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ABSTRACT
Cigarette smoking is the leading cause of preventable 
death worldwide. It causes chronic lung disease 
and predisposes individuals to acute lung injury and 
pulmonary infection. Alveolar macrophages are sentinel 
cells strategically positioned in the interface between 
the airway lumen and the alveolar spaces. These are 
the most abundant immune cells and are the first line 
of defence against inhaled particulates and pathogens. 
Recently, there has been a better understanding about 
the ontogeny, phenotype and function of alveolar 
macrophages and their role, not only in phagocytosis, 
but also in initiating and resolving immune response. 
Many of the functions of the alveolar macrophage have 
been shown to be dysregulated following exposure 
to cigarette smoke. While the mechanisms for these 
changes remain poorly understood, they are important 
in the understanding of cigarette smoking-induced lung 
disease. We review the mechanisms by which smoking 
influences alveolar macrophage: (1) recruitment, (2) 
phenotype, (3) immune function (bacterial killing, 
phagocytosis, proteinase/anti-proteinase release and 
reactive oxygen species production) and (4) homeostasis 
(surfactant/lipid processing, iron homeostasis and 
efferocytosis). Further understanding of the mechanisms 
of cigarette smoking on alveolar macrophages and other 
lung monocyte/macrophage populations may allow novel 
ways of restoring cellular function in those patients who 

have stopped smoking in order to reduce the risk of 
subsequent infection or further lung injury.

INTRODUCTION
Cigarette smoking remains the single most prevent-
able cause of death and disease worldwide and is 
the leading cause of chronic obstructive pulmonary 
disease (COPD). The disease processes in COPD 
are multifaceted involving oxidative stress, inflam-
mation, proteinase/anti-proteinase imbalance, 
tissue destruction and inadequate repair. Alveolar 
macrophages (AMs) play an important role in these 
processes. AMs are also implicated in the cigarette 
smoke (CS)-related disease development of lung 
cancer and interstitial lung disease as well as in the 
increased susceptibility to pulmonary infections and 
acute lung injury. However, the mechanisms of CS 
exposure and AMs in lung disease remain poorly 
understood. The current understanding is reviewed 
(summarised in figure 1).

CIGARETTE SMOKE
CS is an aerosol consisting of solid and liquid drop-
lets (the particulate (‘tar’) phase) in a gaseous phase 
and contains over 4500 different substances,1 which 
have various toxic, mutagenic and carcinogenic 

Figure 1  Mechanisms for disease in cigarette smoke exposure of alveolar macrophages. IL, interleukin; MMP, matrix 
metalloproteinase; ROS, reactive oxygen species.

    1Lugg ST, et al. Thorax 2021;0:1–8. doi:10.1136/thoraxjnl-2020-216296
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effects. These include nicotine, tar, ammonia, carbon monoxide, 
carbon dioxide, formaldehyde, acrolein, acetone, polyaromatic 
aromatic hydrocarbons (PAHs), hydroxyquinone, nitrogen 
oxides and cadmium.2 Inhaled particulate matter from CS is 
deposited in the respiratory tract depending on the size, with 
larger particulates in the upper airways and smaller particulates 
deposited in the alveoli. CS causes oxidative stress resulting in a 
chronic low-grade inflammation and recruitment of inflamma-
tory cells to the airways by activation of epithelial cells, AMs, 
neutrophils and T lymphocytes.3 Furthermore, CS increases 
the virulence of pathogens, increasing the risk of pulmonary 
infections.4

ALVEOLAR MACROPHAGES
Macrophages are present in almost all tissues of the body.5 They 
derive their name from makros and phagein, Greek for ‘big eater’ 
after their primary bacterial killing mechanism, phagocytosis. In 
the lung, they are the most abundant immune cell present under 
homeostatic conditions, representing over 90% of the alveolar 
immune cells. As sentinel cells, AMs play an important gate-
keeping role in innate immunity within the respiratory tract. 
AMs classically exert regulatory effects via non-specific immune-
defence mechanisms such as phagocytosis, the production of 
inflammatory mediators such as reactive oxygen species (ROS) 
and the expression of inflammatory cytokines such as interleukin 
(IL)‐1, IL‐2, IL‐4, IL‐6, IL‐8, tumour necrosis factor‐α (TNFα) 
and interferon gamma (IFNγ). AMs also resolve inflammation 
via the release of anti-inflammatory mediators and clearance of 
apoptotic bodies (efferocytosis). Therefore, AMs both initiate 
and resolve the immune the response, as well as having a role in 
surfactant/lipid processing and iron homeostasis.

