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Research paper 

Computational enrichment of physicochemical data for the development of 
a ζ-potential read-across predictive model with Isalos Analytics Platform 
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Eugenia Valsami-Jones b, Iseult Lynch b,*, Georgia Melagraki a,* 
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A B S T R A C T   

The physicochemical characterisation data from a library of 69 engineered nanomaterials (ENMs) has been 
exploited in silico following enrichment with a set of molecular descriptors that can be easily acquired or 
calculated using atomic periodicity and other fundamental atomic parameters. Based on the extended set of 
twenty descriptors, a robust and validated nanoinformatics model has been proposed to predict the ENM ζ-po-
tential. The five critical parameters selected as the most significant for the model development included the ENM 
size and coating as well as three molecular descriptors, metal ionic radius (rion), the sum of metal electronega-
tivity divided by the number of oxygen atoms present in a particular metal oxide (Σχ/nO) and the absolute 
electronegativity (χabs), each of which is thoroughly discussed to interpret their influence on ζ-potential values. 
The model was developed using the Isalos Analytics Platform and is available to the community as a web service 
through the Horizon 2020 (H2020) NanoCommons Transnational Access services and the H2020 NanoSoveIT 
Integrated Approach to Testing and Assessment (IATA).   

1. Introduction 

Engineered nanomaterials (ENMs) have become part of everyday 
life, as they are being used in a wide number of consumer and com-
mercial products. The unique properties of ENM, their versatility, 
complexity and tuneable properties have put them at the centre of 
innovation in various fields (e.g. nanomedicine, photonics, energy pro-
duction) (Kraegeloh et al., 2018). However, the innovation potential of 
ENMs is inhibited by concerns regarding their potential adverse effects. 
These can include toxic effects e.g. cytotoxicity, cell apoptosis, oxidative 
stress, genotoxicity, ecotoxicity etc. following accumulation in different 
organs, Trojan horse effects and more (Valsami-Jones and Lynch, 2015; 
Yan et al., 2019; Lin et al., 2018; Lead et al., 2018; Saarimäki et al., 
2020). These concerns have led regulatory agencies, including the Eu-
ropean Chemicals Agency (ECHA, 2020) and the U.S.A. Environmental 
Protection Agency (EPA, 2017) to publish guidelines on the testing and 
safety assessment of ENM. These regulatory frameworks (REACH, TSCA) 
are based on datasets generated in accordance with the OECD test 
guidelines for the physicochemical characterisation of ENMs, which 
currently have 15 listed endpoints (OECD, 2016), and for toxicity/ 

ecotoxicity assessment using model species and modified test guidelines 
(Rasmussen et al., 2019) including for dispersion of ENMs (Au-Kaur 
et al., 2017). Furthermore, the OECD and regulatory bodies are pro-
moting the development of Alternative Testing Strategies (ATS) for the 
evaluation of ENMs and the development and application of safer by 
design (SbD) strategies (Hjorth et al., 2017; Fritsche et al., 2017; Bas-
ketter et al., 2019). These aim to reduce the need for animal testing and 
the cost of detailed ENM testing via long-term animal studies, through 
the design of safer ENMs prior to production. A number of reviews deal 
with the application of SbD strategies in various ENM application areas 
(Kraegeloh et al., 2018; Yan et al., 2019; Lin et al., 2018). 

The application of in silico approaches (Afantitis, 2020) for the 
prediction of specific ENM properties is emerging as an important step 
towards complete in silico hazard and risk assessment. Computational 
approaches can take advantage of existing data to develop predictive 
nanoinformatics models, which can be used to either design ENMs with 
specific properties (Melagraki and Afantitis, 2014; Varsou et al., 2019; 
Ling et al., 2018; Martin et al., 2019) or to predict their behaviour and 
effects (Afantitis et al., 2018; Toropova et al., 2016; Basei et al., 2019). 
One of the limitations ll to the widespread application of in silico 
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approaches is the lack of large quantities of high-quality data, or of data 
with adequate metadata that will allow dataset interoperability and 
their combination to create larger datasets. The effects of a lack of suf-
ficient data or metadata on result reliability have been demonstrated in 
several meta-analysis studies (Bilal et al., 2019; Gernand and Casman, 
2014; Oh et al., 2016; Ha et al., 2018; Shin et al., 2018; Labouta et al., 
2019). In fact, a number of studies (Bilal et al., 2019; Oh et al., 2016; Ha 
et al., 2018; Labouta et al., 2019) found a significant correlation be-
tween the assay type and cytotoxic effects, with another (Shin et al., 
2018) demonstrating the correlation between the ENM dispersion pro-
tocols and cytotoxicity. Furthermore, Labouta et al. (2019) demon-
strated the advantages of data combination and computational 
approaches (decision trees) using the meta-analysis of 93 peer-reviewed 
papers, corresponding to over 3000 data points, on the cytotoxicity of 
organic and inorganic ENMs, to uncover hidden relationships. Thus, as 
more data is generated, and data management practices improve 
(Papadiamantis et al., 2020a), the power of in silico approaches will 
increase exponentially. 

The role of metadata in facilitating dataset combination and inter-
operability becomes even more prominent when dealing with parame-
ters which are dependent on the ENMs surrounding environment and 
can affect its behaviour, the so-called extrinsic parameters (Lynch et al., 
2014; Casals et al., 2017). One example of an extrinsic, or context- 
dependent ENM parameter is ζ-potential, which corresponds to the 
electrostatic potential of the ENM at the slipping plane; i.e., at the sur-
face where the ENM is considered to interact with its surrounding 
environment (Fig. 1). The size of this surface depends on both the 
properties of the ENM, e.g. size, coating, and the ionic strength of the 
surrounding solution (Lowry et al., 2016). In practice, it consists of an 
ionic liquid layer (Stern layer), which is strongly bound and moves with 
the particle as it flows inside the solution (Brownian motion) and an 
outer loosely bound layer (the diffusion layer) (Lowry et al., 2016). 
While in uncoated ENMs (Fig. 1, left) the Stern layer, and subsequently 

ζ-potential, is outside the core of the ENM, this is not the case for 
polymeric coated ENMs (Fig. 1, middle and right). The ζ-potential of 
polymeric coated ENMs will be affected by both the bare ENM’’s ζ-po-
tential and the charge of the respective coating, as the polymeric coating 
will act as a form of cation-exchange membrane separating the Stern 
from the diffusion layer (Batley and Apte, 2005). The charge of the 
polymeric coating is called the Donnan potential (Batley and Apte, 2005; 
Ohshima, 2006). Assuming a negatively charged ENM, covered with a 
negatively-charged polymeric coating (Fig. 1, middle and right), 
cationic species will be transported through the coating, driven by the 
negative charge, until the Stern layer is formed (Batley and Apte, 2005). 
If the coating is sufficiently thick (Fig. 1, middle), it will mask the bare 
particle ζ-potential and the apparent potential will be almost equal to 
the Donnan potential (Lowry et al., 2016; Ohshima, 2006). For thinner 
layers (Fig. 1, right), the apparent ζ-potential will be affected by both the 
bare particle ζ-potential and the coating charge and for a positively 
charged bare particle ζ-potential and negatively charged coating, it will 
be less than the Donnan potential (Lowry et al., 2016). 

