
 
 

University of Birmingham

Chronologically dating the early assembly of the
Milky Way
Montalbán, Josefina; Mackereth, John Ted; Miglio, Andrea; Vincenzo, Fiorenzo; Chiappini,
Cristina; Buldgen, Gaël; Mosser, Benoît; Noels, Arlette; Scuflaire, Richard; Vrard, Mathieu;
Willett, Emma; Davies, Guy R.; Hall, Oliver; Nielsen, Martin Bo; Khan, Saniya; Rendle, Ben
M.; Rossem, Walter E. van; Ferguson, Jason W.; Chaplin, William J.
DOI:
10.1038/s41550-021-01347-7

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Montalbán, J, Mackereth, JT, Miglio, A, Vincenzo, F, Chiappini, C, Buldgen, G, Mosser, B, Noels, A, Scuflaire, R,
Vrard, M, Willett, E, Davies, GR, Hall, O, Nielsen, MB, Khan, S, Rendle, BM, Rossem, WEV, Ferguson, JW &
Chaplin, WJ 2021, 'Chronologically dating the early assembly of the Milky Way', Nature Astronomy, vol. 5, no. 7,
pp. 640-647. https://doi.org/10.1038/s41550-021-01347-7

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Montalbán, J., Mackereth, J.T., Miglio, A. et al. Chronologically dating the early assembly of the Milky Way. Nat Astron (2021).
https://doi.org/10.1038/s41550-021-01347-7

This document is subject to Springer Nature re-use terms: https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-
license-to-publish#AAMtermsV1

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. Apr. 2024

https://doi.org/10.1038/s41550-021-01347-7
https://doi.org/10.1038/s41550-021-01347-7
https://birmingham.elsevierpure.com/en/publications/b080e42d-6d7b-46a1-9aec-b7ce6d4fda65


Chronologically dating the early assembly of the Milky Way

Josefina Montalbán1, J. Ted Mackereth1,2,3,4, Andrea Miglio1,5,6, Fiorenzo Vincenzo1,7,8, Cristina
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The standard cosmological model (Λ-CDM) predicts that galaxies are built through hier-
archical assembly on cosmological timescales[1, 2]. The Milky Way, like other disc galaxies,
underwent violent mergers and accretion of small satellite galaxies in its early history. Thanks
to Gaia-DR2[3] and spectroscopic surveys[4], the stellar remnants of such mergers have been
identified[5, 6, 7]. The chronological dating of such events is crucial to uncover the formation
and evolution of the Galaxy at high redshift, but it has so far been challenging owing to dif-
ficulties in obtaining precise ages for these oldest stars. Here we combine asteroseismology –
the study of stellar oscillations – with kinematics and chemical abundances, to estimate precise
stellar ages (∼ 11%) for a sample of stars observed by the Kepler space mission[8]. Crucially,
this sample includes not only some of the oldest stars that were formed inside the Galaxy, but
also stars formed externally and subsequently accreted onto the Milky Way. Leveraging this
resolution in age, we provide compelling evidence in favour of models in which the Galaxy had
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already formed a substantial population of its stars (which now reside mainly in its thick disc)
before the in-fall of the satellite galaxy Gaia-Enceladus/Sausage[5, 6] around 10 billions years
ago.

Recent results based on the ESA Gaia mission[3] have revealed that the stellar content of the inner halo
of the Milky Way (MW) is dominated by debris from some seemingly massive dwarf galaxies, such as the
Gaia-Enceladus/Sausage (hereafter GES).The merging event with the GES is now purported to be one of the
most important in the Galaxy’s history, shaping how we observe it today[6, 9, 10, 11]. To constrain the effect
of such mergers on the MW and other similar galaxies, it is crucial to understand their state both prior to and
following the merger. This requires mapping the temporal sequence of these events with the highest precision
possible (∼ 10% to follow the first 4 billion years after the Big Bang[12]). Several recent works have estimated
the characteristics and timing of this merging event [5, 13, 10, 14, 11, 15], while others (before[16, 17] and
after[18, 19] Gaia-DR2) have aimed to age date the accreted and in-situ stellar populations of the MW halo
(see Helmi[20] for an extensive review). Although using different kind of targets and methods, these age
dating techniques are however quite limited in precision and accuracy, since they are based on stellar surface
properties and on predictions from stellar evolution models. The latter are known to be affected by e.g.
uncertainty in the physics and degeneracy between parameters, which makes it difficult to obtain stellar ages
with the required precision and accuracy.

Red giant (RG) stars, being long-lived and intrinsically bright, are excellent candidates to map ages in
different regions of the MW[21, 12, 18]. However, ageing RGs in color-magnitude space using their surface
properties gives yet uncertain results since their colours and luminosities are similar, whatever their mass and
age. Fortunately, asteroseismology, which probes the internal structure of stars, provides us with means to
reach a precision of 10-20% on age-dating individual RG stars[22, 12, 23].

Among the roughly 15,000 oscillating K- and G-type RG stars detected in the field observed by the NASA
Kepler space telescope[8], a small fraction lie in the low-metallicity regime characteristic of the inner MW
halo and high-[α/Fe] disc component ([Fe/H] < −0.5). Of these, some 400 stars have precisely measured
element abundances, atmospheric parameters and radial velocities from the Data Release 14 of the Apache
Point Observatory Galactic Evolution spectroscopic survey (APOGEE DR14[4]), as well as detailed proper
motions from Gaia-DR2[3].