Ontogeny/lifespan
Once thought to originate from circulating monocytes from the 
bone haematopoietic stem cells (HSCs),6 mechanistic murine 
work has indicated that AMs are initially derived from the yolk 
sac in foetal development and are independent of the HSC under 
homeostatic conditions. It is becoming clearer that resident lung-
resident AMs maintain their population during homeostasis by 
proliferation in situ rather than having a reliance on the macro-
phage precursors in the blood.7 8 Whereas during ongoing 
inflammation, monocytes are recruited to the lung and develop 
into AM-like cells.9 10 Studies looking at chimerism in lung trans-
plant recipients have shown evidence of donor persistence of 
AMs,11 that can persist up to 2 years.12 However, in the inflam-
matory state in patients after transplant and in healthy older 
volunteers, the majority of human AM originate from circulating 
monocytes.13

Lung monocyte/macrophage populations
Distinct monocyte/macrophage populations in the lung 
can be defined as AMs, interstitial macrophages (IMs) and 
monocyte-derived cells according to their cell surface pheno-
type (see figure  2). Lung macrophages express the mannose 
receptor CD206, which has a role in recognition of microbial 
carbohydrates and mediating phagocytosis. This receptor is 
not detected in monocytes within the blood or intravascular 
compartment.14 AMs reside within the airway lumen and alve-
olar space, in contact with both the airway environment and 
epithelium. They are recognised by their distinctively high side 
scatter, high expression of CD206 and relatively low expres-
sion of monocyte marker CD14. IMs are located between alve-
olar epithelial cells, and unlike AMs, are negative for CD169 

(Siglec-1 or sialoadhesin), a cell adhesion molecule shown to 
discriminate phenotype between AMs (CD206+CD169+) and 
IMs (CD206+CD169−).15 16 AMs can be further subdivided 
by levels of expression of the high affinity-scavenger receptor 
CD163 (CD163++ or CD163+++ subpopulations).16 Within 
the lung there is also a population of immature, infiltrating 
CD14+ pulmonary monocyte-derived cells, thought to be 
recently recruited into the extravascular space. These can be 
distinguished from the intravascular CD14+ monocytes by their 
expression of CD206 as well as other markers CD141, CD11c, 
human leukocyte antigen DR (HLA-DR) and CC-chemokine 
receptor type 7 (CCR7), with CD1a and CD1c allowing further 
categorisation of these cells.14

Phenotype and normal function in airways
Macrophages have been shown to exhibit plasticity and can 
change their phenotype depending on the local environment. 
Macrophages have traditionally been described to form two 
distinct polarised phenotypes in vitro following cytokine expo-
sure of monocyte-derived macrophages (MDMs). ‘M1 macro-
phages’ are classically activated, typically by lipopolysaccharide 
(LPS), IFNγ and/or TNFα, and are involved direct destruction 
of intracellular pathogens, and produce pro-inflammatory cyto-
kines, as well as a T helper 1 (Th1)-cell environment. ‘M2 macro-
phages’ are alternatively activated, typically by IL-4 and IL-10 
and are a more heterogeneous group and involved in down-
regulating inflammation or pro-resolution and tissue repair, 
producing a Th2 environment. M1 and M2 have been largely 
unaltered since their initial classification17; M2 roles have been 
further categorised into M2a (parasite destruction) 2b (immune 
regulation) and 2c (tissue remodelling and extracellular matrix 
(ECM) deposition).18 With regards to cell surface markers, M1 
are typically characterised by expression of HLA-DR, CD14 
and CD38, while M2 are characterised by CD36, CD206 and 
CD163. Many studies have looked at M1/M2 with relevance 
to disease. However, more recently studies have moved away 
from this model; in vivo these phenotypes exist as part of a spec-
trum and many of the M1/M2 markers are co-expressed on the 

Figure 2  Cell surface markers of monocyte/macrophage populations 
within the lung.