ζ-potential is considered one of the key ENM physicochemical pa-
rameters which need to be reported in regulatory dossiers, and several 
standards (e.g. ISO 13099) exist regarding its measurement. ζ-potential 
has been linked with ENM stability and its behaviour in solution, as well 
as with its toxicity. Furthermore, ζ-potential has substantial applications 
in nanoscience research broadly, as it can regulate the behaviour and 
functionality of ENMs when used in fields like nanomedicine (Honary 
and Zahir, 2013a; Honary and Zahir, 2013b), energy production (Sen 
et al., 2017; Caimi et al., 2018), fuel and combustion (Saxena et al., 
2017; Kumar et al., 2020), construction (Ogunsona et al., 2020), con-
sumer products (Ogunsona et al., 2020), water treatment (Ogunsona 
et al., 2020) and remediation of environmental heavy metal pollution 
(Yang et al., 2013). 

A high value (empirically ≥ ±30 mV) is considered to provide suf-
ficient electrostatic repulsion between ENMs to prevent agglomeration 

Fig. 1. Schematic representation of a negatively charged uncoated (left), a negatively charged thickly polymer-coated (middle) and negatively charged thinly 
polymer-coated (right) ENM. In the uncoated ENM the Stern layer consists of firmly bound positively charged ions, which move with the ENM. Positive and negative 
charges outside the slipping plane and within the ENM’s diffusion layer are loosely bound to the ENM and remain with the bulk fluid. In this case, the ζ-potential 
corresponds to the electric charge at the slipping plane. For a negatively charged and thickly coated ENM the Donnan potential falls between the metal core and the 
coating surface and is approximately equal to the apparent ζ-potential. For a similar thinly coated ENM, the apparent ζ-potential is less than the Donnan potential and 
is affected by the bare ENM ζ-potential, the coating charge and the surrounding solution. In the image, white and black dashes correspond to the charge of the metal 
core and the coating respectively. Grey and red spheres correspond to positive and negative free radicals (counterions) inside the solution. Image adapted from Lowry 
et al. (2016). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(in the absence of steric stabilisation resulting from coatings) (Fatehah 
et al., 2014), while the diffusion layer (regulated by the ζ-potential) 
plays a vital role in ENM dissolution (Borm et al., 2006). Increasing 
medium ionic strength, changes in pH, and subsequent alterations in 
ζ-potential can affect the way in which ENM react with the cell mem-
brane, altering the degree of ENM uptake by organisms or cells. This will 
influence the extent of reactive oxygen species (ROS) production, which 
is the most common adverse effect following exposure to ENM (Abdal 
Dayem et al., 2017). As a result, being able to predict an ENM’s ζ-po-
tential based on specific characteristics such as its elemental composi-
tion, will allow the development of more stable, functional and safer 
ENMs. Previous ζ-potential related predictive studies (Varsou et al., 
2020a; Mikolajczyk et al., 2015; Toropov et al., 2018; Wyrzykowska 
et al., 2016; Toropov et al., 2016) have mainly focussed on metal oxides, 
whereas recent work by Varsou et al. (Varsou et al., 2020a) has devel-
oped a fully validated model for the prediction of ζ-potential of both 
metal oxide and metal ENMs. These previous studies developed ζ-po-
tential predictive models through the analysis of TEM images of existing 
ENMs (Varsou et al., 2020a; Mikolajczyk et al., 2015), predicted the 
ζ-potential of ENM in different media based on known aqueous ζ-po-
tential values (Wyrzykowska et al., 2016), or did not take into account 
different surface characteristics (coating, functionalisation) (Toropov 
et al., 2018; Toropov et al., 2016). Most studies used literature curated 
data (Mikolajczyk et al., 2015; Toropov et al., 2018; Wyrzykowska et al., 
2016; Toropov et al., 2016) that could result in discrepancies regarding 
the experimental protocols used for data generation. Protocol variation 
has been shown to have a significant effect on the acquired results (Bilal 
et al., 2019; Gernand and Casman, 2014; Oh et al., 2016; Ha et al., 2018; 
Shin et al., 2018; Labouta et al., 2019; Langevin et al., 2018) and should 
be taken into account (potentially as an extra variable) while preparing 
datasets for in silico exploitation. In our case, the ENM physicochemical 
characterisation data were all generated within one project (the 
Framework Program 7 (FP7) project NanoMILE, 2013), which mini-
mises the risk of protocol variation. 

The aim of this study was to enrich this library containing the full 
physicochemical characterisation of 69 ENMs, with molecular de-
scriptors to increase the value of the available information. The enriched 
dataset was used to develop an in silico workflow to predict ENM 
ζ-potential based on a number of descriptors that can be used as part of 
SbD approaches for design and production of safer and more functional 
ENMs. The read across predictive model has been made publicly and 
freely available as a webservice through the Horizon 2020 (H2020) 
NanoCommons project (http://enaloscloud.novamechanics.com/nan 
ocommons/mszeta/) and the H2020 NanoSolveIT Cloud Platform 
(https://mszeta.cloud.nanosolveit.eu/) to ensure accessibility to the 
community and interested stakeholders. 

2. Experimental section 

2.1. Experimental data 

The experimental dataset used for the development of the nano-
informatics predictive model was generated during the FP7 NanoMILE 
project (2013). The dataset, published by Joossens et al. (2019), con-
tains the physicochemical characterisation in water of 69 ENM and is 
available through the NanoPharos database (NovaMechanics Ltd., 2020) 
developed under the H2020 NanoSolveIT (Afantitis et al., 2020a) and 
(NanoCommons (2018)) www.nanocommons.eu projects. The dataset 
consists of pristine Ag (n = 3), AgO (n = 1), Ag2S (n = 1), AlOOH (n = 1), 
Au (n = 5), BaTiO3 (n = 1), CeO2 (n = 13), Zr-doped CeO2 (n = 5) and 
their (n = 5) aged equivalents, CePO4 (n = 1), CuO (n = 1), Fe2O3 (n =
1), hydroxylapatite (n = 1), SiO2 (n = 14), TiO2 (n = 8), ZnO (n = 7) and 
ZrO2 (n = 1) ENMs. The dataset contains information on the core 
chemistry, where applicable coating type and coating charge (positive, 
negative, neutral), morphology (identified using TEM) and whether the 
particles were aged or not (no ageing protocol was provided). 

