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Abstract
Purpose Indoor and outdoor factors affect personal exposure to air pollutants. Type of cooking appliance (i.e. gas, electricity),
and residential location related to traffic are such factors. This research aims to investigate the effect of cooking with gas and
electric appliances, as an indoor source of aerosols, and residential traffic as outdoor sources, on personal exposures to particulate
matter with an aerodynamic diameter lower than 2.5 μm (PM2.5), black carbon (BC), and ultrafine particles (UFP).
Methods Forty subjects were sampled for four consecutive days measuring personal exposures to three aerosol pollutants, namely
PM2.5, BC, and UFP, which were measured using personal sensors. Subjects were equally distributed into four categories according
to the use of gas or electric stoves for cooking, and to residential traffic (i.e. houses located near or away from busy roads).
Results/conclusion Cooking was identified as an indoor activity affecting exposure to aerosols, with mean concentrations during
cooking ranging 24.7–50.0 μg/m3 (PM2.5), 1.8–4.9 μg/m3 (BC), and 1.4 × 104–4.1 × 104 particles/cm3 (UFP). This study also
suggest that traffic is a dominant source of exposure to BC, since people living near busy roads are exposed to higher BC
concentrations than those living further away from traffic. In contrast, the contribution of indoor sources to personal exposure to
PM2.5 and UFP seems to be greater than from outdoor traffic sources. This is probably related to a combination of the type of
building construction and a varying range of activities conducted indoors. It is recommended to ensure a good ventilation during
cooking to minimize exposure to cooking aerosols.

Keywords Personal exposure . Airborne pollutants . Particulate matter (PM2.5) . Black carbon (BC) . Ultrafine particles (UFP) .

Indoor/outdoor exposure

Introduction

People who live on busy roads are more likely to suffer adverse
health effects [1, 2]. A study by Carey et al. (2016) in London
suggested that people living on or close to busy roads may in-
crease the risk of exacerbating health problems related to heart
failure and pneumonia at short-term exposure [3]. Living close to

traffic roadside has also been related to an increased risk of de-
mentia [4, 5] and cognitive decline [6–8], slower rate of cognitive
development [9], structural changes in the brain [10, 11], neuro-
toxicity [12] and neurobehavioural problems in children such as
autism spectrum disorders [13]. Recently, short term exposure to
PM2.5 has been linked to short term cognitive decline [14].
Evidence also suggests a contribution of exposure to air pollution
to the risk of developing cardiometabolic syndrome [15]. Indoor
sources might also contribute to ill health. Jarvis et al., (1996)
mentioned that people who use gas stoves, as opposed to electric,
at home experience more respiratory-related health problems
[16]. Likewise, other studies have also found associations be-
tween exposure to indoor air pollution and respiratory health
effects [17–24]. Indoor exposures, mainly associated with tobac-
co smoke, have also been related to increased risk of lung cancer
[25]. Moreover, epidemiological evidence suggests that the as-
sociations between adverse health effects and black carbon (BC)
exposure (a carbonaceous component of particulate mat-
ter emitted during incomplete combustion) are stronger
than for PM2.5 [26, 27].
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Outdoor air and residential traffic are important contribu-
tors to exposure to air pollution. In addition, there are multiple
indoor sources that contribute to air pollution exposure [28].
Cooking is an important source contributing to indoor air and
personal exposure [29]. A study by He et al. (2004) found that
indoor ultrafine particle (UFP) (particles with an aerodynamic
diameter of 100 nm or less) concentrations can be elevated by
up to 5 times due to activities related to cooking, including
frying, grilling, stove use, toasting. Other activities contribut-
ing to indoor sources include fan heaters and candles [30].
Particulate matter with aerodynamic diameter less than
2.5 μm (PM2.5) concentrations can be higher than background
levels by up to 3, 30, and 90 times due to smoking, frying and
grilling respectively [30]. Géhin et al. (2008) found the
highest emissions concentrations when cooking meat or fish
whether in stove or in oven [31]. Other cooking related activ-
ities also affect the PM2.5 concentrations at home, including
baking, broiling, basting and roasting, which can affect human
health and can lead to morbidity and mortality [32].