The Kepler data provide oscillation frequency spectra of exquisite quality and resolution, allowing precise
estimates to be made of the frequencies of modes of different angular degree (radial ` = 0, dipolar ` = 1
and quadrupolar ` = 2), and hence of fundamental parameters and evolutionary state of the stars. We first
use this seismic information to remove from the sample those stars that are in the red clump (RC) phase
(i.e. low-mass He-core-burning stars that have likely underwent mass loss earlier in their evolution) and in
subsequent phases. Removing these contaminants leaves a sample of 95 red giant branch (RGB) stars whose
radial-mode frequencies we have measured to use as the asteroseismic input for inferring robust and precise
ages (see Methods and Extended Data Fig. 5 for details).

We estimate stellar properties (Supplementary Table. 1) using the individual frequencies of radial modes
and atmospheric parameters from spectroscopy as observational inputs in AIMS[24], a Bayesian parameter
estimation code, which provides best-fitting stellar properties and full posterior probability distributions
by comparing with theoretical stellar models and adiabatic frequencies (see Methods and Extended Data
Fig. 6, 7). The precision on age we achieve, of 11% on average, affords us the ability to unpick the chronological
sequence of events some ∼ 12 Gyr ago, as we show below.

The robustness of our estimated stellar age distributions has been checked performing different tests (see
Methods section and Extended Data Figs. 8, 9, for detailed description). Moreover, as shown in Fig. 1,
despite having only fitted modes of degree ` = 0, the theoretical spectra predicted by the best-fitting model
parameters reproduce well also the non-radial modes (` = 1, 2) of the observed spectra, which reinforces the
confidence on the quality of the derived stellar parameters.

Figure 2 summarises the chronological, chemical and kinematic properties of the final sample of 95 RGB
stars for which we could robustly determine ages. In Fig. 2a we show its [Fe/H]-[Mg/Fe] distribution (coloured
by age), together with that of APOGEE DR14 sample (grey points). The grey points clearly show, in addition
to two over-densities at higher [Fe/H] corresponding to the low- and high-[α/Fe] Galactic disc populations
and metal-rich in-situ halo[28], a scattered population at [Fe/H] < −0.7 and intermediate [Mg/Fe] (∼ 0.1 to
0.2), where the recently characterised GES population lies[5, 29, 14]. Our final RGB sample (coloured circles)
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Figure 1: Observed and modelled stellar power spectra. The power spectra of three stars from our
sample which span a wide range in [Fe/H], compared with the theoretical spectra of best fit model returned
by AIMS. SNR (signal-to-noise ratio) represents the height of the mode peaks relative to the surrounding
noise floor. The vertical lines, coloured by their angular degree `, show the frequency and relative estimate
amplitude of the oscillation modes. Only the measured l = 0 mode frequencies (shown by gray dashed vertical
lines) were used as seismic constraints in AIMS. The ` = 1 and ` = 2 mode frequencies predicted by the best
fit model reproduce those modes visible in the data with good accuracy, reinforcing the confidence on the
quality of the fitting procedure and of the derived stellar parameters.
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Figure 2: Chronological, chemical and kinematic properties of the seismic RGB sample. a, The
[Mg/Fe]-[Fe/H] plane for our sample (points coloured by age), compared with the rest of APOGEE DR14 at
[Fe/H] < −0.5 (small grey points). The dashed line ([Mg/Fe] = −0.2 [Fe/H] + 0.05) demonstrates the simple
division we make between likely in-situ (above) and ex-situ (below) stars. Likely ex-situ stars with e > 0.7 are
shown as open points. The diamond represents ν Indi values[25]. b, The [(C + N)/O]-[Ni/Fe] distribution of
the three groups defined in panel a. The underlying gray points represent the entire APOGEE DR14 sample
with [Fe/H] < −0.5, with those which lie below the [Fe/H]-[Mg/Fe] division shown as larger points. The
low-[Mg/Fe], e > 0.7 stars have atypical element abundances relative to the other groups, exhibiting very low
[Ni/Fe] and a small depletion in Carbon and Nitrogen relative to Oxygen.
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Figure 3: Gaia-DR2 colour-magnitude diagram (CMD) for our sample and kinematically defined
halo. 2D gray histogram represents the stars with tangential velocity vT > 200 km s−1, and age-scaled
coloured symbols (same as in Fig. 2) represent our 95 RGB smaple. This CMD (absolute magnitude in the
Gaia passband – G – versus color represented by the difference of the Gaia magnitudes in the Gaia BP and
RP passbands) has been already discussed[19, 26, 13], but we show here that the stars we identify as members
of the ex-situ halo (group A) lie mainly on the blue sequence and have, on average, younger seismic ages than
the stars of group C (in-situ stars) on the red sequence. For the sole purpose of guiding the eye, we have
added two isochrones[27] (grey dashed lines) following to the blue and red sequences.
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contains members of each of these populations. We also include, for reference, the location of ν Indi, a bright
sub-giant recently dated using seismology, and classified as belonging to the “heated” thick disc[25].

Recent studies of the Galactic halo and local group dwarfs[30] suggest that stars in the low-[Mg/Fe]
sequence at [Fe/H] . −0.7 have likely been accreted to the Galaxy[31, 16, 32, 33, 29]. The [α/Fe] ratios in
local dwarfs indicate a higher pollution from Type Ia Supernovae relative to core-collapse SNe, likely due
to inefficient star-formation activity and strong outflows[34, 35]. As a consequence, their [α/Fe] ratios are
lower than in-situ halo stars, where element abundances are more affected by nucleosynthetic products from
core-collapse as opposed to Type Ia Supernovae.