Furthermore, the physicochemical characterisation of ENM in MilliQ 
water includes: core size (measured using TEM or STEM), hydrodynamic 
diameter, ζ-potential (although the data producers have not provided 
information on the concentrations used during the ζ-potential mea-
surements but it was performed in parallel to the dynamic light scat-
tering measurements and as such was typically ~10 mg/L), specific and 
geometric surface area (calculated using primary particle size and 
morphology) and energy band gap (calculated from UV–Vis measure-
ments using Tauc plots (Tauc et al., 1966)). The characterisation 
methodologies and protocols used for the ENM characterisation can be 
found in (Joossens et al., 2019; Römer et al., 2019; Briffa et al., 2019), 
while Fig. 2 presents an overview of the metals present in the ENM li-
brary along with basic atomic parameters and atomic periodicity trends. 
All information was handled as data points (descriptors), either nominal 
(core chemistry, coating type, coating charge, morphology, ageing) or 
continuous (core size, diameter, ζ-potential, specific and geometric 
surface area, energy band gap). 

2.2. Data pre-processing and enrichment 

The NanoMILE dataset was initially evaluated in terms of 
completeness. To increase the model robustness and reliability all de-
scriptors with data gaps that could not be filled either experimentally or 
using suppliers’ information were excluded. Hence, 7 descriptors were 
included in the model development. Core chemistry, coating, coating 
charge, ageing, primary particle size, morphology and geometric surface 
area were used as the independent variables and ζ-potential was used as 
the dependent variable. 

Taking into account that ζ-potential is regulated by the intrinsic 
molecular properties of the ENM, the dataset was enriched using a 
number of molecular descriptors, which have been used in past studies 
for model development and computational workflows (Kar et al., 2014; 
Zhang et al., 2012). The descriptors used are metal atomic radius (rat), 
metal ionic radius (rion), metal electronegativity (χ), sum of metal elec-
tronegativity (Σχ), sum of metal electronegativity divided by the num-
ber of oxygen atoms present in a particular metal oxide (Σχ/nO), number 
of metal atoms (NMetal), number of oxygen atoms (NOxygen), the charge of 
the metal cation corresponding to a given oxide (χox), the molecular 
weight (MW) and the period and group of the metal in the periodic table. 
Furthermore, the absolute electronegativity (Mulliken electronegativity, 
χabs), which is a measure of the tendency of an atom to attract electrons, 
and energy band gap (EBG) were calculated using the equations reported 
by Portier et al. (2001a, 2001b). In short, χabs was calculated using: 

χabs = 0.45χ(eV)+ 3.36 (1)  

and EBG was calculated using: 

EBG = Ae0.34ЕΔН , (2)  

where EBG is the energy band gap in eV, EΔН is the standard enthalpy of 
formation of the ENM and A is a pre-exponential constant, which varies 
from 0.5–1.7 depending on the metal. EΔН values were taken from 
Portier et al. (2001a, 2001b) or other literature or database sources. The 
A value was taken from Portier et al. (2001b) where possible. For the 
rest, the average A value reported by Portier et al. (2001a, 2001b), 
depending on the position of the metal in the periodic table was used:  

• For s- and f-block elements the average A value is 0.80  
• For d-block elements the average A value is 1.00  
• For p-block elements the average A value is 1.35 

All data are available through the NanoPharos database (https://db. 
nanopharos.eu/Queries/Datasets.zul) (NovaMechanics Ltd., 2020) and 
as a supplementary file. 
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2.3. Model development and read across 

Model development was performed using the Isalos Analytics Plat-
form, powered by the Enalos+ Tools (Varsou et al., 2018; Afantitis et al., 
2020b). The dataset was first passed through a low-variance filter to 
remove descriptors that did not present significant variance and thus did 
not contribute to the discrimination power of the model (Ojha and Roy, 
2011). The upper variance bound was set to 0.2, thus all descriptors 
having 20% or more equal values to another descriptor were excluded. 
Due to the varying numerical ranges of the used descriptors, Z-score 
normalisation was then applied to the dataset to ensure that the values 
of all descriptors followed Gaussian distribution with a mean value of 
0.0 and a standard deviation of 1.0 (Leach and Gillet, 2007). Random 
partitioning of the data into training and test sets took place using a ratio 
of 75%: 25% respectively. The training set was used to train the model 
and to blindly evaluate its performance, following parameter tuning 
through cross-validation (Bishop, 2007; Xu and Goodacre, 2018). The 
most significant descriptors, those contributing the most to dataset 
variance, were then identified using the Correlation based Feature Se-
lection (CfsSubset) algorithm combined with the BestFirst evaluator 
(Hall et al., 2009; Witten et al., 2016). 

The ζ-potential predictive model was developed using the Enalos 
implementation of the k-nearest neighbours (EnaloskNN, Enalos Chem/ 
Nanoinformatics tools) regression methodology (Papadiamantis et al., 
2020b). This is an instance-based (lazy) method used for data 

classification and regression. EnaloskNN predicts the unknown endpoint 
based on the k (k = 1, 2, 3, …) nearest neighbours in the features space 
Rn where n is the total number of descriptors used for the prediction. 
ζ-potential prediction was achieved based on the Euclidian distance 
(similarity measure) of the target variable from its closest neighbours 
(Witten et al., 2016). The prediction was then performed using the 
weighted average of the ζ-potential values of these neighbours, with the 
weighing factor for each neighbour being the inverse of its Euclidean 
distance (Varsou et al., 2019; Witten et al., 2016). For nominal de-
scriptors, the individual values are compared and if the values are the 
same the Euclidean distance is set equal to 0, otherwise it is set to 1 
(Larose and Larose, 2014). The optimal number of neighbours (k) was 
identified based on the best model performance. 

The kNN algorithm can be used within a read-across strategy that can 
also be employed for ENMs. According to ECHA’s read across framework 
(ECHA, 2017) a computational workflow needs need to include the 
following steps:  

1. Gathering of the required descriptors (physicochemical, molecular) 
for each ENM.  

2. Construction of a data matrix including properties and endpoints.  
3. Development of an initial grouping hypothesis that correlates an 

endpoint to different behaviour and reactivity properties. Assign-
ment of the samples to groups. 

Fig. 2. Schematic overview of the metals included in the NanoMILE ENM library along with their atomic characteristics (atomic number, atomic weight, valence, 
atomic and ionic radii, electronegativity). The schematic presents the recurring atomic trends (i.e. atomic periodicity) to assist with the visual understanding of the 
chemical similarities and differences between the different metals. 
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4. Assessment of the applicability of the approach using computational 
techniques, and data gaps filling. If no regular pattern can be iden-
tified, an alternative grouping hypothesis must be proposed.  

