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Abstract—This letter presents a high-gain 32 × 32-element full 

corporate-feed array antenna using a simplified assembly of only 

two split blocks. This is made possible by a new feeding 

configuration which eliminates the cavity-backed layer used in 

conventional designs. E-plane T-junctions, as well as the single-

ridge waveguide output structure, are used in the full corporate-

feed network to reduce its size. This helps to realize the one-to-one 

corresponding excitation between the output port of the feed 

network and the radiation slots. In addition, a transition structure 

from single-ridge waveguide to double-ridge waveguide is 

employed to improve the impedance matching bandwidth of the 

radiation part. For demonstration, a prototype is designed, 

fabricated and measured. Experimental results show that the 

array antenna achieves an impedance bandwidth of 19% (71-86 

GHz) with input reflection coefficient better than −13 dB, the 

antenna efficiency of over 76.4%, and peak gain of better than 38.4 

dBi over the entire operating band. 

Index Terms—Slot arrays, millimeter-wave arrays, double-

block structure, full corporate-feed network. 

I. INTRODUCTION 

 HE frequency range of 71–76 and 81–86 GHz in E-band 

has been allocated for high-data rate communication, such 

as millimeter-wave (mmW) point-to-point links [1]. Low 

profile wideband and high-gain planar array antennas are highly 

desired in such fixed radio links. Hollow-waveguide slot array 

antenna is advantageous over microstrip feed array antennas [2-

4] for a large-size high gain array, since hollow waveguide does 

not suffer from dielectric or radiation losses. 

According to the structures of feed network, hollow-

waveguide based mmW slot array antennas can be divided into 

two categories: one is series-feed [5], [6] or partial cooperate-

feed [7], [8] and the other is full corporate-feed [9-11]. The 

former generally has a simpler structure, but usually suffers 

from narrow bandwidth [12-14]. In contrast, the full corporate-

feed array antenna exhibits a wider bandwidth. MmW full 

corporate-feed slot array antennas have been reported in [9-11], 

[15-21]. In [17], a W-band slot array antenna with fractional 

bandwidth (FBW) of 21% (85 - 105 GHz) and a peak gain of 

over 30 dBi was presented. An E-band hollow-waveguide full 

cooperate-feed 32×32-slot array antenna using polyetherimide 

fabrication was introduced in [18]. The operating band covers 

from 71 to 86 GHz with a peak gain of over 37 dBi. The mmW 

full corporate-feed slot arrays in [19-21] were implemented 

using diffusion bonding technology. However, these antennas 

required at least three split functional blocks in fabrication to 

the form the structure: the feeding block, the coupling block (or 

cavity backing) and the radiation block. It is highly desirable 

and beneficial if the number of required fabrication blocks can 

be reduced, because the manufacture cost increases with the 

blocks so does the risk of electromagnetic energy leakage from 

imperfect contacts between the blocks. 

This work sets to design an E-band full corporate-feed array 

using minimum number of fabrication blocks based on hollow 

waveguide. A double-block structure with the radiation block 

and the feed network only is proposed and realized, by 

eliminating the coupling layer in conventional designs. This 

allows a two-part split-block structure, which significantly 

eases the fabrication and assembly. However, this leads to the 

challenge of realizing one-to-one excitation between the output 

ports of the feed network and the radiation slots. A solution is 

devised and demonstrated in a 1-to-1024 (32 × 32) power 

divider: E-plane T-junctions are used to construct the power 

divider with all the output ports converted to single-ridge 

waveguides for reducing the port size. For validation, a 

prototype operating at 71–86 GHz is fabricated and measured.  

II. ANTENNA CONFIGURATION AND ANALYSIS 

Fig. 1(a) shows the configuration of the 32 × 32-slot array 

antenna. It consists of only two functional blocks: the radiation 

block M1, and the feed block M2. This is different from the 

feed-coupling-radiation configurations used in [19-21]. The 

radiation block, to be machined in one piece, contains the 

radiation slots and the transition structures from single-ridge 

waveguide to double-ridge waveguide. The 1-to-1024 (32 × 32) 

power divider is used to excite the radiation slots directly. The 

feed block is constructed of multiple H-shape power dividers 

with single-ridge waveguide output structure and it is machined 

in one piece. The aluminum-magnesium alloy with a finite 

conductivity of 3.1×107 S/m is used in this design. The detailed 

analysis of these two blocks will be discussed in following 
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Fig. 1. (a) Configuration of the proposed array antenna. (b) Detailed three-
dimensional (3-D) view of a 2 × 2 slot sub-array, (c) Detailed 3-D view of a 

conventional 2 × 2 slot sub-array [19-21], (d) Detailed 3-D view of a single 

channel of the radiation layer (Block M1) in the proposed array. All dimensions 
are given in millimeters. 

 

sections. All simulations are performed using Ansoft HFSS, 

and the metal surface roughness of 0.5 μm is included in the 

simulation. 