2 Lugg ST, et al. Thorax 2021;0:1–8. doi:10.1136/thoraxjnl-2020-216296
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same macrophages, such as CD206 ubiquitously expressed by all 
pulmonary macrophages.14

CS EXPOSURE AND AM RECRUITMENT
Increased AM and neutrophil chemotaxis
Smoking induces an increase in immune cells within the lung (4–5 
fold), as assessed by bronchoalveolar lavage (BAL)19 with most 
of the increase attributed to the AM cellularity.20 The increased 
cellularity of both AM and neutrophils may be explained by 
chemotactic factors generated in the lung. CS exposure activates 
the pro-inflammatory transcription factor nuclear factor kappa 
B (NF-κB) and increases messenger RNA (mRNA) expression 
of IL-8 (one of the mediators controlled by NF-κB) within the 
macrophages.21 22 This process is at least partially an autologous 
effect, with other cells such as bronchial epithelial cells shown to 
release increased IL-8 in response to CS that would contribute 
to stimulate macrophage and neutrophil influx.23 The increased 
BALF cellularity may take over 1 month to significantly reduce 
and up to 6 months to fully normalise.24

Accumulation of autofluorescent bodies
AMs from smokers contain autofluorescent bodies25 due to the 
uptake of CS particles (ie, ‘tar’). Even short-term ex-vivo AM 
exposure to tar results in an increase in autofluorescence.26 
These smoking-related inclusions can continue for up to 270 
days after cessation27 and have been found on autopsy of patients 
who had stopped smoking 2 years prior.28 This has been shown 
to be the case in other studies that have investigated AMs from 
BAL between healthy smokers and non-smokers.25 Furthermore, 
the autofluorescence is not related to amount of exposure, such 
as pack year consumption.29 This suggests a maximum possible 
capacity of tar uptake, anything beyond this point will not be 
retained, destroying any dose response seen in earlier stage of 
exposure. There is also the factor of AM flux and turnover that 
may contribute to lack of dose effect at very high CS exposure 
levels.

CS EXPOSURE AND AM PHENOTYPE
M1/M2 polarisation and disease states
In studies looking at the AM M1/M2 polarisation paradigm, CS 
has been reported to reduce phenotypic markers of M1 pheno-
type30 31 and/or increase markers of M2 phenotype32 33 implicated 
in dysregulated inflammation. Using immunohistochemistry to 
quantify polarisation of M1 (iNOS) and M2 (CD206) pheno-
type in lung tissue, in normal lungs AMs did not show M1 or 
M2 polarisation and instead dual expressed both markers of 
polarity, with the majority negative for M1 and M2 markers.30 

In smokers and in COPD disease severity, AMs increased dual 
expression of both M1 and M2 markers.30 In early lung cancer, 
tumour-associated macrophages (TAMs) also showed co-ex-
pression of M1 (chemokine (C–X–C motif) ligand 9 (CXCL9)) 
and M2 (matrix metalloproteinase (MMP-12)) phenotypic 
markers,34 with single cell RNA-sequencing of TAMs showing 
uniform M2-like signature with varying degrees of M1-like 
signature. Those with >80% of TAMs co-expressing a strong 
(hot) M1-like signature had a stronger density of CD8+ tissue-
resident memory T cells in tumours and an improved survival.

In the relationship of CS exposure and AM polarity, studies 
looking at gene expression profile have compared AMs to MDMs 
polarised to M1 or M2 in vitro using cytokines; forming either 
unstimulated, M1-polarised (IFNγ and LPS-treated) and M2a-
polarised (IL-4-treated) macrophages.35 Microarray mRNA data 
suggest that smoking promotes an ‘inverse’ M1 gene expression 
profile defined by decreased expression of M1-induced tran-
scripts36 and increased expression of M1-repressed transcripts 
with few changes in M2-regulated transcripts.37 Thus, AM M1/
M2 phenotype exists as a spectrum, can be modified through CS 
exposure and relates to lung disease states and outcomes.