5. In the case that the grouping hypothesis is robust, but adequate data 
are not available, additional testing should be considered.  

6. Justification of the method. 

Using the Euclidian distance as a metric, it is possible to predict 
ζ-potential and identify the respective groups of neighbouring ENMs. By 
identifying and studying the resulting groupings it is possible to map the 
prediction space into specific groups that can be translated into read 
across strategies, as per the requirements of ECHA’s read across 
framework. The EnaloskNN node has the benefit of providing not only 
the predictive results, but also the specific neighbours along with their 
Euclidian distances, as well allowing the visualization of the entire 
predictive space. 

2.4. Model validation 

Internal and external model validation followed the OECD principles 
for validation, for regulatory purposes, of (Q)SAR models (OECD, 2004). 
Goodness-of-fit, robustness and predictivity were used to validate the 
model internally and externally (Zhang et al., 2006; Puzyn et al., 2018). 
The statistical criteria used to evaluate the model’s performance were 
the coefficient of determination between experimental values and model 
predictions (R2), validation through an external test set, the leave-many- 
out cross validation procedure and Quality of Fit and Predictive Ability 
of a continuous predictive model according to Tropsha’s tests (Tropsha, 
2010). This was achieved using the Enalos Model Acceptability Criteria, 
where the following equations (to calculate Tropsha’s tests) have been 
implemented: 

R2
cvtext = 1 −

∑ntest

i=1
(yi − ỹi)

2

∑ntest

i=1

(

yi − ytr

)2 (3)  

k =

∑ntest

i=1
yiỹi

∑ntest

i=1
ỹi

2
(4)  

R2
o = 1 −

∑ntest

i=1

(

ỹi − ỹro
i

)2

∑ntest

i=1

(

ỹi − ỹ
)2 ,where ỹro

i = kyi, i = 1, 2,…, ntest, (5)  

where ntest is the number of ENM in the test set, ytr is the average 
ζ-potential for the training set; yi, ỹi, i = 1, 2, …, ntest are the experi-
mentally measured and the predicted ζ-potential values for the valida-
tion set, respectively; and ỹ is the average predicted ζ-potential over all 
of the model predictions ỹi, i = 1, 2, …, ntest. 

Furthermore, according to Tropsha (2010), a predictive model is 
considered predictive if all of the below conditions are satisfied: 

R2
cvtext > 0.5 (6)  

R2
pred > 0.6 (7)  

R2
pred − R2

o

R2
pred

< 0.1 (8)  

0.85 ≤ k ≤ 1.15 (9) 

The statistical significance and robustness of the produced model 
was also evaluated using Y-randomisation. During Y-randomisation the 

modelling calculations were repeated several times using all original 
descriptors and shuffling the ζ-potential predictions to produce 10 
different datasets. The model acceptability criteria, described above, 
were calculated in each case and were expected to be reduced compared 
to those of the original model. This would demonstrate that the devel-
oped model was not due to chance correlation, as in this case we would 
also get similar acceptability criteria. If this was the case (i.e., if the 
model was based on chance correlation), it would not be possible to 
obtain a valid model using the specific partitioning (Tropsha et al., 
2003). 

2.5. Domain of applicability 

To ensure the applicability of the produced model to external data-
sets it is important to define the limits within which future predictions 
will be considered reliable; i.e., the applicability domain (APD). If the 
model is applied to ENMs that are too different from those used to train 
the model, the predictions will be outside the defined limits, these will 
be flagged as unreliable and filtered out (Melagraki and Afantitis, 2014). 
The APD can be defined through the calculation of the Euclidian dis-
tances of all ENM in the training set. The APD was calculated using: 

APD =< d > + Zσ (10)  

where <d> and σ are the average and standard deviation of all 
Euclidian distances in the training set. Z is an empirical cut-off value and 
was set to 0.5 (Zhang et al., 2006). All calculations were performed using 
the Isalos Analytics Platform (Papadiamantis et al., 2020b; Afantitis 
et al., 2020b) and the full demonstration that the produced model meets 
the OECD criteria as listed above is demonstrated via the completed 
QSAR Model Reporting Format (QMRF) template which is included in 
the supplementary information (SI). 

3. Results 

The main purpose of this study was the development of a robust and 
predictive model for the prediction of ζ-potential that can be used in SbD 
approaches for the design and development of novel ENM. Using the 
Isalos Analytics Platform (Papadiamantis et al., 2020b)(Afantitis et al., 
2020b) and the respective Enalos+ nodes (Varsou et al., 2018) we 
worked with a dataset (Joossens et al., 2019) of 69 ENM, which was 
further enriched with a number of molecular descriptors. The benefits of 
using this dataset is that the physicochemical characterisation was 
performed using harmonised protocols, which reduced the risk for data 
variability due to experimental practices which has been identified as a 
major obstacle for data interoperability and reusability. This eliminates 
the need to identify protocols used and include them as potential de-
scriptors, the significance of which has been demonstrated in previous 
meta-analysis studies where the type of assay was identified as a key 
parameter in ENM toxicity studies (Bilal et al., 2019; Gernand and 
Casman, 2014; Oh et al., 2016; Ha et al., 2018; Shin et al., 2018; Labouta 
et al., 2019). Following exclusion of incomplete descriptors and 
enrichment with calculated descriptors, the used dataset includes a total 
of 20 descriptors - 7 physicochemical and 13 molecular descriptors 
(Table 1). 

Model development took place by randomly dividing the dataset into 
training and test sets using a ratio of 75%: 25%. The descriptors of the 
training set were normalised using Z-score normalisation and the 
applied normalisation parameters were then used to normalise the test 
set. The most significant parameters, those contributing the most to 
dataset variability, were identified using the CfsSubset algorithm com-
bined with the BestFirst evaluator (Hall et al., 2009; Witten et al., 2016). 
Out of the 20 descriptors imported into the computations, as none of the 
descriptors presented variance lower than 20%, 5 were identified as the 
most significant. Two of those were physicochemical; i.e. CT and SZ, and 
3 were molecular; i.e. rion, Σχ/nO and χabs. 
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The developed workflow provided the opportunity to test a number 
of different predictive algorithms. This enabled us to pick kNN as the 
best performing algorithm for the specific dataset. kNN was applied to 
the training dataset with k = 7, which was the value that presented the 
best model performance (Table 2), based on the cross validated Rcvext

2 

performnce. The R2 (RPred
2 ) value; i.e., the coefficient of determination 

between experimental values and model prediction on the test set, also 
presented its maximum value (R2 = 0.900, Table 2) for k = 7. This de-
notes a substantial correlation between the values measured experi-
mentally and the predicted values (presented graphically in Fig. S1 of 
the ESI). 

