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Abstract: This literature review covers the solubility and processability of fluoropolymer polyvinyli-
dine fluoride (PVDF). Fluoropolymers consist of a carbon backbone chain with multiple connected
C–F bonds; they are typically nonreactive and nontoxic and have good thermal stability. Their
processing, recycling and reuse are rapidly becoming more important to the circular economy as
fluoropolymers find widespread application in diverse sectors including construction, automotive
engineering and electronics. The partially fluorinated polymer PVDF is in strong demand in all of
these areas; in addition to its desirable inertness, which is typical of most fluoropolymers, it also has
a high dielectric constant and can be ferroelectric in some of its crystal phases. However, processing
and reusing PVDF is a challenging task, and this is partly due to its limited solubility. This review
begins with a discussion on the useful properties and applications of PVDF, followed by a discussion
on the known solvents and diluents of PVDF and how it can be formed into membranes. Finally, we
explore the limitations of PVDF’s chemical and thermal stability, with a discussion on conditions
under which it can degrade. Our aim is to provide a condensed overview that will be of use to both
chemists and engineers who need to work with PVDF.

Keywords: polyvinylidene fluoride; green chemistry; polymer processing; circular economy

1. Introduction

Fluoropolymer polyvinylidene difluoride (PVDF) is valued for its chemical and ther-
mal inertness and is therefore in high demand across a diverse range of sectors; for example,
its piezoelectric response makes it an interesting candidate in sensing applications [1,2],
while its electrochemical stability and mechanical robustness means that it is of use as a
binder or separator in lithium ion batteries [3,4]. The inertness of PVDF can, however,
make the polymer difficult to process, because it is resistant to being dissolved in many
standard organic solvents. In this review, we examine currently known solvents for PVDF,
with consideration for environmental concerns in industrial PVDF processing; we also
review conditions under which PVDF is unstable and will undergo chemical reactions.
To our knowledge, this review is the first to unite the available data in this area, and we
hope that it will therefore be of significant use for chemists and engineers working in
this field.

In 2017, the global market for fluoropolymer films was estimated to be USD 1.97 bil-
lion, and a recent report estimated that this will rise to USD 2.62 billion by 2022 [5].
Fluoropolymers are highly sought after for their excellent mechanical properties, chemical
inertness and good thermal resistance; in addition, some fluoropolymers demonstrate
useful characteristics such as a strong piezoelectric response. The greatest share of the
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fluoropolymer market is for polytetrafluoroethylene (PTFE), which is most well known for
its hydrophobicity and low coefficient of friction. However, PTFE is difficult to process due
to its lack of solubility in all common organic solvents; other fluoropolymers with a lower
degree of fluorination can show enhanced solubility while retaining sufficient chemical
inertness to be useful in similar applications.

PVDF as a Fluoropolymer

The class of materials known as fluoropolymers comprises compounds in which the
molecules incorporate repeating units that contain both carbon and fluorine; examples of
homopolymers in this class are depicted in Figure 1 (with the structure of polyethylene
also included for comparison). At a Van der Waals radius of 1.47 Å [6], the fluorine atom is
small compared to other halogens but slightly larger than the hydrogen atom (radius 1.2 Å);
therefore, replacing some or all of the hydrogen atoms in polyethylene (PE) with fluorine
results in a stiffer polymer chain with greater resistance to bond rotation within the chain.
In addition, the C–F bond is the strongest possible single bond to carbon, owing to the
electronegativity of the fluorine atom (which polarises the bond, giving it significant ionic
character and localising negative charge on the fluorine atom) [7]. Substituting C–F for
C–H bonds within a polymer, therefore, changes the properties of the polymer considerably.
Highly fluorinated polymers are known for their excellent thermal stability, UV resistance
and chemical inertness along with low dielectric constant, low surface energy, low moisture
absorption and low flammability [8,9].

Figure 1. Molecular structures of fluorine-containing homopolymers. The molecular structure of
polyethylene (PE), a simple hydrocarbon, is included for comparison.
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PVDF has a similar structure to PTFE, except that the hydrogen atoms are only
replaced by fluorine on every alternate carbon. This has implications for the physical
properties of these polymers; both are highly unreactive compared to polyethylene due to
the strength of the C–F bond, with PTFE being more unreactive than PVDF. PTFE undergoes
chemical attack only under extremely harsh conditions, such as with alkali metals at high
temperatures [10]; however, PVDF can undergo a few reactions using common lab reagents
under somewhat milder conditions, as we shall outline in Section 3.

The degree of fluorination of the polymer also has a dramatic effect on the packing of
the polymer chains in the solid state. As shown in Table 1, this results in reduced density
and melting temperature of PVDF compared to PTFE. Because of this chain packing, PVDF
also shows greater wettability [11] and higher coefficients of friction [12] compared to PTFE,
though its wettability is still low compared to most non-fluorinated polymers. The high
melting point of PTFE (>300 °C, [13]) implies strong cohesive forces between polymer
chains. At first, this seems at odds with the anti-adhesive nature of PTFE, the property
of which is usually explained in terms of very weak Van der Waals forces along PTFE
chains, caused by the low polarisability of the C–F bond [14]. However, the discrepancy
is explained by packing effects; the stiff, regular nature of PTFE causes it to form loose
helices, which pack densely [15–17]; although localised Van der Waals’ forces are weak,
the cumulative sum of these small interactions create a large cohesive force. At the surface
of the material, the packing effect is less important compared to the weak dispersion forces
and the inability of the C–F bond to participate in hydrogen bonding; thus, few materials
will adhere to a PTFE surface, and water will not interact with it significantly. In PVDF,
however, since only half of the carbon atoms are fluorinated, the chain has greater flexibility,
packs less densely and is slightly more wettable. This effect explains both the lower melting
point and lower bulk density of PVDF compared to PTFE. Interestingly, PVDF also shows
a measurable glass transition temperature, while the Tg of PTFE is much less clear and a
wide range of values have been quoted in the literature; one specialised study suggests
that the “true” Tg is a low value [18]. Furthermore, the partial fluorination of the polymer
chains in PVDF leads to a higher tensile strength than is the case for PTFE (30–70 MPa
for PVDF compared to 20–30 MPa for PTFE [19]), owing to the greater proximity of C–F
dipoles. The relatively high dielectric constant of PVDF (∼12 at 1 kHz [20]) also makes
it an attractive candidate for some electrical applications, e.g., as a binder for electrode
materials in lithium ion batteries.

Table 1. Table of fluoropolymer material properties. Data on High Density Polyethylene (HDPE) are
included for comparison. Data are taken from [13,21,22].

Polymer Density (g cm−3)
Melting

Temperature (◦C)
Glass Transition

Temperature (◦C)

PTFE 2.16–2.20 317–345

PVDF 1.76–1.83 158–200 −29 to −57

PCTFE 2.1–2.2 210 45

PVF 1.34 190 −15 to −20 and 40 to 50

HDPE 0.94–0.965 125–135 −118 to −133

The variation in polymer structure is also reflected in the solubilities of PTFE and
PVDF; while PTFE is insoluble in all known organic solvents, PVDF can dissolve in
some polar compounds (see Section 2 for a further discussion on solubility). PVDF can,
therefore, be cast from solution or formed into membranes, while this processing method
is unavailable for PTFE. In addition, PVDF behaves as a thermoplastic material and,
when warmed, can thus be processed using well-established industrial techniques such as
injection moulding and extrusion. PTFE, on the other hand, exhibits an extreme viscosity
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above its melting temperature, of the order of 1011 poise [23,24]; these techniques are
therefore not available, and to make parts from PTFE, we must resort to either cold-
machining or to sintering powdered PTFE in an appropriate mould [25,26].