Altered cell surface marker expression and maturity
Smoking alters the phenotype of AMs, with observed differ-
ences in cell surface marker expression compared with non-
smokers (table 1). Smoking increased expression of CD14 and 
reduced expression of CD71 in a monocyte/macrophage popu-
lation from BAL.38 Absence of the transferrin receptor CD71 in 
AMs is characterised by reduced expression of mature markers, 
impaired phagocytosis and expression of profibrotic genes.39 In 
COPD, lung macrophages from smokers expressed lower levels 
of the high affinity-scavenger receptor CD163 and lower levels 
of the non-opsonic receptor CD36 compared with ex-smokers.40 
CD163 and CD36 both have an important role in efferocytosis, 
which is the clearance of apoptotic cells.41 CD91 has a role in 
phagocytosis as part of the CD91-calrecticulin mannose receptor 
complex. It has been shown to be reduced in expression in AMs 
from healthy smokers and COPD smokers when compared with 
never smokers.38 CD31 (platelet endothelial cell adhesion mole-
cule) is a surface marker that has been reported to promote teth-
ering of apoptotic cells and is reduced in AMs from smokers.38 
Blocking of CD91 and CD31 has shown to reduce AM efferocy-
tosis.38 CD44 is involved in clearing of hyaluronan, lipid metab-
olism, surfactant processing and efferocytosis, all which have a 
role in regulating inflammation; CD44 is reduced in AM from 
smokers when compared with non-smokers.38 42 CD11c is an 
integrin that mediates cell–cell and cell to matrix interactions 

Table 1  Cigarette smoking-related phenotypic changes of alveolar macrophages
Cell surface 
marker Function

Level of expression in 
smokers Reference

CD11c Integrin alpha X chain; adherence to stimulated endothelium and phagocytosis of complement-coated particles ↑ 31 43 44

CD14 Co-receptor working with toll-like receptors; facilitates response to lipopolysaccharide ↑ 38

CD16 Type III Fc gamma binds immunoglobulin; participates in signal transduction and phagocytosis ↓ 43

CD31 Platelet endothelial cell adhesion molecule; promotes tethering of apoptotic cells in efferocytosis ↓ 38

CD36 Scavenger receptor; regulates efferocytosis of apoptotic neutrophils and role in fatty acid uptake and lipid metabolism ↓ 40

CD44 Cell surface glycoprotein involved in cell–cell interactions, adhesion and migration; receptor of efferocytosis ↓ 38 42

CD54 Intercellular adhesion molecule-1; involved in cell–cell interactions and leucocyte migration ↓ 43 45

CD71 Transferrin receptor; role in iron metabolism and iron import into cells through endocytosis ↓ 38 45

CD91 Low density lipoprotein receptor-related protein; binds to collagen like region on lung collectins and role in phagocytosis ↓ 38

CD163 Scavenger receptor for haemoglobin–haptoglobin complex; innate immune receptor for bacteria and can be influenced by corticosteroids ↓ 40

3Lugg ST, et al. Thorax 2021;0:1–8. doi:10.1136/thoraxjnl-2020-216296
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and is expressed at higher levels in healthy smokers compared 
with non-smokers.31 43 44 CD54, also known as intercellular 
adhesion molecule-1, has a major role in immune and inflam-
matory regulation and has been shown to be expressed in lower 
levels in AMs from smokers compared with non-smokers.43 45 
CD169 is a cell marker used to characterise AMs/IMs, however, 
little is known about the affects of CS exposure on expression. 
CD169 has been shown to be involved in phagocytosis of non-
typeable Haemophilus influenzae and levels reduced in COPD 
ex-smokers compared with non-COPD ex-smokers, however, 
current and recent ex-smokers (2 months) were not assessed.46

Therefore, smoking influences the phenotype of pulmonary 
macrophages, resulting in more undifferentiated immature 
monocyte-like macrophages with a reduction in the mature AM 
surface markers needed for phagocytosis, efferocytosis, cell–
cell and cell to matrix interactions. The increase in the imma-
ture macrophages seen in smokers may be due to the influx 
of monocyte-derived cells from the peripheral blood, with the 
additional increase due to AM proliferation within the lung.38

CS EXPOSURE AND AM IMMUNE FUNCTION
Transcriptional profile and inflammation
A number of studies have looked at the transcriptional profiles 
of human AMs isolated from smokers compared with non-
smokers.36 47 48 The differential in gene expression belongs to 
the functional categories of immune/inflammatory response, 
lysosomal function, antioxidant-related function, signal trans-
duction, regulation of transcription, cell adhesion, ECM and 
proteinase/anti-proteinase production.48 One such difference 
was an increase in osteopontin expression in smokers (four-
fold), which was confirmed at the protein level and correlated 
with airflow obstruction. Osteopontin has a role in macro-
phage recruitment and is typically increased in response to pro-
inflammatory cytokines (TNFα, IL-1β, transforming growth 
factor (TGF)-β).47 CS exposure has also been shown to increase 
TNFα, which is central to acute smoke-induced inflammation 
and resulting connective tissue breakdown,49 a precursor of 
emphysema development.