The model was validated as described in the Experimental Section as 
per the OECD’s guidelines. The produced model successfully passed 
Tropsha’s tests (Tropsha, 2010) (Table 3) demonstrating the robustness 
and predictivity of the model. The calculation of the presented param-
eters was performed using the regression between the experimentally 
measured ζ-potential vs. the predicted values and vice versa. Similarly, 
Y-randomisation demonstrated the model’s robustness and validity. 
Finally, the APD to test potential model limitations was calculated to 
provide future users with an indication of the reliability of their pre-
dictions. The APD limit was calculated, in this case, to be 1.947 with all 
predictions being deemed reliable (test set range: 0–1.605). 

The results acquired from the EnaloskNN node were used to study 
the neighbouring space relative to the Euclidian distance between the 
ENM descriptors. This allowed us to perform an initial grouping of the 
ENM based on their distances (Fig. 3). The results demonstrate certain 
patterns with respect to grouping. In most cases, grouping has been 
performed with chemically similar ENM when enough neighbours are 
available. SiO2 ENM are grouped with other types of SiO2 ENM only. 
CeO2 ENM are grouped with other CeO2 ENM types, while Zr-doped 
CeO2 ENM are grouped with other similarly doped ENM and ZrO2. Ag 

ENM are generally grouped with other types of Ag ENM (metallic Ag, 
AgO, Ag2S), Au ENM are clustered with other metals from the same 
group of the periodic table and with hydroxyapatite ENM with which 
they have similar χabs and close rion. AgO is grouped with a number of 
metallic (Ag), and metal oxide (ZnO, CuO and Fe2O3) ENM. ZnO ENM 
are grouped with either ZnO ENM or ENM belonging to the same peri-
odic table period (TiO2, CuO, Fe2O3). BaTiO3 is grouped with CeO2 and 
Zr-doped CeO2 ENM. Barium is in the same period as Ce4+ and Ti4+ and 
in the same group as Zr4+. Finally, TiO2 ENM are grouped with other 
TiO2 ENM, ENM from the same period (Fe2O3, ZnO), CeO2 and AlOOH 
ENM. 

The ζ-potential predictive model has been made available through 
the Enalos Cloud Platform (Varsou et al., 2020b) to facilitate further use 
within the wider nano-community and interested stakeholders. The 
corresponding webservice can be found at: 

http://enaloscloud.novamechanics.com/nanocommons/mszeta/ 
The service is complemented with a user-friendly interface (Fig. 4). 

The user needs to input the required values (ENM size, coating, metal 
rion, Σχ/nO and χab) that were selected as the most significant descriptors 
during model development. In the case of the coating type, the user 
needs to pick from the available coatings in the dropdown menu, as, 
currently, only these coatings are supported in the model as they 
constituted the training set. A note has been added to the tool (Fig. 4) 
warning the users that the prediction assumes specific dispersion con-
ditions, i.e., in water at pH 7 and with a theoretical ionic strength of 
10–6.998 mol/L. The linked tutorial provides a short library of the mo-
lecular properties (rion, Σχ/nO and χab) used during model development 
that are available for re-use, since these are ENM size/coating inde-
pendent. Upon submission of the values, the results page appears (Fig. 5) 
indicating the value of the predicted ζ-potential along with the 7 closest 
neighbours that were used to perform the prediction. The Euclidean 
distances of each neighbour from the tested ENM are provided as well. 
Furthermore, the prediction’s reliability is stated to indicate whether the 
prediction falls within the calculated APD or not, and the reliability 
value is next to the domain value calculated for the specific ENM, based 
on its distances from the identified closest neighbours. All results appear 
on screen, and can be downloaded as a .CSV file. 

4. Discussion 

ζ-potential is a key parameter from a regulatory context, as it can 
directly affect ENMs behaviour in different media and their interaction 
with biological organisms. However, ζ-potential’s correlation with me-
dium properties like ionic concentration and chemistry makes it difficult 
to measure and interpret (Kirby and Hasselbrink Jr., 2004) and highly 
context dependent. Additionally, the calculations for ζ-potential assume 
that measurements are performed on spherical and reasonably mono-
disperse particles, which is often not the case for ENMs. This results in 
substantial variability in the ζ-potential measurements reported for the 
same ENM by different laboratories, on top of variability due to different 
experimental protocols used. 

An in silico workflow for the development of a robust and validated 
ζ-potential kNN predictive model is presented. The dataset published by 

Table 1 
Physicochemical and molecular descriptors used for model development.  

Physicochemical 
descriptors 

Molecular descriptors 

Chemical formula (CF) Metal atomic radius (rat) 
Coating/ 

functionalisation (CT) 
Metal ionic radius (rion) 

Coating charge (CTC) Metal electronegativity (χ) 
Ageing (AGE) Sum of metal electronegativity (Σχ) 
Core size (SZ) Sum of metal electronegativity divided by the number of 

oxygen atoms present in a particular metal oxide 
(Σχ/nO)a 

Morphology (MP) Number of metal atoms (NMetal) 
Geometric surface area 

(GSA) 
Number of oxygen atoms (NOxygen) 
Metal charge (χox) 
Molecular weight (MW) 
Metal periodic table group 
Metal periodic table period 
Absolute electronegativity (χabs) 
Energy band gap (EBG)  

a For metallic ENM, where n0 = 0, Σχ/nO was assumed to be 0 to assist with 
computations. 

Table 2 
k value selection based on model performance (R2).  

k value Rcvext R2 k value Rcvext R2 

1 0.450 0.584 8 0.908 0.896 
2 0.764 0.765 9 0.903 0.890 
3 0.787 0.771 10 0.908 0.896 
4 0.865 0.850 11 0.901 0.887 
5 0.888 0.874 12 0.903 0.890 
6 0.896 0.881 13 0.901 0.887 
7 0.913 0.900 14 0.701 0.888 

The bold values highliight the optimal number of neighbours for the kNN model 
to have the best performance, as both the Rcvext

2 and the RPred
2 present maximum 

values. 

Table 3 
Model validation criteria and acquired results.  

