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Abstract: This paper investigated the mechanical response (including breakage and release of the
internal liquid) of single core–shell capsules under compression by means of discrete multi-physics.
The model combined Smoothed Particle Hydrodynamics for modelling the fluid and the Lattice
Spring Model for the elastic membrane. Thanks to the meshless nature of discrete multi-physics,
the model can easily account for the fracture of the capsule’s shell and the interactions between the
internal liquid and the solid shell. The simulations replicated a parallel plate compression test of
a single core–shell capsule. The inputs of the model were the size of the capsule, the thickness of
the shell, the geometry of the internal structure, the Young’s modulus of the shell material, and the
fluid’s density and viscosity. The outputs of the model were the fracture type, the maximum force
needed for the fracture, and the force–displacement curve. The data were validated by reproducing
equivalent experimental tests in the laboratory. The simulations accurately reproduced the breakage
of capsules with different mechanical properties. The proposed model can be used as a tool for
designing capsules that, under stress, break and release their internal liquid at a specific time.

Keywords: capsule; discrete multi-physics; breakable solids simulation; Smoothed Particle Hydrody-
namics; Lattice Spring Model

1. Introduction

A capsule is a solid material enclosing an active substance, often in liquid form. The
internal structure of the capsules can vary significantly depending on the encapsulation
method and the materials used [1–3]. It can have a simple single-core shell [4], a multicore
shell, or a porous structure where the liquid is trapped [5]. Often, the purpose of the capsule
is to ensure a controlled release of the liquid inside. With this aim, they are widely used in
a variety of fields [6], including cosmetics [7], food [8], textiles [9], pharmacy [10], agricul-
ture [11], and, more recently, for self-healing materials such as self-repairing concrete [12]
or asphalt [13,14].

Mechanical characterisation is essential to the design of capsules for a timely release
of an active substance [15]. It provides information about material parameters such as
the Young’s modulus and the stress-strain relationship that are key factors in designing
capsules fit for their intended application. Currently, capsules are designed for end-use
applications by trial and error. Computer simulations have the potential to significantly
accelerate their design by providing a method for predicting the behaviour of the capsule
in advance.

Conventional modelling techniques like the Finite Element Method (FEM) can be used
to calculate stress in shells [16], but they are less effective when the simulation includes
the fracture of the shell. Modelling fluid–solid interactions, occurring after the fracture
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of the shell and the consequent release of the fluid, is another main challenge. This issue
could be solved by coupling FEM with Smoothed Particle Hydrodynamics (SPH) [17], but
this method cannot accurately reproduce the fracture of the shell. Other computational
techniques, such as Computational Fluid Dynamics (CFD), Lattice–Boltzmann (LB), and
Boundary Integral Methods (BIMs), have been used for simulating solid–fluid flows.
However, none of them can simulate breakable solids accurately. Recently, a mesh-free
Discrete Multi-Physics (DMP) approach has been implemented to simulate the interactions
between fluid and solid particles [18,19]. DMP is based on a particle framework that
couples different particle models: SPH to simulate the hydrodynamics of liquid, and the
Lattice Spring Model (LSM) to simulate a solid (including high deformations and fracture).
These methods share a common particle-based paradigm and, therefore, are easy to couple
together. This approach has been validated for a variety of fluid–solid problems. Some
examples are the hydrodynamics in the colon [20], motile cilia in the lungs [21], emboli in
flexible venous valves [22], phase-change in circular pipes [23], and the deformation and
rupture of nucleated cells under shear flows [24].

In this paper, DMP was used to simulate a 3D elastic core–shell capsule breaking
under compression and releasing its internal liquid into the environment. To the best of our
knowledge, this is the first model capable of simulating this phenomenon. The proposed
model is an extension of [24], but, in this case, rupture occurs by direct compression of the
capsule rather than as a result of shear flow. The computational results were validated
by comparing the type of fracture of the capsule and the force/displacement relationship
with experimental data for elastic core–shell capsules available in the literature [25]. DMP
can effectively reproduce the deformation and the fracture of the capsule. The model
was used to study the influence of the shell’s Young’s modulus and thickness on the
force/displacement relationship and on the type of fracture to show how the proposed
model could have a significant impact on the design of capsules [26].