Based on the above studies, we classify the asteroseismic RG sample by making a cut in [Fe/H]-[Mg/Fe]
space along the line [Mg/Fe] = −0.2 [Fe/H] + 0.05. Stars below this line are likely to have been formed in
dwarf satellites and then accreted, and those above should be born, in majority, in-situ. It is conceivable that
the in- and ex-situ populations defined in this way will have some contamination from the other group. To
mitigate this, we further divide stars below the line into high and low orbital eccentricity groups (calculated
as described in Methods). Stars on more radial orbits (eccentricities e > 0.7, open points) are those most
likely to have been accreted from the GES progenitor[14].

Figure 2b, which shows the Nickel abundance relative to Iron [Ni/Fe] and the sum of Carbon and Nitrogen
abundance relative to Oxygen [(C + N)/O], supports that the applied cuts efficiently isolate different stellar
populations[31, 32]. The APOGEE-DR14 sample below the [Fe/H]-[Mg/Fe] line (large grey points) is depleted
in both [Ni/Fe] and [(C + N)/O], consistent with local dwarf satellite galaxies which contain stars with [Ni/Fe]
ratios lower than the MW[36, 37]. The stars of our high-e, low-[Mg/Fe] sample [hereafter group (A)] lie at
the lowest values of [Ni/Fe], and are clearly separated from the other groups, reinforcing our contention that
the low-[Mg/Fe], e > 0.7 group is likely to be formed ex-situ. The group made of low-e, low-[Mg/Fe] stars
[hereafter group (B)], is probably a mixture of stars of different origin [14, 38]: the tail at low eccentricity
of GES stars, the low-metallicity end of the thin disc (for instance, the two stars with [Fe/H] & −0.7), or
remnants of less massive accretion events, as could be the case for the stars with [Ni/Fe] and [(C + N)/O]
patterns similar to those of high-[Mg/Fe] stars, which could be indicative of a different star formation history
in the galaxy of origin[36, 37]. The composition of this group is the most sensitive to the details of the
classification criterion adopted, however, this does not affect the robustness of our main conclusions about the
chronological order of the GES and high-[Mg/Fe] [hereafter group (C)] populations (see section Methods,
Extended Data Fig. 10).

The blue (BS) and red (RS) sequences revealed by Gaia-DR2[26] in the color-magnitude diagram (CMD)
of the kinematically defined halo, have been associated to a population of extra-galactic origin, and to the
in-situ halo and/or heated-thick disc respectively[13]. As shown in Fig. 3, most of the stars of our group (C),
which we classified as in-situ high-[α/Fe] disc/halo population, naturally occupy the RS, while likely GES
stars lie in the BS.The high precision ages afforded by asteroseismology allow us to order chronologically the
formation of the accreted population with respect to the high-[α/Fe] in-situ one.

Figure 4 displays our main finding: the distribution in age and orbit eccentricity (coloured by [Fe/H]) of
stars in our sample. The top panel shows the marginalised posterior distributions in age for our three groups
of stars: (A) [Mg/Fe] below the cut and e > 0.7 (GES debris), all grouped at a similar age and e; (B) [Mg/Fe]
below the cut and e < 0.7; and (C) [Mg/Fe] above the cut, with a large spread in e, and the oldest ages but
with a marked tail of younger stars in the population.

As in other recent papers[39, 40], we find in our sample a fraction of ‘apparently young’ stars, despite
chemical markers indicative of old ages (elevated α-element abundances and a high C/N ratio). Since astero-
seismology assigns a high mass to these targets, they have previously been identified as ‘over-massive’ α-rich
stars (likely product of mass transfer[41]).

We fit a hierarchical model to the stellar ages in each group, assessing the mean age and the intrinsic age
spread of each population. We assume that the true age of each star in each group is drawn from a normal
distribution with a mean age µ and width τ , contaminated by a wider normal distribution by some fraction
ε, with some mean µc and spread τc that captures the contribution of ‘over-massive’ stars (see Methods
and Extended Data Fig. 11 for a more detailed description). The best fit parameters for each population
are shown in Table 1. These indicate that: i) The mean age (µ) of group (B) is significantly lower than
that of the population (A) and (C) stars. Although we are aware that some of its elements may be thin disc
contaminants, we note that only two of seven have a maximum vertical excursion over the Galactic plane
lower than 1 kpc, and removing them from the sample does not change the age distribution. This difference
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Figure 4: Age and eccentricity distributions. Age against eccentricity (e) for the stars in the sample
coloured by [Fe/H]. Circles represent the age values of the best fitting models, and horizontal lines their
uncertainties ([16%-84%] credible interval from full posterior distributions). Uncertainties on e are smaller
than the symbol size. The diamond represents ν Indi[25] (not included in the distributions). The histogram
above reflects the combined posterior distributions for the stars in each group. The low-[Mg/Fe] and high-
eccentricity stars (A) are slightly younger than the majority of the high-[Mg/Fe] sample (C), suggesting that
much of the in-situ, high-[Mg/Fe] population was already in place before the major accretion event occurred.
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Table 1: Properties of the inferred age distribution of the three populations. Median and 1σ-error
interval of: mean ages µ, intrinsic age spread τ of the main population and contaminant (µc, τc) population
(that of ‘over-massive’ stars), and the contaminant fraction ε for the three populations of stars defined in the
sample of metal poor Kepler giants. The high- and low-e, low-[Mg/Fe] stars have significantly different age
distributions. The high-e, low-[Mg/Fe] stars, which are likely ex-situ in origin have a similar (but slightly
younger) mean age compared to the majority of the stars in the in-situ high-[Mg/Fe] population. This suggests
that these ex-situ high eccentricity stars were likely to be formed at roughly the same epoch as, or even after,
the high-[Mg/Fe] population. The contamination by the over-massive (and therefore young in appearance)
stars is of the order 10%, with a consistent age and spread among each population.