Cytochrome P450 (CYP) enzymes play an important role in 
activation of the CS procarcinogens to reactive metabolites that 
cause DNA damage,50 with CYP1B1 found to be the most highly 
induced gene in AMs from smokers.47 In addition, PAH–DNA 
adducts are higher in AMs from smokers, related to pack year 
consumption and were increased in smokers with higher levels 
of CYP3A.51 Thus, AMs play a role in the metabolism of carcin-
ogens in CS exposure, which may contribute to lung cancer 
development.

Impaired bactericidal and phagocytotic processes/functions
Detection and phagocytosis of foreign particulates and microbial 
matter is key to AM function and, in many cases, is the first 
step in orchestrating an immune response to infection. More 
frequently, within the airway, non-opsonised phagocytosis occurs 
via scavenger receptors, leading to cytoskeletal rearrangements 
and particle engulfment.52 This process results in a phagosome, 
which fuses with the lysosome to form the phagolysosome, with 
subsequent acidification to destroy the foreign particle/organism.

Innate recognition of pathogen-associated molecular patterns 
(PAMPs) is mediated by evolutionarily conserved pattern recog-
nition receptors (PRRs). Toll-like receptors (TLRs) comprise a 
family of PRRs that are capable of recognising distinct PAMPs. 
TLR2 surface marker expression is reduced in AMs from 
smokers and levels of mRNA and protein expression did not 

increase in response to LPS stimulation compared with that in 
non-smokers,31 suggesting that continuous exposure to LPS 
present in CS may down-modulate antimicrobial response.53 
TLR4 surface markers also recognise LPS from gram-negative 
bacteria. TLR4 expression is reduced in MDMs following CS 
exposure,54 with associated increased intracellular ROS and 
reduced antioxidant glutathione, which is implicated in oxida-
tive stress and lung inflammation and seen in the pathogenesis 
of emphysema.

AMs play a key role in bacterial infection. Depletion of AMs 
in murine models results in decreased containment and clear-
ance of gram-negative bacteria Klebsiella pneumoniae as well as 
reduced overall survival.55 An in vitro study found no difference 
in the ability for AMs from healthy smokers to phagocytose, but 
a deficiency in the antimicrobial (bactericidal) properties against 
gram-positive bacteria Listeria monocytogenes, implying a defect 
in immunoregulation of the AM.56 CS extract also impaired AM 
phagocytosis of non-typable H. influenzae, a frequent coloniser 
of the upper respiratory tract, which may be due to CS potenti-
ating reduced phosphoinositide 3-kinase signalling, triggered by 
the gram-negative bacteria.57 Using bioparticles from the gram-
negative bacteria Escherichia coli, AM phagocytosis has been 
shown to be impaired in patients with COPD who were current 
smokers when compared with patients with COPD who were 
ex-smokers.40 CS exposure also causes bacteria to become more 
virulent, with reduced lysis and resistance to macrophage killing 
such as seen in gram-positive bacteria, Staphylococcus aureus.4 In 
this study, CS exposure altered surface charge and hydrophobicity 
of the bacterial cell wall, which confers resistance to killing by 
antimicrobial peptides, both effecting the pathogenicity as well as 
host susceptibility by impairment of AM function. CS also impairs 
AM phagocytic function against the opportunistic fungal pathogen 
Candida albicans in murine models after 15 min of CS exposure.58

AMs from smokers have been shown to have defective 
autophagy,59 a cellular function that removes unnecessary or 
dysfunctional cellular components and required to eliminate 
intracellular Mycobacterium tuberculosis.60 In addition, nico-
tine in CS extract has been shown to impair AM M. tuberculosis 
killing,61 which may play a role in the increased risk of M. tuber-
culosis infection in smokers.