Criterion Result Assessment 

R2 > 0.6 0.9 Pass 
Rcvext > 0.5 0.913 Pass 
R2 − R2

0
R2 < 0.1  

0.005 Pass 

R2 − R′2
0

R2 < 0.1  
0.001 Pass 

|R2 − R0
′2| < 0.3 0.004 Pass 

0.85 < k < 1.15 1.053 Pass 
0.85 < k’ < 1.15 0.869 Pass  
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Joossens et al. (2019), which contained the physicochemical charac-
terisation in water of 69 ENM, was exploited. Eight descriptors were 
included in the model development: core chemistry, coating, coating 
charge, ageing, primary particle size, morphology, geometric surface 
area and ζ-potential. The dataset was evaluated regarding its 
completeness and enriched using 12 molecular descriptors: metal atomic 
radius (rat), metal ionic radius (rion), metal electronegativity (χ), sum of 
metal electronegativity (Σχ), sum of metal electronegativity divided by 
the number of oxygen atoms present in a particular metal oxide (Σχ/nO), 

number of metal atoms (NMetal), number of oxygen atoms (NOxygen), the 
charge of the metal cation corresponding to a given oxide (χox), the 
molecular weight (MW), the period and group of the metal in the peri-
odic table and the absolute electronegativity (Mulliken electronega-
tivity, χabs). 

The resulting dataset was passed through a low-variance filter to 
remove any descriptors that did not present significant variance and 
thus did not contribute to the discrimination power of the model (Ojha 
and Roy, 2011) and the dataset was then divided into training and test 

Fig. 3. Indicative results for TiO2 (left) and Zr-doped CeO2 (right) ENMs from the normalised kNN space of the produced ζ-potential predictive model. The ENMs 
studied are placed based on their Euclidian distances. Some overlap is observed due to small Euclidian distances. Red and green spheres correspond to ENMs from the 
training and test sets respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. MS3bD (MScubed: Molecular, Size and Surface based Safe by Design) Zeta Potential predictive model webservice for the prediction of ENM ζ-potential. The 
user inputs the required parameters. For the coating type, the user needs to pick from those available in the dropdown menu, while for the rest of the parameters the 
user needs to manually input them. The calculation is then performed automatically. 
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sets, using a ratio of 75%: 25% respectively. The training set was used to 
identify the descriptors contributing the most to the dataset variance. 
Five descriptors were deemed as the most statistically significant, two of 
which were physico-chemical, i.e., CT and SZ, and 3 of which were 
molecular, i.e., rion, Σχ/nO and χabs. These descriptors were used to train 
and validate the model using the training data set. To do this, the Enalos 
implementation of the kNN algorithm was used, the accuracy of which 
has been cross-checked using the established and widely used Weka kNN 
implementation in the Konstanz Information Miner (KNIME) open- 
source data analytics platform. The Enalos kNN algorithm offers the 
benefit of providing the calculated Euclidean distances to each of the 
nearest neighbours allowing their relative influence to be understood 
and visualised. 

Based on the identified variables, the kNN model was trained, its 
parameters fine-tuned and validated internally and externally using the 
OECD principles for validation of (Q)SAR models for regulatory pur-
poses (OECD, 2004). Goodness-of-fit, robustness and predictivity were 
used to validate the model internally and externally (Zhang et al., 2006; 
Puzyn et al., 2018), while the coefficient of determination between 
experimental values and model predictions (R2), validation through an 
external test set, the leave-many-out cross validation procedure and 
Quality of Fit and Predictive Ability of a continuous predictive model 
according to Tropsha’s tests (Tropsha, 2010) were used to evaluate the 
model’s performance (Table 3). Furthermore, the model’s robustness 
and statistical significance were tested using Y-randomisation. Finally, 
the APD of the model was calculated using the Euclidean distances of all 
ENM in the training set, to be able to evaluate whether a future pre-
diction is reliable or not. The APD limit was found to be 1.947 such that 
all predictions resulting in an APD value lower than this are considered 
reliable. 

The descriptors identified as significant, and used for model devel-
opment can be easily calculated using periodic table or bibliographic 
information (χabs, rion, Σχ/no,), or can be imported from the manufac-
turer’s description of the ENM (ENM core size, coating) without the need 
for any experimental measurements. Thus, the developed model can be 
used as a SbD tool for the development of stable and safer ENMs, as 
ζ-potential can affect ENM behaviour by influencing agglomeration 
(Fatehah et al., 2014) or dissolution (Borm et al., 2006). ζ-potential has 
also been linked with ENM toxicity, in terms of reactivity with cell 

membranes and ENM uptake from organisms (Schwegmann et al., 2010; 
Deryabin et al., 2015; Cho et al., 2012), especially for those ENM that 
undergo dissolution. Given that suspension medium ionic strength and 
pH changes affect ζ-potential and ENM dissolution, subsequent models 
can incorporate such information enabling prediction of dissolution and 
toxicity as part of a complete in silico workflow and IATA. 

ζ-potential as a parameter is distinct from the surface charge of an 
ENM (Fig. 1). When suspended in an ionic solution, a negatively charged 
uncoated ENM (Fig. 1a) attracts ions from the surrounding solution. As a 
result, the electrical double layer (EDL) is formed between the surface of 
the ENM and the bulk of the solution (Schmickler, 2014). The innermost 
layer, called the Stern layer, is firmly bound to the surface of the particle 
and consists of positively charged ions, which are attracted to the par-
ticle via the Coulomb force and move around in the liquid with the ENM. 
The outermost layer, consisting of ions that are loosely bound to the rest 
of the particle and the Stern layer, due to electrostatic attraction, is 
called the diffusion layer (Schmickler, 2014). In fact, the EDL thickness 
can be calculated through the Debye length (λD, eq. 11), which expresses 
the distance over which the electrostatic effect of the ENM charge per-
sists (Russel et al., 1989). For a colloidal or ionic solution, the Debye 
length is given by the equation: 

λD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εrε0kВT
e2
∑

i
niz2

i

√
√
√
√ (11)  

where εr is the solution’s dielectric constant, ε0 is the free space 
permittivity, kB is Boltzmann’s constant, T the temperature in K, e is the 
electron charge, ni is the number of ions in the solution and zi is the 
valence of the ith ion (Russel et al., 1989). 

ζ-potential is calculated at the slipping plane, where the EDL (and 
thus the Debye length) ends, using Henry’s equation (Eq. (12)) for 
electrophoretic mobility (ue) (Delgado et al., 2005): 

ue =
2εrsε0

3η ζf1(κα) (12)  

where εrs is the relative permittivity of the electrolyte solution, ε0 is the 
electric permittivity of vacuum, η is the dynamic viscosity of the solu-
tion, ζ is the ζ-potential, κ is the inverse Debye length, α is the ENM size 

Fig. 5. The results provided from the MS3bD Zeta potential webservice include the ζ-potential prediction, the identities and distances of the closest neighbours on 
which the prediction was based. and whether the prediction falls within the model’s APD (reliable prediction) or not (unreliable prediction), along with the 
calculated domain value and the model’s APD value. 
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and f1 is Henry’s function, the value of which varies from 1 to 1.5 based 
on the ratio of the ENM size to the Debye length (κα). Hence, electro-
phoretic mobility is directly correlated to the ENM size, confirming its 
presence as one of the key parameters for the prediction of ζ-potential. 
Interestingly, it was the ENM core size that was the key parameter rather 
than the experimentally measured hydrodynamic diameter that was 
found to be most predictive. 