Group µ[Gyr] τ [Gyr] µc [Gyr] τc [Gyr] ε

(A) Low [Mg/Fe], e > 0.7 9.7± 0.6 0.8+0.9
−0.4 4.5± 2.0 2.9+5.7

−2.0 0.15+0.12
−0.08

(B) Low [Mg/Fe], e < 0.7 8.2± 0.8 0.8+1.0
−0.5 4.9± 2.0 2.8+5.1

−1.8 0.06+0.07
−0.03

(C) High [Mg/Fe] 10.4± 0.3 0.5+0.4
−0.3 4.2± 0.8 2.1+4.2

−1.4 0.16+0.05
−0.04

is visible in the posterior age distribution for these stars shown in Fig. 4 (yellow histogram). ii) Population
(A) stars (which we associate with the GES progenitor) have a mean age and spread consistent with those
of population (C). This suggests that these stars, which are likely to have been born ex-situ, were formed
contemporaneously to, if not slightly after, the high-[α/Fe] population (C) that was formed in the Milky Way
starting roughly ∼ 10 to 11.5 Gyr ago, as shown by this work.

The precise ages inferred here for individual objects in the blue and red sequences of Fig. 3, provide crucial
constrains to MW formation models and to the more general debate on the dominant drivers of thick disk
formation, mergers or cold gas accretion. Some recent studies[10, 25, 19, 11, 15, 6, 9, 42, 7, 43, 44] show
indirect evidence in favor of a scenario in which the merger with GES may have influenced the evolution of
an already existing high-[α/Fe] proto-Galaxy in some way. By determining observationally the chronology of
events in the early Milky Way with precise ages, our results confirm this emerging picture from other studies
which suggests the high-[α/Fe] population had already formed when GES merged with the Milky Way.

That stars in the Galactic halo belonging to the chemo-kinematically determined accreted GES debris
were formed contemporaneously with, or more recently than those of the early in-situ MW, has profound
implications for the formation and assembly history of the Galaxy. Although the low-metallicity tail of the
thick disc ([Fe/H] < −0.5) we have analysed here is expected to be older than its main component, a recent
study[23] shows that the thick disc population (−1.55 < [Fe/H] < 0.26 and [α/Fe] > 0.1) has an intrinsic age
dispersion of only 1.25 Gyr. These results suggest that a majority of the stars in the high-[α/Fe] population was
in place before the merger with the GES progenitor (which has a lower limit of 9 Gyr in our age measurements,
consistently with the predicted merger time from recent cosmological simulations[43]), and support models in
which GES was not a major trigger to the formation of the thick disc. Since it is well established that such
[α/Fe] stars can only form in the most intense star formation events in gas-rich galaxies[45, 42], this implies
that either: a) the Galaxy had an extremely gas rich merger prior to GES, or b) the early in-situ gas content
of the Milky Way was accreted sufficiently fast to form the high-[α/Fe] stars without any merging event.
While the former predicts the possible presence of another major merger, the latter suggests that the early
dark matter assembly of the Galaxy was rapid enough that it could have accreted gas in sufficient quantities
at early times to trigger this star formation.
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Methods

APOGEE, Gaia and Kepler data
We select targets with SDSS-IV/APOGEE spectra and NASA-Kepler light curves by cross matching the
APOGEE DR14 catalogue[4, 46] with the Kepler Input Catalog (KIC [47]). We then cross-match again
with the Gaia-DR2 catalogue[3], which provides parallax, position and proper motion measurements for the
relevant stars. APOGEE provides, in addition of atmospheric parameters (effective temperature and detailed
abundances for 23 different chemical elements), highly precise (∼1%) radial velocities for all targets. Radial
velocities, combined with Gaia proper motions, are used to derive the orbital parameters.

Since we are interested in using asteroseismology to study stellar populations which are likely part of the
Milky Way halo, we make a first broad cut to select stars with APOGEE-[Fe/H] < −0.5. We also remove stars
with flags from APOGEE which suggest their spectra or the parameters derived from them are unreliable
(specifically, we remove stars with STAR BAD or STAR WARN flags). This leaves a sample of 400 stars with good
data from APOGEE and Kepler (see Extended Data Fig. 5) upon which the analysis on the basis of the light
curves (described below) can be made.

Distances
The distance estimates using parallaxes from Gaia-DR2 for our sample have a mean relative error of 15%
(median 11%), and for 22% of the sample that value is larger than 20%. We also take distance estimates from
the astroNN catalogue [48], which are based on neural network models of the APOGEE spectra, trained on
the Gaia-DR2 parallaxes. astroNN distances, which have relative uncertainties of roughly 10%, and provide a
more robust measure of the stellar distances than the parallax information for these more distant stars, have
been used in the determination of the orbital parameters.

