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Abstract
The attempt to understand the cerebellum has been dominated for years by supervised learning models. The central idea
is that a learning algorithm modifies transmission strength at repeatedly co-active synapses, creating memories stored as
finely calibrated synaptic weights. As a result, Purkinje cells, usually the de facto output cells of these models, acquire a
modified response to input in a remembered pattern. This paper proposes an alternative model of pattern memory in
which the function of a match is permissive, allowing but not driving output, and accordingly controlling the timing of
output but not the rate of firing by Purkinje cells. Learning does not result in graded synaptic weights. There is no
supervised learning algorithm or memory of individual patterns, which, like graded weights, are unnecessary to explain
the evidence. Instead, patterns are classed as simply either known or not, at the level of input to a functional population of
100s of Purkinje cells (a microzone). The standard is strict. If only a handful of Purkinje cells receive a mismatch output
of the whole circuit is blocked. Only if there is a full and accurate match are projection neurons in deep nuclei, which
carry the output of most circuits, released from default inhibitory restraint. Purkinje cell firing at those times is a linear
function of input rates. There is no effect of modification of synaptic transmission except to either allow or block output.
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Introduction

What do we propose?

We argue that the cerebellum stores and consults memories at
the level of functionally indivisible microzones - groups of
hundreds of Purkinje cells which form part of its repeating
internal circuits, whose output is received by a smaller group
of nuclear cells which include the output cells of the circuit.

In the flocculus, the averaged firing rate of functionally
grouped Purkinje cells (approximated by binning spikes
across the population of recorded cells) has a linear, rapid-
ly translated relationship with eye movement [43], with 3–
5-ms temporal precision. Likewise, activity of groups of

Purkinje cells in the oculomotor vermis precisely matches
the metrics of saccades [24, 25].

Our scope is related but different. It is not correlation
of Purkinje cell group codes with movement, at least di-
rectly, but how (and when) Purkinje cell firing is assured
to be coordinated within a group/circuit, and the function
of Purkinje cells outside those times. We argue that cir-
cuits are internally wired so that firing of a group must be
tightly coordinated, or there is no response at all of the
circuit as a whole. Pattern recognition effectively orches-
trates functionally indivisible behaviour of the microzone,
and thus the circuit. Input codes are contained in concur-
rent activity of large numbers of parallel fibres—that is,
by simultaneous input to an entire population of Purkinje
cells. Separate codes are used in pattern memory and con-
trol of output rates, expressed in group-coded properties
that are independently variable. Contrary to 50 years of
cerebellar theory, we argue that memory is collective, at
microzone level, and that it gates output, but (otherwise)
does not control Purkinje cell firing rates. These are in-
stead controlled, in a time window opened by gating, by
input rates.
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Background—the consensus

Purkinje cells, which exclusively carry the output of the cere-
bellar cortex, receive excitatory contact from parallel fibres
and climbing fibres and inhibition from local interneurons.
Parallel fibres are the axons of granule cells, which in turn
receive contact from mossy fibres, which, with climbing fi-
bres, provide the only glutamatergic input to the cerebellum.
The architecture of this arrangement is thought to be repeated
in all circuits. The dendritic field of Purkinje cells is very
severely flattened in the plane perpendicular to the surface of
the cerebellum and the long axis of folia. Parallel fibres lie
parallel to the surface of the cerebellum and each other, and
orthogonal to Purkinje cells, so that if the cerebellar cortex
was unfolded and laid flat they would lie in (very numerous)
parallel straight lines passing at right angles through dense
ranks of Purkinje cells.

Near coincidence of climbing fibre and parallel fibre stim-
ulation (therefore ‘paired’) induces long-term depression of
the parallel fibre-Purkinje cell synapse [21, 28, 48]; we term
a synapse modified by this protocol ‘trained’. Learning
models of the cerebellum propose that, following training,
Purkinje cells acquire a learned response to input in a ‘known’
(i.e. repeatedly paired) pattern of active parallel fibres as a
result of synaptic weight adjustments trained under climbing
fibre tuition [1, 8, 14, 18]. Learning displaces the original,
naïve response to input in a recognised configuration of active
cells, which in that sense the system remembers. Pattern mem-
ory, stored as graduated synaptic weights, accordingly also
provides control of Purkinje cells in the learned response.
Weights are adjusted by a learning algorithm (but there is
not a consensus which one). Figure 1 shows a (greatly) sim-
plified circuit wiring diagram.

Models sharing these ideas, together with the idea that
climbing fibre signals provide feedback about performance,
have a long history [54]. Feedback typically takes the form of
error signals [47] which signal the difference between actual
and desired performance. Purkinje cells are thought to indi-
vidually ‘most probably require specific error signals and
learn heterogeneously’ [64], and are often treated as de facto
output cells of the system.

New proposals in more detail

This paper argues instead that:

I. The cerebellum stores memories at the level of function-
ally indivisible groups of hundreds of Purkinje cells,
which form part of the cerebellar circuit. A group oc-
cupies a long thin strip of the cerebellar cortex (a
microzone, 15–20 mm long and a few cells wide [41]).

II. The output of a group, received by the output cells of the
circuit, is wired so that firing of the whole Purkinje cell

population must be tightly coordinated, or there is no
response at all of the circuit as a whole. Put another
way, it effectively orchestrates functionally indivisible
behaviour of the group, and thus the circuit.

III. Input to a circuit is coded at the collective levels of hun-
dreds of signals received by each Purkinje cell and thou-
sands received by the population of a microzone, at
around the same time.

IV. Separate codes are used in pattern memory and control of
output rates. The codes are contained in the same group
activity of parallel fibres but in different collectively
expressed parameters that are independently variable,
permitting pattern recognition and control of Purkinje
cell firing to proceed side by side, without mutual
interference.