2. Methodology
2.1. Modelling Approach

The version of DMP used in this paper (Figure 1) couples SPH and the LSM. SPH was
used to model the fluid, and LSM was used for the solid. Details on these models and how
they were coupled together are given in this section.
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2.1.1. Smoothed Particle Hydrodynamics (SPH)

Here, only a very general introduction to SPH is given; for additional details, see [27].
The general idea of SPH is to approximate a partial differential equation over a group of
movable computational particles that are not collocated over a grid or a mesh [28]. Each
particle has an associated mass, momentum, and energy and the motion of the particle is
calculated by integrating Newton’s second law. Particle properties such as density, velocity,
energy per unit of mass, pressure, or heat flux are obtained by interpolating neighbouring
particles by means of:

f (r) ≈
y

f
(

r
′
)

W
(

r− r
′
, h
)

dr′ (1)

where f (r) is a generic property defined over the volume, r is the position vector where the
property is measured, W is the so-called Kernel function, and h is a smoothing length [27].
We used the Lucy kernel [29]. The Navier–Stokes equation, for instance, can be discretised
over a series of computational particles, obtaining:

mi
dvi
dt

= ∑
j

mimj

(
Pi

ρ2
i
+

Pj

ρ2
j
+ ui,j

)
∇jWi,j + ∑ FE (2)

where P is the pressure, t represents time, v is the velocity, m is the mass, ρ is the density
associated with particles i and j, and FE refers to the external forces acting on the fluid
(e.g., gravity). The viscosity term (u) used in this study is defined in [30]. Equation (2)
requires an equation of state that relates density and pressure. In this work, we used Tait’s
equation [31]:

P(ρ) =
c0ρ0

7

[(
ρ

ρ0

)7
− 1

]
(3)

where c0 is a reference speed of sound and ρ0 is a reference density. To ensure weak
compressibility, c0 was chosen to be at least 10 times larger than the highest fluid velocity.

Πij in Equation (2) introduces the viscosity tensor; here, we used the so-called artificial
viscosity [30], defined as:

Πij = −αh
c0

ρij

vijrij

r2
ij + bh2

(4)

where vij = vj − vi and ρij = ρj + ρi. The dimensionless parameters α and b ensure the
stability of the simulation. In our case, b = 0.01, while:

α =
8v
hc0

(5)

where ν is the kinematic viscosity. At each time step, the local density is updated according
to the partition of unity equation [30]:

ρi = ∑
j

mjWi,j (6)

2.1.2. Lattice Spring Model (LSM)

The LSM was used to model the shell of the capsule. Here, only a very general
introduction to LSM is given; for additional details see [32]. The computational particles
that constitute the solid shell are linked together by spring-like bonds and their trajectories
calculated with the Newtonian equations of motion:

mi
d2ri
dt2 = − ∂

∂r
Utot(r1, r2, . . . rN) + ∑ FE (7)
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where Utot is the potential used to model the bonds between interconnected particles. In
this study, linear spring was used, which corresponds to the harmonic potential:

Ubond = kb(r− r0)
2 (8)

where r0 is the equilibrium distance and kb is the Hookean constant. The Young’s modulus
of the materials relates to kb, as explained in Section 2.3.

Equation (8) represents the forces that maintain two particles at a specific distance (r0).
The distribution of the shell’s computational particles is determined by defining a quadratic
mesh (see Figure 1) over an empty sphere with external diameter 3.1 × 10−5 m and an
internal diameter of 2.6 × 10−5 m. Nearest neighbour particles and next-nearest neighbour
particles are linked with computational springs. Breakage is simulated assuming that, if
the distance between two particles exceeds a maximal value (rmax), the bond is broken and
the two particles separated (Figure 2).
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How kb and rmax are calibrated to reproduce the capsule mechanical properties is
discussed later on.

2.1.3. Coupling the Two Models

Besides the interaction between two liquid particles (model with SPH) and two solid
particles (model with LSM), the model also requires specifying the interaction between
liquid and solid particles that occurs at the solid–liquid interface. Here, only a general
introduction to coupling SPH and LSM is given; for more details, see [33]. In continuum
mechanics, three conditions must be satisfied:(

∂

∂t
u− v

)
· n = 0 (no penetration condition) (9)

(
∂

∂t
u− v

)
× n = 0 (no slip condition) (10)

σs·n = σf·(−n) (continuity of stresses condition) (11)

where n is the vector normal to the boundary, u is the displacement of the solid, v is the
velocity of the liquid, and σs is the stress tensor in the solid and σf in the fluid.

