous in vitro experiments, microfluidic models of 352

pore networks characteristic of soil, or soil microcosms. Any approaches would require 353

either the isolation or engineering of bacterial strains with genetically linked and 354

phenotypically active metal and antibiotic resistant genes, as well as robust methods for 355

determining metal resistant phenotype. This MCSC framework could also be expanded 356

to include other non-antibiotic biocides, such as disinfectants or detergents, also known 357

to co-select for antibiotic resistance [60]; such inclusion would also require calibration 358

against toxicity data, as we have done for transition metals here. 359

The current model does not explicitly account for changes in bioavailability of metal, 360

which may cause change in toxicity values. For example, Cr3+ ions are less toxic than 361

chromate and which form they occur in is dependant on environmental conditions [61]. 362

Thus, this speciation (physiochemical form of metal) can affect the toxicity of the 363

metals. Also, determination of element bio-availability remains unpredictable and 364

contingent on adsorption dynamics, absorption within soil particles, flocculation, ion 365

exchange, precipitation and complexation reactions. While classical geochemical 366

Pourbaix relationships can provide insight about possible interactions based on pH and 367

Eh (redox), a lot remains dependent on surface character and affinities, especially soil 368

organic matter, water, salinity and temperature. Elevations in pH tend to reduce 369

solubility, and the presence of carbon dioxide tends to promote carbonate precipitation; 370

Eh reductions enhance sulfide precipitation; whereas salinity (or presence of multiple 371

ions) tends to mobilize the metals. It could be possible to couple this model with 372

models for metal partitioning in soil [62], which could lead to improved MCSCs for soil. 373

The BCR483 extraction (NH4NO3) provides a good representation of trace element 374

mobility [63], and represent the bio-availability from the sludge amended soils. The 375

acid/peroxide extractions represent oxidizable forms and probably over-estimate metal 376

lability, but does reflect the fraction associated with organic carbon, which can be 377

highly dynamic in terms of complexation and solubility. 378

Copper availability tends to be highly dependent on organic matter content, to the 379

extent that kd values for Cu2+ tended to be independent of pH (when >5.5) and driven 380

by organic carbon [64]. While sludge amendments can enhance organic matter content 381
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in soils, and Cu binding [65,66], the presence of dissolved organic matter can mobilize 382

the copper [67]. Lead strongly binds to organic matter, especially humic at pH >4. 383

Shifts between anoxia and oxic conditions may induce periods of solubility, but remain 384

reactive to sulfide precipitation. Solubility values tend to be associated with pH under 385

low carbon and sulfur environmental matrices; in case here, it is likely to be associated 386

with the nature of the organic matter. Zinc can become insoluble with sulfide at 387

reducing conditions and can form relatively insoluble carbonate precipitates at higher 388

pH. However, lability of zinc best correlates with total zinc concentrations [68], rather 389

than precipitation reactions. Dissociation reactions are similar whether applied as 390

sludge or as a salt [65]. Silver in the environment, while extremely toxic, is relatively 391

insoluble. It strongly binds to organic matter and oxides within the soils, to the point 392

that desorption is considered negligible. 393

The toxicity model defined in this study, uses the bioavailable metal concentration 394

values and the Hill equation to calculate the death rate. While this empirical approach 395

fits the data, more mechanistic approaches that take into account the details discussed 396

above could be appropriate. Moreover, the toxicity values that are reported by Ivask et 397

al. [37] are not based on the environment and do not take into account the interaction 398

between different metals or metal and other biocides. 399

Despite these assumptions, the model can be applied to a large number of 400

environments, with relatively minor changes. However, in more complex environments, 401

spatial heterogeneity and stochasticity may become more important [36]. Another 402

complexity that is missing and might provide further insight into the role of metals 403

towards co-selection is the inclusion of multiple metals. Environmental contaminants 404

occurring in a mixture is an observed and quantified norm. Thus, the presence of 405

multiple metals might affect their bioavailability/toxicity. Data exists to show the 406

correlation between contaminant mixture and ARGs [69], but, this only proves that 407

there is co-occurrence of multiple toxicants and a higher abundance of ARGs. A 408

mechanistic understanding of co-selection due to multiple toxicants could provide 409

interesting further results. Similar data, if available for other co-selective agents like 410

biocides, QACS, etc. can be used to calculate the death rate and thus understand their 411

potential for antibiotic resistance co-selection. 412

In conclusion, our model shows that co-selective pressure can maintain antibiotic 413
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resistance in microbial communities, even in the absence of antibiotic. It provides a 414

general approach for setting appropriate standards for transition metal contamination, 415

especially for environments where antibiotic resistance is likely to be important, e.g. in 416

livestock farming, and monitoring those environments against those standards. It also 417

implicates the importance of developing technologies for removing metals from such 418

environments [70]. 419

Supporting information 420

Fig. S1 Conjugation rate is 0.01, i.e., 10 times more than for Fig 2. We can see this leads to

greater chances of persistence of resistance, even in situations with no selection pressure.
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Fig. S2 Conjugation rate of 0.0001 (10 times lower). Shows very little difference compared to Fig 2.
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Fig. S3 10 times higher probability of loss of resistance carrying plasmid due to segregation

(0.00144). The effect is seen in the time required for loss of resistance. Most of the situation that lead

to persistence are not affected, but where loss is likely the time required for loss of 50% of resistance from

population is reduced by approximately a factor of 10, as the red colour corresponds to 103 days, when

before it was 104 days.
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Fig. S4 10 times lower probability of loss of plasmid due to segregation (0.0000144). Similar

results to that seen in Fig 2
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Fig. S5 Fits of metal toxicity data. Figure shows the predicted death rate (line)

and experimental death rate values (points) for each of the metals considered.
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Fig 3. Sensitivity analysis of the stochastic model. Percentage distribution of three outcomes
occurring in the stochastic simulations, with each outcome is represented by a different colour (red:
persistence of resistance; blue: loss of resistance; green: total extinction). The three panels show different
time points in the simulations, 100 days, 1000 days (i.e. 3 years) and 100,000 days (to reach steady state).
In the short term, there is a greater probability of persistence of resistance as after 100 days, cases with
relatively high fitness cost show very little loss of resistance but after 1000 days, we see a similar pattern as
seen for the ODE simulations (black line). The black line corresponds to the edge of persistence region of
Fig 2.
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