V. The response to a recognised pattern is permissive,
allowing but not driving output. Circuit selection by
pattern recognition controls timing of output and where
it is sent, but not (otherwise) firing of Purkinje cells (or
the output cells of the circuit)—in conflict with the su-
pervised learning model, where learning codes output.
To expand on this, we propose that training opens a time
window where the ‘learned’ response of Purkinje
cells—a phasic reduction of the simple spike rate—is a
proportionate response to inhibition by interneurons
controlled by granule cell rates (or a group code using
rates), unmodified by parallel fibre synaptic weights.
The function of weights, and learning, is to open the
window and not (otherwise) to control the simple spike
rate.

VI. An input pattern must be recognised by all of the
Purkinje cells in a functional group to evoke a response
of the circuit. There is no graded or intermediate re-
sponse to a partial match (otherwise, a partial match
would have an arbitrary outcome).

VII . Remembered pa t t e rns a re no t recogn i sed
individually—the response does not depend on a
match between input in a particular pattern of active
parallel fibres and a specific corresponding set of high-
ly trained synapses. The cerebellum remembers
learned patterns only as a class. The response discrim-
inates between the class of known patterns as a whole
and the (unlimited) residual class of all other patterns.

VIII. This does not confine the circuit to a binary response.
Pattern memory and control of firing rates are separate
and independently executed functions, though closely
related. Control of Purkinje cell firing is by granule cell
rates, indirectly but unfiltered, with learned timing pro-
vided by memory. Learning gates output, and rates are
controlled independently, ad hoc.

IX. There is no supervised algorithm—for so long a main-
stay of cerebellar modelling—which, like graded synap-
tic weights, is unnecessary to explain the evidence. The
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effect of learning is instead to polarise synaptic weights
so that, at the scale of input to a Purkinje cell, they are
functionally binary.

X. Without graded synaptic weights, there is no need for
hypothetically heterogeneous, or graded, climbing fibre
signals to teach them. Instead, functionally indivisible
circuits receive functionally indivisible, binary,

instruction signals. This is likely to be contentious. In
our view, the evidence does not establish that graded
lessons are coded in the number of spikes in a climbing
fibre burst. In fact, it more naturally argues the reverse,
that climbing fibre signals are not graded. We argue for
a rehabilitation of the all-or-nothing climbing fibre sig-
nal (knowing this is an unpopular view).

Fig. 1 Schematic wiring diagram of the (much simplified) cerebellar
circuit. Output of the circuit results only if mossy fibre input to the
system recodes as internal signals traffic received at training-modified
parallel fibre synapses on Purkinje cells and inhibitory interneurons.
(Top) The default state. In this state, granule cell transmission to
Purkinje cells is robust and to stellate cells is very weak. Purkinje cell
firing at high spontaneous rates, elevated by excitatory input, inhibits
nuclear cells—the output cells of the circuit. Red boxes and solid arrows:
active glutamate neurons; blue and dashed arrows: active GABA

neurons; grey and dotted arrows: silent neurons. (Bottom) Repeated
pairing of convergent parallel fibre and climbing fibre input to a
Purkinje cell teaches long-term modification of parallel fibre synaptic
transmission. Learning accordingly modifies the response to a repeat of
parallel fibre input in the same pattern of active cells. Training reverses
the sign of learning at both synapse types. Partly as a result, firing of
Purkinje cells is weakened or suspended in the conditioned response,
causing a phasic reduction of inhibition by Purkinje cells of nuclear cells

Cerebellum



A small number of Purkinje cells is sufficient
to strongly inhibit a whole nuclear group

Anatomy

Substantially, all of the output of the cerebellar cortex which
converges on a functional group of nuclear cells is from the
same microzone or the same functional but dispersed group of
microzones which form part of a multizonal circuit [2, 42].
Unless otherwise stated, ‘nuclear cell’ is used as shorthand for
excitatory projection neurons (although deep nuclei also con-
tain other cell types), and ‘circuit’ as a synonym of
microcomplex, including a multizonal microcomplex (a cir-
cuit that contains more than one microzone) [2].

Purkinje cells fire spontaneously at robust rates [10, 23, 49,
65]. They individually make powerful inhibitory contact on
each of their nuclear targets via many boutons, each contain-
ing multiple synaptic densities [45, 59], averaging a total of
perhaps 220–320 synaptic densities (24–36 boutons at an av-
erage of 9.2 ± 1.3 densities per bouton). Purkinje cells out-
number nuclear cells by around 10 to 1; each Purkinje cell
makes contact on 4 or 5 nuclear cells, so that the convergence
ratio is about 30–50:1 (rats: [45]) (Fig. 2).

The strong firing of Purkinje cells and their individually
strong contact on nuclear cells mean that a single Purkinje cell
may significantly impact on firing of its targets [44].

Modulation of nuclear cell firing requires the ‘substantial co-
modulation of a large proportion of the PCs [Purkinje cells]
that innervate the cell’ ([5], abstract). Put another way, less
than that substantial proportion is insufficient for an effect on
firing, so that a nuclear cell instead continues to receive an
overriding influence of the small number whose firing is out
of step. For example, the effect of a widespread and coordi-
nated fall in rates may nonetheless be overridden by aminority
which continue to fire at high intrinsic rates.

It is thought (but unconfirmed) that microcircuits may be
the smallest functional division of the cerebellum. That is, the
output of a microzone is not further divided into subgroups of
Purkinje cells that make segregated contact on nuclear cells.
‘To date, there is no evidence to support [the idea] that differ-
ent PCs [Purkinje cells] of the microzone control specific CN
[cerebellar nuclei] cells within the micro-group [associated
group of nuclear cells]’ (Bengtsson and Jorntell in [3] p.
663). If there is no internal organisation, a Purkinje cell makes
contact at random on any 4 or 5 nuclear cells in the nuclear
target group, and a nuclear cell receives contact from a random
sample of 30–50 Purkinje cells.