In patients undergoing surgery, anaesthesia has also been 
shown to detrimentally affect AM phagocytic and antimicrobial 
function.62 During surgery and anaesthesia, smoking further 
reduces AM phagocytosis of non-opsonised and opsonised 
(pre-incubated with rabbit immunoglobulin G anti-bovine 
serum albumin)62 albumin-coated fluorescent particles and 
killing of L. monocytogenes, which were halved compared 
with non-smokers.63 The expression of pro-inflammatory cyto-
kines (TNFα, IFNγ, IL-1β) was increased only half as much in 
smokers.63 This supports the observed increased risk in post-
operative pulmonary complications in patients who smoke 
before surgery. The effect of smoking cessation has been inves-
tigated64; 4 hours after induction of anaesthesia, the decreases 
in antimicrobial function against L. monocytogenes were 1.5–3 
times greater in AMs from current and recent ex-smokers (2 
months) compared with never smokers. AMs from current and 
mid-term ex-smokers (2–6 months) mounted a blunted inflam-
matory response with only a 50%–20% increased expression of 
pro-inflammatory (TNFα, IFNγ, IL-1β) and anti-inflammatory 
(IL-10, IL-4) cytokines compared with never smokers.

Proteinase/anti-proteinase imbalance and tissue destruction
One of the causes of smoking-related lung damage is through 
the imbalance of proteolytic enzymes (proteinases) and their 

4 Lugg ST, et al. Thorax 2021;0:1–8. doi:10.1136/thoraxjnl-2020-216296
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inhibitors secreted by AMs. MicroRNA (miRNA) profiling 
studies in human AMs found that the most strongly downreg-
ulated miRNA in smokers compared with non-smokers was 
miR-452,37 which has a role in inhibiting the expression of 
MMP-12, a proteinase which degrades elastin and causes emphy-
sema.65 The same study found that global miRNA expression was 
50%–60% less in AMs from smokers.37 This may be explained 
by the reduced expression of the cytosolic RNA endonuclease 
(DICER),66 that has a key role in cleaving precursor miRNAs 
into mature functional 20–22-nucleotide miRNAs. MMP-12 has 
been shown to be the third most highly induced gene in smokers 
(ninefold) compared with non-smokers47; MMP-12+ macro-
phages are also increased in BAL in smokers and those with 
patients with COPD.67 Furthermore MMP-12 can increase the 
expression of placenta growth factor (PGF), upregulating down-
stream signalling molecules of PGF and resulting in bronchial 
epithelial cell apoptosis and emphysema.68 AMs also produce 
elastolytic cysteine proteinases that have the capacity to cause 
significant lung destruction, particularly in an acidic environ-
ment.69 Cathepsin S is another potent elastase, with expression 
and activity found to be increased in current smokers.70 Cystatin 
C (CysC) is a major constitutive secretory product of AMs and 
is the most important inhibitor to cysteine proteinases which are 
also produced by the cells. CysC forms complexes with cathep-
sins and regulates proteinase secretion or leakage from dying or 
diseased cells. CysC release has been shown to be downregulated 
in response to CS.71 Thus, CS tips the balance of proteinase/anti-
proteinase release from AMs, contributing to cell death alongside 
inadequate repair, with elastolysis and connective tissue destruc-
tion, all of which are involved in the pathology of emphysema.

Dysregulated ROS production
ROS is essential for innate immune response of AMs and is 
produced by the enzyme NADPH Oxidase 2 (NOX2). Activa-
tion of NOX2 requires translocation of cytoplasmic subunits 
(p40phox, p47phox and p67phox) and the guanosine triphosphate-
binding Ras-related C3 botulinum toxin substrate 2 (Rac2) to a 
membrane-bound heterodimer cytochrome.72 CS has shown to 
increase intracellular ROS and activate the cellular energy sensor 
AMP-activated protein kinase in a nicotine dependent manner, 
resulting in increased IL-8 cytokine production,73 which plays a 
role in lung inflammation.