Since people spend the majority of their time in indoors at
home, it is expected that indoor sources, including cooking,
pet dander, environmental tobacco smoke (ETS), burning of
candles and incense sticks, as well as the use of household
cleaning agents would contribute to the exposure to various
components of particulate matter, such as UFP, PM2.5 and BC
[32]. This is in addition to pollutants that originate from out-
door sources, which penetrate or infiltrate into the house [33].
Elevated concentrations of air pollutants can remain indoors
even after indoor activities have concluded. This is relevant
for particles emitted during cooking (which is a major indoor
source), ETS, and those from incense stick burning, where the
airborne particles from tobacco smoke and incense stick burn-
ing remain for longer than particles from cooking [34]. For
instance, Hussein et al.’s (2006) study found that fine particles
emitted from smoking one cigarette are equal to the amount of
particles produced during approximately half an hour of
cooking, and that airborne particles from tobacco may remain
up to ten hours.

Studies assessing personal exposure to a large range of
aerosols metrics concurrently are still scarce. Many of the
studies assessing personal exposures have focused on measur-
ing one or two aerosol metrics [35–39], but studies reporting
BC, PM2.5 and UFP concurrently are very limited [40, 41]. In
addition, a comparative assessment of the influence of indoor
and outdoor sources on the personal exposure to particulate
matter is also very limited [42–46].

This research assesses the effect of indoor and outdoor
sources on personal exposure to different aerosol size fractions
(UFP and PM2.5) and constituents (BC) during time spent in a
residential indoor microenvironment (i.e. the home), in-
cluding active and sleeping times. The main indoor
source considered is cooking with different types of
appliances (gas compared with electricity). The outdoor

source considered is residential traffic (i.e. living near a
busy road). This work presents valuable information re-
lated to aerosol exposures for epidemiological studies.

Methods

Subject’s recruitment and related information

The criteria for the recruitment of subjects was that they were
healthy, non-smoking, non-occupationally exposed adults.
Pregnant and nursing women were excluded to take part in
the study in compliance with EPA’s regulations regarding
protection of vulnerable groups in 40 Code of Federal
Regulation Part 26. Details of the recruitment process can be
found in the supporting information and in Delgado-Saborit
et al. (2018) [47].

Forty subjects were recruited (24 females and 16 males),
and grouped in four categories according to two criteria:
Residential traffic exposure, i.e. location of home with refer-
ence to traffic (traffic roadside/ non-traffic roadside), and type
of cooking appliance stove hob (Gas/Electricity). Location of
homes on A & B roads were selected as traffic roadsides
homes. Ten subjects were assigned to each group as summa-
rized in Table S1 (Supplementary Material).

Sampling was conducted in Birmingham (UK) from 6
December 2014 to 25 March 2016. Each subject was sampled
for 24 h, for four consecutive days.

Each subject was given a folder including a set of forms to
be filled during their sampling. The forms were designed
based on previous studies [48, 49] and are available at
Delgado-Saborit et al. (2018) [47]. The forms collected infor-
mation on all activities done by the subject (Activity Diary);
recorded and described all locations visited outdoors or in
transit (Location sheet for in transit locations); and indoors
(Location sheet for static locations); provided information
about smoking if subjects had been exposed to second hand
smoke (ETS questionnaire); as well as describing activities
that may have affected or produced pollutants (Sampling
questionnaire). The detailed list of forms and instructions giv-
en to the subjects can be found in the Supplementary
Information.

Instruments and equipment

Personal exposure (PE) of particulate matter (PM2.5), black
carbon (BC), and ultrafine particles (UFP) were collected for
forty subjects by using MicroPEM™ v 2.7 personal monitor
for PM2.5, MicroAeth™ model AE51 personal monitor for
BC, and portable sensor Testo DiSCmini for UFP.