Quantifying random contact

Random contact can be quantified. Assuming divergence of
1:5, 5 Purkinje cells may inhibit, at high spontaneous

Fig. 2 Graphic to illustrate the shape and dimensions of a microzone and
a Purkinje cell. (a) Sagittal section of the rat cerebellum (obtained by
multi-photon microscopy, courtesy Tom Deerinck) showing the very
nearly always equal depth of the molecular layer. (b) Schematic of a
sagittal row of 40 Purkinje cell dendritic territories, which form the mo-
lecular layer, the estimated length of a C3 microzone in the same plane as
the slice in (a) but straightened out. (Purkinje cell image: Boris Barbour,
with permission.) (c) An inset of (b) viewed from above. Microzones are

just a few cells wide. Here, a row of 5 Purkinje cells spans a microzone
from side to side. Although formalised, relative Purkinje cell and
microzone dimensions are preserved. (d) Inset of (c), this time a perspec-
tive of 4 rows of Purkinje cells. The matrix of dots, representing stellate
cell bodies, gives an idea of the number of stellate cells that occupy the
space between Purkinje cells. Superficial stellate cells and basket cells are
not shown. (e) The actual appearance of Purkinje cells in a sagittal slice
(two-photon laser scanner micrograph, courtesy Mike Häusser)
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frequency, as much as half a nuclear group of 50, making
around 200–300 synapses on each nuclear cell—substantial
inhibitory drive, from only 1.25% of the 400 Purkinje cells in
the microzone (derived from cell and contact ratios). Adding 5
more active Purkinje cells would result in inhibition by 10
Purkinje cells of 5–50 nuclear neurons representing 10–
100% of the target nuclear group, at 200–300 synapses per
cell if input is distributed to 100% of the group, or up to
2,000–3,000 synapses in the also improbable event that input
converges on just 10% of the nuclear group, and so on. These
examples are intended to illustrate that a very small fraction
(1.25–2.5%) of the afferent population of Purkinje cells may
powerfully inhibit a majority of a nuclear group.

These are specific examples, but we can calculate the
expected number of nuclear cells out of a group of 50 that
receives contact from at least 1, 2 or 3 Purkinje cells out of
a subset selected at random from the population with input
to a nuclear group. The particular subset does not matter,
assuming contact is at random. The size of the Purkinje cell
population also does not affect the result. Variables that
affect the result are the size of a subset and the divergence
ratio.

For divergence of 1 to d and a nuclear group of n, the
probability of contact on a particular nuclear cell by a single
Purkinje cell is d/n. The probability that a particular nuclear
cell receives contact from x out of y active Purkinje cells is

given by P xð Þ ¼ y
x

� �
� d=nð Þx � 1− d=nð Þð Þy−x. The probabili-

ty that a particular nuclear cell receives contact from x = 1 or
more Purkinje cells is 1 − P(0), multiplied by n for the expect-
ed number of nuclear cells receiving it. The probability for x =
2 or more is 1 − P(0) − P(1), again multiplied by n for the
expected number, and for x = 3 or more is 1 − P(0) − P(1) −
P(2), and so on.

The results are shown in Fig. 3a–c. A steeper curve indi-
cates that fewer active Purkinje cells are needed to inhibit a
nuclear group. Efficiency is in proportion to the divergence of
Purkinje cell contact on nuclear cells. The estimated diver-
gence ratio in rats is 1 to 4 or 5. Higher ratios are shown
because it will be proposed that in addition to a direct effect
on nuclear cells Purkinje cells have an indirect effect via con-
trol of excitatory interneurons, so that it has an effect on a
larger total than the number it contacts directly.

The expected number of inhibited nuclear cells is not a
reliable prediction of the actual proportion on any particular
occasion because the numbers are too low to express proba-
bility without a degree of random variation. Figure 3d–f show
the distributed probability that any particular number of nu-
clear cells receive contact from a minimum or 1, 2 or 3 active
Purkinje cells. Again, the effect depends on the number rather
than the proportion of active Purkinje cells. There is a normal
distribution for each condition, with a very reliably limited
range, and the higher probabilities are in a narrower range

centred on the middle of the distribution. The range becomes
compressed at low and high numbers of nuclear cells.

If d = 5 and n = 50, the probability of contact on a particular
nuclear cell by a particular Purkinje cell is 5

50 ¼ 0.1. The prob-
ability that a particular nuclear cell receives no contact from
any of y Purkinje cells is therefore P(0) = (1 − 0.1)y, and con-

tact from exactly one is P 1ð Þ ¼ y
1

� �
� 0:1� 1−0:1ð Þy−1,

and the probability of contact from 1 or more, or P(≥1), is 1

− 0.9y. P ≥2ð Þ ¼ 1−0:9y− y
1

� �
� 0:1� 0:9y−1

� �
and so on.

For contact from at least x out of y Purkinje cells on z out of
n nuclear cells,

n
z

� �
� 1−P 0ð Þ−P 1ð Þ−…−P x−1ð Þð Þz � P 0ð Þ þ P 1ð Þ þ…þ P x−1ð Þð Þn−z

where P xð Þ ¼ y
x

� �
� px � 1−pð Þy−x

where p =d/n.
For values of y greater than the number of Purkinje cells

which converge on a nuclear cell, the calculation must be
adjusted, because it becomes possible that input to some nu-
clear cells is saturated (i.e. all afferent Purkinje cells are ac-
tive), affecting the probability of contact on others. Assuming
convergence of 30–50:1, y must exceed at least 30 and per-
haps as much as 50 to make an adjustment necessary. The
amount of an adjustment would be very small at values not
much higher than the convergence ratio. Nonetheless, partly
for this reason, the range of the calculations is limited to 30.

To reformulate the calculation, the probability distribution
of contact by multiple Purkinje cells onto nuclear cells is de-
rived from the probability that a given nuclear cell (out of a
group of n = 50) receives contact from x out of y Purkinje cells:

P xð Þ ¼ d
n

� �x

� 1−
d
n

� �y−x

� y
x

� �

with a Purkinje cell to nuclear cell divergence of 1 : d. Then the
probability that a number of nuclear cells, z, receives contact
from at least x out of y Purkinje cells is:

P x or moreð Þ ¼ 1− ∑
x−1

j¼0
P xð Þ

" #z

� ∑
x−1

j¼0
P xð Þ

" #n−z

� n
z

� �

The results are that a modest number of Purkinje cells is
sufficient for a large majority of Purkinje cells to receive strong
inhibition. This simple idea is unpacked in the next section.