Orbital parameters
Orbital parameters are estimated for the sample in question using the Stäckel approximation based fast orbit
estimation method[49] implemented in galpy[50]. We take 100 samples of the covariance matrices for each
star, formed from the observed RA, Dec., proper motion in RA and Dec., distance and radial velocity and
their uncertainties and correlation coefficients (in this case, the distance and radial velocity are measured
independently, so their uncertainties are uncorrelated). We then estimate the orbital parameters for each
of these samples assuming the simple MWPotential2014 potential, which is adequate in this case, since the
majority of these stars have halo-like kinematics and are not likely to be affected by non-axisymmetries
in the disc and bulge. We assume the position of the Sun to be R0 = 8.125 kpc (Galactocentric dis-
tance, ref.[51]), and z0 = 0.02 kpc (height above the Galactic mid-plane, ref.[52]), and its velocity to be
~v0 = [U, V,W ] = [−11.1, 245.6, 7.25] km s−1 (in the left-handed cartesian Galactic coordinate system), based
on the SGR A* proper motion[53] and the solar motion[54]. We estimate pericentre and apocentre radii,
orbital eccentricity and the maximum vertical excursion, their uncertainties and correlation coefficients for
each star. These orbital parameters will later allow us to verify the accreted nature (or not) of stars in our
sample.

Seismic data
We retrieve Kepler light curves from MAST (https://archive.stsci.edu/kepler/publiclightcurves.html) and
measure individual radial-mode frequencies following the approach in ref.[55]. These results were cross-
matching with the radial frequency modes using the automatic pipeline PBJam
(https://github.com/grd349/PBjam), and with the Kallinger’s RG-catalogue [56] for the targets in common.
Although our main results are based on fitting individual-mode frequencies, we have performed additional
tests (see below) working with average seismic indexes[57, 58] 〈∆ν〉 and νmax (mean large frequency separation
and frequency at maximum power, respectively). For a fraction of the stars (90 targets) it was also possible
to estimate the value of the gravity-mode period spacing [59].

We measured frequency of at least 3 individual radial modes in 276 targets over 400. From that sample, we
remove the stars in the red clump (∼ 50%). Their current masses (those inferred from seismology) are likely
the result of some mass loss in previous evolutionary phases, and hence their age estimates would depend on
the poorly known mass loss prescription itself. This classification is based on the value of the gravity-mode
period spacing [60, 61] when available, and from visual inspection of the power spectra [62]. This classifi-
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cation has been also cross-checked with results in other studies [63, 56]. Among the non core-He burning
giants, we restrict the sample to stars with νmax larger than 15 µHz, this mitigates contamination from early
AGB (Asymptotic Giant Branch) stars, and removes stars with relatively low νmax, a domain where seismic
constrains are less numerous (the number of radial modes decreases with νmax) and robust.

Final Sample
After the above refereed cuts, our final sample contains 105 stars, likely in the red giant branch (RGB), with
at least four radial modes detected (8,19,47,31 with 4, 5, 6 and 7 modes respectively). Their frequencies have
a mean uncertainty of 0.085% (median 0.055%). The typical uncertainty of the effective temperature (Teff) is
∼ 83K, and that of νmax is 1.7%. The characteristic metallicity of the sample is [Fe/H] = −0.66, with 25% of
the targets having an iron content lower than -0.85. The typical error quoted in APOGEE-DR14 for [Fe/H]
is ∼ 0.008. That is substantially smaller than the typical accuracy of APOGEE-DR14 chemical abundances,
as assessed using different and independent spectroscopic analyses of APOGEE stars[64], and 10 to 20 times
smaller the step used in the grid of models. Hence, we increase and fix the typical error in [Fe/H] in APOGEE
DR14 to 0.05 dex.

Concerning the α elements, 50% (40%, 8%, and 2%) of the targets have [α/Fe] ∼ 0.2 (0.3, 0.1, and 0.4
respectively).

Bayesian stellar parameter inference
The stellar parameters of each star in our sample have been estimated by using the open-source code
AIMS[24, 65, 66] (Asteroseismic Inference on a Massive Scale), that implements a Bayesian inference ap-
proach. AIMS evaluates the posterior probability distributions of the stellar parameters using a Markov
Chain Monte Carlo (MCMC) ensemble sampler[67], and selects stellar models that best fit observation data
by interpolating (evolutionary tracks and frequencies) in a pre-computed grid. As demonstrated by several
works[68, 66, 12], using individual frequencies as observational constrains contributes to significantly reduce
the uncertainties affecting estimated global stellar parameters with respect to the precision and accuracy re-
sulting from scaling relations. The drawback of using individual frequencies is that theoretical values should
be corrected by the surface effects[69]. In this work we use the frequencies of individual radial modes and their
uncertainties as observational seismic constraints, and correct the theoretical frequencies using a two-terms
prescription[70]. The surface effect corrections involve in that case two free parameters (a−1 and a3, eq.(4)
in ref.[70]) to be derived by the fitting procedure for each target. The other parameters to be determined are
the stellar mass, the initial mass fraction of metals, and the stellar age. We do not use specific priors for these
parameters, except for a−1 and a3 if an initial calculation has led to unexpected surface-effect corrections.
For that cases we re-run AIMS using uniform priors for these parameters, which domain is estimated from
the other successful fits. As “classical” constrains we adopt the spectroscopic values of effective temperature
and surface metal content from APOGEE-DR14, and the average seismic index νmax from the analysis of
Kepler light curves. Theoretical values of νmax cannot be derived from adiabatic oscillation spectra, hence
νmax for models relies on the scaling relation νmax = νmax� · M(M�)/R2(R�)/

√
Teff/Teff,� (ref.[71]), with

νmax=3090 µHz (ref.[72]), and M and R the total stellar mass and radius, respectively, in solar units. To
check for consistency, we also run AIMS replacing νmax with the bolometric luminosity derived from Gaia-DR2
parallax (see below).