The advantage of using a particle method is that we only solve the Newton equation
of motion for every particle. The only difference is in the force acting on the particle.
Equations (9)–(11) are no exceptions. They do not need a special treatment, but only forces
that replicate the effect of the boundary conditions. For Equation (9), this is achieved by
using the repulsive potential of the type:

Er = ε

[(σ

r

)a
−
(σ

r

)b
]

r < σ (12)

where the constants ε, σ, a, and b are given in Table 1. This repulsion force does not
influence the simulation itself. It is only used to avoid particle compenetrating and its
parameters are determined to achieve this goal without requiring a smaller time step. The
cut-off r < σ in Equation (12) ensures that, when the particles are not in contact, the force
is zero. The parameters in Equation (9) were chosen by trial and error to guarantee no
penetration without decreasing the timestep. If the repulsion potential is too weak, fluid
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will penetrate inside the solid; if it is too strong, the simulation will require small timesteps
to remain stable.

Table 1. Parameters needed for Discrete Multi-Physics simulation.

SPH

Number of SPH fluid particles 5731
Mass of each particle, m 2.7 × 10−15 kg

Initial distance among particles, dL 1.24 × 10−6 m
Smoothing length, h 1.1·dL

Artificial sound speed,c0 1.1 m s−1

Density, ρ0 900 kg m−3

Viscosity, µ0 0.001 Pa·s
LSM

Number of particles (shell) 5604
Mass of each particle 2.7 × 10−15 kg

Hookean coefficient, kb 4.6 N m−1

Maximum distance for fracture, rmax 1.2 r0
Shell thickness, t0 2.5 × 10−6 m
Capsule diameter 31 × 10−6 m

BOUNDARIES

Repulsive potential constant,ε 5 × 10−15 J
Repulsive radius, σ 1.1·dL

Repulsive coefficient, a 1
Repulsive coefficient, b 0

No-slip conditions are modelled by superimposing virtual fluid particles above the
solid particles at the interface, providing zero relative velocity at the solid–liquid boundary
for the liquid particles that interact with the interface. Finally, in particle methods, the
continuity-of-stress is automatically satisfied (it is a consequence of the law of action–
reaction) and does not require to be specificity implemented.

The calculations were carried out with LAMMPS, a molecular dynamics software
package that also accounts for other particle methods, such as SPH. The reader is referred
to [34,35] for additional details on the numerical formulations and schemes used in the
simulation of, respectively, the structure and the fluid.

The model does not account for temperature changes. However, this can be easily
implemented in DMP [18].

2.2. Geometry

The starting geometry in the simulations was a three-dimensional single liquid core
capsule with a diameter of 0.031 mm. As the purpose of this simulation was to simulate
compression of single particles between two parallel plates, the drivers were defined as
rectangular geometries that apply force to the capsule. The parallel plates were modelled
with solid particles (Figure 3). The lower plate was stationary, while the upper plate moved
as a rigid body under the effect of an applied force that compressed the capsules during
the compression test.
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Figure 3 shows the geometry of the shell and the parallel plates at the beginning of
the simulation. A transversal cut of the capsule shows the fluid particles inside the capsule.
In order to prevent penetration, repulsive forces were used between the fluid and the shell,
the fluid and the plates, and the shell and the plates by applying no-penetration and no-slip
boundary conditions, as explained in the previous section. The shell was built with three
particle layers. Simulations with additional layers (i.e., more particles) were carried out
and show similar results. In this study, we only considered elastic capsules. Viscoelastic
can be modelled by implementing the method proposed in [36]. From Figure 3, it can
be appreciated that the shell was not completely filled with fluid. The empty space was
created by the small deformation of the capsule due to gravity and the resulting settling of
the fluid particles. In theory, it is possible to add more particles to replenish the capsule.
However, we decided not to do this, since the same phenomenon can also occur in real
particles. This space is normally within 1%–2% of the total volume. We verified that within
this range, and the results were not affected.

2.3. Main Simulation Parameters

The parameters used in the simulations can be divided into three groups (i.e., SPH,
MSM, and boundaries) and are shown in Table 1.

The parameter that determines the elastic behaviour of the model is kb, the Hookean
coefficient of the computational springs. The actual Young’s modulus of the capsules can
be calculated from compression experiments with the technique proposed by Yap et al. [37].
In our case, it corresponds to E = 4.85 MPa. Once the Young’s modulus is known, the value
of kb can be calculated with the following equation [38]:

kb =
6Et0

3n
√

3
(13)

where E is the Young’s modulus, t0 is the thickness of the shell of the capsule, and n is the
number of layers of the shell. The timestep used in the simulation was ∆t = 1 × 10−10 s. We
carried out a sensitivity analysis of the results with the timestep to make sure the results
were independent of the timestep adopted.