In addition to its effect on inter-chain bonding, the partial fluorination of the polymer
backbone in PVDF means that it can crystallise into a series of different polymorphs, desig-
nated α, β, γ and δ [19,27]. PVDF is typically 50–60% crystalline, and properties such as
density will depend on the extent of crystallinity and the proportion of each crystalline
phase formed. The structures of the α, β and γ forms are shown in Figure 2; the δ form
is rarely encountered when the material has been subjected to electric pulses at elevated
temperatures [28,29]. Due to the polarisation of the C–F bond, a PVDF macromolecule can
be understood to contain a large number of dipoles. The α phase is the most thermodynam-
ically stable of the crystalline phases of PVDF but does not contain an overall preferred
direction of the dipoles and, therefore, exhibits no additional response to a field. In the β
and γ forms, however, it is possible for all of these small dipoles to become oriented so
as to produce an overall permanent dipole. The process of aligning the dipoles is termed
“poling” and involves the application of an electric field to the material while it is held
above its Curie temperature, such that the chains can orient themselves with the electric
field (the Curie transition of PVDF has been described as occuring over a broad range
of temperatures above 170 °C [30]). Once aligned in this manner, the material is cooled
so that the dipoles are held in their aligned position. When an electric field is applied
to this material, it will distort, as shown in Figure 3, and can contract or expand in the
direction normal to the applied field. Thus, the crystalline phases of PVDF can exhibit both
piezoelectric and ferroelectric behaviour [31–37]. PVDF and its copolymers are therefore
interesting candidates for use in sensing applications, and this topic has been recently
reviewed [38].

Figure 2. Graphic to show the molecular conformation of α (top), β (centre) and γ (bottom) forms of
fluoropolymer polyvinylidine fluoride (PVDF). The α and γ forms contain both trans and gauche
linkages, while the β form consists entirely of trans linkages along the chain backbone.
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Figure 3. Scheme to demonstrate the piezoelectric behaviour of beta phase PVDF. The C–F bonds are aligned, with the
greater electron density located on the electronegative fluorine atom. In the case where the electric field is applied in the
same direction as the electrical poling, the δ− charge on the fluorine is attracted towards the positively charged electrode
(and the δ+ charge on the carbon atoms is attracted towards the negatively charged electrode) and the material becomes
“thicker”, therefore contracting along the direction normal to the applied field. The opposite is true when the electric field is
applied in the opposite direction to the poled direction.

We have shown, then, that PVDF is a very desirable material in applications where
high purity, high tensile strength and good dielectric properties are required, coupled with
a greater ease of processing than is the case for PTFE. We will now explore the options
available for processing PVDF from solution.

2. Solubility of PVDF

The term solvent is in common use across a range of disciplines, but its definition
is not always agreed upon. According to the International Union of Pure and Applied
Chemistry (IUPAC), a solvent is defined simply as one component of a solution [39]. In this
work, a PVDF solvent will be defined as a substance capable of dissolving PVDF below its
melting point (roughly 160 °C) without chemically altering the structure of the polymer.
However, in processing PVDF, temperatures above the melting point are frequently used.
In these cases, the viscosity of the PVDF melt can be lowered by adding a miscible liquid
known as a diluent. These are distinct from solvents as they dilute a melted polymer, which
is typically easier than dissolving a crystalline polymer due to the flexible configuration of
the melted polymer chains. As with solvents, diluents do not chemically alter the polymer
but serve only to improve processability. Both solvents and diluents are important in
PVDF processing.
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Tables 2 and 3 summarise known PVDF solvents and diluents, respectively, with their
Hansen solubility parameters (HSPs), physical properties and references for these values.
Reported uses of these compounds for PVDF processing are also listed in each table. Some
compounds that act as solvents can also be used as diluents; for example, triacetin and
γ-butyrolactone have been reported in both roles. Such dual-purpose compounds have
been placed in the solvent table (Table 2) for conciseness, with references to both diluent
and solvent studies. Compounds in Table 3 are known only as diluents, and their PVDF
solvation ability below the melting point of the polymer is unreported.

While blended solvent or diluent systems are sometimes used in PVDF processing
to achieve specific effects such as a uniform membrane pore structure, these blends are
typically composed of an effective solvent and an ineffective one [40–42]. In some cases,
the ineffective solvent can make up as much as 95% of the blended system but nonetheless
requires a small amount of effective solvent for dissolution to occur [43]. It is worth noting
that, in some cases, processing of PVDF is performed without dissolution, using non-
solvents to form a slurry with a lower viscosity than that of dissolved PVDF [44]. However,
in applications such as membrane casting or gel formation, solvents or diluents play critical
roles in determining the morphology and behaviour of the finished product [45–47].

All reported solvents and diluents of PVDF fall under the dipolar aprotic category.
These compounds have a significant permanent dipole moment and do not readily act as
proton donors, limiting their reactivity [48]. While they are popular solvents for polymer
dissolution as well as chemical reactions, dipolar aprotic solvents tend to present significant
hazards to human health and the environment [49]. Many of the most widely used solvents
in this class have therefore been restricted under the Registration, Evaluation, Authorisation
and Restriction of Chemicals (REACH) legislation, creating difficulties for companies that
wish to use them [50].
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Table 2. Known solvents for PVDF. All measurements are at 25 °C and 760 mmHg unless noted otherwise. δD, δP, δH = Hansen solubility parameters, MP = melting point, BP = boiling
point, FP = flash point, ρ = density, η = dynamic viscosity, and γ = surface tension.

δD δP δH MP BP FP ρ η γ References

Solvent MPa0.5 °C g/cm3 mPa·s mN/m Properties Use

Acetone a 15.5 10.4 7.0 −95 56 −17 0.79 0.3 23.5 [51–53] [54–57]
Acetyl triethyl citrate (ATEC) b 16.6 3.5 8.6 −45 228 c 188 1.14 53.7 [51,58] [59]
γ−Butyrolactone (GBL) a,b 19.0 16.6 7.4 −45 204 98 1.12 2.0 44.6 [51,60,61] [62–70]

Cyclohexanone (CHO) 17.8 6.3 5.1 −31 154 44 0.95 2.2 35.1 [51,71,72] [64,69,70,73]
Cyclopentanone (CPO) a 17.9 11.9 5.2 −51 131 30 0.94 1.1 33.8 [51,74] [75]

Dibutyl phthalate (DBP) b 17.8 8.6 4.1 −35 339 171 1.05 19.7 33.4 [51,76,77] [40,41,66,78–83]
Dibutyl sebacate (DBS) 13.9 4.5 4.1 −10 345 178 0.94 8.0 33.1 [51,84,85] [66]

Diethyl carbonate (DEC) a 16.6 3.1 6.1 −43 126 25 0.98 0.8 26.8 [51,86,87] [68]
Diethyl phthalate (DEP) b 17.6 9.6 4.5 −60 297 170 1.12 12.9 23.5 [51,88,89] [90,91]

Dihydrolevoglucosenone (Cyrene) a 18.8 10.6 6.9 −20 227 108 1.25 14.5 72.5 [92–94] [95]
Dimethylacetamide (DMAc) 16.8 11.5 10.2 −20 166 64 0.94 0.9 32.4 [51,76,96] [45,46,54,56,64,69,73,97–107]