Cadmium is a heavy metal of considerable toxicity found 
in CS, which has been shown to influence the phagocytic and 
microbiocidal capacity of murine AMs.74 Cadmium levels were 
significantly elevated (ninefold) in BAL from human smokers, 
which correlated with loss of membrane Rac2 and p67phox locali-
sation and NOX2-derived ROS synthesis.75 In the same study, in 
CS exposed mice, cadmium inhibited Rac2 activation needed for 
the generation of ROS in lung macrophages, recovery of Rac2 
function reduced Streptococcus pneumoniae bacterial burden 
and increased survival. This may explain, in part, a mechanism 
for lower respiratory tract infection susceptibility in smokers.

Mitochondrial dysfunction and oxidative stress
Mitochondria are essential organelles that act as the power-
house of the cell by generating high amounts of energy though 
ATP by oxidative phosphorylation. There is increasing interest 
in the alteration of mitochondrial activity as a mechanism for 
AM dysregulation in CS-related lung disease. AMs from patients 
with COPD had increased basal mitochondrial ROS (mROS) 
expression, though were unable to increase mROS production 
in S. pneumoniae infection, thus reducing the late phase of 

intracellular bacterial killing.76 MDMs from COPD increased 
mROS in response to oxidative stress, but with a decreased 
mitochondrial membrane potential, indicating dysregulated 
mitochondrial function.77 The differences in these studies may 
reflect that AMs from the lungs are primed to have elevated 
mROS following bacterial exposure, whereas MDMs are yet 
to be primed to reveal the intrinsic defect described. Further 
understanding of the role of CS in mitochondrial function in 
AMs is needed as a potential therapeutic approach for improving 
phagocytosis and infective exacerbations in COPD.

CS EXPOSURE AND AM HOMEOSTASIS
Surfactant/lipid processing and inflammation
The AM has a role in regulating the surfactant layer coating the 
alveolar epithelium by clearing damaged and oxidised surfactant 
produced by the alveolar epithelial type II (AT2) cell ensuring low 
surface tension to prevent alveolar collapse.78 AMs contribute to 
around 50% of surfactant turnover through degradation, with 
the remaining surfactant uptake and recycling by AT2 cells.79 
Granulocyte macrophage colony-stimulating factor (GM-CSF) is 
required for the differentiation and functional activity of the AM 
in mice80 and has an important role in surfactant homeostasis. 
Absence of GM-CSF in humans is seen in pulmonary alveolar 
proteinosis, in which AMs are unable to catabolise surfactant 
lipids and proteins, resulting in an accumulation of pulmonary 
surfactant-associated proteins in the airways and associated 
inflammation.

CS exposure is associated with damaged pulmonary surfactant, 
inflammation and dysfunctional processing and lipid accumula-
tion in AMs (a defining feature of foam cells); IL-1α-dependent 
inflammation following exposure is required to maintain surfac-
tant homeostasis in the lungs through production of GM-CSF.81 
In another murine study, CS exposure increased pulmonary 
GM-CSF and AM accumulation. Chronic GM-CSF exposure 
induced features of diffuse interstitial pneumonia, a smoking-
associated parenchymal lung disease associated with AM accu-
mulation, increased MMP-12 secretion, parenchymal lung 
disease and emphysema.82

Reverse lipid transport is crucial in pulmonary homeostasis 
and allows AMs to properly export intracellular lipids and 
cholesterols, most of which originate from the pulmonary 
surfactant. ATP-binding cassette transporter A1 (ABCA1) and 
G1 (ABCG1) have important roles in the exporting cell, as they 
bind to apolipoprotein A-1 (ApoA-1), the principal component 
of high-density lipoproteins (HDLs). Deficiencies of ABCA1 and 
ABCG1 increase lipid accumulation in AMs and chronic lung 
inflammation in mice.83 84 CS affects pulmonary expression of 
ABCA1 and ABCG1 in both humans and mice, with ApoA-1 
deficient mice showing a 50% reduction in reverse lipid trans-
port capacity, and increased lung neutrophilia and larger macro-
phage size in response to CS exposure.85 There is a potential role 
for augmenting reverse lipid transport. ApoA-1 overexpression 
in mice had a protective effect in attenuating inflammation and 
development emphysema following CS exposure.86

Iron homeostasis and oxidative damage
Iron homeostasis is important in the lung, as excess iron, partic-
ularly in the ‘free’ form produces toxic reactive hydroxyl radi-
cals, and favours intracellular bacterial growth such as in M. 
tuberculosis infection.87 Intracellular iron is increased in AM 
from smokers88 89 and in patients with COPD and lung cancer.89 
Release of extracellular iron and ferritin is higher in AMs from 
smokers compared with non-smokers and more-so in heavy 
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smokers.90 CS and crocidolite (blue asbestos) exposure have 
been shown to have a synergistic role in promoting extracellular 
ferritin release by AMs.91 Thus, the increased extracellular iron 
from AMs is a potential source of oxidative damage and inflam-
mation in the lung following CS exposure.