The parallel plates applied a progressive pressure to the capsule until the capsule
broke, replicating the experimental conditions. From the simulations, therefore, we can
plot the force–displacement data and, for validation purposes, compare the plot with that
obtained from the experiments.

2.4. Parametric Study and Influence of kb and rmax

The capsule’s deformability and strength are governed by two parameters: the
Hookean coefficient of the computational springs (kb) and the maximum distance between
solid particles after which the computational spring breaks (rmax). In order to analyse the
influence of these parameters on the deformability, strength, and type of fracture of the
capsule, the main simulation, fitted to the experimental force–displacement curve, was
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assessed in 9 different simulations modifying kb (1.56, 4.67, and 14 N m−1) and rmax (1.03·r0,
1.2·r0, and 1.27·r0) values. Many other authors have applied similar methodologies in order
to perform sensitivity analysis in different fields [39–42].

3. Results and Discussion
3.1. Validation of the Simulation of Capsule Compression between Two Parallel Plates

A parallel compression test of a single core–shell capsule under compressive load
was reproduced in the simulations. The force–displacement curve obtained from these
simulations was compared to the corresponding data obtained experimentally [25] for a
core–shell with the same size and internal structure. For validation purposes, we compared
the results with only one type of capsule available in the literature [25]. However, it
must be noted that the parameters kb describing the mechanical properties of the capsule
are calculated by first-principles Equation (13), and are is not the result of fitting a free
parameter to the experimental data.

In order to determine the optimal resolution of the core–shell model, various sim-
ulations with an increasing number of computational particles were compared. Each
simulation had a different layer used to model the shell. The best compromise between
accuracy and computational times was found with three layers. Figure 4 compares the
force–displacement curve obtained with the model and with the experiments. Furthermore,
an additional simulation with the capsule without fluid inside was carried out in order to
understand the influence of the fluid on the capsule´s strength.

The results show that the compression can be divided into three regions: (i) an elastic
region where the force is proportional to δ3/2 (where δ is the displacement), as predicted
by Hertzian theory, and all of the load is supported by the external shell; (ii) an inelastic
region where the stress reaches the fluid that adds additional resistance to the compression;
(iii) a final region where the capsule breaks and collapses.

These three different stages were observed in both the experimental and the DMP
force–displacement curves. The DMP results are very similar to the experimental results
and reached the same maximal force required to break the capsule. The force–displacement
curve from the simulation of the shell without fluid shows a completely different shape,
which indicates that the internal fluid affects significantly the deformation of the capsule,
especially at high deformations. It is important to highlight that the model does not account
for plastic deformation. Locally, the rupture of every single bond was “fragile.” However,
this still produced a gradual rupture at the global level. In Figure 4, for instance, we
defined the region before the rupture as “inelastic” because we did not observe capsule
break-up. However, some of the bonds in the solid structure began to rupture, weakening
the structure and producing the observed inelastic behaviour.

Figure 5 shows that the DMP model is consistent with the fracture and the capsule
deformation for different coaxial load values applied during the compression test of the
real capsule tested in the laboratory [25]. In order to save computational time, the resulting
speed of the driver was higher in the simulations shown in Figure 5. However, quasi-static
conditions were verified by carrying out simulations at different driver speeds, enabling a
comparison between the force–displacement curves.



Processes 2021, 9, 354 8 of 13
Processes 2021, 9, x FOR PEER REVIEW 8 of 13 

Figure 4. Force–displacement curve obtained from a laboratory parallel plate compression test for a single core–shell cap-
sule, from a simulated single core–shell capsule without fluid inside and from a simulated single core–shell capsule. The 
upper plate displacement was expressed in %, taking into consideration the initial y-axis dimension of the capsule. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.4 0.5 0.6

Fo
rc

e 
(m

N
)

0.2 0.3 

Displacement (%)

Experimental
Without fluid phase
MSM-SPH model

Elastic region 

Inelastic 
region 

Rupture 

Figure 4. Force–displacement curve obtained from a laboratory parallel plate compression test for a single core–shell
capsule, from a simulated single core–shell capsule without fluid inside and from a simulated single core–shell capsule.
The upper plate displacement was expressed in %, taking into consideration the initial y-axis dimension of the capsule.