N,N−dimethylformamide (DMF) 17.4 16.7 11.3 −61 153 58 0.94 0.9 35.2 [51,108,109] [45,46,55,57,65,98,99,102–104,107,110–119]
Dimethylsulfoxide (DMSO) a 18.4 16.4 10.2 19 189 87 1.10 1.9 42.7 [51,120,121] [45,46,55,99,103,104,107,118,122–124]

1,4−Dioxane 19.0 1.8 7.4 12 101 11 1.03 1.3 32.7 [51,125,126] [127]
3−Heptanone b 16.2 5.0 4.1 −39 146 41 0.81 0.8 25.7 [51,128–130] [64,70]

Hexamethyl phosphoramide (HMPA) 18.5 8.6 11.3 7 231 d 144 1.03 3.5 34.4 [51,131,132] [45,46,54,56,69,104,114,116]
3−Hexanone 15.7 6.7 4.1 −56 124 18 0.82 [51,133–135] [64,70]

Methyl ethyl ketone (MEK) 16.0 9.0 5.1 −86 80 −9 0.81 0.4 24.3 [51,136,137] [55,57]
N−methyl−2−pyrrolidinone (NMP) 18.0 12.3 7.2 −24 204 91 1.03 1.7 40.3 [51,138,139] [45,46,57,64,98,102,104,107,114,117,119,124,140–144]

3−Octanone b 16.2 4.5 4.1 −23 169 53 0.82 26.2 [51,129,145] [64,70]
Rhodiasolv® PolarCleana 17.2 8.6 9.7 −60 278 144 1.04 7.4 37.5 [146,147] [148,149]

3−Pentanone b 15.8 7.6 4.7 −39 100 13 0.81 0.4 24.7 [51,150,151] [64,70]
Propylene carbonate (PC) a 20.0 18.0 4.1 −49 242 116 1.20 2.8 31.9 [51,152,153] [66,68,69,81,104]

Tetrahydrofuran (THF) 16.8 5.7 8.0 −108 65 −21 0.88 0.5 27.1 [51,154,155] [55]
Tetramethylurea (TMU) 16.7 8.2 11.0 −1 177 75 0.97 1.4 34.6 [51,156–158] [45,46,104]

Triacetin a,b 16.5 4.5 9.1 −78 258 148 1.16 22.5 35.2 [51,159,160] [90,161–164]
Triethyl citrate (TEC) 16.5 4.9 12.0 −40 287 178 1.14 32.2 41.5 [51,165] [59]

Triethyl phosphate (TEP) a 16.7 11.4 9.2 −56 216 115 1.07 1.8 29.6 [51,129,166,167] [45,46,69,98,103,104,116,168–170]
Trimethyl phosphate (TMP) 16.7 15.9 10.2 −46 197 107 1.20 2.3 37.0 [51,129,166,171] [45,46,101,104,116]

N,N′ tetrabutylsuccindiamide (TBSA) a 17.2 9.0 2.9 −76 >250 0.96 [172] [172]

a Green solvent, b also used as a diluent, c measured at 100 mm Hg, and d measured at 740 mmHg.
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Table 3. Known diluents for PVDF. All measurements are at 25 °C and 760 mmHg unless noted otherwise. δD, δP, δH = Hansen solubility parameters, MP = melting point, BP = boiling
point, FP = flash point, ρ = density, η = dynamic viscosity, and γ = surface tension. [BMIm][BF4] = 1-Butyl-3-methylimidazolium tetrafluoroborate.

δD δP δH MP BP FP ρ η γ References

Solvent MPa0.5 °C g/cm3 mPa·s mN/m Properties Use

Acetophenone 19.6 8.6 3.7 20 202 105 1.03 1.7 39.0 [51,129,173] [47,174,175]
Acetyl tributyl citrate (ATBC) a 16.7 2.5 7.4 −80 331 b 218 1.05 42.5 54.6 [51,176] [59,177,178]

Benzophenone 19.6 8.6 5.7 48 305 138 1.11 40.7 [51,129,179] [81,180–183]
[BMIm][BF4] 288 1.21 93.8 43.0 [184–186] [187]

ε-Caprolactam (CPL) 19.4 13.8 3.9 69 271 152 1.10 49.4 [51,129,188,189] [190]
Cycloheptanone 17.2 10.6 4.8 −21 179 56 0.95 34.1 [51,129,191,192] [70]

Dimethyl adipate 16.3 6.8 8.5 9 115 c 107 1.06 3.0 29.1 [146,193] [194,195]
Diethyl azelate a 16.1 4.4 5.1 −19 292 >113 0.97 [146,196,197] [195,198]

Diethyl glutarate a 16.3 7.0 7.8 −24 237 96 1.02 [146,199,200] [198]
Diethyl malonate a 16.1 7.7 8.3 −20 197 90 1.06 1.7 31.3 [51,129,201,202] [198]
Diethyl oxalate a 16.2 8.0 8.8 −39 186 76 1.08 2.0 32.2 [51,76,203] [198]
Diethyl pimelate 16.2 4.7 5.8 −24 254 113 0.99 [146,204,205] [198]

Diethyl succinate a 16.2 6.8 8.7 −29 217 98 1.04 2.7 30.6 [146,206,207] [195,198]
Dimethyl phthalate (DMP) 18.6 10.8 4.9 0 283 154 1.19 17.2 41.2 [51,129,208] [78,81,209]

Dimethyl sulfone 19.0 19.4 12.3 105 280 139 0.82 [51,210] [211]
Diphenyl carbonate (DPC) 17.0 3.9 3.2 83 306 168 1.12 [146,212,213] [182]

Ethyl benzoate (EB) 17.9 6.2 6.0 −33 212 88 1.04 2.2 34.9 [51,129,214] [47,174,175]
Glyceryl tributyrate (GTB) 16.3 2.5 7.0 −75 307 180 1.03 10.4 [146,150,215,216] [174,175,217]

Methyl salicylate 18.1 8.0 13.9 −9 221 96 1.18 1.5 39.2 [51,129,218] [219]
Sulfolane 20.3 18.2 10.9 28 285 176 1.26 10.3 35.5 [51,76,220] [221]

Supercritical fluids a 15.6 5.2 5.8 0.46–0.86 0.06–0.12 [51,222,223] [224,225]
Triethylene glycol diacetate (TEGDA) a 16.5 6.0 8.2 −57 295 174 1.12 10.1 [146] [226]

a Green solvent, b measured at 732 mmHg, and c measured at 13 mmHg.
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Dissolution of a polymer is governed by both enthalpy and entropy of mixing as well
as kinetic effects, much like any solute. However, kinetic considerations are particularly
important in polymer dissolution. Entanglement of the polymer chains hampers diffusion
of the solvent into the solid polymer, resulting in a dissolution process that incorporates
stages intermediate between solid and liquid (Figure 4) [227]. Initially, the solid polymer is
swollen by the solvent, expanding its volume but not noticeably dissolving it. Gradually,
a layer of semi-dissolved gel is formed at the solvent–polymer interface and progresses to
a layer of fully dissolved liquid polymer.

Figure 4. Stages of polymer dissolution, showing intermediate layers between a pure polymer and a
pure solvent.