A Purkinje cell veto

The anatomy of contact by Purkinje cells on the output
cells of the cerebellar circuit allows us to draw inferences
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about its function, assuming random distribution of con-
tact by a Purkinje cell within a nuclear group.

1) Inhibition by Purkinje cells of nuclear cells is broadly
equally distributed among a nuclear group even at

low numbers of active Purkinje cells, so that the in-
hibition of a nuclear group reaches functional satura-
tion efficiently. Accordingly, low Purkinje cell num-
bers are sufficient for inhibition at high spontaneous
rates of a statistically assured high fraction of nuclear

Fig. 3 a–c The expected number (p*n) of nuclear cells, y, out of n = 50,
that receive contact from 1 or more (blue data), 2 or more (pink) or 3 or
more (red) out of x Purkinje cells, with divergence of 1:4 in a, 1:8 in b and
1:12 in c. A steeper curve indicates that fewer active Purkinje cells are
needed to inhibit a nuclear group. Estimated average divergence for rats is
1:4–5, but Purkinje cells may influence (via nuclear interneurons, for
example) a larger number of nuclear cells than only the ones they contact
directly. d–g The probability, y, that x out of 50 nuclear cells receives

contact from 1 or more (blue data), 2 or more (pink) or 3 or more (red)
Purkinje cells, out of 5 in d, 10 in e, 20 in f and 30 in g, with divergence of
1:5. The significance is that a modest number of Purkinje cells is suffi-
cient to statistically assure that almost all nuclear cells receive contact,
and therefore to block output of the whole circuit (Purkinje cells make
individually strong contact on nuclear cells). The number may be still
lower if interneurons effectively increase divergence (shown in Fig. 4)
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cells. These can be any Purkinje cells of the necessary
minimum number.

By adding a proposal, we can infer (2) to (4) below.
The proposal is that if firing of only a few Purkinje
cells is out of step with the rest, so that they fire at
unfettered rates, it overrides an effect of the others (so
that there is a ‘veto’ of output of the circuit). This is
not without support—it has been reported that the firing
rate of most Purkinje cells which inhibit a nuclear cell
must change in the same direction at the same time to
cause an effect on the nuclear rate [5]—but has not
been fully quantified. A veto is consistent with (and
would explain) individually strong inhibition by
Purkinje cells of nuclear cells, and a number of highly
specialised synaptic adaptations discussed in the next
section.

2) The coordinated suppression of Purkinje cell firing across
the whole population of a microzone is necessary in order
to disinhibit a nuclear cell group, because less than full
coordination means that each nuclear cell is individually
at high risk of receiving strong inhibition.

3) Therefore, at least in theory, a handful of Purkinje cells is
sufficient to block the output of the whole circuit, because
it is sufficient to override an effect on nuclear firing of the
rest of the population.

4) Most of the inhibition of an individual nuclear cell is
functionally supernumerary for most of the time. This is
necessary in order that it can be any group of Purkinje
cells which blocks output of the circuit if they do not
participate in the conditioned pause [30, 52], regardless
of the behaviour of the rest of the group.

Adaptations facilitating a strong effect
by a handful of Purkinje cells

This section discusses evidence that circuits are highly
adapted to allow a few Purkinje cells to have a power of veto,
and to mitigate unwanted side effects.

Inhibitory bottleneck

Contact by Purkinje cells on nuclear cells ‘is characterised by
preferential targeting of cell somata rather than dendrites’
([61], p. 3443), while the majority (75%) of excitatory inputs
are distal [13]. Purkinje cell synapses are therefore positioned
to block an effect of excitatory input onto nuclear cells,
exercising a powerful inhibitory veto.

Nuclear interneurons

Deep nuclei contain excitatory (presumed glutamatergic) in-
terneurons that fire spontaneously and which are inhibited by
Purkinje cells [62]. Accordingly, they provide spontaneous
drive to their targets, subject to Purkinje cell restraint.
Assuming those targets include significant contact on the out-
put cells of the circuit, Purkinje cells thus have an indirect as
well as a direct modulatory influence on output (because they
both directly inhibit nuclear cells and block tonic excitation).
The effect of a reduction of a coordinated Purkinje cell rate is
the reverse—output cells are released from inhibition and in-
terneurons are released to excite them.

Interneurons may increase functional divergence of
Purkinje cells onto nuclear projection neurons which carry
the output of the circuit, because a single Purkinje cell both
inhibits projection neurons on which it makes direct contact
and also weakens or blocks tonic excitation of a second subset
of those cells (which may overlap with the first). Assuming
nuclear interneurons receive contact from a random sample of
Purkinje cells and output cells receive contact from a random
sample of interneurons, functional divergence of Purkinje
cells onto output cells is amplified. The convergence and di-
vergence ratios of Purkinje cells onto interneurons and of in-
terneurons onto output cells are unknown (and the internal
circuitry of deep nuclei generally is poorly understood).
Accordingly, this idea awaits experimental corroboration.
However, we can show that, if this pathway exists, there is a
statistically assured effect on the size of the subset of nuclear
cells that receive an influence of a Purkinje cell, and the effect
is large at low divergence (Fig. 3a–c and Fig. 4).

The excitatory function of interneurons may be supple-
mented—or, conceivably, carried out1—by axon branches of
nuclear projection neurons that terminate within deep nuclei,
therefore with an interneuronal effect. If excitatory projection
neurons make collateral contact on each other, the statistical
effect should be similar to that achieved through interneurons.
Figure 4e–h model the increase in de facto divergence medi-
ated by nuclear collaterals. To model an interneuron pathway,
we would need to assume the unknown ratio of excitatory
interneurons to nuclear projection neurons and also the un-
known divergence ratios of Purkinje cells onto interneurons
and interneurons onto nuclear cells. By modelling collaterals,
we instead only need assume the nucleo-nuclear divergence
ratio.