The MicroPEM™ measures PM2.5 particles in real time
using a nephelometric optical bench. In addition, it collects
particles downstream the nephelometer using an integrated
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Teflon filter (25 mm) allowing for gravimetric measurement.
The MicroAeth™ model AE51 personal monitor provides
real time BC analysis by measuring the rate of change in
absorption of transmitted light due to continuous collection
of air sample deposits on a Teflon coated glass fiber filter strip.
The Testo DISCmini sensor detects UFP based on electrical
charging of the aerosols. It measures particle sizes ranging
from 10 to approximately 700 nm, and measures UFP counts
with a diameter below 300 nm.

Detailed information on the three sensors is provided in the
supplementary material. Subjects were given a voice recorder
to record their daily activities, microenvironments visited and
times thus facilitating filling the forms.

Sampling and data collection

All sensors used were already validated prior to personal ex-
posure sampling (Delgado-Saborit et al., 2018) [47].
Measurements were collected with time resolution according
to each sensor: for the MicroAeth™ which measures BC, a 5-
min time interval; for the microPEM which measures PM2.5,
10 s; and for the DiSCmini sensor which measures UFP, a 1 s
time interval. The timescales were then integrated to time
intervals of 5 min (for PM2.5 and UFP), 1 h, and 24 h for all
pollutants and data was post-processed to correct for any volt-
age changes, or flow variations as described in detail in the
supporting information.

Data analysis

Minitab statistical software version 17.1.0 was used to test the
normality of the BC, PM2.5 and UFP. According to the nor-
mality results, non-parametric Mann-Whitney tests were ap-
plied to conduct a comparative analysis of personal exposures
(5% significance level) to test a) whether personal exposure
while cooking with a gas stove is higher than cooking with an
electrical stove; and b) whether personal exposure to pollut-
ants while spending time in houses located near busy roads is
higher than time at houses located near quiet roads.

To compare the emission of aerosols during cooking
according to cooking source, the following datasets
were compared:

& A. Personal exposure in houses using gas stoves (G) com-
pared to houses using electric stoves (E) for subjects living
in houses located in busy roads (TR).

& B. Personal exposure in houses using gas stoves (G) com-
pared to houses using electric stoves (E) for subjects living
in houses located in quiet roads (NTR).

These analyses were conducted in the subset of data
representing two specific time frames: times where subject
reported to be at home, and times where cooking took place.

To assess the effect of traffic as an indoor source of aerosol,
the following datasets were compared:

& C. Personal exposure in houses located near busy roads
(TR) compared to houses located in quiet roads (NTR) for
subjects living in houses that use gas stove (G) for
cooking.

& D. Personal exposure in houses located in busy roads (TR)
compared to houses located away from traffic roads
(NTR) for subjects living in houses that use electric stove
for cooking.

These analyses were conducted in the subset of data
representing two specific time frames: times where subject
reported to be at home, and times at home where no indoor
activity is likely to emit aerosols, i.e. sleeping time.

Results

Statistical and descriptive results

Statistical analysis for normality indicates all the results from
BC, PM2.5, and UFP are not normally distributed, hence non-
parametric Mann-Whitney (M-W) tests were applied to inves-
tigate differences between groups.

The general characteristics of the study population can be
found in Table 1. Only one subject was exposed to environ-
mental tobacco smoke (ETS) during the sampling campaign,
and this subject had only one exposure to ETS during this
period. Figures 1, 2 and 3 illustrate the distribution of UFP,
BC and PM2.5 personal exposure for those subjects cooking
with gas or electric hobs (Figs. S1-S3 display personal expo-
sure distribution with full-scale axis). Likewise, Figs. 4, 5 and
6 illustrate the distribution of UFP, BC and PM2.5 personal
exposure for those subjects living in houses located near or
away from residential traffic (Figs. S4-S6 display personal
exposure distribution with full-scale axis). Table 2 summa-
rizes the results for each pollutant, from the key determinants
and activities.