As the solvent penetrates further into the polymer bulk, the proportions of these
layers change; eventually the whole polymer material is dissolved. Heating the polymer
mixture can greatly accelerate swelling of the polymer and diffusion of the solvent into
the bulk; therefore, temperature and duration are both of great significance in PVDF
dissolution. Indeed, some studies of PVDF dissolution have reported no success even with
known solvents due to the study being performed with insufficient heating for too short a
time [228,229].

Bottino et al. conducted a comprehensive investigation of PVDF solubility in 46 sol-
vents, generating a solubility model for this grade of PVDF (Mw = 4.5× 105 g/mol) [45].
While initial trials at 20 °C did not identify any successful solvents, samples were then
shaken continuously at 60 °C for one week. By this method, eight solvents were found to dis-
solve PVDF, all classed as dipolar aprotics: dimethylacetamide (DMAc), N,N-dimethylform
amide (DMF), dimethylsulfoxide (DMSO), hexamethyl phosphoramide (HMPA), N-methyl-
2-pyrrolidinone (NMP), triethyl phosphate (TEP), trimethyl phosphate (TMP), and tetram-
ethylurea (TMU). The solubility data were used to identify the HSPs of PVDF. HSPs provide
a three-dimensional measure of solvency power based on dispersion (δD), polarity (δP),
and hydrogen bonding (δH) interactions [51]. The values of these three parameters for
PVDF represent the center of a region of Hansen space in which good solvents are located;
solvents falling outside this region are not likely to dissolve PVDF (Figure 5).

PVDF and other fluoropolymers are commonly used for membrane manufacture,
with phase inversion methods being the most popular due to their low cost, versatility
and easy scalability [230]. These methods rely on a concentrated polymer solution that
undergoes demixing, forming polymer-rich and polymer-poor regions that gradually
solidify into a porous membrane structure. This phase inversion can be induced in several
ways, with the most widely used methods being non-solvent induced phase separation
(NIPS) and thermally induced phase separation (TIPS). In NIPS, the polymer solution
is immersed in a non-solvent, which gradually mixes with the solvent and forces phase
separation (Figure 6). In TIPS, a solvent or diluent that can only dissolve the polymer at
high temperatures is chosen, and a heated polymer solution is gradually cooled to induce
phase separation [231].
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Figure 5. The solubility region for PVDF in Hansen space, centered on δD = 17.2, δP = 12.5, δH = 9.2.
Filled circles indicate solvents, open circles indicate good swelling agents, open triangles indicate
poor swelling agents, and filled triangles indicate non-solvents. (Figure reproduced with permission
from [45]).

Figure 6. Two routes to polymer membrane formation via non-solvent induced phase separation
(NIPS). (a) Rapid liquid–liquid demixing forms macrovoids; (b) Delayed demixing results in bicon-
tinuous structure.

In both NIPS and TIPS, the choice of solvent or diluent affects the manufacturing
process and the characteristics of the resulting membrane, with small changes in solvent
structure sometimes having a strong influence [230]. This has motivated a great deal of
research into solvent effects on the formation of PVDF membranes, which has been recently
reviewed in broader contexts [230,232–234].

2.1. Gelation of PVDF

In solvents containing a ketone moiety, PVDF is known to form thermoreversible gels,
with gelation temperature and polymer chain conformation varying by solvent. Tazaki et al.
studied the gelation of PVDF (Mw = 4.7× 105 g/mol) in seven ketone solvents—four linear
aliphatic ketones with chain lengths from 5 to 8 as well as cycloheptanone, cyclohexanone
and γ-butyrolactone (GBL) [70]. Three PVDF solvents without ketone moieties (DMAc,
DMF and DMSO) were also tested and were not found to form gels.
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Initially, the gelling mixtures were heated to 180 °C, which is above the melting point
of PVDF, but subsequently, the sol–gel transition was studied by heating from 30 °C to
temperatures below 180 °C, showing that the compounds studied here act as solvents as
well as diluents. Gelation upon cooling was found to take place rapidly in aliphatic ketones
(e.g., 3-heptanone) but slowly in cyclic ketones (e.g., cycloheptanone). Gels made with cyclic
ketones also tended to have lower gel melting temperatures overall (Tg

m), while all solvents
showed an increase in Tg

m with increasing polymer concentration (Figure 7a). Below 1% w/v
polymer, precipitation occurred instead of gelation. FTIR and XRD analyses showed that
PVDF samples gelled from GBL assumed γ-phase crystalline chain conformation while
other ketone solvents instead yielded the α phase.

Figure 7. (a) Dependence of gel melting temperature (Tg
m) on polymer concentration (C) in a variety

of ketone solvents; comparison of PVDF gels formed in 3-pentanone by slow cooling (b) vs. rapid
cooling (c), with SEM images showing morphologies of lyophilised samples. Figure reproduced with
permission from [70].

Okabe et al. explored the solution behaviour of PVDF (Mw = 3.1× 105 g/mol) in a
range of solvents, including PVDF non-solvents such as hexane, ketone solvents such as
3-octanone, and strong PVDF solvents such as NMP [64]. The Flory–Huggins interaction
parameter (χ12), which represents the magnitude of interaction between a polymer and
a solvent, was estimated for PVDF in each solvent based on inverse gas chromatography
(IGC) measurements. These values were then compared with the dissolution and gelation
behaviour in each solvent. It was found that the two non-solvents tested, hexane and
m-xylene, had χ12 � 0.5, indicating poor solvation ability. In these solvents, PVDF
precipitated into a solid when cooled from above its melting point. The strong solvents,
NMP and DMAc, had χ12 � 0.5, indicating good solvation ability, and maintained a
single liquid phase with PVDF when cooled. For ketone and lactone solvents (3-octanone,
3-heptanone, 3-hexanone, 3-pentanone, cyclohexanone and GBL), χ12 was found to be close
to 0.5, and these solvents formed thermoreversible gels upon cooling. In order to identify
the phase of the crystallites comprising the gel’s junction points, FTIR measurements
were performed with each gel. GBL, which had the lowest χ12 (i.e., strongest solvent–
polymer interaction) of the gelling solvents, showed indications of γ-phase crystallinity
when gelled. The other ketone solvents had higher χ12 (i.e., weaker solvent–polymer
interaction) and showed α-phase crystallinity. Finally, different grades of PVDF were
tested in gelling solvents, showing that grades with higher Mw required less polymer
to form a gel and that grades with higher crystallinity formed gels with higher gel–sol
transition temperatures.

2.2. Green Solvents and Diluents for PVDF

There has been some progress towards development of sustainable solvents and
diluents for PVDF (Figure 8). Some traditional, well-studied solvents for PVDF have
green characteristics, while lesser-known green compounds are emerging as sustainable
alternatives. Here, we have focused on the more recent green solvents and not, e.g., ethylene
carbonate. While the definition of a green solvent is complicated, the most important
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sustainability metrics for PVDF processing are low-hazard and bio-based (i.e., renewably
sourced). All solvents readily bio-degrade unless highly halogenated, with the exception of
1,4-dioxane, which is classed as a persistent bio-accumulative toxic (PBT) due to its stability
in water [126]. A comprehensive overview of solvent selection guides and definition of
green solvents can be found elsewhere [235,236].