The significance is that high divergencemoves the Fig. 3d–
g probability distributions to the right, where there is low
uncertainty (narrow peak), and high participation of nuclear

1 ‘More observations would be needed to be sure’ that deep nuclei contain
neurons that are ‘purely interneuronal, that is, without any axon leaving the CN
[cerebellar nuclei]’ (Marylka Uusisaari, personal correspondence dated
December 21 2018).
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Fig. 4 a–c The expected number of nuclear cells, y (out of n = 50), that
receive contact from x out of a randomly selected subset of 10, 20 and 30
Purkinje cells, respectively, with divergence of 1:5. The number of
Purkinje cells in these examples is a low fraction of the afferent
population but still has good coverage of a nuclear group. For example,
assuming an afferent population of 400 Purkinje cells (derived from
divergence of 1:5 and convergence of 40:1), 2.5% (10, in a) make
contact on an expected 64% of nuclear cells. Nonetheless, a very low
number of Purkinje cells is likely to mean a significant fraction of
nuclear cells receive no contact/effect. d The probability, y, that x out of
n = 50 nuclear cells receive contact from at least 1 out of a randomly
selected subset of 2 (blue), 5 (green), 10 (pink) and 20 (red) Purkinje cells
(same divergence). This is a measure of coverage by divergence in one
step, Purkinje cells onto nuclear cells, and also provides data used in
panels e–h. e–h The expected number of nuclear cells, y (out of n =

50), that receive nucleo-nuclear collateral contact from x out of a random-
ly selected subset of 9, 20, 33 and 44 nuclear cells, the average (nearest
whole) number receiving contact from at least 1 Purkinje cell in each of
the conditions in panel d. Divergence—here of a nuclear cell onto
neighbouring nuclear cells—is again 1:5 (assumed, because the ratio is
unknown). The second step means that effective divergence of Purkinje
cells onto nuclear cells is substantially higher than it is at each step. For
example, just 2 Purkinje cells are sufficient for effective divergence onto
an expected 60% of nuclear cells, 5 diverge onto 88% and 10 diverge onto
an expected 96%. Moreover, these figures do not include nuclear cells
they contact directly. Ten is sufficient for around 84% of a nuclear group
to receive modulation of convergent collateral input, i.e. from two (or
more) other nuclear cells, in addition to 48–82% that receive a direct
effect
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cells, and non-participation is confined to a low number.
Accordingly, it assists an emphatic veto by a low number of
Purkinje cells.

GABA/glycinergic nuclear interneurons [26], and possibly
others [61], have also been reported. However, they probably
receive light or no inhibition from Purkinje cells [61], so that
there is no equivalent (but opposing) effect mediated by in-
hibitory interneurons.

Adaptations of Purkinje cell-nuclear cell contact

Contact by Purkinje cells on nuclear cells is adapted to the
barrage of inhibition received by nuclear cells and mitigates
the heavy demands on Purkinje cells. Nuclear neurons fire
spontaneously in vitro, with synaptic inputs removed or
blocked, at an average of around 90 Hz (interpositus in mice:
70 Hz in males, 110 Hz in females, hence the average: [37,
46]). In vivo, under inhibition, they continue to fire but at
substantially lower rates: 10–20 Hz in resting animals [58].

Contact is somatic and transmission is mediated by spill-
over confined to multisynaptic boutons. Boutons are adapted
to provide a reliable and fast response, and mitigate depletion
of the neurotransmitter supply, and (not reported but pro-
posed) to prevent an effect leaking to other nuclear groups.
Adaptation is in the form of ‘many specializations…[which
include] large boutons, glial ensheathment, GABA trans-
porters confined to astrocytes [at the bouton perimeter, and]
multiple release sites’, and an enormous number of synaptic
vesicles ([59] p. 123). The effect is that the nuclear response is
bidirectionally sensitive at fast times with a high response
probability of postsynaptic receptors.

On the face of it, strong inhibition by Purkinje cells might
be expected to hold nuclear cells in an inactive state of
hyperpolarisation. Transmission is weakened by short-term
depression [44, 58–60]. A presynaptic form of depression
may reduce neurotransmitter depletion [44].

It is an unreported but proposed effect of the same arrange-
ment that it restricts diffusion of extrasynaptic GABA (be-
cause it is confined to boutons), thereby limiting an effect to
the nuclear group that receives contact, and preventing an
effect on other groups, even if group boundaries contain some
intermingling. Otherwise, independent and functionally dis-
crete control of nuclear groups would receive interference
from diffusion of spillover from other groups.

What is a veto for?

Why are circuits engineered so that a small number of
Purkinje cells has a power of veto?

Input to the cerebellum terminating as mossy fibres on
granule cells is thought to be recoded at the point of entry,
in the granular layer, in the sense that it drives firing of a

decorrelated permutation of active granule cells which is
maintained homeostatically at a low and stable fraction of
the large granule cell population, regardless of the number
of mossy fibres driving it [6, 9], thus generating a random
distribution and shifting pattern but low and stable level of
parallel fibre activity. A single Purkinje cell may receive con-
tact from 175,000 parallel fibres [39], so that even if a very
low fraction of parallel fibres is active a single Purkinje cell
receives several hundred inputs.

Microzones are defined by their climbing fibre input, so
that all Purkinje cells in a microzone receive climbing fibre
instruction as a volley, at the same time. Assuming a fixed
density and random distribution of active parallel fibres, a
climbing fibre volley is reliably paired with parallel fibre input
received along the whole length of a microzone. Synaptic
training with paired input accordingly teaches depression not
at several hundreds of active synapses on a single Purkinje
cell, but tens of thousands, on hundreds of Purkinje cells,
which occupy a long thin strip that populates a microzone.

Following training, Purkinje cells respond to a known pat-
tern with a phasic reduction of their firing rate and sometimes
a full pause [30, 52]. Nuclear cells are sensitive to the dynam-
ics of the simple spike rate [44, 58] and respond to a falling
rate with an increase in their own firing. However, if a low
number of Purkinje cells is enough for an override, non-
participation of only a very modest region of a microzone—
because it does not receive parallel fibre input in a known
pattern—is sufficient for a veto. If part of a pattern of input
to a microzone is known and part is not, there is a veto.