For the purposes of this study, the specific non-solar-scaled chemical composition (α-enhanced) of halo/thick
disk stars has been taken into account in the computation of a new grid of stellar models and their adi-
abatic oscillation frequencies. The stellar models have been computed using the stellar evolution code
CLES[73], and following the evolution from the pre-main sequence up to a radius of 25 R� on the RGB
phase. The details on the adopted physics prescriptions and the computed evolutionary tracks are available
at http://doi.org/10.5281/zenodo.4032320. The number of models along a track has been chosen to provide
a difference of mean large frequency separation between consecutive models of the order of 0.5%, and the os-
cillation frequencies of radial modes have been computed for each stellar model using the adiabatic oscillation
code LOSC[74].

Inferred stellar parameters
We get reliable stellar parameters for 95 targets of the 105 classified as RGBs. This final selection is based on
the value of the likelihood and on the consistency between parameters inferred using different observational
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constraints. For instance, the target KIC 7191496 has been removed from the sample because the ages inferred
using νmax (equal to 16.14 µHz) or luminosity differ by more than 5σ. Half of the stars removed from the
sample have a value of νmax only marginally larger than the threshold of 15µHz (between 15 and 17.5µHz).
For KIC 3630240, which has a high value of νmax (close to the Nyquist frequency for these time series), AIMS
does not converge if luminosity is used as observational constrain (regardless of the adopted Gaia zero-offset
parallax).

The properties of the 95 stars of our final sample are collected in the Supplementary Table 1. Its last
columns contains the values of stellar mass, radius and age of the model that best match observations, as
well as their ±1σ interval values. These are internal statistical errors based on the sampling of the posterior
probability distributions obtained with the grid of models used. Extended Data Figs. 6, 7 present the posterior
distributions for six relevant stellar parameters for the targets KIC 4143467 and KIC 12111110 respectively.
In both cases these distributions were obtained using as constraints in AIMS: 6 radial modes, surface mass
fraction of metals, effective temperature and νmax. KIC 4143467 is one of the targets shown in Fig. 1, while
KIC 12111110 is the object at age ∼ 10 Gyr, and eccentricity 0.99 (Fig. 4) which shows a large and very
asymmetric uncertainty. In this case the posterior distributions are clearly bi-modal. Although the best
match with observation (dot-dashed vertical line) is achieved for the older group of models, a large number of
young models still have a high probability. An uncertainty in luminosity smaller than 10% should be needed
to critically discriminate between the two solutions.

Robustness tests against systematic uncertainties
It is widely accepted that the effective temperature of RGB models strongly depends on the convection
mixing-lenght parameter (αMLT) and on the adopted atmosphere boundary conditions. A systematic differ-
ence between Teff of the models and observations could indicate that those parameters are not the adequate
ones to represent observational data, creating a tension, leading to systematic larger or smaller stellar masses,
and hence affecting the estimated ages. To check for the robustness of our stellar dating, we have run AIMS
for all the stars after shifting their effective temperature by ± 85 K (AIMS results -with the grid of models
above described- are typically 85 K hotter than observed Teff). Although the likelihood is generally higher
for the temperature scale shifted by +85 K, the stellar parameters retrieved do not change. In fact, the fitting
is dominated by the individual frequencies, with a lower impact of Teff , directly or trough νmax.

In the fitting process we do not interpolate in the parameter [α/Fe], but we select the grid with the closest
value to that estimated from spectroscopy. In order to estimate the effect of the [α/Fe] step on the derived
stellar parameters, we have run AIMS using grid of models computed with [α/Fe] values shifted by ±0.1 dex,
and compared their ages. The differences between ages obtained using the nominal [α/Fe] or that shifted,
divided by their uncertainties, have a standard deviation of 0.3.

AIMS allows different prescriptions for the surface effects correction. We check the effect of using the one
term[70] prescription. The differences between one and two terms prescriptions depends on the number of
modes observed. For 4 modes, the results with the two approaches are in good agreement. However, as
the number of modes increases, one-term prescription appears clearly inefficient fitting observed oscillation
frequencies, and systematically provides much younger ages.

We expect that a large part of the AGB contamination will have been removed from the sample by fil-
tering out νmax values smaller than 15 µHz and selecting targets with at least 4 radial modes. Nevertheless,
we test the effect on the age distribution of a miss-classification RGB/AGB. We select synthetic AGB models
and spectra, and derive their stellar parameters using AIMS, as above described, that is, with a grid of models
which stop at R = 25 R� in the RGB phase. As a consequence of the miss-classification AIMS either, does
not converge, or provide very high (and unrealistic - 20− 25 Gyr) stellar ages.

Computing ` = 2 oscillation modes is very time consuming and we have not used then in the fitting pro-
cess. However, their frequencies for our sample have been determined at the same time than the radial ones,
allowing us to estimate the mean value of the small frequency separation (δν02 = ν`=0,n−ν`=2,n−1). This seis-
mic index, which values depend also on the evolutionary state, is a good proxy of the stellar mass[62, 75, 76]
and can help us to identify genuine massive stars. The trend of δν02/∆ν0 is generally consistent with the
masses assigned by AIMS assuming that our sample is formed by RGB. For a subset of 22 targets we also have
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measures of the dipole-mode period spacing. These values and the δν02 ones are consistent with classifying
these targets as RGB stars, including among them two of the massive/young stars.