Dimethyl sulfoxide (DMSO) (Figure 8a) is a common solvent that is bio-based, has no
known hazards and is registered for use at up to 100,000 tonnes annually in the EU [237].
However, it is readily absorbed through the skin and can carry toxic contaminants with it,
which can be problematic in large-scale manufacturing use. Additionally, it is highly reac-
tive and can be explosive when combined with certain halides, sodium hydride and some
other substances [238]. Finally, green disposal of DMSO can be challenging, as the sulfur
moiety generates SOx upon incineration, and contact with water causes significant odour
issues [239]. Despite these challenges, DMSO could be a suitable green solvent for specific
PVDF applications, such as the preparation of microfiltration membranes. Bottino et al.
tested casting PVDF membranes in eight different solvents including DMSO [46]. DMSO
was identified as a suitable candidate, creating long, broad cavities in the membrane, as
observed by SEM. The polymer solution was cast onto glass at 350 µm, partially evaporated
in air and transferred to an non-solvent bath (cold water). In this study, PVDF membranes
cast with a DMSO solvent exhibited the second highest water flux and wet membrane
thickness next to hexamethylphosphoramide (HMPA). Previous studies linked thinner,
finger-like pores to rapid precipitation of the polymer and hence disparity of solvent and
polymer solubility parameters [240]. This suggested that diffusion was the controlling
mechanism by which PVDF membranes are formed, with no significant correlation be-
tween Hansen solubility parameters and membrane structure [46]. Wang et al. concurred
that the structure of the membrane sublayer was primarily influenced by the diffusion rate
of the solvent and non-solvent; however, they also concluded that the top layer was in
fact affected by the difference between solvent and polymer HSP [103]. On testing DMSO,
DMF, DMAC, TEP and combinations of these solvents, membranes cast using DMSO or
mixtures containing DMSO displayed the highest permeability owing to the relatively low
diffusion rate between DMSO and water [103].

Figure 8. Structures of environmentally friendly PVDF solvents and diluents, including
(a) dimethylsulfoxide (DMSO), (b) triethyl phosphate (TEP), (c) triacetin, (d) dihydrolevoglu-
cosenone (Cyrene), (e) acetyl tributyl citrate (ATBC), (f) triethylene glycol diacetate (TEGDA),
(g) N,N′-dialkyldibutylsuccindiamides and (h) methyl 4-(dimethylcarbamoyl)-2-methylbutanoate
(Rhodiasolv® Polarclean).

Another well-known option is triethyl phosphate (TEP) ((Figure 8b), which is used
at an industrial scale as a solvent, chemical intermediate, catalyst and plastics additive. It
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is registered for EU use at up to 100,000 tonnes per year, and its only known hazards are
eye irritation and harm by ingestion [167]. Though its hazard profile is relatively benign,
large-scale use of TEP for PVDF dissolution could adversely affect world food production
as phosphorus, an essential ingredient in fertiliser, becomes depleted [238]. Phosphorus is,
therefore, on the critical materials list for the EU. Wang et al. prepared PVDF membranes
from a variety of solvents as mentioned with respect to DMSO [103]. In their study, they
showed that the solvent composition during synthesis has a physicochemical effect on
the membrane structure. TEP was found to have the strongest dissolving capacity of the
four solvents tested over DMF, DMAC and DMSO; however, the resultant membrane was
not as porous as that prepared in DMSO. Typically, TEP requires heating to temperatures
around 80 ◦C to dissolve the PVDF at 6% by weight of PVDF in solvent. The study also
considered mixed solvents and found that a combination of TEP/DMSO significantly
increased the surface porosity, although this membrane was soft in texture and lost some
volume porosity due to the collapse of macrovoids, which consequently reduced the
permeability. In a previous publication. TEP has been explored as a potential solvent for
PVDF hollow fibre membrane manufacture by a dry-jet wet-spinning process [169]. In this
study, Chang et al. espoused the benefits of using TEP as a safer alternative to NMP and
cited a higher porosity and spongy texture. To reduce the previously observed mechanical
weakness of membranes formed in TEP, the authors altered the composition of the external
coagulant and bore fluid by doping with 30% TEP in water. The result was a membrane
with high water flux and NaCl rejection, suggesting that TEP is still a good candidate for
PVDF membrane manufacture.

Triacetin (Figure 8c), also known as glyceryl triacetate, has also been studied for its
specific effectiveness in dissolving PVDF. As a non-hazardous, non-volatile liquid, triacetin
is labeled as generally recognised as safe by the US Food and Drug Administration and
is approved for use in food and cosmetics [241]. It is registered for EU use up to 100,000
tonnes per year [152]. Previously reported Hansen solubility parameters suggest that
triacetin could be a convenient latent solvent for PVDF and is a good solvent but only when
in a multi-component system, owing to similar hydrogen-bonding ability and dispersity
but differing polarities [228]. It is soluble in alcohol and ether and partially soluble in
water, which allows for phase separation. There have been several reports of triacetin
demonstrating use as a solvent for the formation of PVDF hollow fibre membranes for the
purposes of gas–liquid membrane CO2 and propylene absorption and separation of CO2
from methane. Several phase separation processes have been reviewed in the literature
using different anti-solvents such as glycerol or water [161,238,242].

Unconventional and neoteric (new) solvents are also being studied for their PVDF
dissolution capabilities. Dihydrolevoglucosenone (Cyrene, Figure 8d) is a novel solvent
that has been investigated as a green replacement for conventional dipolar aprotic sol-
vents. Its use as a solvent was first discovered at the University of York in 2014, and its
production is currently being scaled up by the Circa Group from 50 tonnes/year in order
to make it practical on an industrial scale [92,243]. Cyrene is registered under REACH
for EU import and manufacture of up to 100 tonnes/year, and its only known hazard
is serious eye irritation [244,245]. With efficient synthesis from cellulosic biomass, no
heteroatoms aside from oxygen and ready biodegradability, Cyrene is a promising green
dipolar aprotic solvent and was studied by Marino et al. for its application in PVDF
membrane fabrication [95]. PVDF (Mw = 3.2× 105 g/mol) was dissolved in Cyrene at
a 13% w/v concentration by stirring at 70 °C for an unspecified amount of time. This
solution was used to cast PVDF membranes with bicontinuous structures, which showed
promise for water filtration applications. Notably, the PVDF/Cyrene solution had a high
viscosity of 810 mPa·s, which likely influenced its phase inversion rate and morphology.
For comparison, similar grades of PVDF at 10% w/v in NMP were shown to have viscosities
of 120 mPa·s (Mw = 2.7× 105 g/mol) or 350 mPa·s (Mw = 4.4× 105 g/mol) [142].

Cui et al. investigated PVDF dissolution in acetyl tributyl citrate (ATBC, Figure 8e),
a low-toxicity substance that is known as a plasticiser for polymers in food contact and
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medical applications [177]. This compound is registered for EU use at up to 100,000
tonnes per year and has no known hazards, making it a safer alternative to traditional
toxic solvents while also not depleting essential elements or causing issues upon inciner-
ation [176]. PVDF (Mw = 5.7× 105 g/mol) was found to be insoluble in ATBC at room
temperature but soluble above 120 °C. Due to its ketone functional groups, ATBC is an
effective gelling agent for PVDF and was found to form a gel between 125 and 150 °C
at 15 wt.% polymer, 120 and 160 °C at 20 wt.% polymer, and 115 and 170 °C at 25 wt.%
polymer. Though the liquid solvation range is small and only accessible at lower polymer
concentrations, ATBC was found to be an effective diluent for forming PVDF membranes
at high temperatures and could be particularly attractive in replacing toxic diluents for
water filtration applications.