A. Radiation block 

    To facilitate comparison with previous work, we designate a 

2×2-slot to be the sub-array as shown in Fig. 1(b) together with 

the optimized dimension values. It should be noted that the top 

three layers shown in Fig. 1(b) are actually sliced from a single 

block (the radiation block). Unlike the conventional sub-arrays 

in previous work [19-21], the 1-to-4 cavity backing to the slots 

(the Block II shown in Fig. 1(c)) is eliminated in this design. 

Instead, each output terminal in the feed block feeds one 

radiation slot through a ridge waveguide transition.  This means 

the number of output ports of the power divider in the feed 

network should be the same as the number of radiation slots, 

which increases the layout and design difficulty of the feed 

network (to be discussed in Section II-B).   

Fig. 1(d) further shows the waveguide transition structure to 

the slot in block M1. The flared radiation slot improves the 

impedance matching bandwidth between the radiation slot and 

free space. The periods of the radiation slots in x- and y- 

directions are both selected to be a wavelength in free space at 

the maximum operating frequency. The transition from the 

single-ridge waveguide to double-ridge waveguide helps 

achieve wideband impedance matching between the feed-

network and the slot. The comparisons of reflection coefficient 

with or without the double-ridged waveguide structure is 

plotted in Fig. 2(a). Without the double-ridge waveguide 

structure, the single-ridge waveguide cannot directly match the 

radiation slot due to the large difference in characteristic 

impedance. The double-ridge waveguide structure functions as 

an impedance transformer, which helps to achieve a wideband 

impedance matching over the frequency range of 69.5 - 86.5 

GHz with |S11|<-20 dB. The radiation patterns of the 2×2 sub- 

 
     (a)                                                       (b) 

Fig. 2.  (a) Comparisons of reflection coefficient with or without the double-

ridged waveguide structure; (b) Simulated radiation patterns of the sub-array at 
78.5 GHz. 

 

 
Fig. 3. (a) Quarter of full corporate-feed network. (b)Type-I and (c) Type-II H-
shape power dividers. All dimensions are given in millimeters. 

 

array at the center frequency of 78.5 GHz is plotted in Fig. 2(b). 

It can be seen that the peak gain is 16 dBi with the sidelobe 

suppressed by more than 12 dB and cross-polarization of less 

than -40 dB in both E- and H-planes. 

B. Feed block 

As pointed out previously, the radiation slots in block M1 and 

the output ports of feed network in block M2 have a one-to-one 

correspondence. As a result, the distance between the adjacent 

output ports in the feed should be the same as the period of 

radiation slots. Considering the symmetry of the array antenna 

(see the symmetry lines A-A’ and B-B’ in Fig. 1(a)), only a 

quarter of the full corporate-feed network is shown in Fig. 3(a). 

It is based on multiple cascaded H-shape 1-to-4 power dividers. 

The input port of the feed network is a standard WR-12 

waveguide at the center of back side. Two types of H-shape 

power dividers are used, namely Type-I and Type-II shown in 

Fig. 3(b) and (c) respectively. Type-I is used as the final stage 

of the feed network whereas other H-shape power dividers 

adopt Type-II structure. In order to reduce cross sectional area 

of the whole feed network, E-plane T-junctions are employed. 

In addition, the single-ridge waveguide at the outputs of Type-

I divider is used to further reduce the size of output ports. A 

bent structure is used at the input part of the Type-I power  

javascript:;
javascript:;
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(a)                                                            (b) 

Fig. 4. Simulated reflection coefficient with (a) different values of Mx and H1; 

and (b) different values of P. 

 

  
(a)                                                          (b) 

Fig. 5. Amplitude and phase of (a) Type-I H-shape power divider. (b)Type-II 

H-shape power divider. 
 

divider to facilitate laying out. The transition from the hollow 

waveguide to single-ridge is also shown in Fig. 3(b). 

The H-shape power dividers of Type-I and Type-II should 

exhibit equal-amplitude and in-phase responses in a wide 

frequency band. For Type-I, the one-step transformer in each T-

junction and steps #1 and #2 in the transition structure are 

combined to achieve impedance matching. By adjusting the 

length of one-step transformer Mx and height of step #1 H1 

(height of step #2 is fixed to be 2 mm), the reflection coefficient 

of Type-I divider can be improved, as shown in Fig. 4(a). A 

good reflection coefficient can be achieved when Mx= 0.3mm, 

H1= 2.5 mm.  For Type-II, two-step transformers are loaded in 

each T-junctions of the H-shape power divider to enhance the 

impedance matching bandwidth (See Fig.3(c)). Fig. 4(b) shows 

the simulated amplitude of Type-II divider with different values 

of P. It can be seen that the reflection coefficient is lower than 

-18 dB over the frequency range of 70-90 GHz when P = 2.1 

mm. Fig. 5 shows the amplitude and phase responses of the two 

H-shape power dividers. Other dimensions of the feed network 

are given in Fig. 3. The output signal shows equal amplitude 

characteristics over the frequency range of 70-90 GHz. In the 

same frequency range, the output signals are in-phase between 

ports 3 (2) and 4 (5) but out-of-phase between ports 2 (4) and 3 

(5). Considering the material and surface roughness and 

according to simulation, the loss of the whole feed network 

varies from 0.75 dB to 0.95 dB over the entire E-band. 