The result is the same regardless of the size of the region
that receives the unknown part, provided it contains the nec-
essary minimum number of Purkinje cells. As we might ex-
pect that Purkinje cells which are aligned on beam and there-
fore sample the same parallel fibre activity respond en bloc,
the size (in the sagittal plane) of a region that contains the
necessary number may be very modest—conceivably a single
row of Purkinje cells that spans a microzone from side to side.

Input in a pattern not meeting this standard is not
recognised. A failure to meet threshold does not trigger a
graded response but no response at all, regardless of how close
a match the input is in other regions, or which parts match and
which do not. It is also immaterial how good the match is
overall. There is no proportionate (or any other) response to
a partial match. This is a key output and perhaps the central
accomplishment of this design, because the response to a par-
tial match would be arbitrary.

This is not in any way to suggest that Purkinje cells must be
silenced to modulate firing of nuclear cells. The proposal is
not that modulation is contingent on all-or-nothing firing, but
all-or-none Purkinje cell coordination. It is unnecessary for a
coordinated change in the rate to be a full pause. And while, in
theory, uncoordinated firing could be in any permutation of
rates, in practice firing of Purkinje cells omitted from a learned
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‘pause’ is maintained at robust intrinsic rates [23, 49]—or
higher, elevated by excitatory input. Poor coordination is not
dysfunctional; simply, it exercises a default veto. A veto is the
appropriate response to less-than-fully known input to a
microzone.

So, patterns are learned, stored and confined to have an
effect, at the indivisible level of a functional population of
Purkinje cells, the microzone.

What effect does a fully known pattern have?

Section 5 described the response where input to (any part of) a
microzone is in an unknown pattern of active cells. This sec-
tion describes the effect when a microzone receives a good
match.

Direct effect

It has been for a long time a central proposal of learning
models that the function of training is to calibrate synaptic
weights to make the learned response of Purkinje cells pattern
dependent. It will be argued here on the contrary that the
function is to remove a graded effect on Purkinje cell firing
of synaptic modification, and that pattern recognition has a
gating function.

A parallel fibre makes contact on one in every two
Purkinje cells it passes at an average of 1.24 synapses,
that is, 1 and sometimes 2 [22, 39], so a Purkinje cell
receives input from a random sample of around half of
a pattern of active cells (more accurately: from half the
cells active within a learning-defined time window). The
fixed density (and large number) of active cells means
each pattern trains a predictable fraction of synapses on
a Purkinje cell.

The density of parallel fibre activity, expressed as the frac-
tion that are active, is the probability that a given synapse is
active. This is therefore the probability, p, that a synapse par-
ticipates in a particular pattern. The changing relative propor-
tions of a stored pattern which overlap with 1 other pattern,
with 2, with 3 and so on as more patterns are stored, is given
by

y ¼ n!
k! n−kð Þ! � pk � 1−pð Þn−k

where y is the probability that a given synapse participates
in k out of n stored patterns, and p is the fraction of parallel
fibres that are active. y is also therefore the proportion of each
pattern (the same for all of them) that overlaps with k other
patterns, for n + 1 patterns stored, by the law of large numbers.
In reality, p is a constant, assuming the density of parallel fibre
activity is uniform and constant.

Stored patterns therefore overlap in predictable numbers,
simulated in Fig. 5. Each pattern contains the same number of
synapses that also participate in 1 other stored pattern, and in
2, and 3 and so on. The numbers are a function of the number
of patterns stored, and the proportions are the same for all
stored patterns. The ratio of trained to naïve synapses is the
same for all Purkinje cells trained to the same number of
patterns and therefore all Purkinje cells in the same microzone
(because climbing fibre lessons are received in a synchronised
volley), and all microzones trained to the same number of
patterns (which they may be if they have the same capacity
and they are all trained to capacity).

An estimated 80–85% of parallel fibre-Purkinje cell synap-
ses are strongly depressed, to the extent that there is ‘no de-
tectable somatic response’ to granule cell stimulation ([27] p.
9676). This is consistent with a high estimate of ‘electrically
silent’ synapsesmade by parallel fibres activated by cutaneous
stimulation [16]. The Isope and Barbour detection threshold
does not rule out compound responses (Boris Barbour, private
correspondence dated 7 December 2018). But a collective
effect, if it exists, would presumably be weak. Also, it would
not be pattern-specific but generic, for the same reason that
overlap is statistically predictable: most synapses also partic-
ipate in a random sample of other patterns, subject to con-
straint of sample size by a probability distribution (Fig. 5a–c).

In our model, the function of learning is to block or uniformly
(and greatly) weaken transmission. This does not mean synapses
are all stripped of intrasynaptic AMPA receptors (although some
are: [35]). Equality is not necessary between synapses but be-
tween (known) patterns. Simply, direct excitatory input in a
known pattern is without a significant effect either because it is
insignificantly weak or because it is made standard (and weak) at
the scale of activity sampled by a Purkinje cell.

As a result, the response is independent of the particular
pattern of input and of the distribution among active cells of
the rates they each fire at. The whole class of known input
patterns evokes the same functionally uniform response. The
function of learning is to polarise synaptic weights. This is in
order to prevent an effect of weights from interfering with
control of output coding, and as such is directly contrary to
the idea that learning adjusts weights to code output. Pattern
recognition (in this contention) discriminates only between
the class of known patterns and the residual (and unlimited)
class of all other input.

Indirect effect

Purkinje cells are interleaved with stellate cells, inhibitory
interneurons that receive excitatory input from parallel fibres
and inhibit Purkinje cells. Parallel fibre input to stellate cells
drives feed-forward inhibition of Purkinje cells. The parallel
fibre-stellate cell synapse learns in the same conditions as the
parallel fibre-Purkinje cell synapse but the sign is reversed.
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That is, the parallel fibre-stellate cell synapse is potentiated by
a course of training with paired input, while unpaired (parallel
fibre only) input leads to synaptic depression (in vivo: [17, 31,
32], in vitro: [50, 56, 57]). Depression is severe, entirely
blocking a postsynaptic effect (even with input at several
100 Hz, Henrik Jӧrntell, private correspondence dated 31
March 2017).