Cui et al. also investigated the use of triethylene glycol diacetate (TEGDA, Figure 8f) as
another low-toxicity diluent for PVDF membrane fabrication [226]. This compound is cur-
rently known as a plasticiser and is registered for use in the EU at up to 1000 tonnes per year
while having no known hazards [246]. Similar to ATBC, TEGDA contains no heteroatoms
aside from oxygen, making its use and disposal more environmentally friendly than DMSO
or TEP. TEGDA was tested in dissolving 10–50% w/v PVDF (Mw = 5.7× 105 g/mol) at
200 °C and, through slow cooling, was found to phase separate between 85 and 117 °C,
depending on concentration.

Very recently, Byrne et al. developed a new class of polar aprotic solvents consti-
tuting branched diamides from the reaction of succinic acid with n-methylbutylamine,
n-ethylbutylamine or dibutylamine [172]. These highly dipolar solvents with low water
solubility do not show indications of toxic or mutagenic effects in preliminary testing,
which is unusual for short chain amides. All three solvents were shown to dissolve 10% w/v
PVDF (Mw = 1.3× 106 g/mol) at 80 °C. Upon cooling, all three systems formed strong gels.

A second short chain amide classed as a green solvent is Rhodiasolv® PolarClean [247].
This solvent is not bio-derived but claimed green due to its low carbon footprint, volatility,
biodegradability and the fact that it is nontoxic or mutagenic. PVDF (Mw = 5.7× 105 g/mol)
at 30% w/v was dissolved at 160 °C along with other additives for the preparation of hollow
fibre membranes. The PVDF was shown to crystallise out at 53 °C [148].

2.3. Supercritical Fluids for PVDF Dissolution

In addition, some studies of PVDF dissolution in supercritical fluids (SCF) have been
performed. Due to the complex nature of SCF and the tunability of their properties, these
substances could be classed as either solvents or diluents. They have been placed in Table 3
for the sake of simplicity. Lora et al. found that 5% w/v of PVDF (Mw = 2.0× 105 g/mol)
could be dissolved in difluoromethane (CH2F2) at temperatures between 100 and 225 °C
and pressures between 750 and 900 bar, while dissolution in carbon dioxide (CO2) required
pressures above 1600 bar and temperatures of 130–215 °C (Figure 9a) [224]. Polar solvents
dimethyl ether (DME), acetone, and ethanol were also tested, with each being capable
of dissolving PVDF at relatively low pressures. These compounds were then tested as
cosolvents in CO2, with acetone performing best. The solubility of PVDF in SCF was
compared with Polyvinyl fluoride (PVF), finding that PVDF was easier to dissolve in CO2,
CH2F2, DME and acetone but was more difficult to dissolve in ethanol (Figure 9b).



Polymers 2021, 13, 1354 15 of 31

Figure 9. Experimental cloud-point curves for PVDF and PVF in supercritical fluids produced using
(a) gasses at ambient conditions and (b) liquids at ambient conditions, with the area above each curve
representing a fully dissolved single phase. The polymer concentration is 5% w/v in each case. Figure
reproduced with permission from [224].

The solubility of PVDF in SCF (CO2 as well as halogenated solvents) was investigated
further by Dinoia et al. [225]. This study concluded that, while the quadrupole moment
of CO2 grants it sufficient polar character to act as an effective PVDF solvent, its low
polarizability decreases its solvent efficacy at high temperatures. This study used a variety
of PVDF grades, with Mw ranging from 1.81× 105 to 3.29× 105, maintaining a loading of
5% w/v polymer across samples, and found that the molecular weight of the PVDF had only
a slight effect on solubility in supercritical CO2. For halogenated solvents, it was found that
PVDF solubility improved with increasing polarizability, dipole moment per molar volume
and density of the solvent. Solubility of PVDF was then compared with a copolymer of
PVDF and hexafluoropropylene. The copolymer was found to generally require lower
pressures for dissolution in all SCF, which was attributed to its larger free volume.

2.4. Solvent Effects on PVDF Materials

Solvent choice can have an impact on properties beyond simple membrane perfor-
mance. Banerjee et al. found that the resistance and capacitance values of activated
carbon capacitors were highly sensitive to the solvent chosen for dissolution of the PVDF
binder [104]. The solvents tested included the eight identified in Bottino’s 1988 work
as well as propylene carbonate (PC). Of these, TEP produced electrodes with the highest
specific capacitance and lowest internal resistance, which Banerjee attributed primarily
to the low dielectric constant of this solvent. TMP, TMU, DMF and DMA also produced
electrodes with high capacitance and low resistance, while the remaining solvents (HMPA,
NMP, DMSO and PC) did not perform as well. Where dielectric constants between solvents
were similar, improved performance was attributed to higher viscosity or lower boiling
point, each of which allows for a more homogeneous distribution of particles during elec-
trode casting and drying. Thus, careful choice of a solvent in electrode manufacturing can
significantly increase the performance of the final product.

When membranes are cast using immersion in a non-solvent bath, as in NIPS, the evap-
oration rate of the solvent is no longer the determining factor for crystallinity. Most of the
solvent is displaced by non-solvent during film formation, and therefore, evaporation rates
during drying of the film are very similar [69]. In this case, polymorphism is determined
by the solvent dipole moment, as the electrostatic interactions between solvent and PVDF
chains alter the conformation of the chain. A study by Nishiyama et al. showed that
PVDF solvents with relatively high dipole moments (PC and HMPA) favour the β phase;
those with relatively low dipole moments (TEP and cyclohexanone) favour the α phase;
and those with intermediate dipole moments (GBL and DMAc) exhibit a mixture of α, β
and γ phases [69].
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In the work by Kumar et al., HSPs were applied to identify suitable solvents for PVDF
dissolution (DMSO and DMF) and for PVDF swelling (acetone, methyl ethyl ketone (MEK)
and tetrahydrofuran (THF)) in order to form β and α phases, respectively [118]. Thin
films were produced by dissolving/swelling PVDF in the desired solvent at 1 mg/mL
loading at room temperature before casting drop wise on the water surface (air–water
interface—Langmuir–Schaefer methodology) to give an oriented, single layer film. In good
solvents, full dissolution of PVDF allows for rotation around the backbone of the polymer
at the interface, resulting in orientation of all fluorine atoms towards water and all protons
towards air. This is driven by F – OH hydrogen bonding and gives rise to a crystalline, all
trans configuration: β-phase PVDF. In the swelling solvents, only the amorphous regions
are solubilised, limiting the trans-configuration to these regions and leaving the polymer
predominantly in the α phase.

3. PVDF Stability

As we have discussed, PVDF is principally in demand for its thermal and chemical
stability, which are characteristic of fluoropolymers and are attributed to the strength of
the C–F bond. However, there are contexts in which PVDF is used instead of the fully
fluorinated PTFE, precisely because its lower degree of fluorination makes it more soluble
and hence more processable. It also follows that PVDF is somewhat more reactive than
PTFE; while PTFE will react chemically only under very extreme conditions, such as
with elemental metals at very high temperatures [248], PVDF will react with a limited
range of compounds. We discuss below the conditions under which PVDF will undergo
degradation, as a useful guide to its suitable operating conditions.