Personal exposure during cooking

Personal exposure to BC during cooking was slightly higher
for those subjects using electric stove than using gas stove
(mean, standard deviation, G-TR: 3.1 μg/m3, 8.3), (E-TR:
4.9 μg/m3, 7.7), (G-NTR: 1.8 μg/m3, 2.3), (E-NTR: 2.3 μg/
m3, 3.2). This result was irrespective of the location of the
house near or far from traffic.

In houses located near busy roads, no difference was ob-
served for mean personal exposure to PM2.5 during cooking
using electric and using gas stoves (p value: 0.587), but the
median is marginally higher for those subjects using electric
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stoves (P value: 0.000). However, in houses located away
from busy roads, the mean personal exposure to PM2.5 during
cooking is higher for those subjects using gas stove (50.0 μg/
m3, 130) than using electric stove (24.7 μg/m3, 64.4).

Personal exposure to UFP during cooking in houses
located near busy roads is similar to personal exposure
to UFP in houses using gas or electric stoves (p value:
0.101), but the median is higher for subjects cooking
using electric stove than using gas stove (p value:
0.0005). However, in houses located away from busy
roads, the mean for personal exposure during cooking
using gas stove (40,711 particles/cm3, 54,776), is higher
than using electric stove (14,812 particles/cm3, 29,121).

Personal exposure during time spent at home

Personal exposure to BC during time spent at houses located
near busy roads using electric stove (2.9 μg/m3, 14.9) was
statistically higher (p value <0.05) than using gas stove
(1.9 μg/m3, 2.5). However, in houses located away from busy
roads, no difference was observed in PE between houses fitted
with electric or gas stoves (p value: 0.472), but the median PE

is higher for those subjects using electric stove than using gas
stove (p value: 0.0327). Personal exposure during time spent
at houses located near busy roads was statistically higher (p
value <0.05) than the ones located away from busy roads for
both using gas or electric stoves (TR-G:1.9 μg/m3, 2.5),
(NTR-G: 1.4 μg/m3, 3.4), (TR-E: 2.7 μg/m3, 14.9), (NTR-E:
1.4 μg/m3, 2.2).

Personal exposure to PM2.5 during time spent at houses
located near busy roads using gas stove (10.6 μg/m3, 53.6),
is statistically higher (p value <0.05) than using electric stove
(8.5 μg/m3, 14.5). However, in houses located away from
busy roads, using electric stove (16.0 μg/m3, 101), is higher
than using gas stove (13.0 μg/m3, 23.3), but the median is
slightly higher for using gas stove than using electric stove
(p value: 0.000). Personal exposure during time spent at hous-
es located away from busy roads is higher than houses located
in busy roads in both houses using gas or electric stoves (TR-
G: 10.6 μg/m3, 53.6), (NTR-G: 13.0 μg/m3, 23.3), (TR-E:
8.5 μg/m3, 14.5), (NTR-E: 16.0 μg/m3, 101).

Personal exposure to UFP during time spent at houses lo-
cated near busy roads is the same when using gas or electric
stoves (p value: 0.241), but the median is higher for subjects
using electric stove than using gas stove (p value: 0.0000).
This is the same for houses located away from busy roads,
where personal exposure using gas or electric stove is the
same (p value: 0.379), but median is higher for using electric
stove (p value: 0.0000). Personal exposure during time spent
in houses located away from busy roads is higher than houses
located in busy roads, in both houses using gas or electric
stoves (TR-G: 4,301 particles/cm3, 14,608), (NTR-G: 5,406
particles/cm3, 13,758), (TR-E: 4,634 particles/cm3, 11,120),
(NTR-E: 5,680 particles/cm3, 15,814).