Cross-checking using Gaia parallaxes
We check the consistency of derived stellar parameters with luminosity values from Gaia-DR2. These values
are obtained using Gaia-DR2 parallaxes, 2MASS Ks apparent magnitudes, and bolometric corrections[77]
appropriate to the atmosphere parameters (seismic surface gravity, and spectroscopic Teff and photospheric
chemical composition). The most important contribution to the luminosity uncertainty comes from parallax,
which suffers from a zero-point offset of the order of few tens µas[78, 79, 80, 81]. The effect of different
extinction estimates[82, 83, 84, 85] turns out to be only 0.008 dex for the magnitude Ks.

We perform two new runs of stellar parameter estimation using luminosity (with offset of 30 µas and
50 µas) instead of νmax as observational constraint in AIMS. The results are generally in good agreement
with previous ones. The fits are dominated by highly precise frequencies and the still large errors affecting
luminosity do not allow us to discriminate in case of multi-modal posterior distribution nor to check the
reliability of νmax scaling law.

The stellar radii derived from the Stefan-Boltzmann law with the spectroscopic effective temperatures
and Gaia luminosity values have been compared with those inferred using AIMS. The residuals divided by
the relevant uncertainties have a standard deviation close to one, with no apparent trend with e.g. νmax.
The median offset is, on the other hand, sensitive to the assumed zero-point parallax offset (better agreement
with 50 µas zero-point parallax offset) and to the effective temperature scale (consistently with results above).

Cross-checking using global seismic parameters for a larger set of ex-situ and in-situ stars
As an additional test for robustness we use the code PARAM[86] to infer masses, radii and ages for the larger
set of stars (Extended Data Fig. 5). We consider all stars (RC and RGB) with average seismic parameters (∆ν,
νmax) determined by the COR pipeline[58]. While the results from the detailed analysis are more precise and
more accurate (the median age uncertainty given by PARAM is 25% instead 11%), we use the age distribution
of the wider sample to check if our main results are compatible with those from an independent modelling code
and using average seismic parameters. The grid of models (computed with the code MESA[87]) at the base of
these calculations includes: a mass loss during RGB evolutionary phase equivalent to a Reimers’ parameter
η = 0.2, and a model-based correction for the large frequency separation-mean density relation[86].

The results for two samples selected by limiting the radius to 14 or 8 R� (including or not the RC, Ex-
tended Data Figs. 8, 9) show that the age distributions of the accreted and in-situ stars show the same trend
as the results obtained by AIMS with a smaller, high quality sample: accreted stars are contemporaneous or
slightly younger than in-situ ones.

Modelling the age distributions of stellar groups defined on the basis of element abundances
and kinematics
We model the intrinsic age distribution of the populations in [Fe/H]-[Mg/Fe] and kinematics space selected in
Fig. 4 using a simple hierarchical Bayesian model (HBM, see graphical model in Extended Data Fig. 11). We
expect that the stars in these groups are likely to belong to in- and ex-situ stellar populations, and therefore
such a modelling provides a means of statistically comparing the age distributions whilst taking the age un-
certainties properly into account. We assume that age measurements of stars in a given population are drawn
from a normal distribution with a mean age µ and intrinsic age spread τ , with some measurement error σage

(derived from the posterior probability given by AIMS). We include an outlier term in our model, assuming
that in each population there is an over-density at younger age due to our measurement of stars which are
‘over-massive’ (likely due to binary interactions) and therefore appear young. We assume that these outliers
are also distributed normally with a mean age µc, a spread τc and contributing some fraction ε.

While we have no good way of determining whether these stars are bona-fide young stars or indeed, over-
massive stars, we are confident that this would not fundamentally change the results of the HBM analysis
we perform. In particular, since the model always assumes contamination at younger ages, the only effect of
including some bona-fide young stars (which, as we have determined, are likely separated from the GES stars)
would be to artificially increase the value of our epsilon (contamination fraction) parameter, and would not
significantly alter the mean-age of the target population.

We sample the posterior probability distribution given the data in each group in element abundance space
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using pymc3. We make use of the the No-U-Turn-Sampler (NUTS), a variant of Hamiltonian Monte Carlo,
which uses the gradients of the likelihood function to facilitate rapid convergence and sampling of the poste-
riors over many parameters. For each population, we take 1000 samples of the posterior over 4 independent
chains after allowing 1000 burn-in steps, for a total of 4000 samples.