3.1. Thermal Degradation of PVDF

By pyrolysis, it was shown in the 1950s that PVDF loses a significant fraction of
its mass at around 440 °C, leaving a residue that is stable above this temperature [249].
Figure 10 compares this thermal behaviour with that of other common polymers; the onset
of degradation for PVDF is high compared with most other polymers (except PTFE), and
the mass loss stabilises after 60% of the mass is lost around 440 °C. These experiments
were carried out under vacuum; later work showed that the exact degradation profile
depends on the atmosphere to which the PVDF is exposed (air, vacuum or nitrogen) and
the crystallinity of the PVDF. In 1985, Nguyen reviewed the thermal degradation pathways
of PVDF and PVF [250]. It was accepted that the principal mechanism for the degradation
of PVDF involves the expulsion of HF from the PVDF chain, with a concomitant formation
of C=C double bonds. PVDF has actually been used as a source of F in high-temperature
reactions [251,252], and therefore, any recycling process that involves pyrolysis of the
PVDF must take into account the fact that HF will be produced. The stability of the residue
above 440 °C is attributed to the C=C bonds along the backbone of the polymer chain.
The hypothesis that C=C double bonds are formed is also supported by FTIR studies [253]
and by the development of colouration in the chain as the double bonds form.

The presence of additives can also affect the thermal stability of PVDF. Some nanoscale
filler materials have been shown to change the overall crystallinity of the material. Addi-
tives that can increase the crystallinity of the PVDF material without chemically reacting
with it can enhance its thermal stability; examples of such additives include boron-doped
graphene [254] and magnetite [255]. However, some additives can react with PVDF at
elevated temperatures, as is the case for copper oxide and aluminium oxide nanoparti-
cles [256,257]. Added montmorillonite filler, silica and zeolites have also been shown to
reduce the thermal stability of the material [258,259]; in these cases, it is suggested that
the filler reacts with the HF produced by initial PVDF degradation and that this process
further advances the degradation of the PVDF.
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Figure 10. Graph to show the volatilisation of several polymers by pyrolysis under vacuum. Of this
set of polymers, only polytetrafluoroethylene (PTFE) degrades at a higher temperature than PVDF.
Under these conditions PVDF loses up to 60% of its mass at around 430–459 °C and then stabilises
after this temperature. This figure is based on one from Reference [249].

3.2. Chemical Stability of PVDF

Highly fluorinated polymers such as PVDF are generally rather resistant to chemical
degradation. Acids seem to have very little effect on PVDF. Hydrochloric acid (HCl), humic
acid (HA) and sulphuric acid (H2SO4) have been tested in varying concentrations, each
showing no reaction with PVDF [260,261]. This, coupled with the dearth of literature con-
cerning reactions of PVDF with acids suggests that PVDF is stable in low-pH environments.
However, PVDF has been shown to have sensitivity to certain strong bases [262–266].
When exposed to strong alkaline conditions (pH ≥ 11) PVDF can readily undergo a de-
hydrofluorination reaction. This reaction causes an expulsion of HF and the formation
of C=C double bonds or crosslinking between chains, similar to the thermal degradation
reaction (see Figure 11). These conjugated double bonds allow further reaction mechanisms
to occur, e.g., Diels–Alder [267] or further crosslinking [268,269]. The dehydrofluorination
degradations visually appear as a colour change to yellow or brown, concurrent with the
C=C double bond formation, but can also present as the gelation of a PVDF solution due to
the formation of crosslinks between adjacent PVDF chains (see Figure 11). The autocatalytic
formation of C=C double bonds also increases the susceptibility of neighbouring groups to
dehydrofluorination [270].
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Figure 11. Elimination reactions undergone by PVDF, resulting in the expulsion of HF from the polymer.

Given the limited available literature, several test experiments were performed in our
labs to explore the stability of PVDF in mixtures intended for use in batteries. As a model
system, we illustrate the dehydrofluorination of PVDF under basic conditions in a simple
solution using N-methyl-2-pyrrolidone (NMP) as the solvent; 10 wt.% of a base (NiCO3
or NaOH) was added to a solution of PVDF (8 wt.% PVDF in N-methyl-2-pyrrolidone).
The (NiCO3) solution (pH 8–9) gave a gel-like product after approx. 90 min, with almost no
change in colour (though the mixture is already strongly green-coloured due to the presence
of NiCO3). For the NaOH solution, however, a reaction occurred almost immediately and,
within approximately 5 min, a strongly elastic gel formed. This was accompanied by
a significant colour change. The PVDF solution in NMP is cloudy with a slight yellow
tinge; during the reaction with NaOH, it became black/brown (see Figure 12). Subsequent
tests with NaOH on an 8% PVDF/NMP solution demonstrated that, for a 10:1 molar
ratio of NaOH to PVDF repeating unit, gelation occurs quickly (within 5 min) with an
accompanying colour change from clear to black/brown. For a 1:1 molar ratio, the reaction
occurs much more slowly. Gelation and discolouration take approximately 1 day to
occur, and the solution forms a brown gel as its final product (rather than black/brown).
This chemical gelation has knock-on implications for the battery industry, where highly
alkaline materials such as NMC811 are emerging as key candidates for use as cathodes.
The composition and preparation of PVDF inks and slurries must be carefully controlled
in order to ensure their stability for coating and storage. For example, exposure to water
and heat generation during the mixing and coating should be limited to stop gelation
from occurring. The longer-term effect of PVDF with these alkaline materials in the cell
is still not known, and the degradation or cell failure mechanisms over the lifetime may
be accelerated in these alkaline cathode-containing systems. A 2018 study [271] indicates
that PVDF, while stable as part of a graphite electrode, suffers from degradation if silicon is
also present. Therefore, PVDF should not be treated as a completely inert material, and its
stability is an important subject of study.

Figure 12. Photographs to illustrate the gelation of PVDF. (a) Reaction of PVDF in NMP with NiCO3

at 0 min (b) Reaction of PVDF in NMP with NiCO3 at 90 min. (c) Reaction of PVDF in NMP with
NaOH at 0 min (d) Reaction of PVDF in NMP with NaOH at 5 min.

A dehydrofluorination reaction of PVDF dissolved in DMF upon exposure to bases
was demonstrated by Dias et al. [272], with the degree of reaction dependent on the strength
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of the base. In similar conditions, the hydroxyl-based compounds KOH and tetramethyl-
ammonium hydroxide produced gelatinous products and precipitates, respectively. While
both hydroxyl-based compounds demonstrated a reaction with PVDF, the typically stronger
base, KOH, gave a higher yield of precipitate (100%) compared to tetramethyl-ammonium
hydroxide (10–20%). Two other bases, lithium 2,2,6,6-tetramethyl-piperidide and potassium
t-butoxide, were tested and showed clear degradation in UV-VIS spectra and conductivity
changes but with less visible degradation. As also demonstrated by our tests, stronger
bases, such as those containing hydroxyl groups, have a higher affinity to degrading
PVDF. These hydroxyl ions can react with PVDF via an elimination reaction. Nucleophilic
substitution reactions are unlikely due to the relatively poor leaving-group ability of the F
ion (see Figure 13 for the elimination mechanism). FTIR spectroscopy verifies the absence
of OH bands in the spectra of the hydroxyl-reacted PVDF [273].

Figure 13. Mechanism for the elimination of HF from PVDF to form unsaturated bonds.