We propose that the effect of synaptic modification trained
by experience in natural conditions is to polarise parallel fibre
synaptic weights, as it is at the parallel fibre-Purkinje cell syn-
apse. There is no direct evidence that transmission at climbing
fibre-trained synapses is concentrated in a compressed range, as
there is at the parallel fibre-Purkinje cell synapse. However, the
number and timing of lessons is the same for both populations
(in the same microzone). Polarisation would not mean trans-
mission is the same strength at all synapses that participate in a
learned pattern, but that there is no selective (i.e. variable) effect
of synaptic weights on the response, at the collective level of
parallel fibre activity that drives feed-forward inhibition. There
is evidence that this is true.

Interneurons reflect ‘granule cell input with linear changes
in firing rate’ ([29] p. 6), so that inhibition of Purkinje cells is
at a rate controlled by parallel fibres. Moreover, this translates
into a proportionate effect on Purkinje cells. The Purkinje cell
firing rate has a linear relationship with the balance of excit-
atory input from parallel fibres and inhibitory input from in-
terneurons. In mice, the ‘locomotion-dependent modulation of

the balance between excitation and inhibition [of Purkinje cell
dendrites] generates depolarising or hyperpolarising dendritic
Vm [dendritic membrane voltage] changes that linearly trans-
form into bidirectional modulation of PC SSp [Purkinje cell
simple spike] output’ ([29] p. 9). Granule cell signals can be
highly variable. Jelitai and colleaguesmeasure the net effect of
all inputs to a Purkinje cell, so that the results do not speak to
the synapse-by-synapse effect of learning on transmission.
However, at net level, the simple spike rate varies reliably
and linearly with afferent rates and this relationship is suffi-
cient to explain the data (so that there is no need for a hypo-
thetical mechanism that uses an algorithm to control synaptic
weights).

In the conditioned response, a known pattern is received
exclusively at depressed synapses. With a direct excitatory
effect absent (or the weakened/normalised equivalent), the
balance shifts strongly to control of dendritic membrane po-
tential by interneurons, themselves controlled by a linear rela-
tionship with granule cell rates.

Instruction signals

Climbing fibre discharge

Functionally, binary transmission would make hypothetically
graded climbing fibre teaching signals unnecessary, because

Fig. 5 a–c The changing relative proportions of a stored pattern of
parallel fibre input to a Purkinje cell which overlap with 1 other pattern,
with 2, with 3 and so on as more patterns are stored, up to 13 in panel a, 8
in panel b and 5 in panel c. Eight percent of parallel fibres are active in
panel a, 4% in panel b and 2% in panel c. The solid red line (all panels) is
the proportion of a learned set of modified synapses that does not
participate in other patterns. This is also (very near) the proportion of

the total that participate in no patterns. Dashed line: the proportion
which also participate in one other pattern; thick dotted line: 2 other
patterns; solid line: 3; dots and dashes: 4; thin dotted line: 5. The solid
faint grey lines in panels a and b show the proportion that participate in 6
other patterns, in 7, in 8 and so on, from left to right. The x range
minimum is 2
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they are not needed to teach graded weights. Climbing fibres
discharge in short bursts of spikes, originally reported to have
an all-or-nothing signature [15]. The number of spikes is var-
iable but in a small range and unpredictable on any particular
occasion [12]. There has been a more recent move to argue—
and is now probably the mainstream view [19, 51, 64]—that
climbing fibre signals teach a graded lesson that depends on
the number of spikes in a burst. We argue here for a rehabil-
itation of the all-or-nothing view, and that the evidence is
robust.

Discharge within each burst is at an invariant high frequen-
cy [34, 36]. Over many bursts, the number of spikes correlates
statistically with the timing of discharge relative to the phase
of inferior olive subthreshold oscillation [36], leading to the
idea that the number of spikes may code the oscillation phase,
teaching graded parallel fibre synaptic modulation. The num-
ber was later reported to correlate with the amplitude, but not
the phase, of oscillations [4]. The discrepancy is unresolved.

In fact, neither predicts the number of spikes in any given
instance. Caution has been urged, even by supporters of a
graded signal. The ‘number of spikes per CF [climbing fibre]
burst was quite variable from one burst to the next and… the
changes in burst size for any given situation were small (<1
spike per burst) and could only be detected in the average as a
slight probability bias toward generating more bursts with
many (>4) or few (1) spikes’ ([38] p. 4). Nor has a correlation
been shown to be functional. If oscillations code anything, it is
unknown what it is.

The number of spikes in a burst is very modest. The aver-
age number is 2–3 and the range is 1–6 [4, 36]. The number is
further reduced because at least 3 spikes are needed to induce
LTD [53], and further still if the number is inversely correlated
to the amplitude of oscillations [4], which is larger among
functionally grouped, strongly gap-junction-connected cells.

Moreover, olivary spikes do not propagate reliably. Spikes
are generated in the initial axonal segment but some fail to
propagate far (> 125 μm), so that what is initially a group of 4
(say) can become a group of 3, or two. Transmission failure is
at random: the first spike always propagates, and the others
propagate with variable probability (range p = 0.66–0.89;
[36]), depending on their position in a burst. The probability
that a burst contains a transmission failure also depends on the
original size of the group—for example, an average of 2 out of
3 five-spike bursts are redacted (Fig. 2). The unpredictable
failure of spikes to propagate means that if information is
coded in the number of spikes initially generated, it is
unreliably transmitted.

Finally, burst size does not code signals received as input to
the inferior olive—‘The mean number of spikes … [was] in-
dependent of the stimulus intensity’ ([12] p. 201). This was
found whether depolarisation is just over threshold or stron-
ger, and has never been refuted. So, input data coded as ex-
citatory rates are not represented in the number of spikes, even

before spikes are lost to transmission failure. Nor is a graded
lesson coded in the intraburst rate; interspike intervals are
highly reliable, such ‘that the timing of spikes within a burst
in the olivary axon is highly stereotyped…, with only the
number of spikes varying’ ([36] p. 392).