Efferocytosis and resolution of inflammation
Efferocytosis is the clearance of primarily apoptotic neutrophils 
in the setting of acute lung inflammation. During efferocytosis 
the cell membrane of the AM engulfs the apoptotic cell, forming 
a vesicle called the efferosome, preventing the apoptotic cell 
from breaching its membrane and leaking toxic elements such 
as enzymes, oxidants and proteinases into the surrounding 
tissue. Thus, efferocytosis requires the AM to adopt an anti-
inflammatory state in order to prevent inflammatory responses 
to self-proteins.92

Efferocytosis is reduced in AMs from smokers compared 
with never-smokers.93 AMs recognise apoptotic cells using cell 
surface receptors including CD44 (hyaluronan receptor), which 
is expressed at lower levels in smokers38 and is important for 
clearance of apoptotic neutrophils and the release of anti-
inflammatory and pro-repair mediators such as TGF-β.94 CS has 
been shown to reduce efferocytosis in AMs through the interac-
tion of AM with CS modified ECM proteins and aberrant surfac-
tant processing.95 Defective efferocytosis of AMs may also be 
driven by the significantly increased levels of CS-induced oxida-
tive stress.96 Another mechanism for reduced efferocytosis may 
be due to CS-induced defects in phagosome and the lysosome 
fusion, demonstrated in rat models.97

CS-reduced AM efferocytosis was restored through the 
delivery of GM-CSF to the alveolar space and was associated 
with reduced morbidity following influenza infection.98 In 
patients with COPD, AM efferocytosis was higher than in those 
who stopped smoking compared with those who continued to 
smoke, suggesting a CS-related effect on AM in COPD that may 
be partially resolved on smoking cessation.38 Following commu-
nity acquired pneumonia, smokers had reduced AM efferocy-
tosis, as were those who were not on a statin; suggesting that 
smoking and statins may have antagonistic effects on the Rac1 
and RhoA pathway in influencing efferocytosis and inflamma-
tion resolution.99 CS is known to affect pathways leading to the 
activation and membrane localisation of the enzyme Rac, which 
facilitates the cytoskeletal rearrangements needed for efferocy-
tosis.100 Statins are a potential therapy to improve AM effero-
cytosis, as demonstrated in AMs from mice and patients with 
COPD.101 Macrolides including azithromycin are another poten-
tial therapy to rescue defective efferocytosis as shown in patients 
with COPD,102 possibly due to an upregulation of CD206 but 
the mechanism remains to be fully elucidated. Glucocorticoids 
improve AM efferocytosis but decrease phagocytosis in murine 
models of S. pneumoniae.103 Thus, resolving efferocytosis may 
leave the AMs that have ingested apoptotic cells less able to 
recognise and kill bacteria.104 Therefore a balance must be struck 
between microbial clearance and pro-resolution.

CONCLUSION
CS has a plethora of effects on AMs with changes in phenotype, 
phagocytosis and bacterial killing, ROS production, proteinase/
anti-proteinase release, iron and lipid homeostasis and efferocy-
tosis. Subsequent acute and chronic inflammation with inflam-
matory cell recruitment and resultant destruction/remodelling 
increases susceptibility to pulmonary infection and development 
of CS-induced lung diseases. Many of these smoking-induced 

changes on the AM persist following cessation in smoking, with 
the duration of cessation needed for partial or full resolution of 
phenotype and function largely unknown. E-cigarette vaping has 
shown similar effects to smoking on AM function,105 with shared 
mechanisms to CS exposure, though the perception is that they 
are a safer alternative. Further understanding of the mechanisms 
of CS on AMs and other lung monocyte/macrophages popu-
lations may allow novel ways of restoring cellular function in 
those patients to reduce risk of infection or further lung injury.
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