High concentrations (>30 wt.%) of NaOH have been shown to react strongly with
PVDF, and this reactivity does continue with lower concentrations (<1 wt.%) as well.
However, it seems that the reactivity and sensitivity of the PVDF also depend on the cation
of the hydroxide. KOH does not react with PVDF in low concentrations (<1 wt.%) [274],
but a reaction does occur at higher concentrations (>30 wt.%) of KOH with PVDF [266,275].
At high concentrations, KOH has a greater potential for degradation than NaOH [266]. The
reactions of PVDF with hydroxides can also be catalysed by organic solvents such as tetra-
butylammonium bromide (TBAB) [266,273]. TBAB is necessary for the low-concentration
dehydrofluorination reaction between KOH and PVDF. However, in both cases, the reaction
pathway the catalyst provides is unclear.

A discolouration reaction due to the elimination of HF in the dehydrofluorination
reaction of a PVDF powder suspended in an aqueous NaOH solution was observed by
Kise et al. [266]. The IR spectra demonstrated new bands at 1590 and 2100 cm−1, denoting
C–C double and triple bonds, respectively. This dehydrofluorination reaction is consistent
with the reaction where PVDF is present in solution, demonstrating that the sensitivity to
bases is maintained regardless of whether the PVDF is dissolved or solid. This is important
as surface area seems to has a lesser effect than strength of base on the reaction.

Super-hydrophobic PVDF membranes, made by Wu et al. [276], used hydroxyl-rich
silica to induce phase inversion without degrading the PVDF. The hydroxyl groups induced
a phase transition in the PVDF chains from α to γ PVDF and hydrogen bonds formed
between these groups and the PVDF chains. This may suggest that, for degradation (via
dehydrofluorination) to occur, the hydroxyl groups or other base anions need to be free or
solvated. It is interesting to note that, as PVDF exhibits piezoelectric effects in the β and γ
phases but not in the α phase [36], this phase inversion can be useful for the formation of
piezoelectric materials [198,277,278].

A PVDF–OH polymer was formed during a Fenton reaction with anhydrous ethanol,
hydrogen peroxide, iron (II) sulfate heptahydrate and sulphuric acid by Teow et al. [260]. In
this reaction, OH radicals and OOH radicals are formed by the hydroxylation of hydrogen
peroxide. These radicals then displace the hydrogens on the PVDF, forming PVDF–OH.
The strong C–F bonds are unaffected, and the structure of the rest of the PVDF remains
largely unchanged. It is important to note that the radicals are responsible for the reaction
with PVDF, as expanded in the Irradiation Degradation section. Other reactive species
have shown prevalence to reactions. Lithium silicides, due to their highly reactive nature
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(such as Li7Si3 and Li12Si7) can react with the lower energy bonds in PVDF, C–C and
C–H [279]. This is important in the battery industry as PVDF is a commonly used binder
for electrodes and silicon materials can be used as anodes; lithium silicides can form
during solid electrolyte interface (SEI) formation (a layer that forms between the anode and
the liquid electrolyte during the first few cycles of a lithium ion battery) and the cycling
processes can further degrade the electrodes. Lithium oxides have also been shown to cause
degradation of PVDF in batteries [280]. Other additives have been used in the formation of
PVDF membranes and have been shown to increase the hydrophilicity of the membrane
surface. These include titanium dioxide and silica.

3.3. Radical Reactions in PVDF

PVDF is not always inert to radiation, but high-energy radiation is required to form
radicals on the PVDF chain. The radiation source can be UV [281], electron beam [282],
heavy ions or gamma radiation [283]. Once irradiated, radicals are formed by bond scission
between the carbon chain and the H or F substituents on the chain. These radicals can
form crosslinks between neighbouring chains, create unsaturated bonds within the PVDF
structure or aid grafting reactions.

For the synthesis of graft copolymers, radical formation is beneficial; however, in most
situations, it is undesirable. Exposure to UV radiation can cause cracks and fractures on the
surface of PVDF membranes, and the extent of damage is observed to increase with further
exposure. Additionally, the exposure can cause a reduction in tensile strength; a reduction
of 10% after 120 h was observed by Lee et al. [281]. The study concluded that, under short
time scales (<40 h), the effect of UV radiation on PVDF was minimal but that prolonged
exposure critically altered the membrane. This has clear implications for the use of PVDF
in environments where UV exposure is inevitable, e.g., in aerospace applications.

Electron beam (EB) radiation has been shown to increase the crosslinking within the
PVDF [284,285] and to thereby reduce the size of pores within PVDF membranes. Critically,
this allows a PVDF membrane to be used as a filter for smaller particles, although the
degree of pore homogeneity was greatly reduced with exposure to radiation. However,
the changes to the surface roughness and surface functionalisation caused by the radiation
led to an increase in hydrophilicity and a decrease in water flux [286]. Additionally, the EB
radiation can reduce the tensile strength of the films due to chain scission [287]. γ-radiation
has been similarly demonstrated to cause chain scission in cross-linked structures, such as
by Medeiros et al. [288]. Owing to PVDF’s wastewater filtration uses, radiation changes of
this nature are a potential problem.

4. Summary

The vast range of commercial applications that currently make use of PVDF spans
industries as diverse as the chemical, medical, automotive, semiconductor and food pack-
aging sectors (among many others). With our current growing need for energy storage, its
use as a binder in battery electrode materials is of particular interest and will only become
more important as the manufacture of electric vehicles increases. As the consumption of
PVDF becomes more important, however, it is important to consider how it can be recycled
or reused as PVDF components reach the end of their useful lives. This is particularly
urgent when PVDF is used as a binder in electrode materials because, in that application, it
is generally mixed with a number of other materials. The thermal stability and chemical
inertness of PVDF (which are the very qualities that make it desirable in many areas) render
it difficult in being reclaimed from a composite, especially as it is soluble in few solvents.
A further environmental consideration here is that disposal of PVDF by incineration leads
to the formation of HF at elevated temperatures. The aim of this review is to provide a
useful reference for both chemists and engineers who wish to make use of PVDF and to
initiate discussion on the role that PVDF may play in a future circular economy.

In Section 1, we discuss how the beneficial material properties of PVDF (such as
thermal and chemical stability) make it a desirable material and have led to its use in the
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wide variety of applications mentioned above. To enable greater flexibility for processing
and recycling of PVDF materials, greater knowledge in alternative and “green” solvents is
required, as currently there are limitations for current solvents. The current state-of-the-art
is summarised in Section 2. An overview of the available literature on known solvents
of PVDF, with a discussion of PVDF membrane formation, is provided. A current “map”
of solvents and diluents for PVDF with reference to their Hansen solubility parameters
is presented. There are significant future research opportunities to further explore the
applicability of “green” solvents, solvent mixtures and supercritical fluids for PVDF.

Finally, we discuss the limitations of PVDF’s stability (Section 3). In strong bases
and under strong radiation, it is possible to see degradation of the polymer and it is
important for the engineer to understand possible constraints on the practical use of the
material. This becomes particularly important for example in the battery and fuel cell
industry, where PVDF is used as a binding agent in electrodes and for the synthesis of
membranes. Alkaline materials within the composites may produce instabilities in inks
or coatings and provide routes for degradation during a product lifetime. The precise
degradation mechanisms and their impact is still largely unexplored.

In summary, this article provides insight into how the use of PVDF may be extended
by good knowledge of the solubility of the material and how it may be processed; it is
also useful to understand the limitations of PVDF by exploring situations in which it may
undergo degradation. There are many future opportunities to enable greater processability
and functionality through new combinations of solvents. There is also considerable scope
for further investigation of PVDF’s degradation mechanisms under different conditions.
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