Processes 2021, 9, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 4. Force–displacement curve obtained from a laboratory parallel plate compression test for a single core–shell cap-
sule, from a simulated single core–shell capsule without fluid inside and from a simulated single core–shell capsule. The 
upper plate displacement was expressed in %, taking into consideration the initial y-axis dimension of the capsule. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Fo
rc

e
(m

N
)

Displacement (%)

Experimental
Without fluid phase
MSM-SPH model

Elastic region 

Inelastic 
region 

Rupture 

Figure 5. (a) Comparison between the deformation under coaxial load and (b) the fracture of a
simulated elastic single liquid core–shell capsule by the Discrete Multi-Physics (DMP) approach and
an elastic capsule of 16–50 µm being ruptured (from [43]).
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3.2. Influence of the Fluid on the Capsule’s Strength

Taking into consideration the previous results, it can be said that the internal liquid
has an important effect on the force–displacement relationship.

Figure 6 shows an image sequence of the simulation of the parallel compression test
of a single liquid core–shell capsule. Figure 6a shows the pressure of the internal fluid
at the beginning of the test. As the capsule was compressed by the upper plate load and
deformed, the pressure increased due to the load applied by the upper plate (Figure 6b,c).
Finally, when the capsule started to break, the pressure of the fluid inside the capsule
reduced because of the fluid released through the broken shell (Figure 6d).
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Figure 6. Simulation sequence of the parallel compression test of a single liquid core–shell capsule at different stages:
(a) beginning of the simulation, (b) high deformation and slight increment of internal pressure, (c) slight deformation and
significant increment of internal pressure and (d) fracture of the capsule.

3.3. Deformability and Strength of the Capsule (a Parametric Study)

In this section, a parametric study was carried out to understand how the behaviour
of the capsule is affected by its mechanical properties: in particular, by kb (which is related
to the Young’s modulus by Equation (13) and rmax (which provides the maximal local
displacement before rupture). We studied three values of kb (i.e., 14, 4.7, and 1.6 N m−1)
and rmax (i.e., 1.03·r0, 1.2·r0, and 1.27·r0), and all nine possible pairings of these parameters.

Lower rmax values imply that the distances required to break the computational springs
are shorter. This can be seen, for instance, in Figure 7b. Given the same kb, the capsule
broke when the displacement reached 45% for rmax = 1.03·r0 and 54% for rmax = 1.2·r0. The
load that initiated the breakage of the capsule was also lower (0.54 versus 1.46 mN). This
effect was observed for all three values of kb, but it was more evident at high values of kb.
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Figure 7. Simulated force–displacement curves for (a) kb = 1.6 N−1 m and a range of rmax values, (b) kb = 4.7 N−1 m and
different values of rmax and (c) kb = 1.6 N−1 m and different values of rmax.

As Figures 7 and 8 show, lower values of rmax mean that the local deformations
required to break a computational bond are lower. As a result of this, breakage occurred
at lower displacements in the simulations where rmax was lower. High values of kb mean
high Young’s moduli (see Equation (13)). The shell was more rigid and, when it broke, the
fracture started at a single location and propagated from there, forming a single wedge-
shaped gash. When kb was low, the capsule was flexible and showed little resistance to
compression. In this case, the capsule tended to break at various locations at the same time
during compression.
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4. Conclusions

This study proposed a Discrete Multi-Physics model to simulate capsules formed
by a shell containing a fluid. The liquid core was implemented with Smoothed Particle
Hydrodynamics and the solid shell with the Lattice Spring Model.

The model was validated against experimental compression of a single core–shell
capsule between two parallel plates. The results showed that the model replicates with
good accuracy the behaviour of the real capsule. Three different stages were highlighted
in the force–displacement curve occurring during the compression. In the first stage, the
load was supported by the external shell and the behaviour was Hertzian (i.e., the force
was proportional to δ3/2). During the second stage, the stress reached the fluid, which
added additional resistance to the compression. Finally, in the third stage, the capsule
broke and collapsed.

After the model had been validated, we carried out a parametric study that showed
how the breakage of the capsule depended on its material properties. By changing the
material properties, we varied (i) the maximal stress the capsule can resist before breaking,
and (ii) the mode of breakage. In some cases, the shell cracked at one point that opened
a wide gash in the capsule. In other cases, the shell fractured at multiple locations. This
affected the way the liquid was released from the capsule. In the first scenario, the release
was not uniform and was concentrated at one side of the capsule. In the second, the liquid
was released from multiple points distributed around the capsule.

The proposed model can help the design of capsules with specific features. For in-
stance, we can adjust the mechanical properties of the capsule to make sure that it breaks
only when a precise stress level is reached. The model also simulates the liquid release
occurring after breakage. In this way, we can design the capsule to make sure that the
liquid is released effectively. In fact, the capsule breaks in different ways according to
its mechanical properties, and only specific combinations of these properties allow for a
uniform release of the liquid after breakage.
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