So, graded climbing fibre instruction would need to be
coded in a very modest number of spikes. Moreover, the num-
ber of spikes does not code signals that drive firing. Even if it
did, spikes are not reliably transmitted—targets would receive
the wrong lesson more often than not. The interspike interval
is always the same, so information is not coded in the spike
rate within a burst. Contrary to the graded view, all of this
suggests more naturally that the climbing fibre signature is
narrowly constrained in form. We propose instead that the
all-or-nothing view is the correct interpretation.

Climbing fibre LTD

The climbing fibre-Purkinje cell synapses is plastic in vitro
[11, 20, 63]. Does that interfere with binary lessons?

Like parallel fibre-Purkinje cell LTD, climbing fibre LTD
requires postsynaptic Ca2+ elevation and activation of group 1
mGluRs [20]. Climbing fibre LTD is reported to cause a re-
duction of climbing fibre–associated Purkinje cell dendritic
calcium transients [63] which is sufficient to reverse the direc-
tion of plasticity at the parallel fibre-Purkinje cell synapse
[11].

It is not known if climbing fibre LTD is functional in vivo
or, if so, what function it has. Induction was by 5-Hz
tetanisation for 30 s. This is in the upper range of olivary firing
frequency. Sustained high frequencies cause poisonous levels
of calcium. ‘High frequency Ca signals can reach neurotoxic
levels when the frequency of complex spikes is transiently or
persistently high’ ([55] p. 380). Possibly, transmission
strength is self-depressing at high rates in order to forestall a
toxic effect. If plasticity is bidirectional, as reported at
climbing fibre synapses during postnatal development [7,
40], it may be that synapses depress until rates subside and
then revert to normal.

Hence, climbing fibre LTD, if present in natural conditions,
may have no sustained or function-impacting effect on parallel
fibre synaptic strength. Indeed, a persistent effect might be
expected to impair and not improve function. The reasons
are as follows: (1) a function has not been reported (or pro-
posed as part of a model of circuit function); (2) the high
climbing fibre rate needed to induce it may be toxic; (3) it
would subsequently alter all parallel fibre synaptic modifica-
tion under climbing fibre tuition, indiscriminately; (4) such an
impact would occur in later conditions to which the high
climbing fibre rate did not relate; (5) assuming LTD is revers-
ible, an effect on parallel fibre plasticity would be time-limited
without a functional justification.
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Discussion

We propose that functionally grouped Purkinje cells learn to
behave with coordinated timing, so that output of a circuit
either is driven by coordinated behaviour of the whole popu-
lation of a microzone, or else is blocked. Many brain regions
face the challenge of simultaneously processing heavy
throughput. In the cerebellum, the organisation and dimen-
sions of a microzone allow circuits to present a large target
to parallel fibres, and effectively orchestrates a functionally
indivisible response. It is indivisible because there must be
coordination of firing of the cells that control output, or there
is no output at all.

We propose that pattern memory and control of output
rates are separate functions, coded by different collective at-
tributes of parallel fibre activity that vary independently. This
allows the separate functions they serve to be carried out in
parallel without either affecting the other, although they are
intimately related (and, in active circuits, in constant
operation).

Pattern recognition is a response to the binary (on/off) pat-
tern of active parallel fibres. Each pattern, at any time—
received across an entire population of Purkinje cells—is an
effectively unique representation of mossy fibre input up-
stream, but all are otherwise equal in being randomly
decorrelated and equally dense, so that an effect on the post-
synaptic cell of the pattern per se is invariant. Given these
properties, the make-up of a pattern—which cells are active
and in what permutation—is immaterial, i.e., without effect.
An effect is confined to firing rates, but here again, as rates
contained in a pattern are randomly distributed among active
cells (and synaptic weights are not graded), the particular dis-
tribution does not change the effect on the postsynaptic cell,
nor therefore alter the response. Put another way, Purkinje
cells do not remember (meaning: their response does not dis-
criminate between) learned patterns individually. They dis-
criminate only between learned patterns as a class, and the
residual class of all other (therefore unknown) activity.

The second function of coding is control of Purkinje cell
firing. The role of learning is partly to eliminate synaptic
weights as a variable, by teaching transmission that is either
very weak or robust. It is also to switch the balance of input to
a Purkinje cell from control by excitation to control by inhi-
bition, with learned timing provided by pattern memory. The
theoretical attempt to explain a learning-modulated role of
interneurons is nothing new [1, 18, 33]. In the present propos-
al, however, inhibition is not a response to a memory of pat-
terns individually, and synaptic weights are not used to make
graded adjustments to the balance of excitation and inhibition.
Learning controls instead selection of circuits to have output,
and timing, by gating the response.

For some years, there has been a strong influence on cere-
bellar theory of a large class of models (together the

supervised learning model) which share the idea that the cer-
ebellum implements a supervised learning algorithm (though
they do not agree which one), and that individual Purkinje
cells learn patterns that are stored as parallel fibre synaptic
weights, the result of long-term synaptic modifications which
accrue across training under climbing fibre tuition [1, 8, 14,
18]. Following training, learning supplants the naive response
with a weighted response to input in a recognised pattern.

In this model, learning homes in on a ‘desired’ output, the
learned response (hence ‘supervised’, to teach the correct re-
sponse). The Purkinje cell firing rate (or in some models a
spike) is a learned response to a remembered cue. The re-
sponse depends not only on receiving input in a known pattern
of active cells but on the rates at which they each fire, because
each signal must receive bespoke modulation to collectively
generate the correct output. In our model, the restriction to a
desired output is absent, because pattern memory is uncoupled
from control of Purkinje cell firing. All learned patterns can in
theory evoke any rate of Purkinje cell firing, which can be
different every time. This has the flexible advantage that a
pattern is serviceable across a range of input and output rates.
This would permit motor output, for example, at a pattern-
selected phase of a movement cycle to respond proportionate-
ly to variation of input rates, so that is responsive to the rate of
execution of movement, and step-by-step variability in cycle
duration.
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