Personal exposure at home without indoor activities (i.e.
sleeping)

Personal exposure to BC whilst sleeping in houses located near
busy roads is higher than personal exposure of subjects located
away from busy roads independent of the type of appliance used
for cooking (TR-G: 1.7 μg/m3, 1.8), (NTR-G: 1.4 μg/m3, 3.5),
(TR-E: 2.5 μg/m3, 4.3), (NTR-E: 1.3 μg/m3, 2.0).

Personal exposure to PM2.5 whilst sleeping in houses lo-
cated away from busy roads is higher than for those subjects
sleeping in houses located near busy roads in houses using
electric and gas stoves (TR-G: 7.0 μg/m3, 12.0),
(NTR-G: 12.2 μg/m3, 15.5), (TR-E: 7.5 μg/m3, 11.9),
(NTR-E: 9.8 μg/m3, 30.9).

No difference was observed in personal exposure to UFP
whilst sleeping in houses located near or away from busy
roads, nor for houses using gas (p value: 0.075), or electric
stove (p value: 0.470). But the median UFP PE is higher for
subjects living in houses located near quiet roads, irrespective
of the type of cooking appliance.

Table 1 Characteristics of subjects participating in the study

Characteristic Description Number of cases %

Gender Male 16 40

Female 24 60

Age range 18–25 17 42.5

26–35 14 35

36–45 4 10

46–55 1 2.5

56–65 3 7.5

>66 1 2.5

Ethnicity White 22 55

Asian 10 25

Black 6 15

Other ethnicities 2 5

Occupation Student 23 57.5

Researcher 5 12.5

Office worker 6 15

Retired 4 10

Others 2 5

Tobacco user Yes 0 0

No 40 100

ETS Exposure at home Yes 4 10

No 36 90

ETS Exposure at workplace Yes 3 7.5

No 35 87.5

N/A 2 5
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Discussion

This research aims at comparatively assessing the effect of
cooking with gas and electric appliances as a source of indoor
exposure, and living near busy roads as a source of outdoor
pollution contributing to personal exposure. The effect was
assessed at three key time periods, including time spent
sleeping where no indoor sources are likely present (i.e.
sleeping); time spent cooking when the indoor source of in-
terest is active, and overall time spent at home.

Effect of cooking on personal exposures

The highest personal exposure concentrations experienced by the
subjects participating in this study whilst staying indoors were
measured when the participants were cooking. The highest

increase was observed for concentrations of UFP, raising 2.5 to
15 fold the concentrations measured during time spent at home.

Concentrations of PM2.5 measured in this study are within
the range of those reported in Australia and Italy [30, 50] and
lower than those reported in Singapore and Hong Kong [51,
52]. Concentrations of UFP are similar to those reported
cooking dinner in USA [53], cooking with oven and micro-
wave in Australia [30], and cooking in Singapore [51], but
lower than concen t ra t ions measured in Prague
(Czech Republic) [54]. Concentrations of BC are higher than
those reported by subjects cooking in an earlier study in
Birmingham [48].

Findings from time spent at home are inconsistent with the
hypothesis that personal exposure while cookingwith a gas stove
is higher than cooking with an electrical stove. The results of the
present study show that BC concentrations during time spent at

Fig. 1 UFP personal exposure concentrations (5-min time average) dur-
ing cooking, and time spent at home, in houses located either near (dark
colour) or away from busy roads (light colour), using either gas (cadet

blue/light blue) or electric (dark pink/light pink) stove. The pollutant
measurement distributions are non-normal (see main text) and axis are
truncated. Full axis boxplots can be found in Fig. S1