Effect of selection criteria
The classification in in- and ex-situ populations of our low-metal sample ([Fe/H] < −0.5) is based on a par-
ticular cut in the [α/Fe] plane and in eccentricity. Unfortunately, there is no consensus in literature on
which cut should be adopted nor on the value of [Fe/H] defining the low-metallicity end of the Galactic thin
disc. We have analysed the effect of considering different division lines in the [α/Fe] plane and of shift-
ing the threshold of eccentricity from 0.7 to 0.6 (Extended Data Fig. 10). Besides the selection made in
the main paper, we have used two other division lines: [Mg/Fe] = −0.5 [Fe/H]− 0.3 (used in ref.[14]), and
[Mg/Fe] = −0.2 [Fe/H][29, 33] (which has the same slope than the one used in the main paper but with a
zero-point of 0 instead of 0.05). The conclusions of the paper do not change: the in-situ high-α population
(group C) is slightly older than that of GES (group A). Different selection criteria modify mainly the compo-
sition of the group (B), which is not associated with a particular stellar population. It contains what is not in
(A) or (C), and in particular may contain some contamination from the low-metallicity end of the thin disc.
The two stars at the high-metallicity end ([Fe/H]> -0.7) of out group (B) are likely part of the thin disc as
indicated by their orbital and chemical properties. They can end in a different group depending on the cut
used, however, that does not fundamentally change the age distributions of the other two groups. We believe
that the contamination from the thin disc does not affect other stars of group (B), since these two are the
only ones having a maximum vertical excursion lower than 1 kpc.
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Figure 5: Data samples. a, Diagram [α/Fe] versus [Fe/H] for all the Kepler-APOGEE-DR14 sample (grey
dots). Orange symbols are the targets in our sub-sample: red giant stars with [Fe/H] < −0.5, and blue ones
are the first ascending red giant branch targets selected for characterization in this paper. b, Teff versus
νmax diagram (equivalent to Kiel diagram) of our target sample (color-coded by metallicity), overlying the
complete -Kepler -APOGEE-DR14 one (grey empty and full symbols). The dashed lines corresponds to two
[α/Fe]=0.2 evolutionary tracks: blue M=0.9 M� , [Fe/H]=-1.0; orange, same mass but [Fe/H]=-0.5.
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Figure 6: Posterior probability distributions for KIC 4143467 stellar properties as inferred by
AIMS. a-f : age, mass, radius, mean density, luminosity and frequency at maximun power, respectively. The
oscillation spectra of this target is shown in first panel of Fig. 1. The vertical dash-dotted lines indicate the
value of the corresponding parameter in the best-fitting model from the MCMC sampling.
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Figure 7: Posterior probability distributions for KIC 12111110 stellar properties as inferred by
AIMS. a-f : age, mass, radius, mean density, luminosity and frequency at maximun power, respectively. The
vertical dash-dotted lines indicate the value of the corresponding parameter in the best-fitting model from
the MCMC sampling.
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Figure 8: Age distribution using PARAM for the APOGEE-Kepler sample with stellar radius
limited to 14 R�. Upper panels: [α/Fe] vs. [Fe/H] distribution of the sample coloured by age (a) and
eccentricity (b). The symbol size scales with νmax. c panel: Age distributions of accreted and in-situ stars, so
classified from their [α/Fe] and eccentricity values; d panel: Kiel diagram of the sample colored by metallicity
(right). Notice that the “very old” (yellow dots Teff > 5400 K) suggest that we have underestimated the mass
loss for those stars.
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Figure 9: Age distribution using PARAM for the APOGEE-Kepler sample with stellar radius
limited to 8 R�. Upper panels: [α/Fe] vs. [Fe/H] distribution of the sample coloured by age (a) and
eccentricity (b). The symbol size scales with νmax. c panel: Age distributions of accreted and in-situ stars, so
classified from their [α/Fe] and eccentricity values; d panel: Kiel diagram of the sample colored by metallicity
(right). Notice that the “very old” (yellow dots Teff > 5400 K) suggest that we have underestimated the mass
loss for those stars.

22



0 2 4 6 8 10 12 14
Age [Gyr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce
nt
ric
ity

A) 
B) 
C) −1.4

−1.2

−1.0

−0.8

−0.6

[Fe/H]Pr
ob
ab
ilit
yd

en
sit
y A) lo) [M /Fe], e>0.6

B) lo) [M /Fe], e<0.6
C) hi h [M /Fe]

0 2 4 6 8 10 12 14
A e [Gyr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce
nt
ric
ity

A) 
B) 
C) −1.4

−1.2

−1.0

−0.8

−0.6

[Fe/H]Pr
ob
ab
ilit
yd

en
sit
y A) lo) [M /Fe], e>0.7

B) lo) [M /Fe], e<0.7
C) hi h [M /Fe]

0 2 4 6 8 10 12 14
A e [Gyr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce
nt
ric
ity

A) 
B) 
C) 

Pr
ob
ab
ilit
yd

en
sit
yA) lo) [M /Fe], e>0.6

B) lo) [M /Fe], e<0.6
C) hi h [M /Fe]

0 2 4 6 8 10 12 14
A e [Gyr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce
nt
ric
ity

A) 
B) 
C) 

Pr
ob
ab
ilit
yd

en
sit
yA) lo) [M /Fe], e>0.7

B) lo) [M /Fe], e<0.7
C) hi h [M /Fe]

0 0.2 0.5 1 2 4
redshiftc

0 0.2 0.5 1 2 4
redshifta

0 0.2 0.5 1 2 4
redshiftd

0 0.2 0.5 1 2 4
redshiftb
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creted populations. Age against eccentricity e for the stars in the sample coloured by [Fe/H]. Circles
respresent age values of the best fitting models, and horizontal lines their uncertainties ([16%-84%] C.I. from
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Figure 11: Probabilistic graphical model of that used to fit the mean age and intrinsic age
spread of the in- and ex-situ populations defined on the basis of element abundances and
orbital parameters. We assume the measured ages are drawn from an underlying true age θ distribution
that is Gaussian with a mean µ with a standard deviation τ . We assume that the true age distribution is
contaminated by stars whose mass is higher than expected (and therefore appear younger), likely due to some
poorly understood process such as binary interactions. We model these contaminants as also being drawn
from another normal distribution with a mean µc and spread τc which has a fractional contribution ε to the
total age distribution (hence the main population contributes 1− ε).
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