III. EXPERIMENTAL RESULTS 

Two blocks, one for the radiation part (M1) and the other for 

the feed network (M2) are fabricated by milling with fabrication 

tolerance of 20 μm. Plenty of tightening screws are used to 

assemble the prototype and suppress the potential leakage 

between the two metal blocks. The photographs of fabricated 

blocks, assembled antenna and test environment are shown in 

Fig. 6. The overall size of the array antenna is 113 × 113 × 6 

mm3. The V- and W- band far-field antenna test systems with 

test accuracy of 0.5 dB are employed to test the radiation 

 
Fig. 6. Photographs of fabricated prototypes and test environment. 

 

 
Fig. 7. Simulated and the measured reflection coefficients. 

 

performances in a microwave chamber. 

Fig. 7 compares the simulated and the measured reflection 

coefficients of the proposed array antenna. The measured 

results are slightly higher than the simulation results, but the 

overall trend remains consistent. Within the frequency range of 

71–86 GHz (FBW: 19%), the measured reflection coefficient is 

below -13 dB. The difference mainly comes from the 

assembling errors and fabrication tolerance. The influence of 

fabrication tolerances on refection coefficient is roughly 

estimated and shown in Fig. 7. It shows the potential 

contribution of the fabrication tolerance to the discrepancy. 

Fig. 8 shows the normalized radiation patterns in E- and H-

planes at 71, 78.5, and 86 GHz. Simulation and measurement 

results are in good agreement, especially for the main lobes. The 

small differences can be attributed to measurement accuracy, 

imperfect assembly and fabrication.  Over the entire frequency 

band, the measured 3-dB beamwidths and SLLs are less than 

0.8° and 13 dB in both E-and H-planes. The measured cross-

polarization radiation patterns are also plotted in Fig. 8. It 

shows a high cross-polarizations discrimination of over 34 dB 

for both planes over the same operating frequency band. 

The simulated and measured peak gain and antenna 

efficiency are shown in Fig. 9, which exhibits a good 

agreement. The measured peak gain varies between 38.4 and 

40.1 dBi from 71-86 GHz, and the simulated peak gain is 

approximately 0.1 to 0.5 dB higher than the measured value. 

This difference may be caused by the measurement and 

assembly inaccuracy, as well as the fabrication tolerance. The 

marginally larger difference in the low frequency range (71-75 

GHz) is because this frequency range is close to the upper 
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frequency limit of the V-band test system and the test error may 

increase. A stable and 
 

  
Fig. 9. Simulated and measured peak gain and efficiency. 
 

high antenna efficiency of higher than 76.4% is obtained over 

71-86 GHz. Table I compares this design with some previous 

published work based on hollow slotted waveguide. Different 

manufacturing processes, such as milling and diffusion 

bonding, are used to fabricate the prototypes. However, due to 

the restriction from the antenna structures, all previous designs 

required at least three blocks for fabrication and assembling. 

With the improved new feed network, the proposed array in this 

work can be realized with only two functional blocks. The 

antenna also exhibits a wide impedance bandwidth and high 

antenna efficiency.  

IV. CONCLUSION 

In this letter, we proposed an E-band full corporate-feed 32 

× 32-slot array antenna implemented using only two circuit 

blocks. With the new feed network configuration, the cavity-

backed layer in the conventional design was eliminated. This 

significantly reduces the antenna assembly, and therefore the 

manufacture cost, complexity, and the risk of electromagnetic 

energy leakage due to imperfect contacts between metal blocks. 

A prototype shows that the array antenna has an impedance 

bandwidth of over 19% and antenna efficiency of more than 

76.4% over the whole E-band. This demonstration shows a 

good potential for mmW applications. 

  

 
Fig. 8. Simulated and measured normalized radiation patterns. 

 

TABLE I 

COMPARISON WITH SOME PREVIOUS WORKS 
 

Ref. Antenna type FB(GHz)/ FBW Blocks AE Peak gain (dBi) Manufacturing process 

[9] 16 × 16 slots 57-66/16% 3 70% 32.5 die-sink electric discharge machining 

[11] 8 × 8 slots 28.3-35.3/22% 3 70% 23.5 die-sink electric discharge machining 

[20] 32 × 32 slots 119-134/12% >7* 60% 38 diffuse bonding 

[21] 4 × 4 slots 118-140/17.6% >10* 70% 21.1 diffuse bonding 

This work 32 × 32 slots 71-86/19% 2 >76.4% >38.4 milling 

FB: Frequency band, AE: Antenna efficiency. 

*Number of thin metal plates. At least three blocks are needed for fabrication if other manufacturing process is used. 
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