Fig. 2 BC personal exposure concentrations (5-min time average) during
cooking, and time spent at home, in houses located either near (dark
colour) or away from busy roads (light colour), using either gas (cadet

blue/light blue) or electric (dark pink/light pink) stove. The pollutant
measurement distributions are non-normal (see main text) and axis are
truncated. Full axis boxplots can be found in Fig. S2
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home using electric stove are higher than using gas stove.
Table 2 also shows that PM2.5 concentrations are higher
for subjects using electric cooking appliances than sub-
jects using gas appliances in houses located near busy
roads. This could be related to the fact that many of the
subjects within this category were students living in stu-
dent hall residences and were exposed to higher concen-
trations from the student kitchens, which contain several
hobs, than otherwise would be experienced in the kitchen
of a household of the general population. On the contrary,
subjects cooking with gas in houses located near quiet
roads experience a larger distribution of PM2.5 personal
exposure concentrations compared to subjects cooking
with electric appliances in houses located near quiet
roads. A similar pattern was observed for UFP, with

higher concentrations for subjects living in traffic road-
sides and cooking with electricity, and higher concen-
trations for subjects living in homes away from traffic
and cooking with gas.

The results suggest that gas and electric appliances give rise
to different amounts of indoor pollutants. Electric appliances
have been related with higher concentrations of BC during
cooking, whereas gas appliances have been associated with
higher concentrations of UFP and PM2.5 during cooking. In
addition to the effect of cooking appliance, and the biased
effect caused by participating subjects residing in halls of res-
idence, other factors such as cooking method, and products
cooked could affect the results obtained in this study.
According to Abdullahi et al. (2013), among the factors af-
fecting cooking aerosol concentration and composition are the

Fig. 3 PM2.5 personal exposure concentrations (5-min time average) dur-
ing cooking, and time spent at home, in houses located either near (dark
colour) or away from busy roads (light colour), using either gas (cadet

blue/light blue) or electric (dark pink/light pink) stove. The pollutant
measurement distributions are non-normal (see main text) and axis are
truncated. Full axis boxplots can be found in Fig. S3

Fig. 4 UFP personal exposure concentrations (5-min time average) dur-
ing sleeping, and time spent at home, in houses located either near (dark
colour) or away (light colour) from busy roads, using either gas (cadet

blue/light blue) or electric (dark pink/light pink) stove. The pollutant
measurement distributions are non-normal (see main text) and axis are
truncated. Full axis boxplots can be found in Fig. S4
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combustion process, the type of cooking oil, cooking temper-
ature and style, raw food composition and the splashing in-
curred by stirring food, which has also been proven to gener-
ate considerable amounts of aerosols. UFP and PM2.5 can be
formed and emitted into the atmosphere through a combustion
process which occurs during cooking, and UFP numbers and
PM2.5 can rise due to cooking fumes containing hot vapors,
which subsequently cool and nucleate [29]. However, detailed
information on these factors affecting cooking emissions be-
yond type of cooking appliance was not available in the study
and hence could not be considered in the analysis. In addition
to cooking factors, other indoor sources such as the use of
household cleaning agents, using candles, ETS etc. which
can remain indoors for a longer time might have an effect on
the PE of subjects indoors.

Effect of residential traffic on personal exposures

Concentrations of PM2.5 and UFP measured in this study are to-
wards the lower range of personal exposures reported in the litera-
ture and reviewed byMorawska et al. (2013), which ranged 10.6
to 54 μg/m3 for PM2.5 and 5.3 × 103 to 3.5 × 104 parti-
cles/cm3 for UFP [55]. Concentrations of BC are similar
to those reported in Birmingham (UK) [48] and Seoul
(Korea) [56].

Results from the analysis focused on time spent at
home are varied with respect the second hypothesis,
i.e. that personal exposure to pollutants while spending
time in houses located near busy roads is higher than
exposure during time spent at houses located near quiet
roads. Only the BC results support the hypothesis, since

Fig. 5 BC personal exposure concentrations (5-min time average) during
sleeping, and time spent at home, in houses located either near (dark
colour) or away (light colour) from busy roads, using either gas (cadet

blue/light blue) or electric (dark pink/light pink) stove. The pollutant
measurement distributions are non-normal (see main text) and axis are
truncated. Full axis boxplots can be found in Fig. S5