Furthermore, the presence of the Debye length in the ζ-potential 
formula (Eq. (12)); i.e., the thickness of the EDL, means that the 
measured ζ-potential, depends on the ability of an ENM to attract and 
redistribute ions. Based on studies on solid-solid electrification, which 
are dominated by electron transfers, Wang and Wang (2019) suggested, 
extending to solid-liquid interface, that the EDL is formed in two stages. 
Firstly, the solution molecules interact with the atoms on the surface of 
the solid and form strong overlaps of electron clouds, with electron 
transfers taking place to ionise the atoms on the solid surface to form the 
first electrostatic charges. These are followed by ion exchange, which is 
the dominant process thereafter, between the charged solid atoms and 
free H+ and OH− radicals in the solution, forming the EDL (Wang and 
Wang, 2019). These results were further supported by Lin et al. (2020), 
who demonstrated that both electron and ion transfers co-exist at the 
solid-liquid interface. In practice, this explains the identification of χabs 
as a significant parameter for the prediction of ζ-potential, as it is the 
average (Eq. (13)) of the ionisation energy (Ei) and the electron affinity 
(Eea) and, according to Mulliken (Mulliken, 1934; Mulliken, 1935), ex-
presses the tendency of an atom to attract electrons and thus create the 
EDL. 

χabs =
Ei − Eea

2
(13) 

This also explains why the ionic radius (rion) of metals has been 
identified as a significant parameter, also reported by Wyrzykowska 
et al. (2016), for the prediction of ζ-potential, which regulates the bond 
strength of the atom’s valence electrons, and thus the energy needed to 
detach them and commence the electron exchange needed to form the 
EDL. The higher rion, the further the valence electrons are from the nu-
cleus and, thus, the easier it is to remove an electron from its orbital. 
Similarly, metal electronegativity plays an important role in deter-
mining ζ-potential since its increase corresponds to a higher number of 
protons in the atom’s nucleus, increasing its electron attracting poten-
tial. Thus, the summation of total metal electronegativity (Σχ) would 
provide an indication of the ENMs’ total metal reactivity and ability to 
attract electrons. On the other hand, weighing Σχ with the total number 
of oxygens present (nO) would provide an indication of the total ENM 
electronegativity, and thus reactivity, and is based on Sanderson’s 
electronegativity equalisation principle (Sanderson, 1951). Sanderson’s 
principle states that when two atoms with different electronegativities 
combine, their electronegativities equalise in the formed molecule, with 
molecular electronegativity being the geometric mean of the electro-
negativities of the isolated atoms (Parr and Bartolotti, 1982). Hence, 
Σχ/nO can be considered as a measure of the reactivity of the entire 
ENM, with ions and electrons, explaining why it has been identified as a 
significant parameter in our model. 

In the case of coated ENMs (Fig. 1b and c), ζ-potential measurement 
is more complicated and depends on both the ENM’s EDL and the 
coating’s charge and thickness (Lowry et al., 2016). For an ENM with a 
thick polymeric coating layer (Fig. 1b), which is thicker than the EDL, 
the coating completely masks the core ENM ζ-potential pushing the 
slipping plane to the surface of the coating (Ohshima, 2006). As a result, 
the ζ-potential measured in this case will correspond to the Donnan 
potential (Batley and Apte, 2005; Ohshima, 2006). This is the result of 
the Gibbs-Donnan effect of two ionic solutions separated by a semi- 
permeable membrane, the role of which is played by the coating, 
which are not distributed evenly (due to certain charged elements being 
unable to cross the membrane) resulting in a potential difference 
measured as the ζ-potential. For thinly polymer coated ENM (Fig. 1c), 

the apparent ζ-potential will be influenced by both the coating charge 
(neutral, positive, negative) and the ζ-potential of the core ENM. 

Having studied the kNN ENM grouping, certain trends could be 
observed that could provide a meaningful basis for ENM grouping and 
read-across. Elements, in general, group with other similar elements in 
terms of core chemistry, in most cases where enough neighbouring (n =
7) ENM species exist. This is the case for SiO2 and CeO2 ENM, which 
present the same molecular properties with their neighbours, but differ 
in terms of size and coating. Results demonstrate that, for same core 
chemistry, the closest neighbours are those with similar sizes, followed 
by those with different surface properties. These are followed by 
changes in size initially and then coating demonstrating the ranking of 
the descriptors significance. While the molecular properties will initially 
define the ENM properties and reactivity, the larger the ENM core size 
the lower the effect of the coating on EDL and ζ-potential. Similarly, Zr- 
doped CeO2 ENM are grouped with other similar ENM with different 
doping ratios and ZrO2 ENM, spanning the entire range from low to 
complete Ce4+ substitution by Zr4+ that can be considered a form of 
“grading” the behaviour of ENM based on varying doping ratios. 

In the case where not enough similar neighbours exist, certain pat-
terns of grouping can also be observed. Metallic Ag ENMs are grouped 
initially with other Ag ENMs (metallic Ag, AgO, Ag2S) and are then 
grouped with Au ENM as they are in the same group of the periodic 
table, and thus present chemical similarity. AgO ENM are grouped with 
metallic ENM and ZnO, CuO and Fe2O3 ENM. Ag and Cu2+ are in the 
same periodic table group, and thus present chemical similarity, while 
Fe3+ and Zn2+ have electronegativities (Zn: 1.65, Fe: 1.83) close to those 
of Ag (1.93). The fact that AgO is grouped with other metal oxides and 
not with mostly metallic Ag or Au points out the significance of both 
metal electronegativity and oxygen presence and how these interact 
based on Sanderson’s principle of electronegativity discussed above. The 
grouping of BaTiO2 with CeO2 and Zr-doped CeO2 can be explained, 
initially, by the chemical similarity between Ti2+ and Zr4+, which 
belong to the same periodic table group. Barium (Ba2+) and Ce4+, on the 
other hand, are in the same periodic table period (row) having the same 
number of electron shells and a difference of two protons (Ba: 56, Ce: 58) 
in their nuclei and close electronegativities (Ba: 0.9, Ce: 1.12). Period 
(row) grouping is also taking place in the case of ZnO ENM. These are 
grouped not only with other ZnO ENMs, but with TiO2, CuO, Fe2O3 as 
well. This can be explained by the trends existing for electronegativity, 
atomic structure, electron affinity and ionisation energy for elements in 
the same period row (as shown in Fig. 2). Similar grouping is also 
observed for TiO2 ENM with other TiO2 species, ENM from the same row 
(Fe2O3, ZnO), CeO2, which is in the subsequent periodic table group, and 
AlOOH ENM with which they present similar χ and the closest Σχ/nO 
value in the dataset. 