Fig. 6 PM2.5 personal exposure concentrations (5-min time average) dur-
ing sleeping, and time spent at home, in houses located either near (dark
colour) or away (light colour) from busy roads, using either gas (cadet

blue/light blue) or electric (dark pink/light pink) stove. The pollutant
measurement distributions are non-normal (see main text) and axis are
truncated. Full axis boxplots can be found in Fig. S6
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BC personal exposure is found to be higher during time
spent in houses located near busy roads both using gas
or electric stoves. But for both PM2.5 and UFP, the
results show that concentrations were higher for those
subjects spending time at home in houses located near

quiet roads, with independent of the type of cooking
appliance.

A study by Yang et al., 2018 calculated and compared both
indoor and outdoor concentrations of PM2.5 and found that
factors associated with indoor and outdoor air exchange such

Table 2 Contribution of cooking, time spent at home, and sleeping in houses located either near (TR) or away from busy roads (NTR), using either gas
(G) or electric stove (E), on personal exposure, at 5-min time interval

Group Activity Pollutant Key determinant Median Mann-
Whitney
test p value/

Number of
observations(a)

G vs E – TR Cooking BC (μg/m3) G 1.5 0.000 464
E 2.8 341

PM2.5 (μg/m
3) G 6.1 0.000 435

E 10.2 325
UFP (particles/cm3) G 3674.1 0.0005 256

E 6829.8 195
Time spent at home BC (μg/m3) G 1.4 0.000 8376

E 1.5 7942
PM2.5 (μg/m

3) G 6.0 0.0571 7805
E 5.8 7526

UFP (particles/cm3) G 1445.3 0.0000 4675
E 1801.7 3545

G vs E – NTR Cooking BC (μg/m3) G 0.9 0.0028 377
E 1.4 658

PM2.5 (μg/m
3) G 8.7 0.0019 367

E 8.8 594
UFP (particles/cm3) G 17,439 0.0000 232

E 3184 370
Time spent at home BC (μg/m3) G 0.7 0.0327 6886

E 0.7 8142
PM2.5 (μg/m

3) G 6.4 0.0000 6389
E 6.3 7052

UFP (particles/cm3) G 1904.9 0.0000 4431
E 2283.2 4596

TR vs NTR – G Sleeping BC (μg/m3) TR 1.3 0.000 5174
NTR 0.6 4374

PM2.5 (μg/m
3) TR 5.8 0.0000 4874

NTR 6.1 4097
UFP (particles/cm3) TR 1209.5 0.0000 2790

NTR 1407.6 2672
Time spent at home BC (μg/m3) TR 1.4 0.000 8376

NTR 0.7 6886
PM2.5 (μg/m

3) TR 6.0 0.0000 7805
NTR 6.4 6389

UFP (particles/cm3) TR 1445.3 0.0000 4675
NTR 1904.9 4431

TR vs NTR – E Sleeping BC (μg/m3) TR 1.2 0.000 5236
NTR 0.7 5011

PM2.5 (μg/m
3) TR 5.4 0.0000 5026

NTR 6.2 4315
UFP (particles/cm3) TR 1558.6 0.0000 2448

NTR 1854.4 2357
Time spent at home BC (μg/m3) TR 1.5 0.000 7942

NTR 0.7 8142
PM2.5 (μg/m

3) TR 5.8 0.0000 7526
NTR 6.3 7052

UFP (particles/cm3) TR 1801.7 0.0000 3545
NTR 2283.2 4596

(a) N: number of 5-min measurements
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as meteorological variables, building age, window ventilation
and air conditioner use affected the contribution of outdoor
aerosol indoors. In their study, indoor PM2.5 was seen to come
from outdoor sources in the main, although indoor sources
also were found to be a noticeable contributory factor [57].

Vu et al. (2017) studied the factors affecting penetration and
infiltration of nanoparticles (i.e. UFP) from outdoor origin in-
doors and found that coagulation and evaporation processeswere
significant processed contributing to the loss of traffic nanopar-
ticles indoors [58]. The results of Vu’s study are con-
sistent with the current results for UFP showing a
smaller contribution from outdoor traffic to personal ex-
posure than from indoor sources.

Likewise, the findings from the analyses focused on the
sleeping time support only the hypothesis for BC, where higher
BC concentrations were measured for those subjects sleeping in
houses located in busy roads, irrespective of the type of cooking
appliance used at home. By contrast, PM2.5 and UFP concentra-
tions were found to be higher during sleeping time in houses
located away from busy roads, irrespective of the type of cooking
appliance.

Overall, the results suggest that BC exposures are
strongly influenced by residential traffic, since BC is a
tracer of diesel exhaust and those subjects residing near-
by traffic have higher BC PE than those living in hous-
es located away from busy roads. On the contrary, for
the participants of this study, our results suggest that
their PM2.5 and UFP personal exposures seem to be
predominantly affected by pollutants of indoor origin,
with a smaller effect on exposures from pollutants that
can penetrate and infiltrate inside houses from outdoor
sources like traffic. This could be associated to two
factors. Firstly, the student halls where most of the par-
ticipants living in traffic roadsides reside are brand new
constructions with building materials that conform to
modern standards for energy efficiency; hence are
tighter buildings reducing the penetration and infiltration
from outdoor air indoors. Secondly, the range of activ-
ities conducted in the student rooms where the partici-
pants would spent most of their time is limited and
these activities are low-emitting sources of aerosols
(e.g. studying, watching TV/internet programs,
sleeping). On the other hand, most of the participants
living in homes away from traffic were residing in older
construction building with the full range of indoor ac-
tivities expected from students, professionals and fami-
lies with children, and hence a wider variety of low and
high emitting sources of aerosols. Therefore, the pattern
of indoor sources of airborne pollutants is not compara-
ble in both groups, neither is comparable the penetration
and efficiency of outdoor pollutants in both groups.
These differential characteristics among groups has like-
ly affected the comparability of the results obtained.

Study limitations and strengths

One of the main limitations of this study was the difficulty in
recruiting a group of participants living in homes located in
traffic roadsides comparable to the group of participants living
in homes located far away from traffic. As discussed above,
the age of the house may have affected the air tightness of the
building and the filtration/penetration efficiency of outdoor
pollutants indoors. The age of the subjects was also not com-
parable between groups living in traffic and background hous-
es, influencing the type of activities conducted indoors and
their potential as aerosol sources (e.g. more microwave
cooking). The different characteristics of the participants in
the residential and non residential traffic groups might have
had an effect on the results obtained in this study and their
comparability with other studies. Therefore, caution is recom-
mended in extrapolating these results to other populations.

This study contributed useful evidence assessing personal
exposure to a large range of aerosols metrics concurrently,
which is a field of research where evidence is scarce.

Conclusion

This study has identified cooking as an indoor activity affect-
ing exposure to aerosols, namely PM2.5, BC and UFP.
Emissions of these aerosols will depend on the type of
cooking appliance, as identified in this study, and of other
factors reported in the literature summarized by Abdullahi
et al. (2013). Therefore, it is recommended to ensure a good
ventilation during cooking to minimize exposure to cooking
aerosols by using extractor fans or opening doors or windows
during cooking.

This study also suggest that traffic is a dominant source of
exposure to BC, since the results show that people residing in
houses located near busy roads are consistently exposed to
higher BC concentrations during time spent at their home than
subjects residing in houses away from traffic. In contrast,
PM2.5 and UFP indoor sources seem to be stronger contribu-
tors to personal exposures than outdoor sources related to
traffic for the participants of this study, which is likely due
to a combination of type of building construction and a vary-
ing range of activities conducted indoors. Further research
should focus on characterizing the chemical and toxicological
properties of aerosols indoors and compare these to the chem-
ical and toxicological signature of outdoor aerosols.
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