Although the scope of the produced model is to be used for safe by 
design strategies, i.e. to design new safer and more functional ENM, it 
can also be used to test existing ENMs as long as there is experimental 
information on the ENM core size. As a result, it would be of benefit to 
test how the current model compares with other ζ-potential models, like 
the “Enalos Nanoinformatics Model for Zeta Potential Prediction” (), 
which uses the pH of the suspension used for ζ-potential measurement 
and the ENM’s main elongation as extracted through TEM image anal-
ysis ()(Varsou et al., 2020a). Using ENMs characterised in MiliQ water 
(n = 8) that were not used in the current model’s training or test sets, the 
results suggest that the current model has better predictive ability (R2 =

0.921) when compared to the “Enalos Nanoinformatics Model for Zeta 
Potential Prediction” (R2 = 0.906). Furthermore, our model’s pre-
dictions were all deemed reliable, compared to two unreliable mea-
surements produced with the Enalos model. 

The significance of the presented model is further enhanced due to 
the importance of ζ-potential and thus the applicability of the model to 
different fields in which ENM are applied, including nanomedicine 
(Honary and Zahir, 2013a; Honary and Zahir, 2013b), energy produc-
tion (Sen et al., 2017; Caimi et al., 2018), fuel and combustion (Saxena 
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et al., 2017; Kumar et al., 2020), construction (Ogunsona et al., 2020), 
consumer products (Ogunsona et al., 2020), water treatment (Ogunsona 
et al., 2020) and remediation of heavy metal pollution (Yang et al., 
2013). In most cases, ζ-potential plays a key role in keeping the ENMs 
dispersed inhibiting agglomeration to maximise their functional poten-
tial. In the case of construction and consumer products (Ogunsona et al., 
2020), high ENM dispersibility assisted by high ζ-potential values can 
enhance their potential as antimicrobial agents in substrates (e.g. coat-
ings), alternative food packaging, antifouling coatings and more. 
Furthermore, ζ-potential can assist with maximising the efficiency of 
redox flow batteries, as well as dispersed non-agglomerating suspen-
sions of electrochemically active ENMs to reduce system viscosity such 
that the suspensions can undergo electrochemical charge and discharge 
(Sen et al., 2017) and thus increase the battery’s conductivity. Similarly, 
the inclusion of stable ENM suspensions in diesel and biodiesel fuels for 
combustion engines has led to substantial enhancement in thermo- 
physical and chemical properties and decrease in environmental pol-
lutants (Saxena et al., 2017; Kumar et al., 2020). In nanomedicine, an 
extensive review by Honary and Zahir (2013a, 2013b) demonstrates the 
significance of ζ-potential with respect to blood circulation by inhibiting 
agglomeration, targeting specific sites, absorption through bodily 
membranes and controlled drug release. Finally, ζ-potential can sub-
stantially help with decreasing environmental pollution through water 
treatment (Ogunsona et al., 2020) and binding of heavy metal pollutants 
from soil and groundwater (Yang et al., 2013). In these cases, ENMs with 
a sufficiently negative charge can attract and bind positively charged 
metals, like Pb or As, inhibiting their release into the environment. 

The ζ-potential predictive model has been made available as a 
webservice and as such it is now easily accessible and fully exploitable 
by interested users. It requires the submission of the values of the 
identified significant parameters (ENM core size, coating, rion, Σχ/nO and 
χabs). The predicted ζ-potential values, as well as the domain of appli-
cability warnings, are returned to the user within seconds. It is impor-
tant to note that the presented ζ-potential predictive model has been 
developed based on experimental measurements performed with water 
as the dispersion medium. As such, users must assume that the acquired 
predictions are at pH 7 and that the theoretical ionic strength is 10–6.998 

mol/L. Furthermore, model usage is restricted to the coatings offered in 
the webservice’s dropdown menu currently. Direct usage for different 
conditions or coatings would result in unreliable measurements. 
Another point to take into account when using the tool, is that a 
concentration-related effect has been reported when measuring the 
ζ-potential of ENM (Kaszuba et al., 2010; Tantra et al., 2010; Wang et al., 
2013). These changes were observed when the ENM concentration 
dropped below a certain threshold (Tantra et al., 2010; Wang et al., 
2013), which Tantra et al. (2010) have reported to be between 10− 2 and 
10− 4 wt% depending on the tested material. This change was attributed 
to either ambient CO2 interacting with the ENM surface functional 
groups to form ⋰⋱MOCO2

− (Wang et al., 2013) or to extraneous particulate 
matter (Tantra et al., 2010) the contribution of which became significant 
as the ENM concentration decreased. While in most cases, we would not 
expect this to affect model performance, users need to take care when 
predicting ζ-potential values and applying the results to low- 
concentration systems. The webservice is offered as a service through 
the NanoCommons research infrastructure and is fully compatible with, 
and will be integrated into, the NanoSolveIT IATA that is currently 
under development within the NanoSolveIT project. 

5. Conclusions 

In silico approaches can substantially reduce the effort and time 
needed for the design, production and evaluation (e.g. preparation of 
regulatory dossiers) of stable and safe ENM. This study presents a robust, 
validated and applicable ζ-potential predictive model, developed using 
the Isalos Analytics Platform and the Enalos+ nodes (Papadiamantis 
et al., 2020b; Afantitis et al., 2020b). The model was developed via a 

library of 69 ENMs, using 7 physico-chemical descriptors, enriched with 
13 molecular descriptors, which can be easily identified or calculated 
using periodic table information. The produced model, which predicts 
ζ-potential (R2 = 0.9) can be applied in SbD workflows for the devel-
opment of novel ENM, and is fully independent of experimental input 
parameters, requiring just descriptive information and molecular de-
scriptors calculated from the periodic table. The parameters identified as 
significant, i.e., ENM core size, coating, absolute electronegativity (χabs), 
metal ionic radius (rion) and sum of metal electronegativity divided by 
the number of oxygen atoms present (Σχ/no) play a clear role in regu-
lating ζ-potential in water. The benefits of this group of parameters are 
that they can either be calculated or acquired through the periodic table 
or existing libraries of calculated descriptors (χabs, rion, Σχ/no), or can be 
imported based on ENM physicochemical descriptions typically pro-
vided by manufacturers (core size, coating type and charge), and thus is 
straightforward to use to design specific ENM as only limited and easily 
acquired input data is required. Furthermore, the used descriptors allow 
ENM read-across, based on chemical similarity and specific trends 
observed within the groups (columns) and periods (rows) of the periodic 
table, followed by ENM core size and the coating used. In any case, no 
ENM synthesis or physicochemical characterisation is needed to suc-
cessfully use the model. 
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